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Ofine iterative control (OIC) is a widely employed technique in shaking table tests for accurately reproducing earthquake
waveforms. However, repeated ofine iterations can cause cumulative damage to fragile specimens, while the continuously
changing dynamic characteristics of nonlinear specimens reduce the control accuracy of OIC. To overcome these limitations, real-
time iterative control (RIC) has been introduced and applied to eliminate the need for multiple iterations. To further improve the
stability and accuracy of RIC, this study introduced RIC with online system matrix correction (RICSC) method, discussed the
control performance of the RICSC method. Te RICSC method evaluates the accuracy of the identifed system matrix using the
following indices: the coherence function (CF) weighted sum, the CF, and the autocorrelation power density spectrum (AS). Based
on these evaluations, the system matrix is corrected via frame correction (FC) or frequency point (FP) correction algorithms,
thereby enhancing waveform reproduction accuracy and control stability. Te performance of the RICSC method was verifed via
numerical simulations and shaking table tests under 20 test conditions.Te results show that the FP correction algorithm (RICSC-
FP) achieves the fastest convergence of absolute error, and its reproduction accuracy is higher than those of the traditional RIC
and FC (RICSC-FC) algorithms. Both numerical and experimental results demonstrate that the RICSC method provides higher
reproduction accuracy than OIC after just one iteration.

Keywords: matrix accuracy evaluation indices; real-time iterative control; shaking table test; system matrix; system matrix
correction algorithm

1. Introduction

Shaking table tests are widely used to evaluate the seismic
performance of buildings and infrastructure under earth-
quake excitations. In such tests, specimens are typically

subjected to gradually increasing-amplitude accelerations,
from small to large, until they reach ultimate failure.
Consequently, specimens in shaking table tests are often
nonlinear, sometimes exhibiting extreme nonlinearity,
which in turn makes the dynamics of the shaking table
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system complex and strongly nonlinear. Te accuracy of
waveform reproduction in shaking table tests depends sig-
nifcantly on the control scheme [1]. Several control strat-
egies have been proposed to improve seismic waveform
reproduction, including three-parameter control [2, 3],
displacement control [4], and acceleration control [5]. To
reproduce wideband excitations for large structures with
strong nonlinear characteristics, Pan et al. [6] proposed
a frequency-divided three-parameter control method for
a double-layer shaking table (DLST). Similarly, Tian et al. [7]
introduced a frequency-divided ofine iterative control
(OIC) method to reproduce wide-frequency-range reference
signals for DLSTsystems. However, both methods have only
been validated on small-scale shaking tables. Te OIC
method is typically employed to achieve high-precision
waveform reproduction of shaking table inputs. For in-
stance, Tagawa and Kajiwara [8] employed an iterative input
reference correction method for the E-defense control
system. Tis process was performed ofine and required
iterative adjustment of six-degree-of-freedom inputs,
resulting in inefciency. Ji et al. [9] proposed an open-loop
inverse compensation method using model matching and
H∞ controller design to improve the accuracy of seismic
acceleration responses in substructures; however, this
method was also implemented ofine. Maddaloni et al. [10]
developed an additional “open-loop” feedforward com-
pensation method based on an inverse transfer function to
achieve acceptable acceleration time histories for specimens.
Zhou et al. [11] proposed a multidirectional decoupling
iterative control method to reproduce acceleration in
nonstructural shaking table tests. Both Maddaloni’s and
Zhou’s methods are primarily suitable for nonstructural
tests, and their applicability to general structural shaking
table tests requires further investigation. As specimen
nonlinearity develops and control–structure interaction
increases, the accuracy of OIC diminishes. For shaking table
tests of new structural systems—such as ofshore wind
turbine towers, underground space structures, and friction
pendulum isolation structures [12]—OIC accuracy often
requires improvement to achieve high precision [13, 14].

Although OIC can provide good tracking accuracy, it has
several limitations. Achieving exact replication of the ref-
erence signal generally requires multiple iterations, which
can cause cumulative damage to specimens. To address these
shortcomings, several robust control methods have been
applied to shaking tables. Chen et al. [15] proposed a model-
based command-shaping controller in combination with
conventional proportional–integral inner-loop control, of-
fering a robust control framework. Tis method was vali-
dated using a fexible two-story steel specimen; however, its
efectiveness for concrete structures remains to be studied.
Adaptive control methods have also been applied to shaking
tables to provide robust control over nonlinear ranges. For
example, Neild et al. [16] proposed an adaptive substructure
controller based on the minimum control synthesis ap-
proach, tested primarily on linear specimens. Enokida and
Kajiwara [17] applied a nonlinear signal-based controller to
nonlinear specimen tests, and both numerical and experi-
mental results validated its efciency and practicability.

Other adaptive approaches include Yao et al. [18], who
developed a least-mean-square (LMS) adaptive algorithm
for harmonic elimination to reduce distortion and improve
shaking table performance. A time-varying step-size LMS
algorithmwas introduced to enhance convergence; however,
this method was tested only on sine waves and not on
random or seismic signals. Dertimanis et al. [19] proposed
an adaptive inverse control framework with an improved
fltered-x LMS algorithm for accurate waveform re-
production; however, this required a lengthy learning
process before inputting earthquake waveforms. Model-
based controllers (MBCs) have also been investigated for
improved acceleration tracking in nonlinear systems. Phil-
lips et al. [20] and Phillips and Spencer [21] demonstrated
the efectiveness of MBCs on unidirectional shaking tables
with both linear and nonlinear structures. Najaf et al. [22]
further developed a modifed MBC strategy by introducing
a stability condition to enhance robustness. To address
modeling uncertainties and nonlinearities, Yang et al. [23]
employed a sliding mode control technique to improve
robustness; however, its acceleration tracking accuracy re-
quires further refnement. More recently, hierarchical
control strategies have been introduced. Yao et al. [24] and
Chen et al. [25] developed an acceleration-based sliding-
mode hierarchical control framework and a model reference
adaptive hierarchical control framework. Rajabi et al. [26]
applied extended Kalman flter/unscented Kalman flter
(EKF/UKF) techniques for online state estimation of shaking
table controllers. Ryu et al. [27] integrated a real-time EKF
estimator with a feedback-linearization–based adaptive
control method, demonstrating improved tracking and es-
timation performance. Although these methods have en-
hanced control accuracy, most of them have been validated
only on small-scale shaking tables and steel specimens.Teir
control accuracy and stability still require verifcation and
further study for large-scale shaking table tests on general
concrete and reinforced concrete structures.

