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Offline iterative control (OIC) is a widely employed technique in shaking table tests for accurately reproducing earthquake
waveforms. However, repeated offline iterations can cause cumulative damage to fragile specimens, while the continuously
changing dynamic characteristics of nonlinear specimens reduce the control accuracy of OIC. To overcome these limitations, real-
time iterative control (RIC) has been introduced and applied to eliminate the need for multiple iterations. To further improve the
stability and accuracy of RIC, this study introduced RIC with online system matrix correction (RICSC) method, discussed the
control performance of the RICSC method. The RICSC method evaluates the accuracy of the identified system matrix using the
following indices: the coherence function (CF) weighted sum, the CF, and the autocorrelation power density spectrum (AS). Based
on these evaluations, the system matrix is corrected via frame correction (FC) or frequency point (FP) correction algorithms,
thereby enhancing waveform reproduction accuracy and control stability. The performance of the RICSC method was verified via
numerical simulations and shaking table tests under 20 test conditions. The results show that the FP correction algorithm (RICSC-
FP) achieves the fastest convergence of absolute error, and its reproduction accuracy is higher than those of the traditional RIC
and FC (RICSC-FC) algorithms. Both numerical and experimental results demonstrate that the RICSC method provides higher
reproduction accuracy than OIC after just one iteration.

Keywords: matrix accuracy evaluation indices; real-time iterative control; shaking table test; system matrix; system matrix
correction algorithm

1. Introduction subjected to gradually increasing-amplitude accelerations,

from small to large, until they reach ultimate failure.
Shaking table tests are widely used to evaluate the seismic ~ Consequently, specimens in shaking table tests are often
performance of buildings and infrastructure under earth-  nonlinear, sometimes exhibiting extreme nonlinearity,
quake excitations. In such tests, specimens are typically = which in turn makes the dynamics of the shaking table
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system complex and strongly nonlinear. The accuracy of
waveform reproduction in shaking table tests depends sig-
nificantly on the control scheme [1]. Several control strat-
egies have been proposed to improve seismic waveform
reproduction, including three-parameter control [2, 3],
displacement control [4], and acceleration control [5]. To
reproduce wideband excitations for large structures with
strong nonlinear characteristics, Pan et al. [6] proposed
a frequency-divided three-parameter control method for
a double-layer shaking table (DLST). Similarly, Tian et al. [7]
introduced a frequency-divided offline iterative control
(OIC) method to reproduce wide-frequency-range reference
signals for DLST systems. However, both methods have only
been validated on small-scale shaking tables. The OIC
method is typically employed to achieve high-precision
waveform reproduction of shaking table inputs. For in-
stance, Tagawa and Kajiwara [8] employed an iterative input
reference correction method for the E-defense control
system. This process was performed offline and required
iterative adjustment of six-degree-of-freedom inputs,
resulting in inefficiency. Ji et al. [9] proposed an open-loop
inverse compensation method using model matching and
Hoo controller design to improve the accuracy of seismic
acceleration responses in substructures; however, this
method was also implemented offline. Maddaloni et al. [10]
developed an additional “open-loop” feedforward com-
pensation method based on an inverse transfer function to
achieve acceptable acceleration time histories for specimens.
Zhou et al. [11] proposed a multidirectional decoupling
iterative control method to reproduce acceleration in
nonstructural shaking table tests. Both Maddaloni’s and
Zhou’s methods are primarily suitable for nonstructural
tests, and their applicability to general structural shaking
table tests requires further investigation. As specimen
nonlinearity develops and control-structure interaction
increases, the accuracy of OIC diminishes. For shaking table
tests of new structural systems—such as offshore wind
turbine towers, underground space structures, and friction
pendulum isolation structures [12]—OIC accuracy often
requires improvement to achieve high precision [13, 14].
Although OIC can provide good tracking accuracy, it has
several limitations. Achieving exact replication of the ref-
erence signal generally requires multiple iterations, which
can cause cumulative damage to specimens. To address these
shortcomings, several robust control methods have been
applied to shaking tables. Chen et al. [15] proposed a model-
based command-shaping controller in combination with
conventional proportional-integral inner-loop control, of-
fering a robust control framework. This method was vali-
dated using a flexible two-story steel specimen; however, its
effectiveness for concrete structures remains to be studied.
Adaptive control methods have also been applied to shaking
tables to provide robust control over nonlinear ranges. For
example, Neild et al. [16] proposed an adaptive substructure
controller based on the minimum control synthesis ap-
proach, tested primarily on linear specimens. Enokida and
Kajiwara [17] applied a nonlinear signal-based controller to
nonlinear specimen tests, and both numerical and experi-
mental results validated its efficiency and practicability.
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Other adaptive approaches include Yao et al. [18], who
developed a least-mean-square (LMS) adaptive algorithm
for harmonic elimination to reduce distortion and improve
shaking table performance. A time-varying step-size LMS
algorithm was introduced to enhance convergence; however,
this method was tested only on sine waves and not on
random or seismic signals. Dertimanis et al. [19] proposed
an adaptive inverse control framework with an improved
filtered-x LMS algorithm for accurate waveform re-
production; however, this required a lengthy learning
process before inputting earthquake waveforms. Model-
based controllers (MBCs) have also been investigated for
improved acceleration tracking in nonlinear systems. Phil-
lips et al. [20] and Phillips and Spencer [21] demonstrated
the effectiveness of MBCs on unidirectional shaking tables
with both linear and nonlinear structures. Najafi et al. [22]
further developed a modified MBC strategy by introducing
a stability condition to enhance robustness. To address
modeling uncertainties and nonlinearities, Yang et al. [23]
employed a sliding mode control technique to improve
robustness; however, its acceleration tracking accuracy re-
quires further refinement. More recently, hierarchical
control strategies have been introduced. Yao et al. [24] and
Chen et al. [25] developed an acceleration-based sliding-
mode hierarchical control framework and a model reference
adaptive hierarchical control framework. Rajabi et al. [26]
applied extended Kalman filter/unscented Kalman filter
(EKF/UKEF) techniques for online state estimation of shaking
table controllers. Ryu et al. [27] integrated a real-time EKF
estimator with a feedback-linearization-based adaptive
control method, demonstrating improved tracking and es-
timation performance. Although these methods have en-
hanced control accuracy, most of them have been validated
only on small-scale shaking tables and steel specimens. Their
control accuracy and stability still require verification and
turther study for large-scale shaking table tests on general
concrete and reinforced concrete structures.

