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Abstract. We show that the braid group associated to the complex reflection group
G(d, d, n) is an index d subgroup of the braid group of the orbifold quotient of the complex
numbers by a cyclic group of order d. We also give a compatible presentation of G(d, d, n)
and its braid group for each tagged triangulation of the disk with n marked points on its
boundary and an interior marked point (interpreted as a cone point of degree d) in such a
way that the presentations of Broué-Malle-Rouquier correspond to a special tagged trian-
gulation.
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1. Introduction

Our main aim is to give a family of presentations of the braid group B(d, d, n) of the complex
reflection group G(d, d, n), for positive integers d,n with d ≥ 2 (see [BMR98, §B]), with
one presentation associated to each tagged triangulation (in the sense of [FST08, §7]) of
an orbifold given by a disk with a single cone point of degree d. In addition, we show
that B(d, d, n) can be embedded in the n-strand braid group of the orbifold as a subgroup
of index d (a result obtained independently in [Fle23]; see the comment after Theorem A
below), generalising a result of Allock [All02, Theorem 1.1]. This allows us to give a geometric
interpretation of the generators in each presentation in the family. This generalises a family
of presentations of the Artin braid group of type Dn given in [GM17], which can be regarded
as the case d = 2.

Recently, there have been a number of articles giving presentations of braid groups using the
theory of cluster algebras, and these form part of the motivation for this paper. In [BM15], a
family of presentations of finite Weyl groups was given, one for each seed in the corresponding
cluster algebra; the subsequent article [GM17] gave alternative presentations in the simply-
laced case, which lifted to the corresponding braid groups (see also [QZ20]). An independent
proof of this was found by Alastair King and Qiu Yu (see [Qiu16, Prop. 10.3]). Braid group
presentations (for all finite cases) were also given in [HHLP17]. Presentations for types H
and I were given in [HHQ24, Thm. 3.5]. Presentations for affine Coxeter groups were given
in [FT16a] and groups of a similar kind were associated to surfaces in [FT16a, FST25] (see
also [FT16b, FLST21]). This article can be regarded as providing presentations similar in
style to these cluster algebra-theoretic presentations, but we note that there is no cluster
algebra associated to a complex braid group, and that the mutation considered here (see
Section 3.2), although related, is not the same as Fomin-Zelevinsky mutation [FZ02, Defn.
4.2] (or the corresponding diagram mutation [FZ03, §8]); in particular, the quivers considered
here have additional decorations that do not appear in the theory of cluster algebras.

It is also interesting to note the article [KQ20], which associates a groupoid, known as the
cluster exchange groupoid, to a cluster algebra of Dynkin type, showing that the fundamental
group is isomorphic to the corresponding Artin braid group [KQ20, Thm. 2.16], giving an
alternative construction of the Artin braid group in these cases. There are also strong
relationships with mapping class groups and groups generated by spherical twists and their
presentations; see, for example [Qiu19] and the references therein, and [Qiu24]. In particular,
Appendix C in [Qiu24] gives realisations of affine braid groups as fundamental groups of
moduli spaces of framed quadratic differentials.

In the remainder of Section 1 we recall the relevant theory and background for real and
complex reflection groups and braid groups, and state our main results in more detail. In
Section 2 we give an orbifold realisation of the braid group of the complex reflection group
G(d, d, n). In Section 3 we give the promised family of presentations of G(d, d, n) and
the corresponding braid group, and in Section 4, we give a geometric interpretation of the
generators in these presentations in terms of the geometric description in Section 2.

Acknowledgements: We would also like to thank Paul P. Martin for several useful dis-
cussions related to this work and Pavel Tumarkin for some minor corrections. We’d like to
thank the referee for their corrections and careful reading of the paper.



PRESENTATIONS OF THE BRAID GROUP OF THE COMPLEX REFLECTION GROUP G(d, d, n) 3

1.1. (Real) reflection and braid groups. In (a special case of) [BM15, Theorem 5.4],
Barot and Marsh proved that if Q is a mutation-Dynkin quiver, i.e. a quiver that can
be obtained by mutating a Dynkin quiver ∆ of type ADE in the sense of [FZ02, Defn.
4.2] finitely many times, then the associated group W (Q) is isomorphic to the Weyl group
W (∆). Let n be the number of vertices in ∆. As shown in [Bri71] (and recalled in [All02,
Section 2]), the Artin braid group A(∆) of type ∆ is isomorphic to the fundamental group

π1 ((V − ⋃
s∈Σ

Hs) /W (∆)) ,

where Σ is the set of reflections in W (∆), V is the complexification of Rn and Hs the
complexification of the set of fixed points of s in Rn.

More abstractly, the Artin braid group A(∆) can be defined in terms of generators and
relations associated to the corresponding graph of type ∆. For example, the Coxeter graph
of type Dn:

h1
●

h3
●

h4
●

hn−1
●

hn
●

h2
●

(1)

gives the standard presentation of A(Dn) = ⟨h1, h2, . . . , hn ∣ R⟩, where R is the set of relations
hihjhi = hjhihj if there is an edge between hi and hj and hihj = hjhi otherwise. The Weyl
group W (Dn) is then the quotient of A(Dn) obtained by adding the relations h2i = e for all
i, where e is the identity element.

Allcock described the connection between some Artin braid groups and orbifold fundamental
groups. In particular, in [All02, Theorem 1.1], he proved that A(Dn) is isomorphic to a
subgroup of index 2 of the the orbifold fundamental group

Zn(O2) = π1((O
n
2 −∆n)/Sn),

where O2 is the orbifold C/C2, ∆n = {(x1, x2, . . . , xn) ∈ On
2 ∶ xi = xj for some i ≠ j} and Sn is

the symmetric group of degree n.

Subsequently, Grant and Marsh studied presentations of Artin braid groups of type ADE. In
[GM17, Theorem A] they showed that if Q is a mutation-Dynkin quiver, then the associated
braid group is isomorphic to the Artin braid group A(∆) of the corresponding Dynkin type.
This way one obtains many presentations of the Artin braid groups of type ADE.

Moreover, they showed that an orientation of (1) coincides with the quiver QT0 associated
with the initial (tagged) triangulation T0 of (X,M), where X is the disk S with an interior
marked point interpreted as a cone point of degree 2, and M is a set of n marked points on
the boundary of X; see [GM17, page 91 and Figure 5]. See [FST08, §7] for the definition of
tagged triangulations; see also [GM17, Section 3]. Note that the interior of X is isomorphic
as an orbifold to O2.

Flipping a triangulation corresponds to mutating the quiver associated to it and, using the
fact that the graph of flips of (tagged) triangulations of the disk is connected, it was shown
in [GM17, Theorem A] that any (tagged) triangulation T of (X,M) gives a presentation
of A(Dn). Moreover, T has an associated braid graph, the edges of which correspond to
elements σi in Zn(O2). In [GM17, Theorem 3.6], Grant and Marsh proved that the subgroup
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BT of Zn(O2) generated by the elements σi is isomorphic to the group GQT
associated to the

quiver corresponding to T . Hence the group presentation associated to the triangulation T
gives a presentation of A(Dn) as a subgroup of index 2 of Zn(O2).

1.2. Complex reflection and braid groups. In this paper, we are interested in studying
a “complex” version of the above.

A pseudo-reflection s is a non-trivial element in the general linear group GL(Cn) which fixes
a hyperplane Hs pointwise, known as the reflecting hyperplane of s. A group generated by
pseudo-reflections is known as a complex reflection group. The irreducible finite complex
reflection groups were classified by Shepard and Todd in [ST54]. Broué, Malle and Rouquier
provided presentations of all such groups using Coxeter-like diagrams; see [BMR98, Tables
1-4 in Appendix 2]. Here we focus on the complex reflection groups of the form G(de, d, n)
for positive integers d,n and e. We use the same notation as in [Shi05]. For σ ∈ Sn, denote
by [(x1, x2, . . . , xn) ∣ σ] the n × n monomial matrix with non-zero entries xi in the i, σ(i)
positions. Then

G(de, d, n) ∶= {[(x1, x2, . . . , xn)∣σ] ∶ xi ∈ C∗, xdei = 1, (
n

∏
j=1
xj)

e

= 1, σ ∈ Sn} .

Note the close relationship to Weyl groups, which can be seen as a special case of the above.
In particular, note that W (An) = G(1,1, n), W (Bn) = G(2,1, n) and W (Dn) = G(2,2, n).

Similarly to the real case above, one can construct the braid group, denoted by B(de, d, n),
associated to the complex reflection group G(de, d, n). This is defined as the fundamental
group

π1 ((Cn − ⋃
s∈Σ

Hs) /G(de, d, n)) ,

where Σ is the set of pseudo-reflections in G(de, d, n). See [BMR98, Tables 1,2 and 5] for
presentations of both G(de, d, n) and B(de, d, n). Similarly to the real case, G(de, d, n) is a
quotient of B(de, d, n), obtained by making all generators of finite order. For general d and
e some generators have order larger than 2, while for e = 1 they all have order 2.

Moreover, note that B(1,1, n) = A(An), B(d,1, n) = A(Bn) for any d ≥ 2, B(2,2, n) =
A(Dn), and B(d, d,2) = A(I2(d)). In particular, [All02, Theorem 1.1] states that B(2,2, n)
is isomorphic to a subgroup of order 2 of Zn(O2). Let d ≥ 2 be an integer and Od be the
orbifold C/Cd. In our first main result, we generalise Allcock’s inclusion of groups to the
case of arbitrary d, and fit it into a commutative diagram.

Theorem A. There is a commutative diagram of group homomorphisms

N = ⟨st2s−1, t2, t3, ..., tn⟩
φ

≅
//

� _

index dα

��

B(d, d, n)
� _

β index d

��
A(Bn)
⟨sd=e⟩

γ

≅
// Zn(Od)

Figure 1. Commutative diagram of group homomorphisms.
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where γ, φ are isomorphisms and α, β are monomorphisms, and A(Bn) is the Artin braid
group of type Bn with presentation by generators:

●
s

●
t2

●
t3

●
tn−1

●
tn

That is, A(Bn) = ⟨s, t2, t3, . . . , tn ∣ R⟩, where R is the set of relations titi+1ti = ti+1titi+1 for
2 ≤ i ≤ n − 1, titj = tjti if ∣i − j∣ > 1 and st2st2 = t2st2s.

See Section 2 for more details of the groups and the morphisms, and the proof of the theorem.

We note that Theorem A also follows from [Fle25, Cor. 5.7] and [Fle23, Theorem A(2)]. The
proof here was obtained independently. It is more direct (for this special case), avoiding use
of the mapping class group and giving a construction specifically related to the approach
of [BMR98] (i.e. more in the style of [All02]).

Our second main result generalises [BM15, Theorem 5.4] and [GM17, Theorem A] for the
groups G(d, d, n) and B(d, d, n) with d ≥ 2, where the case d = 2 recovers the classical results.
Consider the marked surface (X,M), where X is the disk S with an interior marked point
interpreted as a cone point of degree d. Note that the interior of X is isomorphic to Od as
an orbifold. Let M be a set of n marked points on the boundary of X.

In Section 3.1, we associate a decorated quiver QT to any tagged triangulation T of (X,M)
and a group GQT

to QT . In Section 3.2, we introduce a mutation rule for such a quiver with
respect to a chosen vertex, which corresponds to flipping the associated triangulation.

In particular, the initial triangulation T0, illustrated in Figure 12, has associated quiver QT0 ,
which is an orientation of the presentation of B(d, d, n) from [BMR98, Table 5]. Proving
that at each mutation step we obtain an isomorphic group, and using the fact that the
flipping graph of (tagged) triangulations of (X,M) is connected, we obtain the following
result, providing a family of new presentations of the groups B(d, d, n) and G(d, d, n).

Theorem B. (=Theorems 3.36 and 5.1). Let T be a tagged triangulation of (X,M)
and let G′QT

be the group defined in the same way as GQT
with the additional relations that

all generators square to the identity element. Then

● GQT
≅ B(d, d, n) and GQT

gives a presentation of B(d, d, n),
● G′QT

≅ G(d, d, n) and G′QT
gives a presentation of G(d, d, n).

Finally, we re-interpret Theorem B by assigning explicit elements to the abstract generators
in the newfound presentations both for the braid and reflection groups.

We combine the two theorems above to give a geometric interpretation of the new presenta-
tions of B(d, d, n). Similarly to the real case above, each tagged triangulation T of (X,M)
has an associated braid graph DT such that the edges of DT , one for each vertex i in QT ,
correspond to braids σi in Zn(Od). Let BT be the subgroup of Zn(Od) generated by these
braids σi. The following result generalises [GM17, Theorem 3.6] to the case d ≥ 2, conclud-
ing that the group presentation associated to the triangulation T gives a presentation of
B(d, d, n) as a subgroup of index d of Zn(Od).

Theorem C. (=Theorem 4.6.) Let T be a tagged triangulation of (X,M). Then there is
an isomorphism from BT to GQT

taking the braid σi to the generator si of GQT
corresponding

to the vertex i in QT . Furthermore, BT is a subgroup of index d of Zn(Od).
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Finally, combining Theorem B with results from [Shi05], we assign explicit reflections to
the generators of the new presentations of G(d, d, n) as follows. For the definition of the
reflections appearing in the following result, we refer the reader to Section 2.1.

Theorem D. (=Theorem 5.7.) Let T be a tagged triangulation of (X,M) and fix a
numbering 1,2, . . . , n of the n vertices of DT . Associate a reflection s(e) = s(a, b; c(e)) to
each edge e between vertices a and b in DT , where for the edges appearing in the unique
cycle of DT , the integers c(e) have to obey the condition explained in Setup 5.5. Then, there
is an isomorphism of groups ν ∶ G′QT

→ G(d, d, n) sending the generator of G′QT
associated

to vertex v in QT to the reflection associated to the edge in DT that is the dual of v.

2. The complex braid group B(d, d, n) as a subgroup of Zn(Od): Proof of
Theorem A.

The aim of this section is to prove Theorem A, i.e. to construct the commutative diagram of
group homomorphisms in Figure 1. Note that the maps α and φ are mainly due to [BMR98].
For the remaining two maps, we proceed with a geometric argument. Details of the groups
and presentations appearing in the diagram are given in the following sections.

2.1. Building β. We follow [All02, §2], using the notation from [Shi05]. We set V = Cn,
and denote the fixed hyperplane of a reflection s ∶ V → V , by Hs.

We use the notation from [Shi05]. Let d,n be positive integers with d ≥ 2. Let Sn denote
the symmetric group of degree n, and C∗ = C ∖ {0}. For σ ∈ Sn and (x1, x2, . . . , xn) ∈ (C∗)n,
let [(x1, x2, . . . , xn)] denote the n × n monomial matrix with xi in the i, σ(i) position for
i = 1,2, . . . , n. The entries in such a matrix are powers of ωd = e2πi/d.

Let Γ(d,n) denote the group of all such matrices, and let G(d, d, n) denote the complex
reflection group:

G(d, d, n) = {[(x1, x2, . . . , xn)∣σ] ∶ xi ∈ C∗, xdi = 1,
n

∏
j=1
xj = 1, σ ∈ Sn} ,

which is a normal subgroup of Γ(d,n) of index d. For 1 ≤ a < b ≤ n and 0 ≤ c ≤ d − 1, set

s(a, b; c) = [(1, . . . ,1, ω−cd ,1, . . . ,1, ω
c
d,1, . . . ,1)∣(a, b)],

and for a > b, set s(a, b; c) = s(b, a,−c). Thus, for a < b,

s(a, b; c)(z1, . . . , zn) = (z1, . . . , zi−1, ω
−c
d zb, . . . , ω

c
dza, . . . , zn).

These elements all have order two and, as remarked in [Shi05, 1.5], they constitute the
reflections in G(d, d, n); we denote this set by Σ. Thus G(d, d, n) is generated by Σ, the set
of reflections it contains.

Remark 2.1. For i < j, the reflection s(a, b; c) fixes the hyperplane

Hs(a,b;c) =H(a, b; c) = {(z1, . . . , zn) ∈ Cn ∶ za = ω
−k
d zb} = ker(s(a, b; c) − idCn).

Moreover, s(a, b; c) has associated hyperline

Ls(a,b;c) = L(a, b; c) = im(s(a, b; c) − idCn).

Note that Cn = Hs(a,b;c) ⊕ Ls(a,b;c), and so each element x ∈ Cn can be written uniquely as
x = xH + xL with xH ∈Hs(a,b;c) and xL ∈ Ls(a,b;c).