For large-scale shaking table model tests with
degradation-type specimens, the real-time iterative control
(RIC) method ofers a potential solution ([28] MTS Web-
site). Although it has been investigated by several re-
searchers, further studies are required to improve its
accuracy and stability for engineering applications. Te
concept of online iterative control was frst proposed in the
1960s [29]. Mechanical Testing and Simulation (MTS) later
developed software and applied the approach experimentally
to certain specimens (MTS Website). However, online it-
erative control still requires signifcant improvements for
general application beyond special cases, particularly with
respect to stability. In shaking table tests involving speci-
mens in the elastoplastic stage, a low acceleration iterative
updating rate may lead to poor control accuracy. To address
this issue, Tian et al. [30] proposed a fast-frequency seg-
mental iterative control method. Nonetheless, the robust-
ness of such methods has only been verifed for small-scale
steel-frame models with elastoplastic characteristics. Teir
accuracy tends to decrease once the specimens enter the
elastoplastic stage, and the stability of these approaches
remains a critical concern. For medium- and large-scale
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shaking table model tests, ensuring the stability and re-
liability of RIC is essential. Tis requirement is largely de-
termined by the performance of the online correction
algorithm used for the RIC system matrix. To address these
limitations, a RIC method with system matrix online cor-
rection (RICSC) is proposed. Zhang et al. [31] proposed the
RICSC method for a shaking table test. To analyze the
performance of the RICSC method, the efect of system
matrix accuracy indices is analyzed in this study—the co-
herence function (CF) weighted sum, CF, and autocorre-
lation power density spectrum (AS)—and corrects the
matrix using either frame correction (FC) or frequency point
(FP) correction algorithms, and the efect of the initial
system matrix known or unknown is also discussed. Tis
ensures reliable tracking and high-precision waveform re-
production, thereby broadening the applicability of RIC to
a wider range of structural shaking table tests.

Te remainder of this paper is organized as follows.
Section 2 presents the principles of the RICSC method.
Section 3 verifes the RICSC approach through numerical
simulation of a nonlinear specimen. Section 4 introduces the
experimental system design for the RICSC method, and
Section 5 analyzes the experimental verifcation results.
Finally, Section 6 summarizes the conclusions drawn from
the simulations and tests.

2. RIC Based on New System Matrix Online
Correction Algorithm

Te principle underlying the new method is that the ef-
fectiveness and accuracy of the identifcation of the system
matrix are determined by the CF, weighted sum of CFs, or
the power spectral density as a matrix accuracy evaluation
index; if the matrix accuracy evaluation index meets the
demand, the system matrix is corrected, and vice versa. Te
novelty of the RICSC method is that the online correction of
the system matrix is based on new FC and FP correction
algorithms, which exhibit enhanced accuracy and stability
than the direct correction of traditional RIC. Te generation
of the initial command signal, loading and measurement of
the response signal, identifcation of the system matrix, and
iterative updating of the command signal processes were
nearly identical as those in traditional IRC. Only the online
correction of the system matrix of the RICSC is diferent
from that of the traditional IRC. Online correction of the
systemmatrix is a key part of the RICSC, which improves the
accuracy and stability of the online correction process using
FC and a FP correction algorithm. In this section, the basic
diagram of the RICSC method is introduced, and the fve
processes of the RICSC method are analyzed.

2.1. BasicDiagramof theRICSCMethod. Te RICSC method
corrects the system matrix online to improve waveform
reproduction accuracy when the system characteristics
change comparing with the initial state. As shown in Fig-
ure 1, the RICSC method consists of fve processes: gen-
eration of the initial command signal, loading and
measurement of the response signal, identifcation of the

system matrix, online correction of the system matrix, and
iterative updating of the command signal. Te RICSC
method decomposes the reference signal of the shaking table
into segments, with each segment serving as the basic unit of
the system matrix identifed and corrected, called a frame.
Te length of the frame is determined according to several
aspects: data points of a frame, calculation duration, signal
frequency range, and sampling frequency of the measure-
ment. Te data points of a frame must be determined frst
because the diferent data point number can infuence the
calculation duration of the controller. Te real-time iden-
tifcation and correction are conducted with frames as the
basic unit. For example, when the data point number of
a frame is set as n � 1024 in this study, the calculation
duration of real-time iterative controller can be estimated.
Subsequently, sampling frequency of the measurement fs

(the nomenclature is summarized in Appendix A) is set to
make the sampling time step larger than the calculation
duration.Te frequency resolution [32] and frequency range
of the fast Fourier transform (FFT) can be obtained as fs/n
and fs/n ∼ fs/2, respectively. Te signal frequency range
can be determined when the specimen and the input signal
to the shaking table are known. It must be satisfed that the
frequency range of FFT is larger than approximately 4-
5 times of the maximum frequency of the signal frequency
range. If this condition cannot be satisfed, the length of the
frame (data point number) should be adjusted again. Te
frequency resolution and the frequency range of the FFTwill
afect the control efect because the FFT is the basic cal-
culation of the real-time iterative controller. Te relation
between the control efect and the length is dependent on the
specimens and nonlinear characteristics. Te signal fre-
quency range of shaking table tests with diferent specimens
with diferent nonlinear characteristics may have little bit
diference.Te length of the frame needs to be changed if the
signal frequency range for the shaking table has obvious
changes.

A frame is the basic unit for the fve processes of the
RICSCmethod. For example, when groundmotion record at
the El Centro Station in the 1940 Imperial Valley Earthquake
is taken as the input, the acceleration of earthquake time
history is divided into multiple frames (which have 10
frames). Te frst frame of the command signal was gen-
erated during the generation of the initial command signal.
Subsequently, the command signal data points of this frame
were input to load individually, and the response signals
were measured synchronously, as shown in Figure 2. When
the frst frame of the command signal is loaded and mea-
sured, the system matrix and the matrix accuracy evaluation
index of the frame signals can be identifed. Te system
matrix is corrected based on the selected online correction
algorithm. Ten, the second frame of the command signal is
iteratively corrected and input to the load individually. Te
next frame data of the command signals are corrected and
loaded; therefore, it continues in a cycle until the last frame
of the command signals is corrected and loaded (which is the
10th frame in this case). Te time length of one frame is T,
and the total time length of the reference signal in the
shaking table test is defned as Ttotal. When the sampling
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frequency is defned as fs, the number of data points in one
frame is n � T × fs, and the number of frames of the ref-
erence signal is k � Ttotal/T. When the total time length of
the test cannot be exactly divisible into T, zero-padding data
are added at the end of the time history of the reference
signal. Tis provides an option to satisfy the condition of
being exactly divisible into T. Te shaking table test was
completed when the kth frame command signals were
loaded, and the kth frame response signals were measured
(k � m), as shown in Figure 1. Te fve processes of the
RICSC method are described as follows.

