PRESENTATIONS OF THE BRAID GROUP OF THE COMPLEX
REFLECTION GROUP G(d,d,n)

FRANCESCA FEDELE AND BETHANY ROSE MARSH

ABSTRACT. We show that the braid group associated to the complex reflection group
G(d,d,n) is an index d subgroup of the braid group of the orbifold quotient of the complex
numbers by a cyclic group of order d. We also give a compatible presentation of G(d,d,n)
and its braid group for each tagged triangulation of the disk with n marked points on its
boundary and an interior marked point (interpreted as a cone point of degree d) in such a
way that the presentations of Broué-Malle-Rouquier correspond to a special tagged trian-
gulation.
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1. INTRODUCTION

Our main aim is to give a family of presentations of the braid group B(d,d,n) of the complex
reflection group G(d,d,n), for positive integers d,n with d > 2 (see [BMRIS, §B]), with
one presentation associated to each tagged triangulation (in the sense of [FSTO08, §7]) of
an orbifold given by a disk with a single cone point of degree d. In addition, we show
that B(d,d,n) can be embedded in the n-strand braid group of the orbifold as a subgroup
of index d (a result obtained independently in [Fle23]; see the comment after Theorem A
below), generalising a result of Allock [AlI02] Theorem 1.1]. This allows us to give a geometric
interpretation of the generators in each presentation in the family. This generalises a family
of presentations of the Artin braid group of type D,, given in [GMI7], which can be regarded
as the case d = 2.

Recently, there have been a number of articles giving presentations of braid groups using the
theory of cluster algebras, and these form part of the motivation for this paper. In [BM15], a
family of presentations of finite Weyl groups was given, one for each seed in the corresponding
cluster algebra; the subsequent article [GM17] gave alternative presentations in the simply-
laced case, which lifted to the corresponding braid groups (see also [Z20]). An independent
proof of this was found by Alastair King and Qiu Yu (see [Qiul6, Prop. 10.3]). Braid group
presentations (for all finite cases) were also given in [HHLP17]. Presentations for types H
and [ were given in [HHQ24, Thm. 3.5]. Presentations for affine Coxeter groups were given
in [FT16al and groups of a similar kind were associated to surfaces in [FT16al [FST25] (see
also [FT16b, [FLST21]). This article can be regarded as providing presentations similar in
style to these cluster algebra-theoretic presentations, but we note that there is no cluster
algebra associated to a complex braid group, and that the mutation considered here (see
Section , although related, is not the same as Fomin-Zelevinsky mutation [FZ02), Defn.
4.2] (or the corresponding diagram mutation [FZ03| §8]); in particular, the quivers considered
here have additional decorations that do not appear in the theory of cluster algebras.

It is also interesting to note the article [KQ20], which associates a groupoid, known as the
cluster exchange groupoid, to a cluster algebra of Dynkin type, showing that the fundamental
group is isomorphic to the corresponding Artin braid group [KQ20, Thm. 2.16], giving an
alternative construction of the Artin braid group in these cases. There are also strong
relationships with mapping class groups and groups generated by spherical twists and their
presentations; see, for example [Qiul9] and the references therein, and [Qiu24]. In particular,
Appendix C in [Qiu24] gives realisations of affine braid groups as fundamental groups of
moduli spaces of framed quadratic differentials.

In the remainder of Section 1 we recall the relevant theory and background for real and
complex reflection groups and braid groups, and state our main results in more detail. In
Section 2 we give an orbifold realisation of the braid group of the complex reflection group
G(d,d,n). In Section 3 we give the promised family of presentations of G(d,d,n) and
the corresponding braid group, and in Section 4, we give a geometric interpretation of the
generators in these presentations in terms of the geometric description in Section 2.

Acknowledgements: We would also like to thank Paul P. Martin for several useful dis-
cussions related to this work and Pavel Tumarkin for some minor corrections. We’d like to
thank the referee for their corrections and careful reading of the paper.
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1.1. (Real) reflection and braid groups. In (a special case of) [BM15, Theorem 5.4],
Barot and Marsh proved that if ) is a mutation-Dynkin quiver, i.e. a quiver that can
be obtained by mutating a Dynkin quiver A of type ADE in the sense of [FZ02, Defn.
4.2] finitely many times, then the associated group W (@) is isomorphic to the Weyl group
W(A). Let n be the number of vertices in A. As shown in [Bri71] (and recalled in [AII02]
Section 2]), the Artin braid group A(A) of type A is isomorphic to the fundamental group

o ((v UHS)/W(M),

O

where ¥ is the set of reflections in W(A), V is the complexification of R® and H; the
complexification of the set of fixed points of s in R”.

More abstractly, the Artin braid group A(A) can be defined in terms of generators and
relations associated to the corresponding graph of type A. For example, the Coxeter graph
of type D,,:

h1

. (1)

gives the standard presentation of A(D,,) = (hy, ha, ..., h, | R), where R is the set of relations
hih;h; = hjh;h; if there is an edge between h; and h; and h;h; = hjh; otherwise. The Weyl
group W(D,,) is then the quotient of A(D,,) obtained by adding the relations h? = e for all
1, where e is the identity element.