For large-scale shaking table model tests with
degradation-type specimens, the real-time iterative control
(RIC) method offers a potential solution ([28] MTS Web-
site). Although it has been investigated by several re-
searchers, further studies are required to improve its
accuracy and stability for engineering applications. The
concept of online iterative control was first proposed in the
1960s [29]. Mechanical Testing and Simulation (MTS) later
developed software and applied the approach experimentally
to certain specimens (MTS Website). However, online it-
erative control still requires significant improvements for
general application beyond special cases, particularly with
respect to stability. In shaking table tests involving speci-
mens in the elastoplastic stage, a low acceleration iterative
updating rate may lead to poor control accuracy. To address
this issue, Tian et al. [30] proposed a fast-frequency seg-
mental iterative control method. Nonetheless, the robust-
ness of such methods has only been verified for small-scale
steel-frame models with elastoplastic characteristics. Their
accuracy tends to decrease once the specimens enter the
elastoplastic stage, and the stability of these approaches
remains a critical concern. For medium- and large-scale
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shaking table model tests, ensuring the stability and re-
liability of RIC is essential. This requirement is largely de-
termined by the performance of the online correction
algorithm used for the RIC system matrix. To address these
limitations, a RIC method with system matrix online cor-
rection (RICSC) is proposed. Zhang et al. [31] proposed the
RICSC method for a shaking table test. To analyze the
performance of the RICSC method, the effect of system
matrix accuracy indices is analyzed in this study—the co-
herence function (CF) weighted sum, CF, and autocorre-
lation power density spectrum (AS)—and corrects the
matrix using either frame correction (FC) or frequency point
(FP) correction algorithms, and the effect of the initial
system matrix known or unknown is also discussed. This
ensures reliable tracking and high-precision waveform re-
production, thereby broadening the applicability of RIC to
a wider range of structural shaking table tests.

The remainder of this paper is organized as follows.
Section 2 presents the principles of the RICSC method.
Section 3 verifies the RICSC approach through numerical
simulation of a nonlinear specimen. Section 4 introduces the
experimental system design for the RICSC method, and
Section 5 analyzes the experimental verification results.
Finally, Section 6 summarizes the conclusions drawn from
the simulations and tests.

2. RIC Based on New System Matrix Online
Correction Algorithm

The principle underlying the new method is that the ef-
fectiveness and accuracy of the identification of the system
matrix are determined by the CF, weighted sum of CFs, or
the power spectral density as a matrix accuracy evaluation
index; if the matrix accuracy evaluation index meets the
demand, the system matrix is corrected, and vice versa. The
novelty of the RICSC method is that the online correction of
the system matrix is based on new FC and FP correction
algorithms, which exhibit enhanced accuracy and stability
than the direct correction of traditional RIC. The generation
of the initial command signal, loading and measurement of
the response signal, identification of the system matrix, and
iterative updating of the command signal processes were
nearly identical as those in traditional IRC. Only the online
correction of the system matrix of the RICSC is different
from that of the traditional IRC. Online correction of the
system matrix is a key part of the RICSC, which improves the
accuracy and stability of the online correction process using
FC and a FP correction algorithm. In this section, the basic
diagram of the RICSC method is introduced, and the five
processes of the RICSC method are analyzed.

2.1. Basic Diagram of the RICSC Method. The RICSC method
corrects the system matrix online to improve waveform
reproduction accuracy when the system characteristics
change comparing with the initial state. As shown in Fig-
ure 1, the RICSC method consists of five processes: gen-
eration of the initial command signal, loading and
measurement of the response signal, identification of the

system matrix, online correction of the system matrix, and
iterative updating of the command signal. The RICSC
method decomposes the reference signal of the shaking table
into segments, with each segment serving as the basic unit of
the system matrix identified and corrected, called a frame.
The length of the frame is determined according to several
aspects: data points of a frame, calculation duration, signal
frequency range, and sampling frequency of the measure-
ment. The data points of a frame must be determined first
because the different data point number can influence the
calculation duration of the controller. The real-time iden-
tification and correction are conducted with frames as the
basic unit. For example, when the data point number of
a frame is set as n = 1024 in this study, the calculation
duration of real-time iterative controller can be estimated.
Subsequently, sampling frequency of the measurement f,
(the nomenclature is summarized in Appendix A) is set to
make the sampling time step larger than the calculation
duration. The frequency resolution [32] and frequency range
of the fast Fourier transform (FFT) can be obtained as f/n
and f/n~ f /2, respectively. The signal frequency range
can be determined when the specimen and the input signal
to the shaking table are known. It must be satisfied that the
frequency range of FFT is larger than approximately 4-
5 times of the maximum frequency of the signal frequency
range. If this condition cannot be satisfied, the length of the
frame (data point number) should be adjusted again. The
frequency resolution and the frequency range of the FFT will
affect the control effect because the FFT is the basic cal-
culation of the real-time iterative controller. The relation
between the control effect and the length is dependent on the
specimens and nonlinear characteristics. The signal fre-
quency range of shaking table tests with different specimens
with different nonlinear characteristics may have little bit
difference. The length of the frame needs to be changed if the
signal frequency range for the shaking table has obvious
changes.