2.2. Generation of the First Frame Command Signal.
System matrix H is the key component for generating the
command signal and is defned as the transfer function
matrix of the shaking table system. Te general expressions
are given in the following equation.

H �

Y1(s)

X1(s)

Y1(s)

X2(s)
· · ·

Y1(s)

Xl(s)

Y2(s)

X1(s)

Y2(s)

X2(s)
· · ·

Y2(s)

Xl(s)

⋮ ⋮ ⋱ ⋮

Yl(s)

X1(s)

Yl(s)

X2(s)
· · ·

Yl(s)

Xl(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where Yi(s), i � 1, . . . , l denotes the Laplace transform of the
response signal of the shaking table system, Xi(s), i � 1, . . . , l

denotes the Laplace transform of the command signal of the
shaking table system, and l denotes the number of input and
output signals.

Te RICSC method frst determines whether the initial
system matrix H0 of the shaking table is known. Te initial
system matrixH0 can be obtained by an identifcation test with
a band-limit white noise input. If theH0 is known, it can be used
to generate the frst-frame command signal. Te 􏽥y1 represents
the time domain of the frst-frame reference signal, which is
transformed into the frequency-domain reference signal 􏽥Y1
using a FFT.G0 denotes the inverse matrix of the initial system
matrix H0, as shown in equation (2). When H0 is known, the
frequency domain of the frst-frame driving signal U1 can be
obtained using equation (3). Subsequently, U1 is transformed
into the frst-frame driving signal u1 using an inverse fast
Fourier transform (IFFT). IfH0 is unknown, u1 is a white noise
signal uwhite noise without calculation. A block diagram for
generating the initial command signal u1 is shown in Figure 3.

G0 � H−1
0 , (2)

U1 � G0 × 􏽥Y1. (3)

2.3. Loading and Measurement of the Response Signal. A
block diagram of the loading and measurement of the re-
sponse signal is shown in Figure 2. Te mth frame command
signal um contains n data points of the command signal
um,i􏽮 􏽯

i�1,2,...,n

and is sequentially input into the shaking table
system to load. Te RICSC method checks whether i< n, if
i< n, the loading and measurement continue until the mth

frame command signal is completely loaded (i � n). Te mth

frame response signal ym consists of n data points for the
measured response signal.

2.4. SystemMatrixOnline Identifcation. Te systemmatrix is
identifed based on the mth frame command and response
signals. Te command signal um and response signal ym

undergo FFT to obtain their frequency-domain responses Um

and Ym, respectively. Te mth frame–identifed system matrix
Hm is obtained using the AS Sumum

and the cross-correlation
power density (CPD) spectrum Sumym

. A block diagram for the
identifcation of system matrix Hm is shown in Figure 4.

Te Sumum
of um and the Sumym

between um and ym are
obtained using the average periodogrammethod (also called
the Welch algorithm), and the calculation equations are as
follows:

Sumum
�

1
MN

􏽘

M

j�1
Umj

U
∗
mj

(4)

Sumym
�

1
MN

􏽘

M

j�1
Umj

Y
∗
mj

(5)

Start

Generation of the initial
command signal

Loading and mesurement
of response signal

Online correction of the
system matrix

Iterative updating of the
command signal

End

Yes

No

Identification of the
system matrix

u
m

u
m+1

Update m
m =  m + 1

y
m

H
m

Hm

m < k ?

—

Figure 1: Schematic of the RICSC method.
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where Umj
and Ymj

are the FFTof the jth data segment of um

and ym; U∗mj
and Y∗mj

are the complex conjugates of Umj
and

Ymj
, respectively; M is the number of points in the average

time; and N is the number of points in the FFT.
Te identifed system matrix Hm is calculated by the

following equation:

Hm � Sumym
S−1

umum
. (6)

Te stability of the system matrix identifed by the
proposed approach can be ensured by checking whether the
CF Cm is not within the [0∼1] range. If the CF Cm of one
frame is within the range [0-1], the system matrix calculated
by using equation (7) can be considered as a stability system
matrix. Otherwise, the systemmatrix cannot be identifed by
using equation (7), and the system matrix is forcibly set as
a multiple matrix whose elements are 5 + 0i. Te CF Cm can
be calculated based on Sumum

and Sumym
as follows.

Cm �
Sumym

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

Sumum
Symym

, (7)

where Symym
is the APD of Ym:

Symym
�

1
MN

􏽘

M

j�1
Ymj

Ymj
.
∗

(8)

2.5. System Matrix Online Correction. After obtaining the
system identifcation matrix Hm, the system matrix was
corrected using the online correction algorithm. Figure 5
shows the online correction process for the mth frame of the
system matrix. If the traditional RIC algorithm is selected,
Hm can be used directly as the mth frame system matrix.
Otherwise, Hm is corrected to the mth FC of the system
matrix Hm according to the matrix correction algorithm.
Tere are two types of matrix correction algorithms: One is
the FC algorithm, in which all elements of the system matrix
are corrected together based on the CF weighting sum in-
dicator, which is the weighting sum of all frequency points’
CFs of a frame. Te second is a FP correction algorithm,
which uses a CF or power spectral density as the matrix
accuracy evaluation index. Te FP correction algorithm
corrects every element of the system matrix separately, and
the CF or AS of each element is checked.

If the online matrix identifcation algorithm is selected,
Hm can be used directly as the mth frame system matrix.
Otherwise, Hm is corrected to the mth frame of the system
matrix Hm according to the matrix correction algorithm.
Tere are two types of matrix correction algorithms.Te frst
is the FC algorithm, which uses the weighted sum of CFs as
the matrix accuracy evaluation index to measure the ac-
curacy of mth frame Hm. Te second is a FP correction
algorithm, which uses the CF or the power spectral density as
the matrix accuracy evaluation index. Te two matrix cor-
rection algorithms are introduced as follows.

2.5.1. FC Algorithm. In the FC algorithm, the system matrix
is corrected according to the data from one frame. Te
evaluation index for the FC algorithm is the spectral density
of the reference signal–weighted sum Φm.

Te weight is the power spectral density S̃
ymỹm

of the

reference signal 􏽥ym in the mth frame.