Allcock described the connection between some Artin braid groups and orbifold fundamental
groups. In particular, in [AII02, Theorem 1.1}, he proved that A(D,) is isomorphic to a
subgroup of index 2 of the the orbifold fundamental group

Zn(0g) = m((O3 = Ay)/[Sh),

where O is the orbifold C/Cy, A, = {(x1,22,...,2,) € OF : 2; = x; for some i # j} and S, is
the symmetric group of degree n.

Subsequently, Grant and Marsh studied presentations of Artin braid groups of type ADFE. In
[GM17, Theorem A] they showed that if @) is a mutation-Dynkin quiver, then the associated
braid group is isomorphic to the Artin braid group A(A) of the corresponding Dynkin type.
This way one obtains many presentations of the Artin braid groups of type ADE.

Moreover, they showed that an orientation of coincides with the quiver ()7, associated
with the initial (tagged) triangulation Ty of (X, M), where X is the disk S with an interior
marked point interpreted as a cone point of degree 2, and M is a set of n marked points on
the boundary of X; see [GMIT, page 91 and Figure 5|. See [FST08|, §7] for the definition of
tagged triangulations; see also [GM17, Section 3]. Note that the interior of X is isomorphic
as an orbifold to O,.

Flipping a triangulation corresponds to mutating the quiver associated to it and, using the
fact that the graph of flips of (tagged) triangulations of the disk is connected, it was shown
in [GM17, Theorem A] that any (tagged) triangulation 7" of (X, M) gives a presentation
of A(D,). Moreover, T has an associated braid graph, the edges of which correspond to
elements o; in Z,,(0,). In [GM17, Theorem 3.6], Grant and Marsh proved that the subgroup
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Br of Z,(05) generated by the elements o; is isomorphic to the group G, associated to the
quiver corresponding to T'. Hence the group presentation associated to the triangulation T’
gives a presentation of A(D,,) as a subgroup of index 2 of Z,,(Os).

1.2. Complex reflection and braid groups. In this paper, we are interested in studying
a “complex” version of the above.

A pseudo-reflection s is a non-trivial element in the general linear group GL(C") which fixes
a hyperplane H, pointwise, known as the reflecting hyperplane of s. A group generated by
pseudo-reflections is known as a complex reflection group. The irreducible finite complex
reflection groups were classified by Shepard and Todd in [ST54]. Broué, Malle and Rouquier
provided presentations of all such groups using Coxeter-like diagrams; see [BMRIS8| Tables
1-4 in Appendix 2]. Here we focus on the complex reflection groups of the form G(de,d,n)
for positive integers d,n and e. We use the same notation as in [Shi05]. For o € S,,, denote
by [(x1,22,...,2,) | 0] the n x n monomial matrix with non-zero entries x; in the i,0(1)
positions. Then

G(de,d,n) := {[(331,:62, o x)|e] s e Crade =1, ( ij)e =1,0¢ Sn}.

J=1

Note the close relationship to Weyl groups, which can be seen as a special case of the above.
In particular, note that W(A,) =G(1,1,n), W(B,) = G(2,1,n) and W(D,) = G(2,2,n).

Similarly to the real case above, one can construct the braid group, denoted by B(de,d,n),
associated to the complex reflection group G(de,d,n). This is defined as the fundamental

group

™ (((C” -U HS) /G(de,d,n)) ,

seX

where ¥ is the set of pseudo-reflections in G(de,d,n). See [BMRIS, Tables 1,2 and 5] for
presentations of both G(de,d,n) and B(de,d,n). Similarly to the real case, G(de,d,n) is a
quotient of B(de,d,n), obtained by making all generators of finite order. For general d and
e some generators have order larger than 2, while for e = 1 they all have order 2.

Moreover, note that B(1,1,n) = A(A,), B(d,1,n) = A(B,) for any d > 2, B(2,2,n) =
A(D,,), and B(d,d,2) = A(I3(d)). In particular, [AlI02, Theorem 1.1] states that B(2,2,n)
is isomorphic to a subgroup of order 2 of Z,(0,). Let d > 2 be an integer and O, be the
orbifold C/Cy. In our first main result, we generalise Allcock’s inclusion of groups to the
case of arbitrary d, and fit it into a commutative diagram.

Theorem A. There is a commutative diagram of group homomorphisms

N = (StQS_l,tQ,tg, ---,tn) = B(d, d,n)
a | index d B | index d
A(Bn, ol
(s(‘i:e)) ~ Zn(Od)

FiGUureE 1. Commutative diagram of group homomorphisms.
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where ~y, ¢ are isomorphisms and «, § are monomorphisms, and A(B,,) is the Artin braid
group of type B, with presentation by generators:

s to t3  th
[ ] [ ]

2

That is, A(B,) = (s,ta,t3,...,t, | R), where R is the set of relations t;t;41t; = t;1t;t;41 for
2<i<n-— 1, tltj = tjtl if |’l —j| > 1 and Stosty = t9Stas.