PRESENTATIONS OF THE BRAID GROUP OF THE COMPLEX REFLECTION GROUP G(d, d, n) 7

Let
V0 = V ∖ ∪s∈ΣHs.

As noted in [All02, 2.1] for the Dn case, V0 is connected since each Hs has real codimension
2 in V .

It is well-known that G(d, d, n) acts freely on V0 (see e.g. [Gar23]). Since G(d, d, n) is finite,
it acts properly discontinuously on V0, and it is clear the action is smooth, so we can form
the quotient manifold V0/G(d, d, n) (by e.g. [Hat02, 7.10]). Let p ∶ V0 → V0/G(d, d, n) be
the canonical surjection, which is a manifold covering map [Lee13, Thm. 21.13]. Choose
x0 ∈ V0. Then the fundamental group π1(V0/G(d, d, n), p(x0)) is known as the braid group
of G(d, d, n) and denoted B(d, d, n) (see [BMR98, 2B]).

The cyclic group Cd acts on C, with a generator sending z to ωdz. Let Od be the orbifold
C/Cd. The underlying space of C/Cd is C, and it has a single cone point of degree d at the
origin. The n-strand pure braid space of Od is On

d −∆n, where

∆n = {(z1, z2, . . . , zn) ∈ O
n
d ∶ zi = zj for some i /= j}.

The symmetric group Sn of degree n acts freely on On
d −∆n and we can form the quotient

Xn = (O
n
d −∆n)/Sn,

which is the n-strand braid space of Od. Then the n-strand braid group Zn(Od) of Od

is the orbifold fundamental group (in the sense of [Thu22, Defn. 13.2.5]) of Xn with respect
to a choice of basepoint b = (b1, . . . , bn) ∈ Xn which does not lie on the orbifold locus. The
n-strand pure braid group Pn(Od) of Od is the orbifold fundamental group of ∆n.

Proposition 2.2. There is an isomorphism of orbifolds V /Cn
d ≅ O

n
d given by (x1, x2, . . . , xn) ↦

(xd1, x
d
2, . . . , x

d
n). This induces an isomorphism φ ∶ V0/Γ(d,n) ≅Xn and hence a d-fold orbifold

covering map V0/G(d, d, n) → Xn and an embedding β of B(d, d, n) = π1(V0/G(d, d, n)) as a
subgroup of index d in Zn(Od) = π1(Xn).

Proof. Recall that

V0 = {(z1, z2, . . . , zn) ∈ Cn ∶ zi /= ω
k
dzj, for all i /= j and 0 ≤ k ≤ d − 1}.

The group G(d, d, n) has a normal subgroup isomorphic to Cn−1
d consisting of the elements

where the permutation is the identity, that is, using the notation ωd ∶= e2πi/d, the elements
of the form

[(ωk1
d , ω

k2
d , . . . , ω

kn
d ) ∣ id]

where k1, k2, . . . , kn ∈ {0,1, . . . , d − 1} satisfy k1 + k2 + ⋅ ⋅ ⋅ + kn = 0 modulo d. Note that
k1, k2, . . . , kn−1 can be chosen freely and they determine kn. It is easy to see that G(d, d, n) =
Cn−1

d ⋊ Sn. The rest of the argument goes through as in [All02, Proof of Thm. 1.1]. □

We use the same generating set of reflections for G(d, d, n) as [BMR98, pp 151-152] with the
following notation. Note that these give a presentation of G(d, d, n) by [BMR98, Proposi-
tion 3.2].



8 FRANCESCA FEDELE AND BETHANY ROSE MARSH

Notation 2.3. We set

t′2 ∶= s(1,2; 1) ∶ (z1, z2, z3, z4 . . . , zn) ↦ (e
−2πi/dz2, e

2πi/dz1, z3, z4 . . . , zn−2, zn−1, zn),

t2 ∶= s(1,2; 0) ∶ (z1, z2, z3, z4 . . . , zn) ↦ (z2, z1, z3, z4 . . . , zn−2, zn−1, zn),

t3 ∶= s(2,3; 0) ∶ (z1, z2, z3, z4 . . . , zn) ↦ (z1, z3, z2, z4 . . . , zn−2, zn−1, zn),

⋮

tn ∶= s(n − 1, n; 0) ∶ (z1, z2, z3, z4 . . . , zn) ↦ (z1, z2, z3, z4 . . . , zn−2, zn, zn−1).

In other words, we are taking n reflections: s(a − 1, a; 0) for a ∈ {1,2, . . . , n} and s(1,2; 1)
and renaming them as above. As pointed out in [Shi05], these are all reflections of type I
and hence they have order 2 and they lie in G(d, d, n).

We next need some paths in V0 as defined in [BMR98].

Definition 2.4. [BMR98, §B, Eq. (2.13)]. Let s ∈ G(d, d, n) be a reflection. Note that s
has order 2. Let x ∈ V0, with decomposition x = xH + xL with xH ∈ Hs and xL ∈ Ls, as in
Remark 2.1. Then y = s(x) = xH − xL. Then the straight path p̃s ∶ [0,1] → V sending t to
xH +(1−2t)xL does not lie in V0, since p̃s(1/2) ∈H. So we take instead a version of the path
which is perturbed close to H:

ps(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x + t(y − x) = xH + (1 − 2t)xL, 0 ≤ t ≤ 1
3 ;

x + (12 −
1
6e

3iπ(t− 1
3
))(y − x) = xH +

1
3e

3iπ(t− 1
3
)xL,

1
3 ≤ t ≤

2
3 ;

x + t(y − x) = xH + (1 − 2t)xL,
2
3 ≤ t ≤ 1,

which is a special case of the construction in [BMR98, §B, Eq. (2.13)].

Remark 2.5. In Definition 2.4, the ith entry of ps(t) is either constant (if xi = yi) or a
path from xi to yi which is the first third of the straight path in C from xi to yi ending at
xi +

1
3(yi − xi) = 2, followed by an anticlockwise semicircle of radius 1

6 ∣yi − xi∣ centred at the
mid-point between xi and yi and ending at xi +

2
3(yi − xi), followed by the last third of the

straight path from xi to yi.

The following result is an instance of [BMR98, Proposition 3.2 and Theorem 2.27].

Proposition 2.6. The set {t′2, t2, . . . , tn} together with the relations described in [BMR98,
Appendix 2 and Table 2] give a presentation by generators and relations of G(d, d, n).
Moreover, for s equal to, respectively, t′2, t2, t3 . . . , tn, the paths ps, regarded as paths in
V0/G(d, d, n), are s-generators of the monodromy, denoted respectively by τ ′2, τ2, τ3, . . . , τn,
giving the presentation by generators and relations of B(d, d, n) illustrated in Figure 2, with
relations:

τiτi+1τi = τi+1τiτi+1, τ ′2τ3τ
′
2 = τ3τ

′
2τ3, τiτj = τjτi for ∣i − j∣ > 1, τ ′2τi = τiτ

′
2 for i > 3

τ2τ
′
2τ3τ2τ

′
2τ3 = τ3τ2τ

′
2τ3τ2τ

′
2, τ2τ

′
2⋯

²
d terms

= τ ′2τ2⋯
²
d terms

.
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●
τ2

●
τ ′2

●
τ3

●
τ4

●
τn−1

●
τn

d

Figure 2. The presentation of B(d, d, n) from [BMR98].

Remark 2.7. We recall part of the proof of Proposition 2.6 from [BMR98, Section 3].
Recall the standard presentation of the Artin braid group of type An+1, that is A(An+1) or
in [BMR98] notation B(n + 1), is:

●
ξ1

●
ξ2

●
ξn−1

●
ξn

By [BMR98, Thm. 3.6], the braid group B(d,1, n) associated to the complex reflection
group G(d,1, n) is, for any d > 1, isomorphic to the subgroup of A(An+1) generated by
{ξ21 , ξ2, ξ3, . . . , ξn}. By the discussion following the proof of [BMR98, Thm. 3.6], an appli-
cation of the Reidemeister-Schreier method shows that this subgroup is isomorphic to the
Artin braid group A(Bn), with generators associated to the vertices of its Dynkin diagram
as follows:

●
ξ21

●
ξ2

●
ξ3

●
ξn−1

●
ξn

Recall that, if m > 1, by [BMR98, Lemma 3.3], the complement in Cn of the union of the
reflecting hyperplanes of G(md,d,n) is

M#(md,n) = {(z1, z2, . . . , zn) ∣ (∀j, k,1 ≤ j ≠ k ≤ n)(∀a ∈ Z)(zj ≠ 0)(zj ≠ e
iπa
md zk)},

while if m = 1, it is

M(d,n) = {(z1, z2, . . . , zn) ∣ (∀j, k,1 ≤ j ≠ k ≤ n)(∀a ∈ Z)(zj ≠ e
iπa
d zk)}.

As remarked in [BMR98, Section 3C], [BMR98, Proposition 3.8] could be stated in a more
general way, obtaining, by an application of the Reidemester-Schreier algorithm, an injective
group homomorphism

ϕ ∶ π1(M
#(md,n)/G(md,d,n)) ↪ A(Bn),

where, letting ξ′2 ∶= ξ
2
1ξ2ξ

−2
1 , the left hand side group has presentation

●
ξ2

●ξ2d1

●
ξ′2

●
ξ3

●
ξ4

●
ξn−1

●
ξn

d + 1

(2)

In particular, if m > 1, the left hand side is isomorphic to B(md,d,n), but here we are
interested in the case m = 1. By [BMR98, Section 3C], in this case there is an isomorphism
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of groups

B(d, d, n) ≅
π1(M#(d,n)/G(d, d, n))

⟨ξ2d1 = e⟩

and the presentation of B(d, d, n) is obtained from (2) by suppressing the node corresponding
to ξ2d1 and adding an edge labelled d between ξ2 and ξ′2.

Remark 2.8. Note that [BMR98, Section 3] uses the base point (x1, x2, x3 . . . , xn+1) with
x1 < x2 < x3 < ⋅ ⋅ ⋅ < xn+1 real numbers. Instead, we choose basepoint (0,−1,1,2, . . . , n − 1).
We also modify the (2 3)-generator of the monodromy ξ2 (where (2 3) is a generating
transposition of Sn+1), taking the path as in Figure 6 rather than as in [BMR98, Section 3]:
the arguments of [BMR98] go through unchanged with these choices. See Remark 2.10 for
an explanation of this choice.

Proposition 2.9. The injective group homomorphism β from B(d, d, n) to Zn(Od) from
Proposition 2.2 is given by:

β ∶ B(d, d, n) → Zn(Od) ∶ τ
′
2 ↦ h1, τi ↦ hi for 2 ≤ i ≤ n,

where τ ′2, τ2, τ3, . . . , and τn are as in the presentation in Proposition 2.6 and the braids
h1, h2, . . . , hn are as illustrated in Figure 9.

Proof. Let us fix the basepoint in V0 to be b = (e−iπ/d,1,2, . . . , n− 1). We compute the paths
ps associated to each of the reflections s from Notation 2.3 following Definition 2.4.

Note that t2(b) = (1, e−iπ/d,2, . . . , n − 1). By Remark 2.5, the first entry in the path pt2 from
Definition 2.4 is the first third of the straight path from e−iπ/d to 1, followed by a semicircular
path centred at the midpoint between e−iπ/d and 1 of radius 1

6 ∣1− e
−iπ/d∣, followed by the last

third of the straight path from e−iπ/d to 1. The second entry is a similarly-defined path going
in the other direction, while all the other entries are constant. We sketch this, for d = 3, in
Figure 3.

We have t′2(b) = (e
−2πi/d, eiπ/d,2, . . . , n − 1), so the first entry of pt′2 is a path from e−iπ/d to

e−2πi/d, while the second entry is a path from 1 to eiπ/d and the other entries remain constant.
We sketch this, for d = 3, in Figure 4.

For 3 ≤ j ≤ n, we have tj(b) = (e−iπ/d,1, . . . , j −3, j −1, j −2, j, . . . , n−1), so the (j −1)st entry
of ptj is a path from j − 2 to j − 1 and the jth entry of ptj is a path from j − 1 to j − 2. We
sketch this, for d = 3, in Figure 5.

By Proposition 2.6, for s equal to, respectively, t′2, t2, t3 . . . , tn, the paths ps, regarded as paths
in V0/G(d, d, n), are s-generators of the monodromy, denoted respectively by τ ′2, τ2, τ3, . . . , τn.
Their images under the covering map V0/G(d, d, n) → Xn in Proposition 2.2 are given by
taking their dth powers, entry by entry.

These images are illustrated in Figures 7,6 and 8, for d = 3. Note also that the basepoint for
On

d −∆n is (−1,1,2d, . . . , (n−1)d). It is easy to see, by writing the paths in polar coordinates
in C, that the paths will be in the same half plane (i.e. above or below the real axis)
as shown in these figures, for general d. Drawing these paths as braids using the same
conventions as in [All02], that is placing the point of view from below, and recalling that
the cone point of order d at 0 is interpreted as a pole of order d, we see that the elements
τ ′2, τ2, τ3, . . . , τn are sent respectively to the braids h1, h2, h3, . . . , hn illustrated in Figure 9.
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Hence, the injective group homomorphism β from Proposition 2.2 sends B(d, d, n) to the
subgroup ⟨h1, h2, h3, . . . , hn⟩ of Zn(Od) of index d, as claimed. □

⋆
0

●

●

●

●

●

●

●

●
1

e−iπ/3

2
● . . .

n − 1
●

Figure 3. The path pt2 associated to the reflection t2. Note that only the
first two entries of the n-tuple are non-constant paths. The drawing is for
d = 3. For larger d, the endpoints of the paths are closer.

⋆
0

●●●●

●

●

●

●

1

eiπ/3

e−2πi/3 e−iπ/3

2
● . . .

n − 1
●

Figure 4. The path pt′2 associated to the reflection t′2. Note that only the
first two entries of the n-tuple are non-constant paths. The drawing is for
d = 3. For larger d, the path starting at e−iπ/3 lies entirely within the fourth
quadrant of the plane and the endpoints of both paths are closer.

⋆ . . .
0

●
1

● ● ● ●● ● ● ●
j − 2

e−iπ/3
●

j − 1
● . . .

n − 1
●

Figure 5. The path ptj associated to the reflection tj for 3 ≤ j ≤ n. Note
that only the (j − 1)st and jth entries of the n-tuple (with initial values j − 2
and j − 1 respectively) are non-constant paths. We draw the case d = 3.

Remark 2.10. Our choice of basepoint, together with the modified choice of (2 3)-generator
for the monodromy for the braid group of type A (see Remark 2.8) allows to use the same
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generating set of reflections for G(d, d, n) as in [BMR98, Section 3A] (see Notation 2.3) while
ensuring that the diagram in Figure 1 commutes and the images of the generators under β
in Proposition 2.9 are the hi.

If we did not modify the (2 3)- generator of the monodromy, we would need to replace the
reflection t′2 = s(1,2; 1) with the reflection t′′2 = s(1,2;−1); by [Shi05, Theorem 2.19], we
would still have a generating set of G(d, d, n). We would also need to replace the basepoint
b = (e−iπ/d,1,2, . . . , n − 1) in the proof of Proposition 2.9 with (eiπ/d,1,2, . . . , n − 1) and the
element ξ′2 in Remark 2.7 with ξ−21 ξ2ξ

2
1 , also switching the labels ξ2 and ξ

′
2 on the presentation

of B(d, d, n) given there. Modifying the morphisms α,ϕ and γ in Figure 1 appropriately (so
that α(a2) = t2, α(b2) = s−1t2s, φ(a2) = τ2, φ(b2) = τ ′2, β(τ2) = h1, β(τ

′
2) = h2, γ(t2) = h1

and γ(s−1t2s) = h2), this would also be a valid construction. For d = 2, the paths ps we
consider here do not coincide with the paths g1, . . . gn from [All02, proof of Theorem 1.1]
(even choosing ϵ = 1). However, with this change, the basepoint would be (i,1,2, . . . , n − 1)
as in [All02], and we would recover exactly the same paths as in [All02].

⋆
0

● ●

● ●
1−1 2d

● . . .
(n − 1)d
●

Figure 6. Path pt2 to power d.

⋆
0

● ●

● ●
1−1 2d

● . . .
(n − 1)d
●

Figure 7. Path pt′2 to the power d.

⋆ . . .
0

●
1

● ●

(j − 2)d
●

−1
●

(j − 1)d
● . . .

(n − 1)d
●

Figure 8. Path ptj to the power d for 3 ≤ j ≤ n.
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2.2. Building α and φ.