S̃
ymỹm

�
1

MN
􏽘

M

j�1

􏽥Ymj

􏽥Y
∗
mj

, (9)

where 􏽥Ymj
is the FFTof the jth data segment of 􏽥ym and 􏽥Y

∗
mj

is
the complex conjugate of 􏽥Ymj

.
S̃

ymỹm

is weighted by the CF Cm to obtain the mth frame
spectral density of the reference signal–weighted sum in-
dicator Φm:

ith data point of
command signal

(i = 1 ~ n)

Shaking table
system

Command signal

No
Response signal

Yes

um
(m = 1 ~ k)

um,i
ym,i

ymi = i + 1 i < n?

Figure 2: Block diagram of loading and measurement of the response signal.

START

No 

Yes 
~

IFFT

FFT

Reference signal H0 is known? 

G0 = H0
–1

U1 = G0 × Y1

Y~1

u1 = uwhite noise

U1

u1

(equation (2))

(equation (3))

G0

y1

~

Figure 3: Block diagram of generation of the initial command
signal.
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Φm � 􏽘
n

i�1
S̃

ym,ĩym,i

Cm,i, (10)

where S̃
ym,ĩym,i

is the ith frequency point of S̃
ymỹm

, and n is
the number of data points involved in the weightin,g and
Cm,i is the ith frequency point of Cm.

Ten, Φm is compared with the previous frame Φm−1 to
check whether Φm is greater than Φm−1. In this case, Hm is
directly corrected to the Hm, that is, Hm � Hm. Otherwise,
the system matrix is not corrected, and the m − 1th frame
Hm−1 remains the system matrix of the mth frame Hm, i.e.,
Hm � Hm−1.

H↼
m

(f) � Hm Φm >Φm−1( 􏼁, (11a)

H↼
m

(f) � H↼
m−1 Φm ⩽Φm−1( 􏼁, (11b)

when m � 1, the correction of the system matrix is not
performed, and the identifed system matrix H1 is directly
used as the systemmatrix of the shaking table system, that is,
H↼1 � H1.

2.5.2. FP Correction Algorithm. In the FP correction algo-
rithm, the system matrix is corrected according to the CF or
AS evaluation indices. Te FP correction algorithm uses the
CF and ASs as the matrix accuracy evaluation indices, ab-
breviated as FPCF and FPAS, respectively. Te FPCF and
FPAS algorithms are introduced as follows.

Te concept of the FPCF algorithm is shown in Figure 6.
Here, Hm,i is the ith frequency point of theHm and Hm−1,i

is the ith frequency point of the Hm−1. Te green dots in
Figure 6 represent the frequency points of the Hm, and the
red dots represent the frequency points of the Hm−1. Te
yellow dotted line represents the CF limit Climit � 0.95.
When the CF at the frequency points Cm,i above the yellow
dotted line indicates that the accuracy of Hm,i is satisfed, the
corrected system matrix Hm,i is set as Hm,i, and vice versa;
the corrected system matrix Hm,i is set as Hm−1,i.

H↼
m,i

� Hm,i Cm,i > 0.95􏼐 􏼑, (12a)

H↼
m,i

� H↼
m−1,i

Cm,i ≤ 0.95􏼐 􏼑, (12b)

FFT
CPD

(equation (5))

Identification of 
system matrix
(equation (5))

APD
(equation (4))FFT
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Sumym

Sumum
Um
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um
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Figure 4: Block diagram of identifcation of the system matrix.
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where Hm,i and Hm,i denote the ith frequency points of the
Hm and Hm, respectively. Cm,i denotes the CF of the ith

frequency point in the mth frame.
Te matrix accuracy evaluation index of the FPAS al-

gorithm is the power spectral density. Te FPAS algorithm
corrects the system matrix based on whether the power
spectral density Sym,iym,i

of theHm is larger than the Sym−1,iym−1,i

of the Hm−1. If the condition is satisfed, the ith frequency
point Hm,i of theHm is used as the ith frequency point Hm,i of
the Hm, i.e., Hm,i � Hm,i. Otherwise, the ith frequency point
Hm,i of Hm remains at the ith frequency point Hm−1,i of the
Hm−1, i.e., Hm,i � Hm−1,i.

H↼
m,i

� Hm,i Sym,iym,i
> Sym−1,iym−1,i

􏼐 􏼑, (13a)

H↼
m,i

� H↼
m−1,i

Sym,iym,i
≤ Sym−1,iym−1,i

􏼐 􏼑, (13b)

where Sym,iym,i
denotes the APD of the mth frame response

signal at the ith frequency.
When the nth frequency point is corrected, the mth

frame-corrected system matrix Hm is obtained.

2.6. Iterative Update of the Command Signal. Te mth frame-
corrected system matrix is inverted to obtain the system’s
inverse matrix. To prevent instability caused by a singular
matrix during the system matrix inversion process, two
precautionary methods were implemented. First, the cor-
rection process was omitted if the AS of the response signal
was excessively small. Second, by evaluating the magnitude
of the system matrix, the correction process is omitted when
the magnitude of the system matrix is too small, which
prevents an infnite command signal when the systemmatrix
is inversed. Because the FFTof the reference signal is known,
the m + 1th frame command signal can be
calculated, updated, and defned as the new mth frame
command signal.

Gm � Hm−1, (14)

Um+1 � Gm
􏽥Ym. (15)

Um+1 is derived using the IFFT to obtain um+1, and the
frame number counter is increased to m + 1. Te new
command signal was input to the shaking table for loading
until the kth frame command signal was loaded, which was at
the end of the test. Te iterative update of the command
signal is shown in Figure 7.

3. Numerical Simulation of the Shaking Table
Test With a Nonlinear Specimen

To study the efectiveness of the RICSC method, a numerical
simulation of a shaking table test with a nonlinear specimen
was conducted.Te simulation model, reference signals, and
results are presented below.

3.1.Numerical SimulationModel. Te simulation model was
developed using Simulink/MATLAB and compiled in
SpeedGoat, a real-time simulation and testing system [33], as
shown in Figure 8. Te shaking table is employed dis-
placement control as the inner-loop control, while the
RICSC served as the outer-loop acceleration controller
(Figure 8(a)). Te RICSC generated command signals to
control the motion of both the shaking table and the
nonlinear specimen. Te acceleration response signal of the
shaking table was fed back to the RICSC to enable online
iterations. Te nonlinear simulation and dynamic actuator
models are shown in Figures 8(b) and 8(d), respectively. In
Figure 8(c), the actuator dynamics include the servovalve,
actuator cylinder dynamic models, and the specimen.