A frame is the basic unit for the five processes of the
RICSC method. For example, when ground motion record at
the El Centro Station in the 1940 Imperial Valley Earthquake
is taken as the input, the acceleration of earthquake time
history is divided into multiple frames (which have 10
frames). The first frame of the command signal was gen-
erated during the generation of the initial command signal.
Subsequently, the command signal data points of this frame
were input to load individually, and the response signals
were measured synchronously, as shown in Figure 2. When
the first frame of the command signal is loaded and mea-
sured, the system matrix and the matrix accuracy evaluation
index of the frame signals can be identified. The system
matrix is corrected based on the selected online correction
algorithm. Then, the second frame of the command signal is
iteratively corrected and input to the load individually. The
next frame data of the command signals are corrected and
loaded; therefore, it continues in a cycle until the last frame
of the command signals is corrected and loaded (which is the
10th frame in this case). The time length of one frame is T,
and the total time length of the reference signal in the
shaking table test is defined as T',,. When the sampling
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Ficure 1: Schematic of the RICSC method.

frequency is defined as f, the number of data points in one
frame is n =T X f, and the number of frames of the ref-
erence signal is k = T',//T. When the total time length of
the test cannot be exactly divisible into T, zero-padding data
are added at the end of the time history of the reference
signal. This provides an option to satisfy the condition of
being exactly divisible into T. The shaking table test was
completed when the k™ frame command signals were
loaded, and the k™ frame response signals were measured
(k =m), as shown in Figure 1. The five processes of the
RICSC method are described as follows.

2.2. Generation of the First Frame Command Signal.
System matrix H is the key component for generating the
command signal and is defined as the transfer function
matrix of the shaking table system. The general expressions
are given in the following equation.

[Y,(s) Y,(s) Y, ()7
X, (s) X,(s) X;(s)

Y,(s) Y,(s) Y, (s)
X;(s) X,(s) X;(s)

Yi(s) Yi(s)  Yi(s)
L X, (s) X,(s) X;(s)
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where Y, (s),i = 1,...,I denotes the Laplace transform of the
response signal of the shaking table system, X, (s),i = 1,...,]
denotes the Laplace transform of the command signal of the
shaking table system, and I denotes the number of input and
output signals.

The RICSC method first determines whether the initial
system matrix H, of the shaking table is known. The initial
system matrix H,, can be obtained by an identification test with
a band-limit white noise input. If the H,, is known, it can be used

to generate the first-frame command signal. The ¥, represents
the time domain of the first-frame reference signal, which is

transformed into the frequency-domain reference signal Y,
using a FFT. G, denotes the inverse matrix of the initial system
matrix H;, as shown in equation (2). When Hj, is known, the
frequency domain of the first-frame driving signal U, can be
obtained using equation (3). Subsequently, U, is transformed
into the first-frame driving signal u; using an inverse fast
Fourier transform (IFFT). If H,, is unknown, u, is a white noise
signal #,pienoise Without calculation. A block diagram for
generating the initial command signal #, is shown in Figure 3.

G, = H,', (2)
U =Gy x Y, (3)

2.3. Loading and Measurement of the Response Signal. A
block diagram of the loading and measurement of the re-
sponse signal is shown in Figure 2. The m™ frame command
signal u,, contains »n data points of the command signal

{um,i}[ﬂyzw and is sequentially input into the shaking table

system to load. The RICSC method checks whether i <n, if
i <n, the loading and measurement continue until the "
frame command signal is completely loaded (i = n). The m™
frame response signal y,, consists of n data points for the
measured response signal.

2.4. System Matrix Online Identification. The system matrix is
identified based on the m™ frame command and response
signals. The command signal u,, and response signal vy,,
undergo FFT to obtain their frequency-domain responses U,,
and Y,,, respectively. The m™ frame-identified system matrix
H,, is obtained using the AS S, , and the cross-correlation
power density (CPD) spectrum §,, ,, . A block diagram for the
identification of system matrix H,, is shown in Figure 4.

The S, , ofu, and the S, , between u,, and y,, are
obtained using the average periodogram method (also called
the Welch algorithm), and the calculation equations are as
follows:

1 M

Sumum = M_N;Uijmj (4)
1 M

S,y = W;Umjymj (5)
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Command signal i" data point of
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i=i+1
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Shaking table
system

Vo
Response signal

FI1GURE 2: Block diagram of loading and measurement of the response signal.

No
Reference signal

Y, Yes

FFT G,=H;'
T (equation (2))

Gﬂ u=u

1 white noise

U, =G, x ?1
(equation (3))

U

1

IFFT

&

u,

FIGURE 3: Block diagram of generation of the initial command
signal.

where Un, and Y,, are the FFT of the j" data segment of u,,,
andy,,; U

m; and Y:nj are the complex conjugates of Un, and

Yoo respectively; M is the number of points in the average

time; and N is the number of points in the FFT.

The identified system matrix H,, is calculated by the
following equation:

H,=S, 8!, . (6)

The stability of the system matrix identified by the
proposed approach can be ensured by checking whether the
CF C,, is not within the [0~1] range. If the CF C,, of one
frame is within the range [0-1], the system matrix calculated
by using equation (7) can be considered as a stability system
matrix. Otherwise, the system matrix cannot be identified by
using equation (7), and the system matrix is forcibly set as
a multiple matrix whose elements are 5+ 0i. The CF C,,, can
be calculated based on' S, , and S, , “as follows.
S|
_ Py 7
Cn=5 g (7)

U™ YmYVm

where S, | is the APD of Y,,:

M
SJ’m)’m - MN;:lYm}-ij‘ (8)

2.5. System Matrix Online Correction. After obtaining the
system identification matrix H,,, the system matrix was
corrected using the online correction algorithm. Figure 5
shows the online correction process for the m™ frame of the
system matrix. If the traditional RIC algorithm is selected,
H,, can be used directly as the m™ frame system matrix.
Otherwise, H,, is corrected to the m™ FC of the system
matrix H,, according to the matrix correction algorithm.
There are two types of matrix correction algorithms: One is
the FC algorithm, in which all elements of the system matrix
are corrected together based on the CF weighting sum in-
dicator, which is the weighting sum of all frequency points’
CFs of a frame. The second is a FP correction algorithm,
which uses a CF or power spectral density as the matrix
accuracy evaluation index. The FP correction algorithm
corrects every element of the system matrix separately, and
the CF or AS of each element is checked.