Lemma 2.11. The subgroup N ∶= ⟨st2s−1, t2, t3, ..., tn⟩ ⊆
A(Bn)
⟨sd=e⟩ is a normal subgroup of index

d and
A(Bn)

⟨sd = e⟩
= N ⊍Ns ⊍Ns2 ⊍ . . .Nsd−1.

Proof. We first prove N is a normal subgroup by showing that its normaliser is the whole
ambient group. Note that by construction st2s−1 ∈ N and for i = 3, . . . , n we have stis−1 =
ti ∈ N . Moreover, using the relation st2st2 = t2st2s, or equivalently st2s−1 = t−12 s

−1t2st2, we
have that

s(st2s
−1)s−1 = st−12 s

−1t2st2s
−1 = (st2s

−1)−1(t2)(st2s
−1),

and this is an element in N since it is a product of three elements in N . Hence sNs−1 ⊆ N .
Then the normaliser of N contains both s and all the elements of N . In particular it contains

the generators s, t2, . . . , tn of the ambient group. Hence N is a normal subgroup of A(Bn)
⟨sd=e⟩ .

We now show that A(Bn)
⟨sd=e⟩ is the semidirect product of ⟨s⟩ and N . First we show that s /∈ N .

Recall that s−1 = sd−1 and the relations in the group preserve the sum of the exponents of
copies of s modulo d in the expression of any element of the group. Then, we have that the
sum of the exponents of copies of the element s in the expression for any element in N is
always a multiple of d. Hence s /∈ N and N ∩⟨s⟩ = {e}, where e is the identity element. Now,
we have

A(Bn)

⟨sd = e⟩
= N ⊍Ns ⊍Ns2 ⊍ . . .Nsd−1

and A(Bn)
⟨sd=e⟩ = ⟨N, ⟨s⟩⟩ and N is a normal subgroup, so

A(Bn)

⟨sd = e⟩
= N⟨s⟩

and N is a subgroup of index d. □

We define α to be the embedding of N into A(Bn)
⟨sd=e⟩ .

Theorem 2.12. There is a group isomorphism

φ ∶ N Ð→ B(d, d, n) ∶ st2s
−1 ↦ τ ′2, ti ↦ τi, for 2 ≤ i ≤ n.

Proof. This can be seen by applying the Reidemester-Schreier algorithm to find a presenta-
tion of the subgroup N , using the set of coset representatives {e, s, s2, . . . , sd−1}, and noting
the presentation of B(d, d, n) in Proposition 2.6 (from [BMR98]). This is very similar to the
proof of Proposition 2.6 in [BMR98, Sections 3.7 and 3C]; see Remark 2.7. □

2.3. Building γ.

Lemma 2.13. The element l ∈ Zn(Od) has order d.

Proof. By [Rou21, §4], Pn(Od) is a subgroup of Zn(Od), embedded as the subgroup of braids
in Zn(Od) in which each strand starts at ends at the same corresponding point in Od (i.e. pure
braids). By [Rou21, Rk. 2.15], there is a homomorphism ξn ∶ Pn(Od) → Pn−1(Od) obtained
by removing the nth strand. Iterating this homomorphism gives a homomorphism ξ from
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−1 1

d

2d (n − 1)d

h1 = ⋯

−1 1

d

2d (n − 1)d

h2 = ⋯

−1 1

d

2d 3d (n − 1)d

h3 = ⋯

−1 1

d

(i − 2)d (i − 1)d (n − 1)d

hi = ⋯ ⋯

Figure 9. The braids h1, h2, . . . , hn. The thicker line (pole) represents the
cone point of degree d.

−1 1

d

2d (n − 1)d

l = ⋯

Figure 10. The loop l.

Pn(Od) to P1(Od) = π1(Od) removing all strands except the first. It follows from [Jr.19, Rk.
2.2.2] that ξ(lr) is not equal to the identity for 1 ≤ r ≤ d−1, from which the result follows. □

Lemma 2.14. Let h1, . . . , hn, l be the elements of Zn(Od) shown in Figures 9 and 10. We
have that

Zn(Od) = (imβ) ⊍ (imβ)l ⊍ (imβ)l
2 ⊍ ⋅ ⋅ ⋅ ⊍ (imβ)ld−1 = ⟨h1, . . . , hn, l⟩.

Proof. Note that B(d, d, n) is torsion free by [Bes15, Thm. 0.4] (see discussion after the
theorem), noting that G(d, d, n) is well-generated (see, for example, [LM21, §2.2.2]). Hence,
imβ = β(B(d, d, n)) ⊆ Zn(Od) is torsion-free. Hence, apart from the identity element, imβ
has no element of finite order. Since the element l has finite order d, we conclude that
lq /∈ imβ for any q /∈ dZ. Suppose now that blq = b′lp for some b, b′ ∈ imβ and non-negative
integers q, p. Then lq−p = (b′)−1b ∈ imβ and so lq−p = e. By Lemma 2.13, q ≡ p modulo d and
lp = lq. In other words, if lp ≠ lq, that is p ≠ q modulo d, then (imβ)lp ∩ (imβ)lq = ∅ and,
since imβ is a subgroup of index d in Zn(Od) by Propositions 2.2 and 2.9, the cosets of imβ
are (imβ)lp for 0 ≤ p ≤ d − 1. Since imβ = ⟨h1, . . . , hn⟩ by Proposition 2.9, we conclude that
Zn(Od) = ⟨h1, . . . , hn, l⟩. □
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h2

l
=

h2

l

d

=

d

=

d

h2

l

h2

d

l

Figure 11. The braids lh2lh2 on the left and h2lh2l on the right are equal.

Theorem 2.15. The following is a group isomorphism

γ ∶
A(Bn)

⟨sd = e⟩
Ð→ Zn(Od) ∶ s↦ l, t2 ↦ h2, ti ↦ hi for 3 ≤ i ≤ n,

satisfying γ(st2s−1) = h1. See Figures 9 and 10 for h1, . . . .hn, l. Furthermore, the diagram
in Figure 1 commutes.

Proof. We first show that the map γ preserves the relations and it is hence a well-defined
group homomorphism. By composing the braids, it is easy to see that γ(st2s−1) = lh2l−1 = h1.

Composing the corresponding braids, it is immediate to see that the following relations are
preserved by γ:

titi+1ti = ti+1titi+1 for 2 ≤ i ≤ n − 1, titj = tjti for ∣ i − j ∣≥ 2, i, j ≥ 3,

t2ti = tit2 for 4 ≤ i ≤ n, sti = tis for 3 ≤ i ≤ n.

Moreover, since the pole has degree d, it follows that ld is the identity and the relation sd = e
is preserved. It only remains to show that the relation st2st2 = t2st2s is preserved. Note
that lh2lh2 = h2lh2l as braids, see Figure 11 and note that this relation does not depend
on the order of the pole. Since only the first two strands and the pole are involved in
this computation, we have omitted all the remaining strands from the pictures. Hence we
conclude that γ is a well-defined group homomorphism.

Using the description of φ in Theorem 2.12 and the description of β in Proposition 2.9, we
have γ(α(ti)) = γ(ti) = hi, and βφ(ti) = β(τi) = hi. We also have γα(st2s−1) = γ(st2s−1) = h1
(as noted above), while βφ(st2s−1) = β(τ ′2) = h1. Hence the diagram in Figure 1 commutes.

We now prove that γ is a group isomorphism. First note that γ is surjective by Lemma 2.14,
noting that h1, h2, . . . , hn, l are all in the image of γ.
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Recall that by Lemma 2.11,

A(Bn)

⟨sd = e⟩
= N ⊍Ns ⊍Ns2 ⊍ . . .Nsd−1.

Then, if γ(nsp) = γ(n′sq) for two elements nsp and n′sq in A(Bn)
⟨sd=e⟩ , where n,n′ ∈ N and

0 ≤ p, q ≤ d − 1, we have that γ(n)lp = γ(n′)lq. Since the diagram in Figure 1 commutes,
we have β(φ(n))lp = β(φ(n′))lq. By Lemma 2.14, β(φ(n)) = β(φ(n′)) and p = q. Since β
and φ are injective, n = n′ and we see that γ is injective and therefore an isomorphism as
required. □

This completes the proof of Theorem A.

3. Presentations of B(d, d, n) and G(d, d, n)

In this section, we give new presentations of the complex braid groups B(d, d, n) and their
corresponding complex reflection groups G(d, d, n). In Definition 3.2, we associate a (dec-
orated) quiver QT to an arbitrary tagged triangulation T of a disk with n marked points
on the boundary and a cone point of degree d ≥ 2 in its interior. (Note that we assume
d ≥ 2 throughout this section, except where otherwise stated, for some lemmas where it is
convenient to allow the case d = 1). The quiver may have 2-cycles, which we consider to
be unoriented edges. In Definition 3.4, we associate a group GQ to such a quiver, given by
generators and relations. A special case is Figure 12. The corresponding presentation is
the known presentation of B(d, d, n) from [BMR98, Thm. 2.27]. The associated quiver in
this case is an orientation of the diagram associated to the presentation in [BMR98, Table
5] (drawn on the right in Figure 12); this formed part of the motivation for the approach
we employ here. In Definition 3.9, we introduce a mutation rule for such a quiver which
is compatible with flipping triangulations. We complete this section by showing that the
group GQ is invariant under mutation. Since the mutation graph of tagged triangulations
of the disk is connected [FST08, Prop. 7.10], it follows that all the quivers constructed as
above give presentations of the group B(d, d, n). Adding the relations that the square of each
generator is the identity gives a presentation of G(d, d, n) by applying a result from [Ari95];
see Theorem 5.1.

●

●

● ●

●

●

●●

d

●

●

●
n ●

n − 1
●

n − 2

●
5

●
4

●
3

●2●1
d

▹◃

●
1

●
2

●
3

●
4

●
5

●
n − 2

●
n − 1

●
n

d

Figure 12. Original presentation from [BMR98] (shown on the right) em-
bedded in a disk with n marked points on the boundary and a cone point of
degree d in its interior.
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3.1. Quivers from triangulated surfaces and groups from quivers. We now fix the
surface (X,M) we will be working with: X is the disk S with an interior marked point

interpreted a cone point of degree d ≥ 2 denoted by d in figures, and M is a set of n ≥ 2
marked points on its boundary.

Next, we give a way of associating a decorated quiver QT to each tagged triangulation of
(X,M). We then give a way of associating a group GQT

to any such quiver.

Let T be a tagged triangulation of (X,M), regarding C as a marked point, as in [FST08,
§7]. Note that C is the unique marked point in the interior of S.

Remark 3.1. By [FST08, Rk. 4.2], the tagged triangulation T can be built up by gluing
puzzle pieces of the kind shown in Figure 13 by matching their boundary arcs (respecting
the orientation).

Let BT be the skew-symmetric matrix associated to T in [FST08, Rk. 4.2], and let Q̃T be
the corresponding quiver.

Definition 3.2. We associate a quiver QT to each tagged triangulation T as considered
above by modifying Q̃T in the following way.

If the triangulation T has precisely two arcs incident with the cone point then, from each of
the two vertices in Q̃T that have arrows to or from the corresponding vertices in Q̃, we draw
a double edge pointing towards the conepoint. Thus, we draw such a double edge from each
vertex labelling an arc in the triangulation T bounding a region in the complement that has
the cone point on its boundary. We also add an unoriented edge, labelled d, between these
two vertices.

If the triangulation has at least 3 arcs adjacent to the cone point, there will be an oriented

cycle between the corresponding vertices in Q̃T . We put the label d in the middle of such
a cycle. Note that there is at most one such labelled cycle.

See Figure 12 for a complete example of Definition 3.2 and Figures 17, 18, 19, 20 and 21 for
local portions of a triangulation and the associated quiver.

●

●

● ●

d

●

Figure 13. Puzzle pieces for a disk with a single interior marked point.

Remark 3.3. It follows from Remark 3.1 that the quiver QT is built up from individual
portions associated to triangles (as on the left of Figure 13) and a portion associated to
the union of the puzzle pieces incident with the cone-point as shown in Figure 14 (or with
versions of the three right hand figures where the tags on all the arcs incident with the cone
point have been flipped).
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●

●

●

● ●

● ●

d

●

&
● ●

● ●

d

●

d

●

●

●

● ●d

●

●●

d

●

●●

● ●

●

●

●

● ●
d

●

●

● ●d
d

●

●●

Figure 14. Building up the associated quiver for a disk with cone point. We
show the corresponding quivers separately. Note that the cone point itself does
not appear in the quiver in the second and third cases.

Definition 3.4. Let Q be a quiver as in Definition 3.2 and GQ be the group with generators
SQ = {si}i∈Q0 subject to the following relations:

(1) sisj = sjsi if i and j are vertices with no arrows between them,
(2) sisjsi = sjsisj if there is an arrow between i and j (in either direction).

(3) sisjsksi = sjsksisj = sksisjsk if Q contains an oriented 3-cycle with no label d in the
middle of the form

●
i

●
j

●
k

(4) sisj⋯
²
d terms

= sjsi⋯
²
d terms

if there is an (unoriented) edge labelled d between i and j,

(5) s1s2⋯srs1 . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(r − 1) terms

= s2⋯srs1 . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(r − 1) terms

= ⋅ ⋅ ⋅ = srs1⋯srs1 . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(r − 1) terms

if Q contains an oriented labelled

chordless r-cycle, for r ≥ 3, of the form

●
r

●1 ●2

●
r − 1

d
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(6) sksisjsksisj = sisjsksisjsk if the vertices i, j, k appear in either of the following con-
figurations in Q

●
i

●
j

●
k

d

●
i

●
j

●
k

d

Note that si appears before sj in the relation because i appears to the right of the
double edge.

(7) sisjskslsisj = slsisjskslsi and sjskslsisjsk = skslsisjsksl if the vertices i, j, k, l appear
as follows in Q

●
k

●
j

●i

●
l

d

Let HQ be the group defined as above, omitting the length d relations (4) and the cycle
relations (5).

Remark 3.5. Note that when n = 2, the only possible tagged triangulations are the middle
two figures in Figure 14, with the outer edges part of the boundary, or the same figures with
tags flipped. In each case, the corresponding quiver is a pair of vertices connected by an
unoriented edge labelled d, and the corresponding group has two generators, s1 and s2, with
a relation of type (4) from Definition 3.4, i.e. it is the Artin braid group of type I2(d).

The construction of Grant and Marsh [GM17] becomes a special case of the above construc-
tion as follows. Our aim is to generalise their construction for larger values of d.

Remark 3.6. Note that when d = 2, the relations from Definition 3.4 simplify. In fact,
arrows labelled 2 give commutation relations, so they can be omitted following rule (1).
Moreover, we can see that double edges can be omitted as well. In fact, in the situation of
relation (6), we have sisj = sjsi, sisksi = sksisk and sjsksj = sksjsk and so

sksisjsksisj = sksjsisksisj = sksjsksisksj = sjsksjsisksj = sjsksisjsksj

= sjsksisksjsk = sjsisksisjsk = sisjsksisjsk,

that is relation (6) becomes a consequence of the other relations. Note also that cycle
relations as in (5) and (7) reduce to cycle relations as in [GM17, Defn. 2.2]. Hence in this
case the defining relations coincide with those in [GM17, Defn. 2.2] and GQ is isomorphic
to A(Dn), that is the Artin braid group of type Dn, by [GM17, Remark 2.3 and Theorem
2.12]. Recall also that A(Dn) ≅ B(2,2, n); see for example [BMR98, pp 188].

Remark 3.7. Note that there are only two relations in (7) corresponding to the 4-cycle
i→ j → k → l → i, in contrast to the four relations appearing in [GM17, Defn. 2.2]:

sisjskslsisj = sjskslsisjsk = skslsisjsksl = slsisjskslsi.

When d = 2, these relations are equivalent to those in (7) (see Remark 3.6), but when
d > 2, we can see that the relations in [GM17, Defn. 2.2] would imply the unexpected



20 FRANCESCA FEDELE AND BETHANY ROSE MARSH

relation sisk = sksi. In fact, using one of the two equalities from (7), together with the other
relations, we have

sisjskslsisj = slsisjskslsi ⇐⇒ sjskslsisj = s
−1
i slsisjskslsi ⇐⇒ sjskslsisj = slsis

−1
l sjskslsi

⇐⇒ sjskslsisj = slsisjs
−1
l skslsi ⇐⇒ sjskslsisj = slsisjsksls

−1
k si

⇐⇒ sjskslsisj sksi⋯
²

d − 2 terms

= slsisjsksls
−1
k si sksi⋯

²
d − 2 terms

⇐⇒ sjskslsisj sksi⋯
²

d − 2 terms

= slsisjskslsi sksi⋯s
−1
x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d − 1 terms

⇐⇒ sjskslsisjsk sisk⋯sx
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
d − 2 terms

= slsisjskslsi sksi⋯
²

d − 2 terms

,

where x = i or k depending on whether d is odd or even respectively. If the four relations
from [GM17, Defn. 2.2] were true for d > 2, this would imply that sisk⋯

²
d − 2 terms

= sksi⋯
²

d − 2 terms

and so

by (4), that sksi = sisk. However, this statement is false for d > 2 (see Remark 4.7).