Te servovalve and actuator cylinder dynamic models
were encapsulated as an S-function by BBKTest Systems Co.,
Ltd. [34]. Te servovalve model incorporates a flter or delay
to simulate phase shift and frequency response and applies
an ofset to account for overlap/deadband. As shown in
Figure 8(d), the actuator-servovalve interaction was mod-
eled with the actuator position and valve command signals
as inputs and force as the output. Te model accounted for
pressure and force induced by fow, fow infuenced by
pressure and valve control signals, and added damping.
Additionally, it incorporated forces due to diferential
pressure, pressure in each chamber, fow efects related to oil
bulk modulus and volume changes, and fow variations with
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Figure 6: Schematic of the frequency point correction algorithm.
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the actuator position. Cross-port bleeding, friction, damp-
ing, snubbers, and mechanical limitations were also con-
sidered [35]. Detailed formulations of the actuator model are
omitted here for brevity. In Figure 8(b), the ‘convert’ block
primarily converts input signals into specifed data types or
units. Tis block is compatible with various Simulink data
types, including fxed-point numbers, foating-point num-
bers, integers, Boolean values, and enumerations.

Te mass, damping, and initial stifness of the SDOF
specimens were 450 kg, 2500N/ms−1, and 17,765N/m, re-
spectively. Te nonlinear spring model is illustrated in
Figure 8(e). In this model, the output of the data-type
conversion block is zero when 1≥ |d| (−1≤d≤ 1) and one
when |d|> 1. Te variable stifness of the nonlinear spring is
expressed as

K(d) �
K0, −1≤ d≤ 1,

K0e
(|d|−1)

, 1< |d|,

⎧⎨

⎩ (16)

where K0 � 17765N/m is the initial stifness of the spring
and d is the displacement response. Te nonlinear stifness
exhibits a hardening type, which poses a signifcant chal-
lenge in shaking table control.

3.2. Waveform Input. Two types of reference signals were
used in the numerical simulations: an artifcial wave and the
El Centro 1940 Imperial Valley Earthquake ground motion
record (Figure 9). Te frequency range of the artifcial wave
was generally between 2 and 30Hz, while that of the
earthquake record was typically 2–25Hz. Te artifcial wave
energy was uniformly distributed across the frequency
domain, covering a wide range of frequencies observed in
recorded earthquake waveforms. Te amplitude of the

artifcial wave acceleration was normalized to below 1m/s2.
Te amplitude of the y-directional acceleration of the El
Centro groundmotion record from the 1940 Imperial Valley
Earthquake was scaled to 0.2 g because of the displacement
limitation of the shaking table.

3.3. Simulation Results. Among the system matrix accuracy
indices, the RICSC-FPCF method demonstrated the best
control performance, as further discussed in Section 5. A
comparison between the reference and response signals for
the RICSC-FPCF algorithm under artifcial wave excitation
is shown in Figure 10.

As shown in Figure 10, the acceleration response signal
closely matched the reference signal, demonstrating that the
RICSC method can efectively control the shaking table
under artifcial wave excitation.

Te results of the RICSC-FPCF and OIC methods under
the El Centro Earthquake record are presented in Figure 11.
It should be noted that the OIC method performed only one
iteration. As illustrated in Figures 11(a) and 11(b), the re-
sponse signal of the RICSC method was closer to the ref-
erence signal than that of the OIC method after a single
iteration. To evaluate control accuracy, the mean absolute
error (MAE) and root mean square error (RMSE) of the
absolute error were calculated as follows:

MAE �
1

n × m
􏽘

k

m�1
􏽘

n

i�1
ym,i − 􏽥ym,i

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (17)

RMSE �

���������������������

1
n × m

􏽘

k

m�1
􏽘

n

i�1
ym,i − 􏽥ym,i􏼒 􏼓

2
.

􏽶
􏽴

(18)

End
Yes No

Loading and measurement
of the response signal

Identifcation of the
system matrix

FFT

IFFT

y~m Y~m

H–m
Gm

Um+1

um+1

um

ym

Um+1 = GmY
~

mGm = H–m
–1

(equation (14))

Update m
(m = m + 1)

(m < k?)

(equation (15))

Figure 7: Iterative update of the command signal.
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From Figures 11(a) and 11(b), the response signal of the
RICSC method was closer to the reference signal than that of
the OIC method with the one-time test. For the RICSC
method, the MAE was 0.1744 and the RMSE was 0.2390. For
the OIC method, the MAE was 0.3239 and the RMSE was
0.5274.Tese results indicate that the reproduction accuracy of
the RICSC method was superior to that of the OIC method in
the one-time test. Te RICSC method may be particularly
suitable for shaking table tests involving specimens that are
easily damaged, as it achieves high accuracy in fewer iterations.
For more robust specimens, the OIC method with multiple
iterations may achieve higher accuracy, though this compar-
ison is not discussed in detail here. Te nonlinearity of the
specimen afects the characteristics of the shaking table system,
potentially altering its system matrix. Te RICSC method
addresses this by identifying the current system matrix of the
shaking table–specimen system and correcting it whenever
changes are detected using matrix accuracy evaluation indices.
As the specimen’s displacement response increased, its stifness
also increased. As shown in the enlarged details in Figures 10(a)
and 11(a), the acceleration response signals of the RICSC
method tracked the reference signals well even at large am-
plitudes.Tis demonstrates the capability of the RICSCmethod
to efectively manage system nonlinearities.

4. Experimental System Design

To further analyze the efectiveness of the RICSC method,
experimental validation was carried out using a unidirec-
tional shaking table at the Institute of Engineering

Mechanics, China Earthquake Administration. Te speci-
men used in the shaking table test was a tuned-mass damper
(TMD) device [36], which employed friction damping and
exhibited nonlinear characteristics (Figure 12). Te mass,
fundamental frequency, stifness, and damping of the
specimen were 500 kg, 1.948Hz, 1896.93N/m, and 220Ns/
m, respectively. Te performance parameters of the shaking
table are listed in Table 1. As shown in Table 1, the specimen
mass reached the rated loading capacity of the shaking table.
Tis increased both the friction damping and the difculty of
control because of the enhanced nonlinearity and un-
certainties introduced into the test.

4.1. Shaking Table Test Platform. Te RICSC framework for
the shaking table test is illustrated in Figure 13. A Pulsar
shaking table controller (Pulsar Controller [37], Website
link) was employed as the inner-loop control unit, while the
outer-loop RICSC controller was implemented through real-
time communication using a shared memory card network
(SCRAMNet [38], Website link). Acceleration response
signals were measured and used for online identifcation and
correction of the system matrix. Te RICSC method was
developed and compiled using Simulink/MATLAB (Version
8.3, R2014a) on a host PC. Prior to the experiment, the
algorithm was compiled into an xPC target host computer,
and data were transmitted via SCRAMNet.