If the online matrix identification algorithm is selected,
H,, can be used directly as the m™ frame system matrix.
Otherwise, H,, is corrected to the mM frame of the system
matrix H,, according to the matrix correction algorithm.
There are two types of matrix correction algorithms. The first
is the FC algorithm, which uses the weighted sum of CFs as
the matrix accuracy evaluation index to measure the ac-
curacy of m frame H,,. The second is a FP correction
algorithm, which uses the CF or the power spectral density as
the matrix accuracy evaluation index. The two matrix cor-
rection algorithms are introduced as follows.

2.5.1. FC Algorithm. In the FC algorithm, the system matrix
is corrected according to the data from one frame. The
evaluation index for the FC algorithm is the spectral density
of the reference signal-weighted sum @,,.

The weight is the power spectral density S_ 5 of the
reference signal ¥, in the m™ frame.
1 & -
S%Jm - MszlYmJY’”j’ ©)

where Ym]_ is the FFT of the j data segment of 7,, and f’;_ is
~ ]
the complex conjugate of Y,

S_ _ is weighted by the CF C,, to obtain the m™ frame

mSm

spectral density of the reference signal-weighted sum in-
dicator @,,,:
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u, Y., APD S,
FFT (equation (4))
Identification of
system matrix |——>H
(equation (5)) "
Vo —-— Y, CPD i d
(equation (5))
FIGURE 4: Block diagram of identification of the system matrix.
Yo
FFT
s %
Frame correction Weighted Sum T m APD
(equation (10)) (equation (9))
Select a correction
algorithm
. . Not update
H —————————>—=Frequency point correction (equation (112))  —
Select evaluation
Traditional RIC indicators Update
— (equation (110))
A
FPCF FPAS
C,,>0.95?
i=i+1
! 1Z| Yes No Yes No
Update Not update Update Not update
(equation (12a)) (equation (12b)) (equation (13a)) (equation (13b))
Yes No _
i<n? H
?
FIGURE 5: System matrix online correction block diagram.
n 2.5.2. FP Correction Algorithm. In the FP correction algo-
Dy =28 _ Cups (10)  rithm, the system matrix is corrected according to the CF or
YmiYmi
i=1 AS evaluation indices. The FP correction algorithm uses the
where S_ _ is the i frequency point of S_ _ , and n is CF and ASs as the matrix accuracy evaluation indices, ab-

i) i

the numBé"of data points involved in the V\}r’é"f/g"htin,g and
C,,; is the i frequency point of C,,.

Then, @,, is compared with the previous frame @,,_, to
check whether @,, is greater than @,,_,. In this case, H,, is
directly corrected to the H,,, that is, H,, = H,,. Otherwise,
the system matrix is not corrected, and the m — 1% frame
H,, , remains the system matrix of the m™ frame H,,, i.e.,

H,-H,

H (f)=H, (9,>9,.,) (11a)

H ()=H (0, <D,_1), (11b)

m-1
when m =1, the correction of the system matrix is not
performed, and the identified system matrix H; is directly
used as the system matrix of the shaking table system, that is,

H = H,

breviated as FPCF and FPAS, respectively. The FPCF and
FPAS algorithms are introduced as follows.

The concept of the FPCF algorithm is shown in Figure 6.

Here, H,,,; is the i!" frequency point of the H,,, and H,
is the i frequency point of the H,, ,. The green dots in
Figure 6 represent the frequency points of the H,,, and the
red dots represent the frequency points of the H,, ;. The
yellow dotted line represents the CF limit Cy,; = 0.95.
When the CF at the frequency points C,,; above the yellow
dotted line indicates that the accuracy of H,,,; is satisfied, the

m—1,i

corrected system matrix H,,; is set as H,, ;, and vice versa;
the corrected system matrix H,,; is set as H,, ;.

(C,i>0.95), (12a)

mi m,i

H =H ., (C,<09)

(12b)
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FIGURE 6: Schematic of the frequency point correction algorithm.
where H,,; and H,,; denote the i frequency points of the U, is derived using the IFFT to obtain u,,,,, and the

H,, and H,,, respectively. C,,; denotes the CF of the ith
frequency point in the m™ frame.

The matrix accuracy evaluation index of the FPAS al-
gorithm is the power spectral density. The FPAS algorithm
corrects the system matrix based on whether the power
spectral density S, ~of the H,, islarger than theS, . =
of the H,,_,. If the condition is satisfied, the i frequency
point H,, ; of the H,,, is used as the i frequency point H,,,; of
the H, , i.e., ﬁm)i = H,,;. Otherwise, the ih frequency point
H,,; of H,, remains at the i frequency point H,, ,; of the

H,_,, ie, H,;=H

m—1> m—1,i*
Hmyi = Hm’i (Sym,[ym,i > Symfl,iymfl,i)’ (133)
Hm,i = Hm—li (S;Vm,i)’m,i = Symfl,iymfl,i)’ (13b)
where S ~denotes the APD of the m™ frame response

YmiVmii
signal at the i frequency.

When the n™ frequency point is corrected, the m®
frame-corrected system matrix H,, is obtained.

2.6. Iterative Update of the Command Signal. The m'™ frame-
corrected system matrix is inverted to obtain the system’s
inverse matrix. To prevent instability caused by a singular
matrix during the system matrix inversion process, two
precautionary methods were implemented. First, the cor-
rection process was omitted if the AS of the response signal
was excessively small. Second, by evaluating the magnitude
of the system matrix, the correction process is omitted when
the magnitude of the system matrix is too small, which
prevents an infinite command signal when the system matrix
is inversed. Because the FFT of the reference signal is known,
the m+1%  frame command signal can be
calculated, updated, and defined as the new m™ frame
command signal.

G,=H, | (14)

U, =G,7, (15)

frame number counter is increased to m + 1. The new
command signal was input to the shaking table for loading
until the k™ frame command signal was loaded, which was at
the end of the test. The iterative update of the command
signal is shown in Figure 7.

3. Numerical Simulation of the Shaking Table
Test With a Nonlinear Specimen

To study the effectiveness of the RICSC method, a numerical
simulation of a shaking table test with a nonlinear specimen
was conducted. The simulation model, reference signals, and
results are presented below.