We can now use our construction to embed the presentation of the group B(d, d, n) given
by Broué, Malle and Rouquier [BMR98] B(d, d, n) into a triangulation of the surface S as
follows.

Remark 3.8. Consider the triangulated surface in Figure 12, where we have drawn the
corresponding quiver following the rules in Definition 3.2. The associated group GQ with
generators and relations as in Definition 3.4 is exactly the presentation of the group B(d, d, n)
given by Broué, Malle and Rouquier in [BMR98, Table 5].

3.2. Mutation of quivers and triangulations. By [FST08, §7], given a tagged triangu-
lation T of the disk S, and a choice of tagged or untagged arc, there is a unique tagged
triangulation which coincides with T except for this arc, i.e. the flip of T at the given arc.
We give a way of mutating the quivers constructed as in the previous section that agrees with
flipping the triangulation. This will coincide with Fomin-Zelevinsky mutation, see [FZ03,
Lemma 8.5], for the portion of the quiver “far from the cone point”, but we need different
rules for the double edges, labelled (unoriented) edges and labelled cycles.

Note that by the construction of Q, all 3-cycles in Q where arrows have no labels are
oriented cyclically by [FZ03, Lemma 7.5]; see also [BM15, pp. 1948]. On the other hand, we
sometimes have an unoriented edge labelled d creating “unoriented” cycles, see for example
the situation of (7) in Definition 3.4.

Definition 3.9. Let Q be a quiver as in Definition 3.2 and k be a vertex in Q. We define
the mutation of Q at k, denoted by µk(Q), as the following quiver on the same vertex set.
See Figure 15 for a pictorial representation of the following rules.

(1) Reverse the orientations of all (oriented) arrows in Q incident with k.
(2) For any path of the form j → k → i in Q:

● if there is no arrow between i and j in Q, then there is an arrow j → i in µk(Q),

● if there is an arrow i→ j and j, k, i do not form a 3-cycle labelled d in Q, then
there is no arrow between i and j in µk(Q),
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● if j, k, i form a 3-cycle labelled d in Q, then there is an edge labelled d between
i and j in µk(Q), the 3-cycle looses the label and the neighbours of i, j in µk(Q)
acquire a double edge towards the labelled edge in µk(Q),
● if there is an edge labelled d between j and i in Q, then there is an arrow j → i in

µk(Q), the 3-cycle j, i, k acquires the label d and all double edges are removed
in µk(Q),

(3) If j → k → i is part of an r-cycle labelled d in Q for r ≥ 4, then the rules above apply
and the label is kept in the (r − 1)-cycle including i, j but not k in µk(Q).

(4) If there are arrows j → k → i and i, j, but not k, are part of an r-cycle labelled d

in Q for r ≥ 3, then the rules above apply and the label is kept in the (r + 1)-cycle
which includes i→ k → j in µk(Q).

(5) If in Q there is one of the following configurations:

○
j

○
i

●
k

d or ○
j

○
i

●
k

d

then follow the above rules (keeping also the double edge at k) and
● if there is a vertex l different from k with a double edge in Q, remove the double
edge at l in µk(Q),
● if there is a vertex n different from l and k such that in Q

○
j

○
i

●k

●
n

d or ○
j

○
i

●k

●
n

d

then add a double edge at n.

Remark 3.10. Note that when d = 2 the mutation rules simplify. In fact, as explained in
Remark 3.6, arrows labelled 2, double edges and labels on cycles can be omitted and we
simply recover Fomin-Zelevinsky mutation.

Lemma 3.11. Let T and T ′ be tagged triangulations of S such that T ′ is obtained from T
by flipping the arc α as in [FST08, §7]. Let QT and QT ′ be the corresponding quivers as in
Definition 3.2. Then

(a) The flip of α is given locally by one of the mutations in Figures 17, 18, 19, 20 or 21
(from left to right or right to left), or by one of the mutations from Figure 18, 20 or
21 with all of the tags flipped.

(b) The quiver QT ′ can be obtained from the quiver QT by applying the mutation rule
in Definition 3.9.

Proof. Part (a) follows from Remarks 3.1 and 3.3 on consideration of which vertex is the
conepoint when gluing together puzzle pieces. Part (b) follows from part (a) by computing
the quiver in each case before and after mutation (see Figure 14). □
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○
i

●
k µk

○
i

●
k

○
i

○
j

●
k

µk
○
i

○
j

●
k

○
j

○
i

●
k

µk
○
j

○
i

●
k

○
i

○
j

●
k

d
µk

○
i

○
j

●
k

d

○
i

○
j

●
k

d
µk

○
i

○
j

●
k

d

○
j

○
i

●
k

○
l

d
µk

○
j

○
i

●
k

○
l

d
●
k

○
k − 1

○
2

○
1

d

µk

●
k

○
k − 1

○
2

○
1

d

Figure 15. Local mutations following the rules from Definition 3.9. In the
third line, in the first mutation vertex l might not exist (if it corresponds to a
boundary segment of the disc); in the second mutation we are assuming k is
at least 4.

3.3. Mutation of groups. In this section we will show that the group associated in Def-
inition 3.4 to a quiver as in Definition 3.2 is invariant under the mutation introduced in
Definition 3.9:

Theorem 3.12. Let Q be a quiver as in Definition 3.2, GQ its associated group as in
Definition 3.4 with generators si, and k a vertex of Q. Let µk(Q) be the mutation of Q
at k as in Definition 3.9, and let ti be the generators of Gµk(Q). Then there is a group

isomorphism φQ
k ∶ GQ ≅ Gµk(Q) given by φQ

k (si) = tktit
−1
k if i→ k in Q or the vertices i and k

correspond to the only two arcs incident with the conepoint in T and the arc corresponding
to k is rotated anti-clockwise to the flipped arc; and φ(si) = ti otherwise.

Note that, in the above theorem, the situation when there are only two arcs incident with the
conepoint in T means that there is an unoriented edge between the corresponding vertices,
labelled d.

We have already seen that the triangulation from Figure 12 satisfies GQ ≅ B(d, d, n), so this
will allow us to conclude that every tagged triangulation gives a presentation of the group
B(d, d, n).

Proposition 3.13. [GM17, Prop. 2.9] Let Q be one of the quivers on the left or right of
(a)–(f) in Figure 16. Let k be a vertex of Q. Let Q′ = µk(Q) be the quiver obtained from
Q by mutating at k. Suppose that the ti are elements of a group satisfying the defining
relations (1), (2) and (3) from Definition 3.4 for the quiver Q′. For i ∈ Q0, let

Si = {
tktit−1k , i→ k in Q;

ti, else.

Then, for each of the cases in Figure 16, the elements Si satisfy the defining relations (1),
(2) and (3) of Definition 3.4 for the quiver Q.
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(a)
○
i

●
k µk

○
i

●
k (b)

○
i

○
j

●
k

µk
○
i

○
j

●
k

(c)
○
i

○
j

●
k

µk
○
i

○
j

●
k

(d)
○
i

○
j

●
k

µk
○
i

○
j

●
k

(e)
○
i

○
j

●
k

µk
○
i

○
j

●
k

(f)
○
i

○
j

●
k

µk
○
i

○
j

●
k

Figure 16. Cases for Proposition 3.13.

● ●

● ●

● ●

● ●

●1

●
2

● 3

●
4

●
5 µ5

● ●

● ●

● ●

● ●

●1

●
2

● 3

●
4

●
5

Figure 17. A mutation far from the conepoint.

Lemma 3.14. Let Q be the quiver on the left of Figure 17 and Q′ the quiver on the
right. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with
1 ≤ i ≤ 5 satisfying the relations associated with Q (respectively Q′). Then, there are group
homomorphisms:

● φQ
5 ∶ GQ → GQ′ with φ

Q
5 (s1) = S1 = t5t1t−15 , φQ

5 (s3) = S3 = t5t3t−15 , φQ
5 (si) = Si = ti for

i = 2,4,5;

● φQ′

5 ∶ GQ′ → GQ with φ5(t4) = T4 = s5s4s−15 , φ5(t2) = T2 = s5s2s−15 , φ5(ti) = Ti = si for
i = 1,3,5.

Proof. For the first statement, it is enough to check that the elements Si satisfy the defining
relations of GQ. This follows directly from Proposition 3.13. The proof of the second
statement is similar. □

Setup 3.15. Let Q be the quiver on the left of Figure 18(a) (respectively, the quiver on the
left of Figure 18(b)) for n ≥ 3 (respectively, for n = 2) and let Q′ be the quiver on the right
in each case. Let HQ be the group defined in Definition 3.4, with generators si, and let HQ′

be the group defined in Definition 3.4, with generators ti. Let S1 = t0t1t−10 , Sc = t0tct−10 ,and
Si = ti for i /= n, c. We regard the subscripts of the si and Si for 1 ≤ i ≤ n to be taken modulo
n (with representatives {1,2 . . . , n}), and the subscripts of the ti for 0 ≤ i ≤ n to be taken
modulo n + 1 (with representatives {0,1,2, . . . , n}).
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●
●

●

●●

● d

●

●

●

●

●

●
n

●
1

●
0

●
n − 1

●3●
2

●
c

●b

µ0

●
●

●

●●

● d

●

●

●
n

●
1

●
0

●
n − 1

●3●
2

●
c

●b

●

●

●

(a) Case n ≥ 3.

●●

● d

●
a

●

●

●
2

●
1

●
0

●
c

●b

d

µ0

●●

● d

●
a

●

●

●
2

●
1

●
0

●
c

●b

(b) Case n = 2.

Figure 18. A mutation involving a cycle around the conepoint. In case (b),
one of the vertices is labelled a to avoid confusion in arguments involving
indices taken modulo n.

Lemma 3.16. Let n ≥ 2 be an integer. In Setup 3.15, the elements Si satisfy the defining
relations of HQ.

Proof. This follows from Proposition 3.13. □

Lemma 3.17. Let n ≥ 2 and d ≥ 1 be integers. Suppose we are in Setup 3.15, and that
0 ≤ i, r ≤ n and r /= i − 1, i mod n + 1. Then we have the following:

(a)
tr−n+1tr−n+2⋯trt

−1
i = t

−1
i+1tr−n+1tr−n+2⋯tr.

(b)
tr−dn+1⋯tr−1trt

−1
i = t

−1
d+itr−dn+1⋯tr−1tr.

Proof. For (a), we have

tr−n+1tr−n+2⋯trt
−1
i = tr−n+1⋯titi+1⋯trt

−1
i

= tr−n+1⋯titi+1t
−1
i ti+2⋯tr

= tr−n+1⋯t
−1
i+1titi+1ti+2⋯tr

= t−1i+1tr−n+1tr−n+2⋯tr.
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For (b), we argue by induction on d. If d = 1, the result follows from part (a). Suppose the
result holds for d. Then

tr−(d+1)n+1⋯tr−1trt
−1
i = tr−(d+1)n+1⋯tr−dntr−dn+1⋯trt

−1
i

= tr−(d+1)n+1⋯tr−dnt
−1
i+dtr−dn+1⋯tr

= t−1i+d+1tr−(d+1)n+1⋯tr−1tr,

using the induction hypothesis and then noting that r − dn /≡ i + d, i + d − 1 mod n + 1, since
r − dn ≡ r + d mod n + 1. □

Lemma 3.18. Let n ≥ 2 and d ≥ 1 be integers. Then, in Setup 3.15, for any 1 ≤ r ≤ n, we
have:

tdtd−1⋯t1 Sr−d(n−1)+1⋯Sr−1Sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(n−1) terms

= tr−dn+1⋯tr−1tr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

.

Proof. We prove the result by induction on d. For d = 1, we have (for the case r = n),

t1S2⋯Sn = t1t2⋯tn,

as required. For r /= n, we have

t1Sr−(n−1)+1⋯Sr = t1Sr+2⋯SnS1⋯Sr

= t1tr+2⋯tnt0t1t
−1
0 t2⋯tr

= t1tr+2⋯tnt
−1
1 t0t1t2⋯tr

= t1t
−1
1 tr+2⋯tnt0t1⋯tr

= tr+2⋯tnt0t1⋯tr

= tr−(n+1)+2⋯tr−1tr

= tr−n+1⋯tr−1tr,

as required, giving the result for d = 1. Assume the result holds for an integer d ≥ 1. Then,
using the induction hypothesis, we have (for r = n):

td+1⋯t1 Sn−(d+1)(n−1)+1⋯Sn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d+1)(n−1)terms

= td+1(td⋯t1)(Sn−(d+1)(n−1)+1⋯SnS1)S2⋯Sn

= td+1(td⋯t1)(S1−d(n−1)+1⋯SnS1)S2⋯Sn

= td+1(t1−dn+1⋯t1)t2⋯tn,
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as required, noting that 1 − dn + 1 ≡ d + 2 mod n + 1. For r /= n, we have,

td+1⋯t1 Sr−(d+1)(n−1)+1⋯Sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d+1)(n−1)terms

= td+1(td⋯t1) (Sr−(d+1)(n−1)+1⋯Sr−(n−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n−1)terms

Sr−(n−2)⋯Sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1 terms

= td+1(td⋯t1) (Sr−(d+1)(n−1)+1⋯Sr−(n−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n−1)terms

Sr+2⋯SnS1⋯Sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1 terms

= td+1(td⋯t1) (Sr+1−d(n−1)+1⋯Sr+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n−1)terms

Sr+2⋯SnS1⋯Sr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1 terms

= td+1 tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

tr+2⋯tnt0t1t
−1
0 t2⋯tr

= td+1 tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

tr+2⋯tnt
−1
1 t0t1t2⋯tr

= td+1 tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

t−11 tr+2⋯tnt0t1t2⋯tr,

using the induction hypothesis. Note that the subscripts of the T s are reduced mod n first
before being applied to the T s (and then reduced mod n+ 1!). Since 1 ≤ r ≤ n− 1, r + 1 /≡ 0,1
mod n + 1, so by Lemma 3.17,

tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

t−11 = t
−1
d+1 tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

It follows that

td+1⋯t1 Sr−(d+1)(n+1)+1⋯Sr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d+1)(n−1)terms

= td+1t
−1
d+1 tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

tr+2⋯tnt0t1t2⋯tr,

= tr+1−dn+1⋯tr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

tr+2⋯tnt0t1t2⋯tr,

with (d+1)n terms in total, as required, noting that r+1−dn+1 ≡ r−(d+1)n+1 mod n+1. □

We have the following generalization of [GM17, Lem. 2.4].

Lemma 3.19. Let d be a positive integer and n ≥ 3 be an integer. Let g0, g1, . . . , gn−1 be
elements of a group G, with subscripts taken modulo n, satisfying the relations:

gigi+1gi = gi+1gigi+1, 0 ≤ i ≤ n − 1

gigj = gjgi,0 ≤ i, j ≤ n − 1, j /= i, i + 1 mod n.

Then

(a) g−1i+1gi⋯gi+n−2 = gi⋯gi+n−2g
−1
i , for 1 ≤ i ≤ n.

(b) g−11 (g0g1⋯g(n−1)d−1) = g0g1⋯g(n−1)d−1g
−1
(n−1)d+1

(c) If the relation
grgr+1⋯g(n−1)d+r−1 = gr+1gr+2⋯g((n−1)d+r (3)

holds for some r ∈ {0,1, . . . , n − 1}, then it holds for all r.
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Proof. For (a), we have:

g−1i+1gigi+1gi+2⋯gi+n−2 = gigi+1g
−1
i gi+2⋯gi+n−2

= gigi+1⋯gi+n−2g
−1
i ,

as required, using commutations in the second step. For part (b), we have:

g−11 (g0g1⋯g(n−1)d−1) = g
−1
1 (g0⋯gn−2)(gn−1⋯g2n−3)⋯g(d−1)(n−1)⋯g(n−1)d−1)

= (g0⋯gn−2)(gn−1⋯g2n−3)⋯(g(d−1)(n−1)⋯g
(n−1)d−1))g1−d,

using part (a) d times. Finally, note that 1 − d ≡ (n − 1)d + 1 mod n. For part (c), assume
first that equation (3) holds for r = 0, so that

g0g1⋯g(n−1)d+r−1 = g1g2⋯g((n−1)d.