Previous studies [31] have shown that using 1024 data
points achieves an optimal balance between control accuracy
and computational efciency, as RIC requires extremely fast

1
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Figure 8: Nonlinear simulation model of the shaking table. (a) Flowchart of the RICSC simulation. (b) Nonlinear simulation. (c) Actuator
model. (d) Servovalve and actuator cylinder dynamic model. (e) Nonlinear spring model.
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calculations. Because of space limitations, only the case of
T � 4 s is discussed here. Te sampling frequency was set at
fs � 256Hz, the time length Twas 4s, and the number n of
data points per frame was 1024. Te frequency range should

be from 0.25Hz to the half of the sampling frequency
128Hz. Tis resulted in a frequency resolution of 0.25Hz,
which satisfes the accuracy requirement for reproducing
earthquake waveforms.
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Figure 10: Comparison between reference and response signals under artifcial wave excitation. (a) Time histories. (b) Power spectral
densities.
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Figure 11: Simulation results of RICSC and OIC with one iteration. (a) Time histories. (b) Power spectral densities.

Figure 12: TMD specimen.
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4.2. Test Conditions. To study the performance of the RICSC
method, shaking table tests were conducted using reference
signals, as described in Section 3. Te RICSC requires
substantial computational resources and relies on numerous
FFTs and IFFTs. Terefore, extensive tests under diferent
operating conditions were necessary to detect and eliminate
logical errors and reduce the risk of potential data overfow.
Te control performance of the RICSC method with three
correction algorithms (FC, FPCF, and FPAS) was compared
with that of the traditional RICmethod, which applies online
matrix identifcation without correction. All four algorithms
were tested using an unknown initial system matrix. In
addition, the RICSC method with the FPCF algorithm was
compared with OIC to demonstrate its superiority. For
fairness, the initial matrices used in both methods were
identifed using the OIC approach. Table 2 summarizes the
test conditions.

5. Shaking Table Test Results

Twenty test cases, listed in Table 2, were conducted. Te
results are discussed in two groups: those based on artifcial
wave input and those based on the El Centro 1940 Imperial
Valley Earthquake ground motion records.

5.1. Artifcial Wave Input. Shaking table tests were per-
formed under an artifcial wave input using traditional RIC,
RICSC-FC, RICSC-FPCF, RICSC-FPAS, and OIC methods
with both unknown and known initial system matrices.

5.1.1. Initial System Matrix Unknown. Figures 14 and 15
present the absolute error between the response and ref-
erence signals of the shaking table and a comparison of their
power spectral densities, respectively.

As shown in Figure 14, the absolute errors of the tra-
ditional RIC, RICSC-FPCF, and RICSC-FPAS algorithms
gradually decreased within 0–12 s, while the RICSC-FC al-
gorithm showed no signifcant change. Because artifcial
waves have a wide frequency range, the RICSC-FC algorithm
requires more data to accurately identify the system matrix
when the initial matrix is unknown. Nevertheless, the error
peaks of the RICSC-FC were smaller than those of the
traditional RIC, RICSC-FPCF, and RICSC-FPAS algorithms.
For comparison, the power spectral densities of the four
algorithms in the frequency range of 5-6Hz were enlarged
(Figure 15). Te results indicate that the control accuracies
of the traditional RIC, RICSC-FPCF, and RICSC-FPAS al-
gorithms were essentially the same and superior to those of
the RICSC-FC.

5.1.2. Initial System Matrix Known. When the initial system
matrix is known, the RICSC method can calculate the
command signal based on it, thereby improving control
accuracy. Figures 16 and 17 show the absolute errors be-
tween the response and reference signals and the corre-
sponding power spectral densities for the four algorithms.

As shown in Figure 16, the control performance of all
four algorithms was essentially the same, with absolute
errors gradually decreasing after 12 s. Figure 17 demon-
strates that the response signals closely matched the refer-
ence signals. Among the four, the RICSC with the FPCF
algorithm achieved the best control performance.

5.1.3. Comparison With the OIC Method. To evaluate the
control efectiveness of the RICSC, the OIC method was
compared with the RICSC-FPCF algorithm using a known
initial system matrix, which is shown in Section 5.1.2 to
provide the best performance. Te OIC method was con-
ducted as a one-time test, and the system matrix it identifed
was used as the initial system matrix for the RICSC-FPCF to
ensure fairness. Figures 18 and 19 present the absolute errors
between the response and reference signals and power
spectral densities of the RICSC-FPCF and OIC methods,
respectively. As shown in Figure 18, the absolute errors of
the RICSC-FPCF gradually converged after several itera-
tions, whereas those of the OIC method showed minimal
change. Both the MAE and RMSE of the RICSC were sig-
nifcantly smaller than those of the OIC method after
one test.

As illustrated in Figure 19, the response signal of the
RICSC-FPCF tracked the reference signal more closely than
that of the OIC method. However, noticeable diferences
remained in the 5–15Hz frequency range. Tis can be at-
tributed to the relatively small amplitude of the selected
initial systemmatrix at medium and high frequencies, which
increased the amplitude of the inverse system matrix and
slightly amplifed the responses compared with the reference
signals. Overall, when a one-time test was conducted, the
RICSC-FPCF method with a known initial system matrix
provided enhanced control accuracy than the OIC method.

5.2. El Centro 1940 Imperial Valley Earthquake Ground
Motion Record Input. Te shaking table test results under the
1940 Imperial Valley Earthquake ground motion record at the
El Centro Station were evaluated using the traditional RIC,
RICSC-FC, RICSC-FPCF, RICSC-FPAS, and OIC methods,
with both unknown and known initial system matrices.

5.2.1. Initial System Matrix Unknown. Comparisons be-
tween the acceleration response and reference signals in the
time domain and the corresponding power spectral densities
obtained with the four algorithms are presented in Fig-
ures 20 and 21. As shown in the local magnifcations of
Figures 20 and 21, the RICSC-FPCF and RICSC-FPAS al-
gorithms achieved marginally better control efects than the
FC and traditional RIC algorithms. However, the overall
control accuracies of all four algorithms were similar.

Table 1: Shaking table performance parameters.

Parameters Values
Rated frequency (Hz) 100
Rated load (kg) 500
Rated acceleration (g) 2.0
Rated speed (m/s) 0.9
Table size (m×m) 1.05×1.05

12 Structural Control and Health Monitoring
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5.2.2. Initial System Matrix Known. Figures 22 and 23 show
the comparison between the response and reference signals
in the acceleration time domain and power spectral density,
respectively. Te middle and later portions of the El Centro
ground motion record consist mainly of high-frequency,
small-amplitude signals. Consequently, the acceleration
amplitude of the shaking table was close to the noise gen-
erated by the actuator. As shown in Figure 23, the response
signal deviated from the reference signal in the 12–20-Hz
range. From the local magnifcations of Figures 22 and 23,
the RICSC-FPCF and RICSC-FPAS algorithms provided
marginally better control performance than the RICSC-FC
and traditional RIC methods.