3.1. Numerical Simulation Model. The simulation model was
developed using Simulink/MATLAB and compiled in
SpeedGoat, a real-time simulation and testing system [33], as
shown in Figure 8. The shaking table is employed dis-
placement control as the inner-loop control, while the
RICSC served as the outer-loop acceleration controller
(Figure 8(a)). The RICSC generated command signals to
control the motion of both the shaking table and the
nonlinear specimen. The acceleration response signal of the
shaking table was fed back to the RICSC to enable online
iterations. The nonlinear simulation and dynamic actuator
models are shown in Figures 8(b) and 8(d), respectively. In
Figure 8(c), the actuator dynamics include the servovalve,
actuator cylinder dynamic models, and the specimen.

The servovalve and actuator cylinder dynamic models
were encapsulated as an S-function by BBK Test Systems Co.,
Ltd. [34]. The servovalve model incorporates a filter or delay
to simulate phase shift and frequency response and applies
an offset to account for overlap/deadband. As shown in
Figure 8(d), the actuator-servovalve interaction was mod-
eled with the actuator position and valve command signals
as inputs and force as the output. The model accounted for
pressure and force induced by flow, flow influenced by
pressure and valve control signals, and added damping.
Additionally, it incorporated forces due to differential
pressure, pressure in each chamber, flow effects related to oil
bulk modulus and volume changes, and flow variations with
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FIGURE 7: Iterative update of the command signal.

the actuator position. Cross-port bleeding, friction, damp-
ing, snubbers, and mechanical limitations were also con-
sidered [35]. Detailed formulations of the actuator model are
omitted here for brevity. In Figure 8(b), the ‘convert’ block
primarily converts input signals into specified data types or
units. This block is compatible with various Simulink data
types, including fixed-point numbers, floating-point num-
bers, integers, Boolean values, and enumerations.

The mass, damping, and initial stiffness of the SDOF
specimens were 450 kg, 2500 N/ms™", and 17,765 N/m, re-
spectively. The nonlinear spring model is illustrated in
Figure 8(e). In this model, the output of the data-type
conversion block is zero when 1>|d| (-1<d <1) and one
when |d| > 1. The variable stiffness of the nonlinear spring is
expressed as

Ky, -1<d<l,
K(d) =

(16)
Koe ™, 1<d,

where K, = 17765N/m is the initial stiffness of the spring
and d is the displacement response. The nonlinear stiffness
exhibits a hardening type, which poses a significant chal-
lenge in shaking table control.

3.2. Waveform Input. Two types of reference signals were
used in the numerical simulations: an artificial wave and the
El Centro 1940 Imperial Valley Earthquake ground motion
record (Figure 9). The frequency range of the artificial wave
was generally between 2 and 30Hz, while that of the
earthquake record was typically 2-25 Hz. The artificial wave
energy was uniformly distributed across the frequency
domain, covering a wide range of frequencies observed in
recorded earthquake waveforms. The amplitude of the

artificial wave acceleration was normalized to below 1 m/s’.
The amplitude of the y-directional acceleration of the El
Centro ground motion record from the 1940 Imperial Valley
Earthquake was scaled to 0.2 g because of the displacement
limitation of the shaking table.

3.3. Simulation Results. Among the system matrix accuracy
indices, the RICSC-FPCF method demonstrated the best
control performance, as further discussed in Section 5. A
comparison between the reference and response signals for
the RICSC-FPCEF algorithm under artificial wave excitation
is shown in Figure 10.

As shown in Figure 10, the acceleration response signal
closely matched the reference signal, demonstrating that the
RICSC method can effectively control the shaking table
under artificial wave excitation.

The results of the RICSC-FPCF and OIC methods under
the El Centro Earthquake record are presented in Figure 11.
It should be noted that the OIC method performed only one
iteration. As illustrated in Figures 11(a) and 11(b), the re-
sponse signal of the RICSC method was closer to the ref-
erence signal than that of the OIC method after a single
iteration. To evaluate control accuracy, the mean absolute
error (MAE) and root mean square error (RMSE) of the
absolute error were calculated as follows:

1 & B
MAE = — mmzzli; Vi — ym,,»|, (17)
1 &y o\
RMSE = nxmzz<ym,i—ym,i>. (18)
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FiGgure 8: Continued.
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F1GURE 8: Nonlinear simulation model of the shaking table. (a) Flowchart of the RICSC simulation. (b) Nonlinear simulation. (c) Actuator
model. (d) Servovalve and actuator cylinder dynamic model. (e) Nonlinear spring model.
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F1GURE 9: Reference signal for the shaking table test simulation. (a) Artificial wave. (b) El Centro 1940 Imperial Valley Earthquake ground

motion record.

From Figures 11(a) and 11(b), the response signal of the
RICSC method was closer to the reference signal than that of
the OIC method with the one-time test. For the RICSC
method, the MAE was 0.1744 and the RMSE was 0.2390. For
the OIC method, the MAE was 0.3239 and the RMSE was
0.5274. These results indicate that the reproduction accuracy of
the RICSC method was superior to that of the OIC method in
the one-time test. The RICSC method may be particularly
suitable for shaking table tests involving specimens that are
easily damaged, as it achieves high accuracy in fewer iterations.
For more robust specimens, the OIC method with multiple
iterations may achieve higher accuracy, though this compar-
ison is not discussed in detail here. The nonlinearity of the
specimen affects the characteristics of the shaking table system,
potentially altering its system matrix. The RICSC method
addresses this by identifying the current system matrix of the
shaking table-specimen system and correcting it whenever
changes are detected using matrix accuracy evaluation indices.
As the specimen’s displacement response increased, its stiffness
also increased. As shown in the enlarged details in Figures 10(a)
and 11(a), the acceleration response signals of the RICSC
method tracked the reference signals well even at large am-
plitudes. This demonstrates the capability of the RICSC method
to effectively manage system nonlinearities.