Multiplying this on the left by g−11 and on the right by g(n−1)d+1 gives

g0g1⋯g(n−1)d−1 = g2g3⋯g(n−1)d+1,

by part (b). Repeated application of this argument gives the desired result. □

Lemma 3.20. Let n ≥ 3 be an integer. Let Q be the quiver on the left of Figure 18(a)
and Q′ the quiver on the right. Let GQ (respectively GQ′) be the group with generators si
(respectively ti), with i ranging through the vertices of the quivers, satisfying the relations
associated with Q (respectively Q′). Then, there is a group homomorphism

φQ
0 ∶ GQ → GQ′ given by φQ

0 (s1) = S1 = t0t1t
−1
0 , φ

Q
0 (sc) = Sc = t0tct

−1
0 , φ

Q
0 (si) = Si = ti for i ≠ 1, c.

Proof. The defining relations for GQ, apart from those corresponding to the n-cycle 1→ 2→
⋯→ n→ 1, hold by Lemma 3.16.

The defining relations for GQ′ corresponding to the n + 1-cycle 0 → 1 → ⋯ → n + 1 → 0 can
be written in the form:

tr−nd+1⋯tr−1tr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

= tr+1−nd+1⋯trtr+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

,

for 0 ≤ r ≤ n.

The defining relations for GQ corresponding to the n-cycle 1→ 2→ ⋯→ n→ 1 can be written
in the form:

(Sr−d(n−1)+1⋯Sr−1Sr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

= (Sr+1−d(n−1)+1⋯SrSr+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

,

for 1 ≤ r ≤ n.

The cycle relations for GQ for 1 ≤ r ≤ n − 1 now follow from Lemma 3.18. The cycle relation
for r = n follows from Lemma 3.19(c), taking g0 = S1, g2 = S2, . . . , gn−1 = Sn. This gives the
required result. □

Lemma 3.21. Let n = 2. Let Q be the quiver on the left of Figure 18(b) and Q′ the quiver
on the right. Let GQ (respectively GQ′) be the group with generators si (respectively ti),
with i ranging through the vertices of the quivers, satisfying the relations associated with Q
(respectively Q′). Then, there is a group homomorphism

φQ
0 ∶ GQ → GQ′ given by φQ

0 (s1) = S1 = t0t1t
−1
0 , φ

Q
0 (sc) = Sc = t0tct

−1
0 , φ

Q
0 (si) = Si = ti for i ≠ 1, c.
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Proof. The defining relations for GQ, apart from those corresponding to the 3-cycle 0→ 2→
1 → 0, the 4-cycle 0 → 2 → a → 1 → 0, the double edges and the unoriented edge labelled d
in Q, all hold by Lemma 3.16.

We have t1t2t1 = t2t1t2, which gives:

S−10 S1S0S2S
−1
0 S1S0 = S2S

−1
0 S1S0S2.

Multiplying on the left by S0 gives

S1S0S2S
−1
0 S1S0 = S0S2S

−1
0 S1S0S2.

Applying the braid relations corresponding to the arrows 1→ 0 and 0→ 2 in Q we obtain:

S1S0S2S1S0S
−1
1 = S

−1
2 S0S2S1S0S2,

and hence, multiplying on the left by S2 and on the right by S1:

S2S1S0S2S1S0 = S0S2S1S0S2S1,

which is the relation associated to the double edge incident with 0 in Q.

The relation associated to the double edge incident with the vertex a in Q is:

SaS1S2SaS1S2 = S1S2SaS1S2Sa. (4)

We apply transformations to (4) to give a series of equivalent versions. Firstly, (4) is equiv-
alent to

tat0t1t
−1
0 t2tat0t1t

−1
0 t2 = t0t1t

−1
0 t2tat0t1t

−1
0 t2ta

Applying the commutation tat0 = t0ta and the braid relation corresponding to the arrow
0→ 1 in Q′ on both sides gives

t0tat1t
−1
0 t2tat

−1
1 t0t1t2 = t0t1t

−1
0 t2tat

−1
1 t0t1t2ta.

We multiply on the left by t−11 t0 to obtain:

t−11 tat1t
−1
0 t2tat

−1
1 t0t1t2 = t

−1
0 t2tat

−1
1 t0t1t2ta.

Since t2tat1t2 = tat1t2ta, we may substitute in

t1t2ta = t
−1
a t2tat1t2

on the right-hand side, while on the left-hand side we apply the braid relation for the arrow
3→ 1 in Q′ to get:

tat1t
−1
a t
−1
0 t2tat

−1
1 t0t1t2 = t

−1
0 t2tat

−1
1 t0t

−1
a t2tat1t2.

Multiplying on the right by t−12 t
−1
1 and on the left by t0 gives:

t0tat1t
−1
a t
−1
0 t2tat

−1
1 t0 = t2tat

−1
1 t0t

−1
a t2ta.

Applying the commutation t0ta = tat0 twice on the left hand side, and multiplying on the
right by t2 gives:

tat0t1t
−1
0 t
−1
a t2tat

−1
1 t0 = t2tat

−1
1 t0t

−1
a t2ta.

We apply the braid relation corresponding to the arrow 2→ 3 in Q′ to obtain:

tat0t1t
−1
0 t
−1
a t2tat

−1
1 t0 = t2tat

−1
1 t0t2tat

−1
2 ,

and, multiplying on the right by t2 we obtain:

tat0t1t
−1
0 t
−1
a t2tat

−1
1 t0t2 = t2tat

−1
1 t0t2ta.

Applying the braid relations corresponding to the arrows 0→ 1 and 2→ a in Q′ gives:

tat
−1
1 t0t1t2tat

−1
2 t
−1
1 t0t2 = t2tat

−1
1 t0t2ta.
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Since t2tat1t2 = tat1t2ta, we may substitute in

t1t2tat
−1
2 t
−1
1 = t

−1
a t2ta

on the left-hand side to obtain:

tat
−1
1 t0t

−1
a t2tat0t2 = t2tat

−1
1 t0t2ta.

Applying the commutation t0ta = tat0 on the left hand side twice, we obtain:

tat
−1
1 t
−1
a t0t2t0tat2 = t2tat

−1
1 t0t2ta.

Applying the braid relation corresponding to the arrow a→ 1 in Q′ gives:

t−11 t
−1
a t1t0t2t0tat2 = t2tat

−1
1 t0t2ta.

Multiplying on the left by tat1 gives:

t1t0t2t0tat2 = tat1t2tat
−1
1 t0t2ta.

Since tat1t2ta = t1t2tat1, we may substitute in tat1t2tat−11 = t1t2ta on the right to get:

t1t0t2t0tat2 = t1t2tat0t2ta.

Applying the braid relation corresponding to the arrow 2 → 0 in Q′ on the left-hand side,
we obtain:

t1t2t0t2tat2 = t1t2tat0t2ta.

Multiplying both sides on the left by t−12 t
−1
1 gives

t0t2tat2 = tat0t2ta.

Since this final equivalent version holds, we see that (4) holds, as desired.

Next we check the two relations associated to the 4-cycle 0 → 2 → a → 1 → 0 in Q. Since
tat1t2ta = t1t2tat1, we have:

SaS
−1
0 S1S0S2Sa = S

−1
0 S1S0S2SaS

−1
0 S1S0.

Multiplying on the left by S0 and applying the commutation S0Sa = SaS0 gives:

SaS1S0S2Sa = S1S0S2SaS
−1
0 S1S0.

Applying the braid relation associated to the arrow 1→ 0 in Q gives:

SaS1S0S2Sa = S1S0S2SaS1S0S
−1
1 .

Then, multiplying on the right by S1 gives:

SaS1S0S2SaS1 = S1S0S2SaS1S0,

which is one of the relations associated to the 4-cycle in Q.

Since t2tat1t2 = tat1t2ta we have, multiplying on the left by t2t0, that:

t2t0t2tat1t2 = t2t0tat1t2ta.

Applying the braid relation corresponding to the arrow 2→ 0 in Q′ gives:

t0t2t0tat1t2 = t2t0tat1t2ta.

Applying the commutation t0ta = tat0 on the right hand side gives:

t0t2tat0t1t2 = t2tat0t1t2ta.

We insert the product t−10 t0 in two places to obtain:

t0t2tat0t1t
−1
0 t0t2 = t2tat0t1t

−1
0 t0t2ta,
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which can be rewritten as:

S0S2SaS1S0S2 = S2SaS1S0S2Sa,

which is the other relation associated to the 4-cycle in Q.

One of the relations corresponding to the 3-cycle 1→ 2→ 0→ 1 in Q′ is

t1t2⋯t2d = t2t3⋯t2d+1.

By Lemma 3.18, taking r = 1,2, we have

tdtd−1⋯t1S1−d+1⋯S0S1 = t1−2d+1⋯t0t1

and
tdtd−1⋯t1S2−d+1⋯S1S2 = t2−2d+1⋯t1t2.

so
S1−d+1⋯S0S1 = S2−d+1⋯S1S2,

which can be rewritten as
S1S2⋯Sd = S2S3⋯Sd+1

(switching the two sides of the equality if d is even). This is the remaining required defining
relation of GQ (corresponding to the unoriented edge labelled d in Q). Hence all the defining
relations of GQ hold, and the result is shown. □

We consider the following setup:

Setup 3.22. Let Q be the quiver on the right of Figure 18(a) (respectively, the quiver on
the right of Figure 18(b)) for n ≥ 3 (respectively, for n = 2) and let Q′ be the quiver on the
left in each case. Let HQ be the group defined in Definition 3.4, with generators si, and let
HQ′ be the group defined in Definition 3.4, with generators ti. Let Sn = t0tnt−10 , Sb = t0tbt−10 ,
and Si = ti for i ≠ n, b. We regard the subscripts of the si and Si for 0 ≤ i ≤ n to be taken
modulo n + 1 (with representatives {0,1,2 . . . , n}), and the subscripts of the ti for 1 ≤ i ≤ n
to be taken modulo n (with representatives {1,2, . . . , n}).

We note the following:

Lemma 3.23. Let n ≥ 2 be an integer. In Setup 3.22, the elements Si satisfy the defining
relations of HQ.

Proof. For n ≥ 3, this follows from Proposition 3.13.

For n = 2, the braid and commutation relations and the relations for the 3-cycles all hold
by Proposition 3.13, except for the relation for arrow from 1 to 2 and the relations for the
3-cycle 2→ a→ 1→ 2.

The relation for the double edge incident with 0 in Q′ is:

t0t2t1t0t2t1 = t2t1t0t2t1t0.

Substituting, this gives

S0S
−1
0 S2S0S1S0S

−1
0 S2S0S1 = S

−1
0 S2S0S1S0S

−1
0 S2S0S1S0,

which simplifies to
S0S2S0S1S2S0S1 = S2S0S1S2S0S1S0
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Using the braid relations for the arrows 0→ 2 and 1→ 0 in Q:

S0S2S0S1S2S0S1 = S2S0S1S2S0S1S0

gives:
S2S0S2S1S2S0S1 = S2S0S1S2S1S0S1,

which, after cancelling elements on the left and right, gives

S2S1S2 = S1S2S1.

There are two relations for the 4-cycle on vertices 2, a, 1 and 0 in Q′. One of these is:

t0t2tat1t0t2 = t2tat1t0t2ta,

which gives
S0S

−1
0 S2S0SaS1S0S

−1
0 S2S0 = S

−1
0 S2S0SaS1S0S

−1
0 S2S0Sa,

and hence
S0S2S0SaS1S2S0 = S2S0SaS1S2S0Sa.

Applying the braid relation for the arrow 2→ 0 in Q and the commutation S0Sa = SaS0 gives

S2S0S2SaS1S2S0 = S2S0SaS1S2SaS0.

Applying cancellations on the left and right gives

S2SaS1S2 = SaS1S2Sa.

By [GM17, Lem. 2.4], we conclude that

S2SaS1S2 = SaS1S2Sa = S1S2SaS1,

giving the result for n = 2. □

Lemma 3.24. In Setup 3.22, let d ≥ 1 be an integer. We have:

(a)
S−1i Si+2⋯Si+n+1 = Si+2⋯Si+n+1S

−1
i−1;

(b)
S−1n (S1S2⋯Snd) = (S1⋯Snd)S

−1
n−d.

Proof. We use Lemma 3.23 throughout. For (a), we have:

S−1i Si+2Si+3⋯Si+n+1 = Si+2Si+3⋯Si+n−1S
−1
i Si+nSi+n+1

= Si+2Si+3⋯Si+n−1Si+nSi+n+1S
−1
i+n,

as required, using commutations in the first step and noting that i+n+1 ≡ i and i+n ≡ i−1
mod n + 1. For part (b), note that

S1⋯Snd = (S1⋯Sn)(Sn+1⋯S2n)⋯(Sd⋯Sd+n−1),

and use part (a) d times. □

Lemma 3.25. In Setup 3.22, let d ≥ 1 be an integer. Then, for any 1 ≤ r ≤ n, we have:

(trtr+1⋯td(n−1)+r−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

(SnSn−1⋯Sn−d+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

= SrSr+1⋯Sr+nd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms
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Proof. We prove the result by induction on d, using Lemma 3.23 throughout. For d = 1,
we have t1t2⋯tn−1Sn = S1S2⋯Sn. For r ≥ 2, we have (recalling that subscripts of the ti are
written modulo n):

trtr+1⋯tr+n−2Sn = tr⋯tn−1tnt1t2⋯tr+n−2−nSn

= (Sr⋯Sn−1)(S
−1
0 SnS0)(S1S2⋯Sr−2)Sn

= (Sr⋯Sn−1)(SnS0S
−1
n )(S1S2⋯Sr−2)Sn

= (Sr⋯Sn−1)SnS0(S1⋯Sr−2)S
−1
n Sn,

and we see that the result holds for d = 1.

Assume the result holds for an integer d ≥ 1. Then, using the induction hypothesis,

(t1t2⋯t(d+1)(n−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d + 1)(n − 1) terms

(SnSn−1⋯Sn−(d+1)−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d + 1 terms

) = (t1t2 . . . tn−1) (tntn+1⋯t(d+1)(n−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

((SnSn−1⋯Sn−d+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

)Sn−d

= (t1t2⋯tn−1) (SnSn+1⋯Sn+nd−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nd terms

Sn−d

= S1S2⋯Sn+nd−1Sn+dn,

noting that n − d ≡ n + dn mod n + 1. We also have, for 2 ≤ r ≤ n, using the inductive
hypothesis in the second step:

(trtr+1⋯t(d+1)(n−1)+r−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(d + 1)(n − 1) terms

(SnSn−1⋯Sn−(d+1)+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d + 1 terms

)

= (trtr+1⋯tr+n−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − 1 terms

(tr+n−1tr+n⋯t(d+1)(n−1)+r−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

(SnSn−1⋯Sn−d+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

)Sn−d

= (trtr+1⋯tr+n−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − 1 terms

(tr−1tr⋯tr−1+d(n−1)−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

(SnSn−1⋯Sn−d+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

)Sn−d

= (trtr+1⋯tr+n−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − 1 terms

(Sr−1Sr⋯Sr−1+nd−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

Sn−d

= (SrSr+1⋯Sn−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − r terms

S−10 SnS0 (S1S2⋯Sr−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r − 2 terms

(Sr−1Sr⋯Snd+r−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

Sn−d

= (SrSr+1⋯Sn−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − r terms

SnS0S
−1
n (S1S2⋯Sdn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

(Sdn+1Sdn+2⋯Sdn+r−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r − 2 terms

Sn−d

= (SrSr+1⋯Sn−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − r terms

SnS0S
−1
n (S1S2⋯Sdn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

(Sdn+1Sdn+2⋯Sdn+r−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r − 2 terms

Sn−d

= (SrSr+1⋯Sn−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n − r terms

SnS0 (S1S2⋯Sdn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

S−1n−d (Sdn+1Sdn+2⋯Sdn+r−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r − 2 terms

Sn−d

as required, using Lemma 3.24 in the last but one step. Note that dn+i ≡ n−d+i+1 mod n+1
for 1 ≤ i ≤ r − 2, so S−1n−d commutes with Snd+1 = Sn−d+2, Snd+2 = Sn−d+3, . . . , Snd+r−2 = Sn−d+r−1,
giving the required result for d+ 1, since 2 ≤ r ≤ n. The result follows by induction on d. □

Lemma 3.26. Let n ≥ 3 be an integer. Let Q be the quiver on the right of Figure 18(a)
and Q′ the quiver on the left. Let GQ (respectively GQ′) be the group with generators si
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(respectively ti)with i ranging through the vertices of the quivers, satisfying the relations

associated with Q (respectively Q′). Then, there is a group homomorphism, φQ
0 ∶ GQ → GQ′

given by:

φQ
0 (sn) = Sn = t0tnt

−1
0 , φ

Q
0 (sb) = Sb = t0tbt

−1
0 , φ

Q
0 (si) = Si = ti for i ≠ n, b.