5.2.3. Comparison Between RICSC and OIC Methods. To
further evaluate control performance, the RICSC-FPCF
algorithm was compared with the OIC method using a one-
iteration test. Te time histories, power spectral densities,

and response absolute errors under the reference and re-
sponse signals for the RICSC-FPCF and OIC methods are
shown in Figures 24 and 25. As shown in Figure 24, the time
diferences between the reference and response signals were
smaller for the RICSC-FPCF algorithm than for the OIC
method. Te RICSC method also exhibited enhanced con-
trol accuracy in the 3–10-Hz range. Figure 25 further in-
dicates that both the MAE and RMSE of the RICSC method
were smaller than those of the OIC method. Terefore, the
RICSC-FPCF algorithm demonstrated higher control ac-
curacy than the OIC method with one-time iterations under
the El Centro 1940 Imperial Valley Earthquake ground
motion input.

5.3. Error Evaluation. Te MAE and RMSE values between
the target and response signals for the 20 test cases are listed
in Table 3.

System matrix 
online 

identifcation

Drive 
Calculation

System 
matrix

Command signalReference signal

xPC host computerPulsar controller

SCRAMNet

Acceleration response signal

Command signal

Response signal

Command
signal

TCP/IP

PC
MATLAB/

Simulink

Sent to shaking
table controller

Inverse
System matrix 

online 
ccorrection

Identifed system matrix

Corrected
system matrix

System matrix online
identifcation and correction

Command signal
iterative updates

Specimen

Shaking table top

Command signal

Response signal

Figure 13: RICSC fowchart for the shaking table test.

Table 2: Test conditions.

Reference signal Method Initial system matrix System matrix correction
algorithm Testing cases

Artifcial wave
RICSC

Unknown

Traditional RIC 1
FPCF 2
FPAS 3
FC 4

Known

Traditional RIC 5
FPCF 6
FPAS 7
FC 8

OIC with one-time iteration 9
RICSC-FPCF with the initial system matrix identifed by OIC 10

Ground motion record at El Centro
Station in the 1940 Imperial Valley Earthquake

RICSC

Unknown

Traditional RIC 11
FPCF 12
FPAS 13
FC 14

Known

Traditional RIC 15
FPCF 16
FPAS 17
FC 18

OIC with one-time iteration 19
RICSC-FPCF with the initial system matrix identifed by OIC 20
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Figure 14: Absolute error of RICSC with unknown initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF. (d) FPAS.

Reference signal
Traditional RIC

0 5 10 15 20 25 30 35 40
–30

–25

–20

–15

–10

–5

Frequency (Hz)

ln
 (P

SD
)

5.0 5.5 6.0
–12

–11

–10

–9

(a)

Reference signal
Frame correction

5.0 5.5 6.0
–12
–11
–10

–9
–8

0 5 10 15 20 25 30 35 40–30

–25

–20

–15

–10

–5

Frequency (Hz)

ln
 (P

SD
)

(b)

Reference signal
FPCF

–30

–25

–20

–15

–10

–5

ln
 (P

SD
)

0 5 10 15 20 25 30 35 40
Frequency (Hz)

5.0 5.5 6.0
–12

–11

–10

–9

(c)

Reference signal
FPAS

0 5 10 15 20 25 30 35 40
–30

–25

–20

–15

–10

–5

Frequency (Hz)

ln
 (P

SD
)

5.0 5.5 6.0
–12

–11

–10

–9

(d)

Figure 15: Power spectral density of RICSC with unknown initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF.
(d) FPAS.
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Figure 16: Absolute error of RICSC with known initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF. (d) FPAS.
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Figure 17: Power spectral density of RICSC with known initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF.
(d) FPAS.
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Figure 18: Absolute error of OIC and RICSC methods. (a) OIC. (b) RICSC.
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Figure 19: Power spectral density of RICSC-FPCF and OIC methods.
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Figure 20: Comparison between reference and response signals with unknown initial system matrix. (a) Traditional RIC. (b) Frame
correction. (c) FPCF. (d) FPAS.
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Figure 21: Power spectral density of RICSC with unknown initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF.
(d) FPAS.
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Figure 22: Comparison between reference and response signals with known initial systemmatrix. (a) Traditional RIC. (b) Frame correction.
(c) FPCF. (d) FPAS.
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Figure 24: Comparison between accelerations obtained with OIC and RICSC. (a) Time histories. (b) Power spectral densities.
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Figure 25: Response absolute error. (a) OIC. (b) RICSC.
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Figure 23: Power spectral density of RICSC with known initial system matrix. (a) Traditional RIC. (b) Frame correction. (c) FPCF.
(d) FPAS.
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Te results of test Cases 1–8 indicate that the MAE and
RMSE values of the four algorithms with a known initial
system matrix were lower than those without it. In addition,
the RICSC-FPCF and RICSC-FPAS methods outperformed
the conventional RIC method. For test Cases 9 and 10, the
RICSC-FPCF achieved smaller MAE and RMSE values than
the OIC method.

Under the El Centro ground motion input (Cases
11–18), the RICSC-FPCF, RICSC-FPAS, and RICSC-FC
methods with a known initial system matrix performed
better than those without it. By contrast, the traditional
RIC method without an initial system matrix marginally
outperformed its counterpart with a known matrix, as
seen in Cases 11 and 14. Tis is because the El Centro
ground motion record is concentrated at low frequencies,
where the RIC method with a known initial matrix used

less data and identifed the system matrix less efectively
than when the initial matrix was unknown. For Cases
15–18, when the initial system matrix was known, the
MAE and RMSE of the RICSC-FPCF and RICSC-FPAS
methods were smaller than those of the RICSC-FC and
traditional RIC methods. In test Cases 19 and 20, the
RICSC-FPCF method again achieved smaller MAE and
RMSE values than the OIC method.

Overall, across all 20 cases, the results confrm that the
RICSC-FPCF method provided enhanced control accuracy
than both the traditional RIC and OIC methods.

To compare the RMSE throughout the process, the
RMSE between the response and reference signals for
Frames 1–6 of the traditional RIC, RICSC-FC, RICSC-FPCF,
and RICSC-FPAS methods under two inputs are shown in
Figures 26 and 27, respectively.
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Figure 26: RMSE in Frames 1 to 6 under artifcial wave. (a) Initial system matrix unknown. (b) Initial system matrix known.