4. Experimental System Design

To further analyze the effectiveness of the RICSC method,
experimental validation was carried out using a unidirec-
tional shaking table at the Institute of Engineering

Mechanics, China Earthquake Administration. The speci-
men used in the shaking table test was a tuned-mass damper
(TMD) device [36], which employed friction damping and
exhibited nonlinear characteristics (Figure 12). The mass,
fundamental frequency, stiffness, and damping of the
specimen were 500kg, 1.948 Hz, 1896.93 N/m, and 220 Ns/
m, respectively. The performance parameters of the shaking
table are listed in Table 1. As shown in Table 1, the specimen
mass reached the rated loading capacity of the shaking table.
This increased both the friction damping and the difficulty of
control because of the enhanced nonlinearity and un-
certainties introduced into the test.

4.1. Shaking Table Test Platform. The RICSC framework for
the shaking table test is illustrated in Figure 13. A Pulsar
shaking table controller (Pulsar Controller [37], Website
link) was employed as the inner-loop control unit, while the
outer-loop RICSC controller was implemented through real-
time communication using a shared memory card network
(SCRAMNet [38], Website link). Acceleration response
signals were measured and used for online identification and
correction of the system matrix. The RICSC method was
developed and compiled using Simulink/MATLAB (Version
8.3, R2014a) on a host PC. Prior to the experiment, the
algorithm was compiled into an xPC target host computer,
and data were transmitted via SCRAMNet.

Previous studies [31] have shown that using 1024 data
points achieves an optimal balance between control accuracy
and computational efficiency, as RIC requires extremely fast
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F1GURE 12: TMD specimen.

calculations. Because of space limitations, only the case of  be from 0.25Hz to the half of the sampling frequency
T = 45 is discussed here. The sampling frequency was set at 128 Hz. This resulted in a frequency resolution of 0.25 Hz,
fs =256 Hz, the time length T was 4s, and the number n of =~ which satisfies the accuracy requirement for reproducing
data points per frame was 1024. The frequency range should  earthquake waveforms.
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TaBLE 1: Shaking table performance parameters.
Parameters Values
Rated frequency (Hz) 100
Rated load (kg) 500
Rated acceleration (g) 2.0
Rated speed (m/s) 0.9

Table size (m x m) 1.05x1.05

4.2. Test Conditions. To study the performance of the RICSC
method, shaking table tests were conducted using reference
signals, as described in Section 3. The RICSC requires
substantial computational resources and relies on numerous
FFTs and IFFTs. Therefore, extensive tests under different
operating conditions were necessary to detect and eliminate
logical errors and reduce the risk of potential data overflow.
The control performance of the RICSC method with three
correction algorithms (FC, FPCF, and FPAS) was compared
with that of the traditional RIC method, which applies online
matrix identification without correction. All four algorithms
were tested using an unknown initial system matrix. In
addition, the RICSC method with the FPCF algorithm was
compared with OIC to demonstrate its superiority. For
fairness, the initial matrices used in both methods were
identified using the OIC approach. Table 2 summarizes the
test conditions.

5. Shaking Table Test Results

Twenty test cases, listed in Table 2, were conducted. The
results are discussed in two groups: those based on artificial
wave input and those based on the El Centro 1940 Imperial
Valley Earthquake ground motion records.

5.1. Artificial Wave Input. Shaking table tests were per-
formed under an artificial wave input using traditional RIC,
RICSC-FC, RICSC-FPCF, RICSC-FPAS, and OIC methods
with both unknown and known initial system matrices.

5.1.1. Initial System Matrix Unknown. Figures 14 and 15
present the absolute error between the response and ref-
erence signals of the shaking table and a comparison of their
power spectral densities, respectively.

As shown in Figure 14, the absolute errors of the tra-
ditional RIC, RICSC-FPCF, and RICSC-FPAS algorithms
gradually decreased within 0-12s, while the RICSC-FC al-
gorithm showed no significant change. Because artificial
waves have a wide frequency range, the RICSC-FC algorithm
requires more data to accurately identify the system matrix
when the initial matrix is unknown. Nevertheless, the error
peaks of the RICSC-FC were smaller than those of the
traditional RIC, RICSC-FPCF, and RICSC-FPAS algorithms.
For comparison, the power spectral densities of the four
algorithms in the frequency range of 5-6 Hz were enlarged
(Figure 15). The results indicate that the control accuracies
of the traditional RIC, RICSC-FPCF, and RICSC-FPAS al-
gorithms were essentially the same and superior to those of
the RICSC-FC.

Structural Control and Health Monitoring

5.1.2. Initial System Matrix Known. When the initial system
matrix is known, the RICSC method can calculate the
command signal based on it, thereby improving control
accuracy. Figures 16 and 17 show the absolute errors be-
tween the response and reference signals and the corre-
sponding power spectral densities for the four algorithms.
As shown in Figure 16, the control performance of all
four algorithms was essentially the same, with absolute
errors gradually decreasing after 12s. Figure 17 demon-
strates that the response signals closely matched the refer-
ence signals. Among the four, the RICSC with the FPCF
algorithm achieved the best control performance.

5.1.3. Comparison With the OIC Method. To evaluate the
control effectiveness of the RICSC, the OIC method was
compared with the RICSC-FPCF algorithm using a known
initial system matrix, which is shown in Section 5.1.2 to
provide the best performance. The OIC method was con-
ducted as a one-time test, and the system matrix it identified
was used as the initial system matrix for the RICSC-FPCF to
ensure fairness. Figures 18 and 19 present the absolute errors
between the response and reference signals and power
spectral densities of the RICSC-FPCF and OIC methods,
respectively. As shown in Figure 18, the absolute errors of
the RICSC-FPCF gradually converged after several itera-
tions, whereas those of the OIC method showed minimal
change. Both the MAE and RMSE of the RICSC were sig-
nificantly smaller than those of the OIC method after
one test.