Proof. The defining relations for GQ, apart from the relations corresponding to the (n + 1)-
cycle 0 → 1 → ⋯ → n → 0, hold by Lemma 3.23. The relations for GQ′ corresponding to the
n-cycle 1→ 2→ ⋯→ n→ 1 are:

(trtr+1⋯td(n−1)+r−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

= (tr+1tr+2⋯td(n−1)+r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(n − 1) terms

,

for 1 ≤ r ≤ n. The relations for GQ corresponding to the (n+ 1)-cycle 0→ 1→ ⋯→ n+ 1→ 0
are:

SrSr+1⋯Sr+nd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

= Sr+1Sr+2⋯Sdn+r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dn terms

,

for 0 ≤ r ≤ n. For 1 ≤ r ≤ n − 1, these relations now follow from Lemma 3.25. The relations
for r = 0 and r = n follow from Lemma 3.19 applied to g0 = S0, g1 = S1, . . . , gn = Sn. □

Lemma 3.27. Let n = 2. Let Q be the quiver on the right of Figure 18(b) and Q′ the quiver
on the left. Let GQ (respectively GQ′) be the group with generators si (respectively ti),
with i ranging through the vertices of the quivers, satisfying the relations associated with Q
(respectively Q′). Then, there is a group homomorphism, φQ

0 ∶ GQ → GQ′ given by:

φQ
0 (sn) = Sn = t0tnt

−1
0 , φ

Q
0 (sb) = Sb = t0tbt

−1
0 , φ

Q
0 (si) = Si = ti for i ≠ n, b.

Proof. The defining relations for GQ, apart from the relations corresponding to the 3-cycle
0→ 1→ 2→ 0, hold by Lemma 3.23.

The relations for the GQ′ corresponding to the unoriented edge in Q′ between vertices 1 and
2 labelled d are

t1t2⋯td = t2t3⋯td+1
By Lemma 3.25, taking r = 1,2, we have

(t1t2⋯td)(S2S1⋯S2−d+1) = S1S2⋯S2d

and
(t2t3⋯td+1)(S2S1⋯S2−d+1) = S2S3⋯S2d+1,

giving
S1S2⋯S2d = S2S3⋯S2d+1,

which is one of the cycle relations for the 3-cycle 0 → 1 → 2 → 0 in Q. The other cycle
relations for this cycle follow from Lemma 3.19, taking g0 = S0, g1 = S1 and g2 = S2. Hence
all the defining relations for GQ hold. □

Lemma 3.28. Let Q be the quiver on the left of Figure 19 and Q′ the quiver on the
right. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with
0 ≤ i ≤ 5 satisfying the relations associated with Q (respectively Q′). Then, there is a group
homomorphism:

φQ
4 ∶ GQ → GQ′ given by φQ

4 (s0) = S0 = t4t0t
−1
4 , φ

Q
4 (s2) = S2 = t4t2t

−1
4 ,

φQ
4 (s5) = S5 = t4t5t

−1
4 , φ

Q
4 (si) = Si = ti for i = 1,3,4.
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Figure 19. A mutation near the cone point.

Proof. In order to check that φQ
4 is well-defined, it is enough to prove that the elements Si,

for 0 ≤ i ≤ 5, satisfy the defining relations of GQ.

All the braid and commutation relations for GQ, as well as the cycle relations:

S4S1S0S4 = S1S0S4S1 = S0S4S1S0,

S4S1S2S4 = S1S2S4S1 = S2S4S1S2,

S4S3S5S4 = S3S5S4S3 = S5S4S3S5,

hold by Proposition 3.13. Moreover, the relation

t2t0t2t0⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

= t0t2t0t2⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

implies that

S−14 S2S4S
−1
4 S0S4S

−1
4 S2S4S

−1
4 S0S4⋯S4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3d terms

= S−14 S0S4S
−1
4 S2S4S

−1
4 S0S4S

−1
4 S2S4⋯S4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3d terms

Since S4S−14 is the identity, we can cancel the d−1 occurrences of this product on both sides,
reducing the number of terms to 3d − (2d − 2) = d + 2 on both sides. Finally, since the two
sides start and end with the same element, these can be cancelled to obtain

S2S0S2S0⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

= S0S2S0S2⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

.

The double edge relation at vertex 4 in Q′ is:

t2t0t4t2t0t4 = t4t2t0t4t2t0.

This, together with the definition of the Si’s, implies that

S−14 S2S4S
−1
4 S0S4S4S

−1
4 S2S4S

−1
4 S0S4S4 = S4S

−1
4 S2S4S

−1
4 S0S4S4S

−1
4 S2S4S

−1
4 S0S4.

Multiplying both sides by S4 on the left and by S−14 on the right and cancelling the occurrences
of S4S−14 , we obtain S2S0S4S2S0S4 = S4S2S0S4S2S0. It only remains to show the double edge
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relation at vertex 1 holds. Using the definition of the Si’s and the defining relations of GQ′ ,
we have

S2S0S1S2S0S1 = t4t2���t−14 t4t0t
−1
4 t1t4t2���t−14 t4t0t

−1
4 t1 = t4t2t0t1t4t

−1
1 t2t0t

−1
4 t1

= t4t1t2t0t4t2t0t
−1
1 t
−1
4 t1 = t4t1t2t0t4t2t0t4t

−1
1 t
−1
4

= t4t1t4t2t0t4t2t0t
−1
1 t
−1
4 = t1t4t1t2t0t4t2t0t

−1
1 t
−1
4

= t1t4t2t0t1t4t
−1
1 t2t0t

−1
4 = t1t4t2t0t

−1
4 t1t4t2t0t

−1
4

= t1t4t2t
−1
4 t4t0t

−1
4 t1t4t2t

−1
4 t4t0t

−1
4 = S1S2S0S1S2S0,

where the underlined relation is the relation for the double edge at vertex 4 inQ′, while all the
other equalities follow from braid relations, commutations or multiplying by, or simplifying,
the identity t−1i ti. Hence all the defining relations of GQ hold. □

Lemma 3.29. Let Q be the quiver on the right of Figure 19 and Q′ the quiver on the
left. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with 0 ≤
i ≤ 5 satisfying the relations associated with Q (respectively Q′). Then, there is a group
homomorphism

φQ
4 ∶ GQ → GQ′ given by φQ

4 (s1) = S1 = t4t1t
−1
4 , φ

Q
4 (s3) = S3 = t4t3t

−1
4 , φ

Q
4 (si) = Si = ti for i ≠ 1,3.

Proof. In order to check that φ4 is well-defined, it is enough to prove that the elements Si,
for 0 ≤ i ≤ 5, satisfy the defining relations of GQ.

First note that the relations

S2S0S4S2S0S4 = S4S2S0S4S2S0, S0S2⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

= S2S0⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

trivially follow from the corresponding relations for Q′. Moreover, all the braid and commu-
tation relations for Q, as well as the cycle relations

S1S4S5S1 = S4S5S1S4 = S5S1S4S5,

S2S3S4S2 = S3S4S2S3 = S4S2S3S4,

S0S3S4S0 = S3S4S0S1 = S4S0S1S4

hold by Proposition 3.13. It only remains to show the second double edge relation holds.
Using the definition of the elements Si and the defining relations of GQ′ , we have

S2S0S3S2S0S3 = t2t0t4t3t
−1
4 t2t0t4t3t

−1
4 = t2t0t

−1
3 t4t3t2t0t4t3t

−1
4 = t

−1
3 t2t0t4t2t0t3t4t3t

−1
4

= t−13 t2t0t4t2t0t4t3t4t
−1
4 = t

−1
3 t4t2t0t4t2t0t3 = t4t

−1
4 t
−1
3 t4t2t0t4t3t2t0

= t4t3t
−1
4 t
−1
3 t2t0t4t3t2t0 = t4t3t

−1
4 t2t0t

−1
3 t4t3t2t0 = t4t3t

−1
4 t2t0t4t3t

−1
4 t2t0

= S3S2S0S3S2S0,

where the underlined relation is the relation for the double edge at vertex 4 inQ′, while all the
other equalities follow from braid relations, commutations or multiplying by, or simplifying,
the identity tit−1i . Hence all the defining relations of GQ hold as required. □

Lemma 3.30. Let d ≥ 1 be an integer and let G be a group containing elements a, b satisfying

ab⋯
±
d terms

= ab⋯
±
d terms

. (5)
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Figure 20. Mutation of a tagged to an untagged arc and viceversa, case 1.

Then the elements A = a and B = aba−1 satisfy the same relation:

AB⋯
²
d terms

= AB⋯
²
d terms

.

Proof. By relation (5), we have

A−1BA���
AA−1BA��A⋯A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3 ⋅ ⌈d/2⌉ + ⌊d/2⌋ terms

=���
AA−1BA���

AA−1AB⋯A,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3 ⋅ ⌊d/2⌋ + ⌈d/2⌉ terms

where for a real number r, ⌊r⌋ (respectively ⌈r⌉) is the largest (respectively smallest) integer
at most (respectively at least) equal to r. Cancelling the occurrences of AA−1, on the left
hand side we cancel 2 ⋅ (⌈d/2⌉ − 1) terms, while on the right hand side we cancel 2 ⋅ ⌊d/2⌋
terms. Hence we have d + 2 terms on the left hand side and d terms on the right hand side.
Since the last term on both sides is A, we can cancel it. Moreover, multiplying both sides
by A on the left and simplifying the left hand side, we obtain

BA⋯
²
d terms

= AB⋯
²
d terms

,

as required. □

Lemma 3.31. Let Q be the quiver on the left of Figure 20 and Q′ the quiver on the
right. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with
0 ≤ i ≤ 3 satisfying the relations associated with Q (respectively Q′). Then there is a group
homomorphism as follows:

φQ
2 ∶ GQ → GQ′ defined as φQ

2 (s1) = S1 = t2t1t
−1
2 , φ

Q
2 (ti) = Si = Ti for i = 0,2,3.

Proof. In order to check that φQ
2 is well-defined, it is enough to prove that the elements Si,

for 0 ≤ i ≤ 3, satisfy the defining relations of GQ.

The relations S0S3S0 = S3S0S3, S2S0S3S2S0S3 = S3S2S0S3S2S0 and

S0S2⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

= S2S0⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

trivially follow from the corresponding defining relations of GQ′ . Moreover, the relations
S2S3S2 = S3S2S3, S1S3S1 = S3S1S3, S2S1S2 = S1S2S1 and S1S2S3S1 = S2S3S1S2 = S3S1S2S3

hold by Proposition 3.13.
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The relation for the double edge at 1 in Q′:

t0t2t1t0t2t1 = t1t0t2t1t0t2

implies that

S0�
���S2S
−1
2 S1S2S0�

���S2S
−1
2 S1S2 = S

−1
2 S1S2S0�

���S2S
−1
2 S1S2S0S2 ⇐⇒ S2S0S1S2S0S1 = S1S2S0S1S2S0,

that is the double edge relation corresponding to vertex 1 in Q.

The braid relation t1t0t1 = t0t1t0 together with the relations proved above imply that

S−12 S1S2S0S
−1
2 S1S2 = S0S

−1
2 S1S2S0 ⇐⇒ S1S2S0S1S2S

−1
1 = S2S0S1S2S

−1
1 S0

⇐⇒ S2S0S1S2S0S1S
−1
0 S

−1
1 = S2S0S1S2S

−1
1 S0

⇐⇒ S1S0S1 = S0S1S0.

The relation t2t1t0t3t2t1 = t3t2t1t0t3t2 together with the relations proved above imply

�
���S2S
−1
2 S1S2S0S3�

���S2S
−1
2 S1S2 = S3�

���S2S
−1
2 S1S2S0S3S2 ⇐⇒ S1S2S0S3S1 = S3S1S2S0S3

⇐⇒ S1S2S3S0S3S
−1
0 S1 = S1S2S3S1S

−1
3 S0S3

⇐⇒ S−13 S0S3S1 = S1S0S3S
−1
0

⇐⇒ S0S3S1S0 = S3S1S0S3.

By [GM17, Lem. 2.4], we conclude that S0S3S1S0 = S3S1S0S3 = S1S0S3S1. Hence all the
defining relations of GQ hold, as required. □

Lemma 3.32. Let Q be the quiver on the right of Figure 20 and Q′ the quiver on the
left. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with 0 ≤
i ≤ 3 satisfying the relations associated with Q (respectively Q′). Then there is a group
homomorphism as follows:

φQ
2 ∶ GQ → GQ′ defined as φQ

2 (s3) = S3 = t2t3t
−1
2 , φ

Q
2 (s0) = S0 = t2t0t

−1
2 , φ

Q
2 (si) = ti for i = 1,2.

Proof. In order to check that φQ
2 is well-defined, it is enough to prove that the elements Si,

for 0 ≤ i ≤ 3, satisfy the defining relations of GQ.

The relations S2S3S2 = S3S2S3, S2S1S2 = S1S2S1 and S1S3 = S3S1 hold by Proposition 3.13,
while

S0S2⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

= S2S0⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

.

holds by Lemma 3.30. The relation t3t0t3 = t0t3t0 implies that

S−12 S3����S2S
−1
2 S0����S2S

−1
2 S3S2 = S

−1
2 S0����S2S

−1
2 S3����S2S

−1
2 S0S2.

Since the first and last term are equal on the two sides, we can cancel them and obtain
S3S0S3 = S0S3S0. The relation t2t0t1t2t0t1 = t1t2t0t1t2t0 for the double edge at 1 in Q′ implies
that

�
���S2S
−1
2 S0S2S1�

���S2S
−1
2 S0S2S1 = S1�

���S2S
−1
2 S0S2S1�

���S2S
−1
2 S0S2.

So the relation for the double edge at 1 in Q

S0S2S1S0S2S1 = S1S0S2S1S0S2
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follows after cancellations. The relation t2t0t3t2t0t3 = t3t2t0t3t2t0 for the double edge at 3 in
Q′ implies that

�
���S2S
−1
2 S0�

���S2S
−1
2 S3S2�

���S2S
−1
2 S0�

���S2S
−1
2 S3S2 = S

−1
2 S3S2�

���S2S
−1
2 S0�

���S2S
−1
2 S3S2�

���S2S
−1
2 S0S2.

Multiplying both sides by S2 on the left and by S−12 on the right and simplifying, the relation
for the double edge at 3 in Q:

S2S0S3S2S0S3 = S3S2S0S3S2S0

follows.

Using one of the braid relations from the left diagram and the relations found above, we
have that

t1t0t1 =t0t1t0 ⇐⇒ S1S
−1
2 S0S2S1 = S

−1
2 S0S2S1S

−1
2 S0S2 ⇐⇒ S−11 S2S1S0S2S1 = S0S

−1
1 S2S1S0S2

⇐⇒ S2S1S0S2S1 = S1S0S
−1
1 S2S1S0S2 ⇐⇒ S−10 S1S0S2S1S0S2 = S1S0S

−1
1 S2S1S0S2

⇐⇒ S1S0S1 = S0S1S0,

where the underlined relation follows from the double edge relation at vertex 1 in Q.

The last two relations left to prove correspond to the 4-cycle around the cone point in Q.
The relation t1t0t3t1 = t0t3t1t0 = t3t1t0t3 implies that

S1S
−1
2 S0�

���S2S
−1
2 S3S2S1 = S

−1
2 S0�

���S2S
−1
2 S3S2S1S

−1
2 S0S2 = S

−1
2 S3S2S1S

−1
2 S0�

���S2S
−1
2 S3S2

Using the relations already proved, we see that the equality of the first and third expressions
above is true if and only if

S2S1S
−1
2 S0S3S2S1 = S3S

−1
1 S2S1S0S3S2 ⇐⇒ S−11 S2S1S0S3S2S1 = S

−1
1 S3S2S1S0S3S2

⇐⇒ S2S1S0S3S2S1 = S3S2S1S0S3S2.

Similarly, the equality of the second and third expressions above is true if and only if

S0S3S
−1
1 S2S1S0 = S3S

−1
1 S2S1S0S3 ⇐⇒ S1S0S

−1
1 S3S2S1S0 = S3S2S1S0S3

⇐⇒ S−10 S1S0S3S2S1S0 = S3S2S1S0S3

⇐⇒ S1S0S3S2S1S0 = S0S3S2S1S0S3.