Table 3: Mean absolute root mean square errors.

Test cases Waveform input Initial system
matrix Algorithm MAE (m/s2) RMSE (m/s2)

1

Artifcial waveform

Unknown

Traditional RIC 0.2616 0.3828
2 FPCF 0.2692 0.3911
3 FPAS 0.2535 0.3777
4 FC 0.2954 0.3973
5

Known

Traditional RIC 0.2586 0.3801
6 FPCF 0.1885 0.2645
7 FPAS 0.1943 0.2804
8 FC 0.2057 0.2951
9 OIC with one-time iteration 0.3445 0.3629

10 RICSC-FPCF with the initial system
matrix identifed by OIC 0.2368 0.2716

11

Ground motion record at El Centro
Station in the 1940 Imperial

Valley Earthquake

Unknown

Traditional RIC 0.0795 0.1133
12 FPCF 0.0761 0.1100
13 FPAS 0.0720 0.1067
14 FC 0.0783 0.1120
15

Known

Traditional RIC 0.0813 0.1181
16 FPCF 0.0614 0.0902
17 FPAS 0.0689 0.0971
18 FC 0.0767 0.1123
19 OIC with one-time iteration 0.2854 0.4502

20 RICSC-FPCF with the initial system
matrix identifed by OIC 0.0570 0.0953
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From Figure 26, (i) the RICSC-FPCF and RICSC-FPAS
methods converged fastest, irrespective of whether the initial
system matrix was known, and (ii) the convergence of
RICSC-FC was strongly afected by the initial systemmatrix:
It did not converge when the initial matrix was unknown but
did converge when the matrix was known. From Figure 27,
(i) the RICSC-FPCF method converged fastest when the
initial system matrix was unknown and (ii) when the matrix
was known, the convergence rates of all four methods were
similar, with RICSC-FPAS showing the best convergence. As
illustrated in Figures 26 and 27, the RICSC-FPCF and
RICSC-FPAS methods consistently achieved higher control
accuracy than the traditional RIC and RICSC-FC methods,
regardless of whether the initial system matrix was known.

6. Summary

In this study, a RIC method based on a system matrix online
correction algorithm was studied to improve the re-
production accuracy of shaking table tests. Te RICSC
method employs three matrix accuracy evaluation indices to
assess system matrix identifcation accuracy and applies
online correction algorithms based on these indices, and use
the initial systemmatrix identifed in advance to improve the
control performance. Te RICSC method was implemented
using both software and a hardware platform based on
a shaking table. A shaking table test was performed with
a TMD specimen. Te control performance of the RICSC in
a nonlinear system was verifed through numerical simu-
lations using either an artifcial waveform or the ground
motion record from the El Centro Station during the 1940
Imperial Valley Earthquake as reference signals. Te RICSC
method, incorporating three matrix correction algorithms,
was compared with the traditional RIC, and the RICSC
method with the FPCF algorithmwas further compared with

the OICmethod to verify its superiority.Te key conclusions
are as follows:

1. Whether the initial system matrix is unknown or
known, the RICSC method using the FP correction
algorithm achieves higher control accuracy than both
the FC algorithm and the traditional RIC algorithm.

2. When the initial matrix is known, the target waveform
reproduction accuracy is higher than when it is un-
known. In this case, the error between the response
acceleration and target waveform obtained using the
FPCF method is minimized.

2. When the initial matrices are known and identical, the
RICSC method with the FPCF algorithm achieves
signifcantly higher accuracy in reproducing the target
waveform than the OIC method after the frst
iteration.

3. For systems with nonlinear characteristics, the RICSC
method improves shaking table acceleration re-
production accuracy by adopting the FP correction
algorithm with a CF as the matrix accuracy evaluation
index. Its reproduction accuracy of the target wave-
form is higher than that of the OIC method.

Furthermore, the RICSC algorithm was validated using
a unidirectional shaking table. Future work will apply the
algorithm to a three-direction, six-degree-of-freedom
shaking table to investigate its efectiveness for multi-
degree-of-freedom shaking table tests.

Appendix A

Te nomenclature was added on the simple names used in
the context that groups the notations based on their di-
mensions (Tables A1, A2, and A3).
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Figure 27: RMSE in Frames 1 to 6 under El Centro 1940 Imperial Valley Earthquake ground motion record. (a) Initial system matrix
unknown. (b) Initial system matrix known.
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Table A1: Scalar.

Cm,i Coherence function of Cm at the ith frequency point
d Displacement response
fs Sampling frequency
Hm,i ith frequency point of Hm

Hm,i ith frequency point of Hm

i Subscript, frequency point number
j Subscript, data segment number for the average periodogram method
k Total number of frames in the test
K Specimen stifness
K0 Specimen initial stifness
l Number of input and output signals
m Subscript, frame iteration number
M Average time of average periodogram method
n Number of frequency points in a frame
N Number of points of the Fourier transform
Sym,iym,i

(f) APD of Symym
at the ith frequency point

S̃
ym,ĩym,i

(f) CPD of S̃
ymỹm

at the ith frequency point
T Time of one frame
Ttotal Total time
um,i ith data point of command signal um

Umj
(f) FFT of the jth data segment of um

U∗mj
(f) Complex conjugate of Umj

X(s) Laplace transform of the input signal of a shaking table system
ym,i ith data point of ym

Y(s) Laplace transform of the shaking table output signal
Ymj

(f) FFT of the jth data segment of ym

􏽥Ymj
(f) FFT of the jth data segment of 􏽥ym

Y∗mj
(f) Complex conjugate of Ymj

􏽥Y
∗
mj

(f) Complex conjugate of 􏽥Ymj

Φm Weighted sum of the mth frame spectral density of the reference signal

Table A2: Vector.

Cm(f) mth frame coherence function
Sumum

(f) APD spectrum of Um

Sumym
(f) CPD spectrum of Um and Ym

Symym
(f) APD spectrum of Ym

S̃
ymỹm

(f) APD spectrum of 􏽥Ym

um(t) mth frame command signal
Um(f) FFT of um

ym(t) mth frame response signal
􏽥ym(t) mth frame reference signal
Ym(f) FFT of ym

􏽥Ym(f) FFT of 􏽥ym

Table A3: Matrix.

Gm(f) mth frame of the inverse system matrix
H(s) System matrix of the shaking table system
H0(f) Initial system matrix
Hm(f) mth frame identifcation of the system matrix
Hm(f) mth frame correction of the system matrix
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