As illustrated in Figure 19, the response signal of the
RICSC-FPCEF tracked the reference signal more closely than
that of the OIC method. However, noticeable differences
remained in the 5-15Hz frequency range. This can be at-
tributed to the relatively small amplitude of the selected
initial system matrix at medium and high frequencies, which
increased the amplitude of the inverse system matrix and
slightly amplified the responses compared with the reference
signals. Overall, when a one-time test was conducted, the
RICSC-FPCF method with a known initial system matrix
provided enhanced control accuracy than the OIC method.

5.2. El Centro 1940 Imperial Valley Earthquake Ground
Motion Record Input. The shaking table test results under the
1940 Imperial Valley Earthquake ground motion record at the
El Centro Station were evaluated using the traditional RIC,
RICSC-FC, RICSC-FPCF, RICSC-FPAS, and OIC methods,
with both unknown and known initial system matrices.

5.2.1. Initial System Matrix Unknown. Comparisons be-
tween the acceleration response and reference signals in the
time domain and the corresponding power spectral densities
obtained with the four algorithms are presented in Fig-
ures 20 and 21. As shown in the local magnifications of
Figures 20 and 21, the RICSC-FPCF and RICSC-FPAS al-
gorithms achieved marginally better control effects than the
FC and traditional RIC algorithms. However, the overall
control accuracies of all four algorithms were similar.
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F1GUure 13: RICSC flowchart for the shaking table test.

TaBLE 2: Test conditions.

System matrix correction

Reference signal Method  Initial system matrix . Testing cases
algorithm
Traditional RIC 1
FPCF 2
Unknown FPAS 3
FC 4
Artificial wave RICSC Traditional RIC 5
K FPCF 6
nown FPAS 7
FC 8
OIC with one-time iteration 9
RICSC-FPCF with the initial system matrix identified by OIC 10
Traditional RIC 11
FPCF 12
Unknown FPAS 13
FC 14
Ground motion record at El Centro RICSC Traditional RIC 15
Station in the 1940 Imperial Valley Earthquake Known FPCF 16
FPAS 17
FC 18
OIC with one-time iteration 19
RICSC-FPCF with the initial system matrix identified by OIC 20

5.2.2. Initial System Matrix Known. Figures 22 and 23 show
the comparison between the response and reference signals
in the acceleration time domain and power spectral density,
respectively. The middle and later portions of the El Centro
ground motion record consist mainly of high-frequency,
small-amplitude signals. Consequently, the acceleration
amplitude of the shaking table was close to the noise gen-
erated by the actuator. As shown in Figure 23, the response
signal deviated from the reference signal in the 12-20-Hz
range. From the local magnifications of Figures 22 and 23,
the RICSC-FPCF and RICSC-FPAS algorithms provided
marginally better control performance than the RICSC-FC
and traditional RIC methods.

5.2.3. Comparison Between RICSC and OIC Methods. To
further evaluate control performance, the RICSC-FPCF
algorithm was compared with the OIC method using a one-
iteration test. The time histories, power spectral densities,

and response absolute errors under the reference and re-
sponse signals for the RICSC-FPCF and OIC methods are
shown in Figures 24 and 25. As shown in Figure 24, the time
differences between the reference and response signals were
smaller for the RICSC-FPCF algorithm than for the OIC
method. The RICSC method also exhibited enhanced con-
trol accuracy in the 3-10-Hz range. Figure 25 further in-
dicates that both the MAE and RMSE of the RICSC method
were smaller than those of the OIC method. Therefore, the
RICSC-FPCF algorithm demonstrated higher control ac-
curacy than the OIC method with one-time iterations under
the El Centro 1940 Imperial Valley Earthquake ground
motion input.

5.3. Error Evaluation. The MAE and RMSE values between
the target and response signals for the 20 test cases are listed
in Table 3.
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FIGURE 14: Absolute error of RICSC with unknown initial system matrix.
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TaBLE 3: Mean absolute root mean square errors.

Initial system

Test cases Waveform input matrix Algorithm MAE (m/s?) RMSE (m/s?)
1 Traditional RIC 0.2616 0.3828
2 FPCF 0.2692 0.3911
3 Unknown FPAS 0.2535 03777
4 FC 0.2954 0.3973
5 Traditional RIC 0.2586 0.3801
6 Artificial waveform Known FPCF 0.1885 0.2645
7 FPAS 0.1943 0.2804
8 FC 0.2057 0.2951
9 OIC with one-time iteration 0.3445 0.3629
RICSC-FPCF with the initial system
10 matrix identified by OIC 0.2368 0-2716
11 Traditional RIC 0.0795 0.1133
12 Unknown FPCF 0.0761 0.1100
13 W FPAS 0.0720 0.1067
14 FC 0.0783 0.1120
15 Ground motion record at El Centro Traditional RIC 0.0813 0.1181
16 Station in the 1940 Imperial Known FPCF 0.0614 0.0902
17 Valley Earthquake FPAS 0.0689 0.0971
18 FC 0.0767 0.1123
19 OIC with one-time iteration 0.2854 0.4502
20 RICSC-FPCF with the initial system 0.0570 0.0953
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FIGURE 26: RMSE in Frames 1 to 6 under artificial wave. (a) Initial system matrix unknown. (b) Initial system matrix known.

The results of test Cases 1-8 indicate that the MAE and
RMSE values of the four algorithms with a known initial
system matrix were lower than those without it. In addition,
the RICSC-FPCF and RICSC-FPAS methods outperformed
the conventional RIC method. For test Cases 9 and 10, the
RICSC-FPCF achieved smaller MAE and RMSE values than
the OIC method.

Under the El Centro ground motion input (Cases
11-18), the RICSC-FPCF, RICSC-FPAS, and RICSC-FC
methods with a known initial system matrix performed
better than those without it. By contrast, the traditional
RIC method without an initial system matrix marginally
outperformed its counterpart with a known matrix, as
seen in Cases 11 and 14. This is because the El Centro
ground motion record is concentrated at low frequencies,
where the RIC method with a known initial matrix used

less data and identified the system matrix less effectively
than when the initial matrix was unknown. For Cases
15-18, when the initial system matrix was known, the
MAE and RMSE of the RICSC-FPCF and RICSC-FPAS
methods were smaller than those of the RICSC-FC and
traditional RIC methods. In test Cases 19 and 20, the
RICSC-FPCF method again achieved smaller MAE and
RMSE values than the OIC method.