Hence all the relations corresponding to the quiver Q hold, as required. □
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Figure 21. Mutation of a tagged to an untagged arc and viceversa, case 2.
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Lemma 3.33. Let Q be the quiver on the left of Figure 21 and Q′ the quiver on the
right. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with
0 ≤ i ≤ 3 satisfying the relations associated with Q (respectively Q′). Then there is a group

homomorphism: φQ
2 ∶ GQ → GQ′ defined as:

φQ
2 (s1) = S1 = t2t1t

−1
2 , φ

Q
2 (s0) = S0 = t2t0t

−1
2 , φ

Q
2 (si) = Si = ti for i = 2,3.

Proof. In order to check that φQ
2 is well-defined, it is enough to prove that the elements Si,

for 0 ≤ i ≤ 3, satisfy the defining relations of GQ. The relations S2S3S2 = S3S2S3, S1S3S1 =

S3S1S3, S2S1S2 = S1S2S1 and S1S2S3S1 = S2S3S1S2 = S3S1S2S3 hold by Proposition 3.13,
while the relation

S2S0⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

= S0S2⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

holds by Lemma 3.30. The relation t1t0t1 = t0t1t0 implies that

S−12 S1��
��S2S
−1
2 S0��

��S2S
−1
2 S1S2 = S

−1
2 S0��

��S2S
−1
2 S1��

��S2S
−1
2 S0S2.

Since the first and last term are equal on the two sides, we can cancel them and obtain
S1S0S1 = S0S1S0. The relation for the double edge at 1 in Q′

t0t2t1t0t2t1 = t1t0t2t1t0t2

implies that

S−12 S0S2��
��S2S
−1
2 S1��

��S2S
−1
2 S0S2��

��S2S
−1
2 S1S2 = S

−1
2 S1��

��S2S
−1
2 S0S2��

��S2S
−1
2 S1��

��S2S
−1
2 S0S2S2

⇐⇒ S0S2S1S0S2S1 = S1S0S2S1S0S2,

that is the double edge relation corresponding to vertex 1 in Q. Similarly, the relation for
the double edge at 3 in Q′:

t2t0t3t2t0t3 = t3t2t0t3t2t0
implies that

��
��S2S
−1
2 S0S2S3��

��S2S
−1
2 S0S2S3 = S3��

��S2S
−1
2 S0S2S3��

��S2S
−1
2 S0S2 ⇐⇒ S0S2S3S0S2S3 = S3S0S2S3S0S2,

that is the double edge relation corresponding to vertex 3 in Q. Using the defining relations
of Q′, we have that

S0S3S0 = t2t0t
−1
2 t3t2t0t

−1
2 = t2t0t3t2t0t3t

−1
3 t
−1
0 t
−1
3 t0t

−1
2

= t3t2t0t3t2���t0t
−1
0 t
−1
3 ���t−10 t0t

−1
2 = t3t2t0t

−1
2 t3���t2t

−1
2 = S3S0S3.

The relation t2t1t0t3t2t1 = t3t2t1t0t3t2, together with the relations proved above, implies that

�
���S2S
−1
2 S1�

���S2S
−1
2 S0S2S3�

���S2S
−1
2 S1S2 = S3�

���S2S
−1
2 S1�

���S2S
−1
2 S0S2S3S2

⇐⇒ S1S0S2S3S1S2 = S3S1S0S2S3S2

⇐⇒ S1S0S3S1S2S3 = S3S1S0S3S2S3.

By [GM17, Lem. 2.4], we conclude that S1S0S3S1 = S3S1S0S3 = S0S3S1S0. Hence all the
defining relations of GQ hold, as required. □
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Lemma 3.34. Let Q be the quiver on the right of Figure 21 and Q′ the quiver on the
left. Let GQ (respectively GQ′) be the group with generators si (respectively ti) with 0 ≤
i ≤ 3 satisfying the relations associated with Q (respectively Q′). Then there is a group
homomorphism as follows:

φQ
2 ∶ GQ → GQ′ defined as φQ

2 (s3) = S3 = t2t3t
−1
2 , φ

Q
2 (si) = Si = ti for i = 0,1,2.

Proof. In order to check that φQ
2 is well-defined, it is enough to prove that the elements Si,

for 0 ≤ i ≤ 3, satisfy the defining relations of GQ.

The relation S1S0S1 = S0S1S0 trivially follows from the relation t1t0t1 = t0t1t0. The relations
S2S3S2 = S3S2S3, S2S1S2 = S1S2S1 and S1S3 = S3S1 hold by Proposition 3.13, while the
relation

S2S0⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

= S0S2⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
d terms

.

is trivial to check. The relation S0S2S1S0S2S1 = S1S0S2S1S0S2 for the double edge at 1
follows trivially from the corresponding relation for Q′. Moreover, the relation t0t2t3t0t2t3 =
t3t0t2t3t0t2 for the double edge at 3 in Q′ implies that

S0����S2S
−1
2 S3S2S0����S2S

−1
2 S3S2 = S

−1
2 S3S2S0����S2S

−1
2 S3S2S0S2 ⇐⇒ S2S0S3S2S0S3 = S3S2S0S3S2S0,

that is, the relation for the double edge in Q follows.

Using the relations found above, we have that

t0t3t0 = t3t0t3 ⇐⇒ S0S
−1
2 S3S2S0 = S

−1
2 S3S2S0S

−1
2 S3S2 ⇐⇒ S0S

−1
2 S3S2S0 = S

−1
2 S3S2S0S3S2S

−1
3

⇐⇒ S0S
−1
2 S3S2S0 = S0S3S2S0S3S

−1
0 S

−1
3 ⇐⇒ S3S2S0S3S0 = S2S3S2S0S3

⇐⇒ S3S2S0S3S0 = S3S2S3S0S3 ⇐⇒ S0S3S0 = S3S0S3,

where the underlined relation follows from the double edge relation at vertex 3 in Q. The
last two relations left to prove correspond to the 4-cycle around the cone point in Q. The
relation t1t0t3t1 = t0t3t1t0 = t3t1t0t3 implies that

S1S0S
−1
2 S3S2S1 = S0S

−1
2 S3S2S1S0 = S

−1
2 S3S2S1S0S

−1
2 S3S2.

Using the relations already proved, we see that the equality of the first two expressions above
is true if and only if

S1S0S3S2S
−1
3 S1 = S0S3S2S

−1
3 S1S0 ⇐⇒ S1S0S3S2S1S

−1
3 = S0S3S2S1S

−1
3 S0

⇐⇒ S1S0S3S2S1 = S0S3S2S1S0S3S
−1
0

⇐⇒ S1S0S3S2S1S0 = S0S3S2S1S0S3.

Similarly, the equality of the first and third expression above is true if and only if

S2S1S0S3S2S
−1
3 S1 = S3S2S1S0S3S2S

−1
3 ⇐⇒ S2S1S0S3S2S1S

−1
3 = S3S2S1S0S3S2S

−1
3

⇐⇒ S2S1S0S3S2S1 = S3S2S1S0S3S2.

Hence all the defining relations for Q hold, as required. □

Remark 3.35. Flipping all of the tags in Figure 18, Figure 20 or 21 does not affect the
corresponding quivers or groups, so it follows that Lemmas 3.20, 3.26, 3.21, 3.27, 3.31, 3.32,
3.33 and 3.34 hold for these cases too.
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Proof of Theorem 3.12. Let T be a tagged triangulation of S, and QT the associated quiver
as in Definition 3.2. Let GQT

be the associated group as in Definition 3.4, with generators
si. Let α be an arc in T and k the corresponding vertex of Q. Let T ′ be the tagged
triangulation obtained by flipping T at α, so that QT ′ = µk(Q) is the mutation of Q at k as
in Definition 3.9, by Lemma 3.11(b). By Lemma 3.11(a), the flip of α is given locally by one
of the mutations in Figures 17, 18, 19, 20 or 21 (from left to right or right to left), or by one
of the mutations from Figure 18, 20 or 21 with all of the tags flipped.

It follows from Lemmas 3.14, 3.20, 3.26, 3.21, 3.27, 3.28, 3.29, 3.31, 3.32, 3.33, 3.34 and

Remark 3.35 that there are group homomorphisms φQ
k ∶ GQ → GQ′ and φ

Q′

k ∶ GQ′ → GQ.

Note that arcs appearing on the boundary in each figure could be on the actual boundary
of S. Each defining relation in GQ to be checked involves a certain collection of unmutated
vertices, plus possibly the mutated vertex. It is easy to check that, in each case, the proof
that this relation holds involves relations involving only the same collection of vertices. If we
consider the same situation where one of the vertices corresponds to an arc on the boundary
of S, the corresponding relation does not appear and therefore does not need to be shown. It
follows that the corresponding results hold in the situation where some or all of the dashed
diagonals on the boundary of the figure are on the boundary of the disk.

It is easy to check in each case that φQ′

k φ
Q
k (si) = s

−1
k sisk for all i, so φ

Q′

k φ
Q
k is an isomorphism.

By the same argument, the other composition φQ
k φ

Q′

k is also an isomorphism, and hence so

is φQ
k . □

Theorem 3.36. Let T be any tagged triangulation of (X,M), and QT the associated quiver.
Then GQT

is isomorphic to the braid group B(d, d, n), and thus gives a presentation for
B(d, d, n).

Proof. There is a tagged triangulation of (X,M) for which the corresponding group GQ is the
presentation of B(d, d, n) from [BMR98, Thm. 2.27] (see Figure 12). The result follows from
combining this with Theorem 3.12 and the fact that there is a sequence of flips connecting
any two tagged triangulations of (X,M) by [FST08, Prop. 7.10]. □

4. Geometric interpretation of the new presentations

We work with the same surface (X,M) as in the previous section: X is the disk S with
an interior marked point, interpreted as a cone point of degree d ≥ 2, and M a set of n ≥ 2
marked points on the boundary of X. In Section 3.1, we defined a way to associate a quiver
QT to any tagged triangulation T of (X,M) and a group GQT

. As in [GM17, Defn 3.1], we
associate another graph to T as follows.

Definition 4.1. Let T be a tagged triangulation of (X,M). We define the braid graph
DT of T to be the geometric dual of T regarded as a graph embedded in the disk. Thus
DT has a vertex in each connected component of the complement of T and, whenever two
connected components share an edge of T , there is a corresponding edge in DT between
the two corresponding vertices. Note that, in general, DT can have multiple edges between
vertices.

If we regard T as a graph embedded in the plane, then DT is the geometric dual in the plane
with the vertex corresponding to the external face removed. Note that this geometric dual
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is isomorphic to the combinatorial dual of T by [Whi32, Theorem 30] (see also [Har69, §11,
page 115]), since T is a non-separable graph, so DT also is well-defined as an abstract graph.

Moreover, note that the interior of X is isomorphic as an orbifold to Od ∶= C/Cd and hence
we identify the two orbifolds in our arguments.

Given a set of n vertices V in O○d, that is Od minus the cone point, one can define the
corresponding braid group Zn(Od) (denoted Γ(Od, V ) in [GM17]). Each element of Zn(Od),
also called braid, can be regarded as a permutation g of V together with a tuple γ = (γv)v∈V
of paths γv ∶ [0,1] → O○d with γv(0) = v and γv(1) = g(v) for each v ∈ V and, for each t ∈ [0,1],
the points γv(t) for v ∈ V are all distinct for all v ∈ V . See [All02] and [GM17, Section 3] for
further details. Moreover, each path π in O○d with endpoints in V determines a braid σπ in
Zn(Od) (see e.g. [GM17, Defn 3.3]).

Let T be a tagged triangulation of (X,M), and note that this is a collection of n (tagged)
arcs. Each (tagged) arc αi in T corresponds to a vertex i in the quiver QT and to an edge πi
in the braid graph DT . Following the same notation as [GM17], we let σi ∶= σπi

denote the
corresponding braid in Zn(Od) and BT be the subgroup of Zn(Od) generated by the braids
σi, for i vertex in QT .

Proposition 4.2. Let T0 be the triangulation of (X,M) shown in Figure 12. Then there is an
isomorphism from BT0 to GQT0

taking the braid σi to the generator si of GQT0
. Furthermore,

the subgroup BT0 is a subgroup of Zn(Od) of index d.

Proof. Note that, via an isomorphism of the kind in [GM17, Remark 3.2], the element
σi coincides with h−1i for 1 ≤ i ≤ n, for the braids hi in Zn(Od) illustrated in Figure 9.
Hence, BT0 coincides with the subgroup of Zn(Od) generated by the hi and the map β from
Proposition 2.9 gives an isomorphism from B(d, d, n) to BT0 taking τ ′2 to h1 and τi to hi for
2 ≤ i ≤ n. By Proposition 2.2, BT0 is a subgroup of Zn(Od) of index d.

Since reversing the defining relations of B(d, d, n) gives the same relations with τ2 and τ ′2
exchanged, there is an isomorphism from B(d, d, n) to BT0 taking τ2 to h

−1
1 = σ1, τ

′
2 to h

−1
2 = σ2

and τi to hi = σi for 3 ≤ i ≤ n. By Remark 3.8, there is an isomorphism GQT0
≅ B(d, d, n)

(with the presentation from [BMR98]) taking s1 to τ2, s2 to τ ′2 and si to τi for 3 ≤ i ≤ n. The
composition of these two isomorphisms gives the required isomorphism. □

Before stating and proving our final result, we recall a result from [Ser93, Théorème, part(iv)],
see also [GM17, Lemma 3.5].

Lemma 4.3. Let A, B, C be three distinct points in O○d and suppose there is a topological
disk in O○d with A, B, C lying in order clockwise around its boundary. Let AB denote the
arc on its boundary between A and B, and define BC and CA similarly. Then σABσBC =

σBCσCA.

Definition 4.4. Let T be a tagged triangulation of (X,M). Suppose that there is an arrow
i→ k in QT . Then there are vertices Xi, Yi and Zi and edges XiYi and YiZi in DT such that
σi = σXiYi

and σk = σYiZi
. We say that an embedding of DT into (X,M) is good at k if, for

every such i, the vertices Xi, Yi and Zi are in clockwise order.

Remark 4.5. Note that our convention for orienting the arrows of the quiver of a triangu-
lation is opposite to the convention used in [GM17]. However, the proof of [GM17, Thm.
3.6] actually requires this opposite convention: then it goes through as stated (provided we
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Figure 22. Flip of an arc: type A situation.

regard k as the mutation vertex). For example, in the notation used there (see [GM17, Fig.
6]), we have σπ̃2 = σ

−1
1 σ2σ1, while τ̃2 = σ2 as there is no arrow from 2 to 1 in the quiver

used there. Thus the claim that σπ̃2 = τ̃2 does not hold, but this is resolved if the opposite
convention for orienting the quiver is adopted, as we do here.

Theorem 4.6. Let T be a tagged triangulation of (X,M). Then there is an isomorphism
from BT to GQT

taking the braid σi to the generator si of GQT
. Furthermore, BT is a

subgroup of index d of Zn(Od).

Proof. By Proposition 4.2, the result holds for the triangulation T = T0. Since any tagged
triangulation can be obtained by flipping T0 a finite number of times, it is enough to show
that if the theorem holds for a tagged triangulation T , then it also holds for the flip of T at
any of its tagged arcs.

Assume that the result holds for a tagged triangulation T , that is there is an isomorphism
ψT ∶ BT → GQT

sending the braid σi to the generator si. Let the triangulation T ′ be
obtained by flipping T at the arc αk and the generators of BT ′ and GQT ′

be denoted by τi
and ti respectively. In the following arguments, we label the paths in O○d as the corresponding
braids in BT and BT ′ , to avoid heavy notation.

Define τ̃i = σ−1k σiσk ∈ BT if i→ k in QT or the vertices i and k correspond to the only two arcs
incident with the conepoint in T and the arc corresponding to k is rotated anti-clockwise
to the flipped arc; and τ̃i = σi ∈ BT otherwise. Note that BT is generated by the τ̃i, for i
running through the vertices of QT .

The possible types of flips that can occur are given locally by one of the mutations in
Figures 17, 18, 19, 20 or 21 (from left to right or right to left), or by one of the mutations
from Figure 18, 20 or 21 with all of the tags flipped.

Consider first the flip in Figure 17, that is a flip far from the cone point. The left hand
side of Figure 22 shows an embedding of DT which is good at 5. Applying Lemma 4.3, the
middle figure shows the paths corresponding to the braids τ̃i. Rotating the vertices A and
B clockwise, we get the diagram on the right of Figure 22, where we used the isomorphism
ι ∶ BT ′ → BT given by τi ↦ τ̃i from [GM17, Remark 3.2]. Consider the composition of
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isomorphisms φ5 ○ ψT ○ ι, where φ5 is the isomorphism from Theorem 3.12. If i → 5 in QT ,
then

φ5 ○ ψT ○ ι(τi) = φ5 ○ ψT (σ
−1
5 σiσ5) = φ5(s

−1
5 sis5) = t

−1
5 t5tit

−1
5 t5 = ti,

and otherwise

φ5 ○ ψT ○ ϕ(τi) = φ5 ○ ψT (σi) = φ5(si) = ti.

Hence we obtain an isomorphism BT ′ → GQ′T
sending τi to ti as required. A symmetric

argument works if we start with the triangulation on the right, with the shown embedding
of the dual graph good at 5, and flip it to the triangulation on the left of Figure 22.

For the flips in Figures 18 and 19 (from left to right or right to left or with all the tags
flipped), the result follows by arguments very similar to the above case, hence we omit the
details. Since flipping the tags does not affect the arguments, it only remains to show that
the result holds for the flips in Figures 20 and 21.
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Figure 23. Mutation of a tagged to an untagged arc or vice versa, case 1.

Consider the flip in Figure 20 with T on the left. The left hand side of the top part of
Figure 23 shows an embedding of DT which is good at 2. Applying Lemma 4.3, the middle
figure shows the paths corresponding to the braids τ̃i. Note that, following the definition
of τ̃i, the only conjugated element is σ1 in this case as the mutated arc α2 is not rotated
anti-clockwise to the flipped arc and so σ0 is not conjugated. Rotating the vertices A and
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B clockwise about the cone point, we get the diagram on the right of Figure 23, where we
used the isomorphism BT ′ → BT given by τi ↦ τ̃i from [GM17, Remark 3.2]. Composing this
with the isomorphism φ2 ○ ψT , where φ2 is the isomorphism from Theorem 3.12, we obtain
an isomorphism BT ′ → GQ′T

sending τi to ti as required.
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Figure 24. Mutation of a tagged to an untagged arc or viceversa, case 2.

Consider now the flip in Figure 21 with T on the left. The left hand side of the top of Figure 24
shows an embedding of the braid graph DT which is good at 2. Applying Lemma 4.3, the
middle figure shows the paths corresponding to the braids τ̃i. Note that this time, the
conjugated elements are σ1, as there is an arrow 1 → 2, and σ0, as the mutated arc α2 is
rotated anti-clockwise to the flipped arc and α0 is also an arc at the cone point. Rotating
the vertices A and B (with A moving clockwise and B anti-clockwise around the cone point)
we obtain the diagram on the right of Figure 24, where we used the isomorphism BT ′ → BT

given by τi ↦ τ̃i from [GM17, Remark 3.2]. Composing this with the isomorphism φ2 ○ ψT ,
where φ2 is the isomorphism from Theorem 3.12, we obtain an isomorphism BT ′ → GQ′T
sending τi to ti as required. Note that not conjugating σ0 would result in a final braid τ ′0
swirling around the conepoint. In the case d = 2, τ ′0 is isotopic to the braid τ0 and hence
conjugating σ0 or not does not make a difference, see [GM17, proof of Thm 3.6]. However,
for d > 2, τ ′0 is not isotopic to the braid τ0 appearing in BT ′ and hence it is necessary to
conjugate σ0.
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Note that the right hand side diagrams in Figures 23 and 24 coincide. Consider this as T
and mutate the red arc. There is now a choice on whether rotating this arc anti-clockwise,
see the bottom row of Figure 23, or clockwise, see the bottom row of Figure 24. The two
options correspond respectively to conjugating or not conjugating the braid corresponding
to vertex 0 in the associated quiver. Following arguments similar to the above two cases,
one can check that in both cases the result holds.

As the above covers all the possible mutations, and the theorem follows. □

We now have the ingredients we need to complete Remark 3.7.

Remark 4.7. In the situation of Remark 3.7 with d > 2, we have sisk /= sksi. The situation
described there is the (top) right hand diagram of Figure 23 with i = 0 and k = 2. The
element σ = τ−12 τ−10 τ2τ0 is a pure braid and ξ(σ) ∈ π1(Od) is a single strand winding around
the pole twice, where ξ is the map from the proof of Lemma 2.13. Arguing as in the proof of
Lemma 2.13, we have that σ is not equal to the identity, so τ0τ2 /= τ2τ0 and hence s0s2 ≠ s2s0
by Theorem 4.6.

5. Presentations of G(d, d, n)

Let T be a tagged triangulation of (X,M), and QT the associated quiver. Let G′QT
be the

group defined in the same way as GQT
(see Definition 3.4) with the additional relations s2i = e

for all i. Then we have:

Theorem 5.1. Let T be a tagged triangulation of (X,M). Then G′QT
is isomorphic to

G(d, d, n), thus giving a presentation of G(d, d, n).

Proof. The fact that this is true for the tagged triangulation in Figure 12 follows from
Theorem 3.36 and the presentation of G(d, d, n) given in [Ari95] (see [BMR98, Prop. 3.2]).
Note that the braid diagram that gives the presentation of B(d, d, n) in [BMR98, Table 5]
is the opposite of the diagram that gives the presentation of G(d, d, n) in [BMR98, Table 2]
(see [BMR98, Thm. 2.27]), but the presentation corresponding to the opposite diagram in
this case is equivalent to that corresponding to the original diagram: passing to the opposite
diagram amounts only to a relabelling, and therefore does not change the isomorphism class
of the presented group.

The fact that it is true for an arbitrary tagged triangulation follows from iterated application
of Theorem 3.12, noting that the proof of this goes through when adding relations stating
that the generators have square equal to the identity, and the connectedness of the mutation
graph [FST08, 7.10]. □

Finally, we will show that, by applying a result from [Shi05], the generators can be regarded
as reflections in G(d, d, n), and explain how this can be done explicitly. Note that, although
Shi assumes that d > 2 and n > 2, the results in [Shi05, §2,§3] still hold for d = 2 or n = 2
(replacing ‘reflection of order m’ with ‘reflection of Type II of order m’ throughout, e.g.
in [Shi05, Lems. 2.1, 2.9, Thm. 2.8]).

We also note that if n = 2, the presentation from Theorem 5.1 is just given by the relation
(4) from Definition 3.4, together with s21 = s

2
2 = e: in this case G(d, d,2) is the real reflection

group of type I2(d); see Remark 3.5.
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We first recall the result of Shi [Shi05] that we need. For this we need the following definition
of a graph from the paper (slightly modified in our discussion here).

Definition 5.2. Let R be a set of reflections in G(d, d, n). Then ΓR is the edge-labelled
directed (multi-)graph with vertex set {1,2, . . . , n}. We take R as the set of directed edges.
An element r = s(a, b; c) in R (see Section 2.1) has start vertex a, end vertex b and is
labelled c. We adopt the convention that such a directed edge is equivalent to a directed
edge from b to a labelled −c. This convention ensures that ΓR is well-defined, noting that
s(a, b; c) = s(b, a;−c). We define ΓR to be the underlying unoriented graph of ΓR with the
labels removed: note that this graph is also well-defined.

Suppose that ΓR is connected and contains precisely one cycle. By reversing some directed
edges in ΓR if necessary (and thus also negating their labels), we may assume that the
corresponding directed edges in ΓR form an oriented cycle, C. Set δ(R) to be the absolute
value of the sum of the labels on the directed edges in C. Note that by taking the absolute
value here, we ensure that δ(R) is well-defined. Then, we have the following:

Theorem 5.3 ([Shi05, Thm. 2.19]). Let R be a set of reflections in G(d, d, n) such that ΓR

is connected and contains precisely one cycle. Then R generates G(d, d, n) if and only if
δ(R) and d are coprime.

Lemma 5.4. Let T be a tagged triangulation of (X,M), and let DT be the corresponding
braid graph (see Definition 4.1). Then DT contains a unique cycle. In fact, it can be obtained
from a cycle by adjoining a binary tree (possibly consisting of a single vertex) to each of its
vertices.

Proof. By Remark 3.3, the induced subgraph of the braid graph on the vertices associated
to the connected components of the complement of T incident with the cone point will be
a cycle of length at least two. The vertices on the boundary of this union U of connected
components must be on the boundary of X (since they are not the cone point), so the tagged
triangulation must be built up from U by adding a triangulated polygon to each boundary
edge of U intersecting U only in that edge (where we allow a degenerate case consisting of
an edge only, i.e. where no polygon is attached).

It follows that the braid graph can be obtained from an oriented cycle by adjoining a binary
tree (possibly consisting only of a single vertex) to each of the vertices of the cycle. In
particular, it contains a unique cycle as claimed. □

For the rest of this section, we will work in the following setup.

Setup 5.5. Let T be a tagged triangulation of (X,M), and let DT be the corresponding
braid graph (see Definition 4.1). Fix a numbering 1,2, . . . , n of the n vertices of DT . Let DT

be a directed graph with underlying unoriented graph DT , chosen so that the unique cycle
in DT is an oriented cycle in DT .

We then associate a reflection s(e) = s(a, b; c(e)) to each edge e of DT , where the correspond-
ing directed edge in DT has initial vertex a and end vertex b and c(e) is an integer. We do
this in such a way that, if the unique oriented cycle in DT consists of vertices a1, a2, . . . , ar
with a directed edge fm from am to am+1 for allm (with ar+1 interpreted as a1), then ∣∑

r
m=1 cm∣

and d are coprime, where cm = c(fm). We define R to be the set of all reflections s(e) for e
an edge of DT . Note that, by construction, ΓRT

can be identified with DT .
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Proposition 5.6. Let T be a tagged triangulation of (X,M). Then the set R of reflections
satisfies the defining relations of G′QT

, where each s(e) is identified with the generator si
associated to the vertex i of QT corresponding to the edge e of DT .

Proof. Note first that each s(e) squares to the identity by definition. The commuting and
braid relations from Definition 3.4, parts (1) and (2) respectively, are then satisfied by
[Shi05, Sec. 3.3(2),(3)]. Moreover, if the unique cycle in DT has length r = 2 then, by [Shi05,
Sec. 3.3(4)] we have that

s(a1, a2; c1)s(a2, a1; c2)s(a1, a2; c1)⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

= s(a2, a1; c2)s(a1, a2; c1)s(a2, a1; c2)⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d terms

.

Hence, the relation from Definition 3.4(4) is satisfied.

Consider the situation of the left drawing in Figure 25, where s, t and u are the associated
reflections. Then, by [Shi05, Sec. 4.5(v)], we have sutu = utus. Using the braid relations and
the fact that the reflections square to the identity, we have that

sutu = utus ⇐⇒ stut = tuts ⇐⇒ stutts = tutsts ⇐⇒ stus = tuttst ⇐⇒ stus = tust.

Similarly, one can see that the third equality in the cycle relation is true and stus = tust =
ustu, i.e. the relations from Definition 3.4(3) are satisfied.

As pointed out before, double edges in QT only appear if there are exactly two arcs at the
conepoint in T , or equivalently the only cycle in DT has length 2. Suppose that this is the
case. Let j be a vertex connected to one of two vertices a1 and a2 in the 2-cycle, say a2 via
an edge g. In other words, there is a double edge at the vertex in QT corresponding to the
edge g between a2 and j in DT . Denote the vector with a 1 in the ith-entry and 0 everywhere
else by ei and recall that ωd = e2πi/d. By direct computation, one can check that

(s(a2, j; cg)s(a1, a2; c1)s(a2, a1; c2))
2 = (s(a1, a2; c1)s(a2, a1; c2)s(a2, j; cg))

2,

that is, the expected double edge relation from Definition 3.4(6) holds. In fact, both products
clearly only affect the entries in a1, a2 and j positions and we compute that under both the
left and the right hand side products of reflections, we have

ea1 ↦ ω−2c2−2c1d ea1 , ea2 ↦ ωc2+c1
d ea2 , ej ↦ ωc2+c1

d ej.

Similarly, it is easy to see by direct computation that when there are exactly two arcs at
the conepoint, incident with two different vertices on the boundary, then the corresponding
reflections satisfy the relations from Definition 3.4(7).

Consider now the situation on the right hand side of Figure 25, showing the unique cycle
in DT of length r, where r ≥ 3. We show that the reflections satisfy the relations from
Definition 3.4(5). In the following computations, subscripts are taken modulo r and addition
of the elements cj is carried out modulo d. For 1 ≤ m ≤ r, consider the product of d(r − 1)
reflections

s(am, am+1; cm)s(am+1, am+2; cm+1) ⋯ s(am+d(r−1)−1, am+d(r−1); cm+d(r−1)−1). (6)

Fix j ∈ {0,1, . . . , r − 2}. When computing the image of eam+d(r−1)−1−j under the product (6),

only the reflections s(am+d(r−1)−i(r−1), am+d(r−1)−i(r−1); cm+d(r−1)−i(r−1)) for i = 0,1, . . . d − 1 act
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Figure 25. Two possible local behaviours appearing in T . The dashed arcs
are arcs in T (in the right hand picture the arcs shown on the boundary are
also allowed to be boundary segments). The solid edges are edges in DT and
edges in QT are oriented.

non-trivially. We compute that:

eam+d(r−1)−1−j ↦ ω
∑d−1

i=0 cm+d(r−1)−1−j−i(r−1)
d eam−1−j = ω

∑d−1
i=0 cm+d(r−1)−1−j+i

d eam−1−j .

When computing the image of eam+d(r−1) under the product (6), every reflection in the product
acts non-trivially, and we compute that:

eam+d(r−1) ↦ ω
−∑m+d(r−1)−1

i=m ci
d eam .

Note that

−
m+dr−1
∑
i=m

ci ≡ 0 mod d,

since this involves adding up a multiple of d copies of each ci. Hence, we have:

0 ≡ −
m+dr−1
∑
i=m

ci ⇐⇒ −
m+d(r−1)−1
∑
i=m

ci ≡
m+dr−1
∑

i=m+dr−d
ci ⇐⇒ −

m+d(r−1)−1
∑
i=m

ci ≡
d−1
∑
i=0
cm+d(r−1)+i mod d.

It follows that

eam+d(r−1) ↦ ω
∑d−1

i=0 cm+d(r−1)+i
d eam .

Hence, for p = 1,2, . . . , r we have:

eap ↦ ω∑
d−1
i=0 cp+i

d eap−d(r−1) ,

and we see that the products (6) are equal for all 1 ≤m ≤ r and hence the reflections satisfy
the relations from Definition 3.4(5). This completes the proof of the result. □

Theorem 5.7. In the situation of Setup 5.5, there is an isomorphism of groups ν ∶ G′QT
→

G(d, d, n) sending the generator of G′QT
associated to vertex v in QT to the reflection asso-

ciated to the edge in DT that is the dual of v.

Proof. Let R be the set of reflections associated to the edges in DT , as in Setup 5.5. By
Proposition 5.6, these reflections satisfy the defining relations of G′QT

, so there is a group

homomorphism ν ∶ G′QT
→ G(d, d, n) sending the generator of G′QT

associated to vertex v in
QT to the reflection associated to the edge in DT that is the dual of v.
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By Lemma 5.4, DT has a unique cycle. By assumption (see Setup 5.5), δ(R) and d are
coprime. Hence, by Theorem 5.3, R generates G(d, d, n). Hence ν is surjective. By Theo-
rem 5.1, ∣G′QT

∣ = ∣G(d, d, n)∣, so ν is also injective, giving the required result. □

Remark 5.8. Note that, in contrast to the braid group case, in the complex reflection
group presentation the double edge relations can be made more symmetric. In fact, for
reflections chosen as in Setup 5.5, by direct computations one can check that in the situation
of Definition 3.4(6), we have

sksisjsksisj = sisjsksisjsk = sjsksisjsksi.

On the other hand, in the situation of Definition 3.4(7), for d > 2, we still get two sep-
arate relations also in the complex reflection group. To see this, let si = s(a1, a2; c1),
sj = s(a1, j; c(g)), sk = s(a2, a1; c2) and sl = s(a2, l; c(h)) be reflections satisfying Setup 5.5
and corresponding respectively to the vertices i, j, k and l in Definition 3.4(7). Then, it is
easy to compute that

sisjskslsisj ∶ ea1 ↦ ωc1
d ea2 ,

sjskslsisjsk ∶ ea1 ↦ ω−2c2−c1d ea2 .

As, by assumption, c1 + c2 is coprime to d, and hence invertible modulo d, we have that

−2c2 − c1 = c1 mod d ⇐⇒ 2(c1 + c2) = 0 mod d ⇐⇒ d = 2.

Hence, for d > 2 we have that sisjskslsisj ≠ sjskslsisjsk.
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