Overall, across all 20 cases, the results confirm that the
RICSC-FPCF method provided enhanced control accuracy
than both the traditional RIC and OIC methods.

To compare the RMSE throughout the process, the
RMSE between the response and reference signals for
Frames 1-6 of the traditional RIC, RICSC-FC, RICSC-FPCF,
and RICSC-FPAS methods under two inputs are shown in
Figures 26 and 27, respectively.
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From Figure 26, (i) the RICSC-FPCF and RICSC-FPAS
methods converged fastest, irrespective of whether the initial
system matrix was known, and (ii) the convergence of
RICSC-FC was strongly affected by the initial system matrix:
It did not converge when the initial matrix was unknown but
did converge when the matrix was known. From Figure 27,
(i) the RICSC-FPCF method converged fastest when the
initial system matrix was unknown and (ii) when the matrix
was known, the convergence rates of all four methods were
similar, with RICSC-FPAS showing the best convergence. As
illustrated in Figures 26 and 27, the RICSC-FPCF and
RICSC-FPAS methods consistently achieved higher control
accuracy than the traditional RIC and RICSC-FC methods,
regardless of whether the initial system matrix was known.

6. Summary

In this study, a RIC method based on a system matrix online
correction algorithm was studied to improve the re-
production accuracy of shaking table tests. The RICSC
method employs three matrix accuracy evaluation indices to
assess system matrix identification accuracy and applies
online correction algorithms based on these indices, and use
the initial system matrix identified in advance to improve the
control performance. The RICSC method was implemented
using both software and a hardware platform based on
a shaking table. A shaking table test was performed with
a TMD specimen. The control performance of the RICSC in
a nonlinear system was verified through numerical simu-
lations using either an artificial waveform or the ground
motion record from the El Centro Station during the 1940
Imperial Valley Earthquake as reference signals. The RICSC
method, incorporating three matrix correction algorithms,
was compared with the traditional RIC, and the RICSC
method with the FPCF algorithm was further compared with

the OIC method to verify its superiority. The key conclusions
are as follows:

1. Whether the initial system matrix is unknown or
known, the RICSC method using the FP correction
algorithm achieves higher control accuracy than both
the FC algorithm and the traditional RIC algorithm.

2. When the initial matrix is known, the target waveform
reproduction accuracy is higher than when it is un-
known. In this case, the error between the response
acceleration and target waveform obtained using the
FPCF method is minimized.

2. When the initial matrices are known and identical, the
RICSC method with the FPCF algorithm achieves
significantly higher accuracy in reproducing the target
waveform than the OIC method after the first
iteration.

3. For systems with nonlinear characteristics, the RICSC
method improves shaking table acceleration re-
production accuracy by adopting the FP correction
algorithm with a CF as the matrix accuracy evaluation
index. Its reproduction accuracy of the target wave-
form is higher than that of the OIC method.

Furthermore, the RICSC algorithm was validated using
a unidirectional shaking table. Future work will apply the
algorithm to a three-direction, six-degree-of-freedom
shaking table to investigate its effectiveness for multi-
degree-of-freedom shaking table tests.

Appendix A

The nomenclature was added on the simple names used in
the context that groups the notations based on their di-
mensions (Tables Al, A2, and A3).
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TABLE Al: Scalar.

C,.i Coherence function of C,, at the i frequency point
d Displacement response
fs Sampling frequency
H,; ih frequency point of H,,
H,,; i frequency point of H,,
i Subscript, frequency point number
j Subscript, data segment number for the average periodogram method
k Total number of frames in the test
K Specimen stiffness
K, Specimen initial stiffness
l Number of input and output signals
m Subscript, frame iteration number
M Average time of average periodogram method
n Number of frequency points in a frame
N Number of points of the Fourier transform
Sy iy () APD of §, | at the i™ frequency point
S7 3 ) CPD of S_ _ at the i frequency point
" Time of one frame
T otal Total time
Uy ih data point of command signal u,,
Up, () FFT of the j data segment of u,,
U, () Complex conjugate of U,
X(s) Laplace transform of the input signal of a shaking table system
Vomi ih data point of y,,
Y (s) Laplace transform of the shaking table output signal
Y, (f) FFT of the j" data segment of y,,
Y’mj f) FFT of the j!" data segment of ¥,
Y:n]_ (f) Complex conjugate of ij
Y’; (f) Complex conjugate of ?m}
7
D, Weighted sum of the m™ frame spectral density of the reference signal
TaBLE A2: Vector. Data Availability Statement
C.(f) m'™ frame coherence function ~ The data that support the findings of this study are available
Su,u, (f) APD spectrum of U, on request from the corresponding authors. The data are not
Su,y, () CPD spectrum of U, and Y,,, publicly available due to privacy or ethical restrictions.
Sy v, () APD spectrum of Y,, .
S _ (N APD spectrum of Y,, Disclosure
(8) th i - : . .
U (( ])() " framFeFEEn(En;and signal The opinions, findings, conclusions, and recommendations
" th "o expressed in this paper are solely those of the authors and do
Yo (1) m"™ frame response signal . ;
- th ) not necessarily reflect the views of the sponsors.
V.. (1) m™ frame reference signal
Y, FFT of .
Y (f) O Ym Conflicts of Interest
Y, (f) FFT of y,,,
The authors declare no conflicts of interest.
TaBLE A3: Matrix. Author Contributions
G, (f) m™ frame of the inverse system matrix Ao Xun: data curation and writing-original draft prepara-
H(s) System matrix of the shaking table system tion. Hui-meng Zhou: conceptualization, methodology,
H, (f) Initial system matrix software, and writing-review. Zhen Wang: writing-review.
H,,(f) m'™ frame identification of the system matrix Fu-rong Zhang: data curation and writing-original draft
H,, (f) m™ frame correction of the system matrix preparation. Tao Wang: writing-review and investigation.
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