See Section 2 for more details of the groups and the morphisms, and the proof of the theorem.

We note that Theorem A also follows from [Fle25l Cor. 5.7] and [Fle23, Theorem A(2)]. The
proof here was obtained independently. It is more direct (for this special case), avoiding use
of the mapping class group and giving a construction specifically related to the approach
of [BMROS] (i.e. more in the style of [AlI02]).

Our second main result generalises [BM15, Theorem 5.4] and |[GMI17, Theorem A] for the
groups G(d,d,n) and B(d,d,n) with d > 2, where the case d = 2 recovers the classical results.
Consider the marked surface (X, M), where X is the disk S with an interior marked point
interpreted as a cone point of degree d. Note that the interior of X is isomorphic to Oy as
an orbifold. Let M be a set of n marked points on the boundary of X.

In Section , we associate a decorated quiver Q7 to any tagged triangulation T of (X, M)
and a group Gg, to Q7. In Section [3.2 we introduce a mutation rule for such a quiver with
respect to a chosen vertex, which corresponds to flipping the associated triangulation.

In particular, the initial triangulation T, illustrated in Figure [I2] has associated quiver Qr,,
which is an orientation of the presentation of B(d,d,n) from [BMR98, Table 5]. Proving
that at each mutation step we obtain an isomorphic group, and using the fact that the
flipping graph of (tagged) triangulations of (X, M) is connected, we obtain the following
result, providing a family of new presentations of the groups B(d,d,n) and G(d,d,n).

Theorem B. (=Theorems and [5.1)). Let T be a tagged triangulation of (X, M)
and let Gy, = be the group defined in the same way as G, with the additional relations that
all generators square to the identity element. Then

e G, 2 B(d,d,n) and G, gives a presentation of B(d,d,n),
o Gy, 2 G(d,d,n) and Gy, gives a presentation of G(d,d,n).

Finally, we re-interpret Theorem B by assigning explicit elements to the abstract generators
in the newfound presentations both for the braid and reflection groups.

We combine the two theorems above to give a geometric interpretation of the new presenta-
tions of B(d,d,n). Similarly to the real case above, each tagged triangulation 7" of (X, M)
has an associated braid graph Dr such that the edges of Dr, one for each vertex i in Qr,
correspond to braids o; in Z,(O,4). Let By be the subgroup of Z,(O,) generated by these
braids o;. The following result generalises [GMI17, Theorem 3.6] to the case d > 2, conclud-
ing that the group presentation associated to the triangulation 7' gives a presentation of
B(d,d,n) as a subgroup of index d of Z,(0y).

Theorem C. (=Theorem [4.6]) Let T be a tagged triangulation of (X, M). Then there is
an isomorphism from By to G, taking the braid o; to the generator s; of G, corresponding
to the vertex i in Q7. Furthermore, By is a subgroup of index d of Z,,(0,).
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Finally, combining Theorem B with results from [Shi05], we assign explicit reflections to
the generators of the new presentations of G(d,d,n) as follows. For the definition of the
reflections appearing in the following result, we refer the reader to Section [2.1

Theorem D. (=Theorem [5.7}) Let T be a tagged triangulation of (X, M) and fix a
numbering 1,2,...,n of the n vertices of Dy. Associate a reflection s(e) = s(a,b;c(e)) to
each edge e between vertices a and b in Dy, where for the edges appearing in the unique
cycle of Dr, the integers c(e) have to obey the condition explained in Setup . Then, there
is an isomorphism of groups v : G, — G(d,d,n) sending the generator of Gy, associated
to vertex v in Q)7 to the reflection associated to the edge in D that is the dual of v.

2. THE COMPLEX BRAID GROUP B(d,d,n) AS A SUBGROUP OF Z,(0y): PROOF OF
THEOREM [Al

The aim of this section is to prove Theorem [A] i.e. to construct the commutative diagram of
group homomorphisms in Figure[1] Note that the maps o and ¢ are mainly due to [BMROS].
For the remaining two maps, we proceed with a geometric argument. Details of the groups
and presentations appearing in the diagram are given in the following sections.

2.1. Building 8. We follow [All02, §2], using the notation from [Shi05]. We set V' = C»,
and denote the fixed hyperplane of a reflection s: V - V', by H,.

We use the notation from [Shi05]. Let d,n be positive integers with d > 2. Let S,, denote
the symmetric group of degree n, and C* = C ~ {0}. For 0 € S,, and (x1,22,...,2,) € (C*),
let [(z1,29,...,2,)] denote the n x n monomial matrix with z; in the i,0(¢) position for
i=1,2,...,n. The entries in such a matrix are powers of wy = e27/d

Let I'(d,n) denote the group of all such matrices, and let G(d,d,n) denote the complex
reflection group:

G(d,d,n) = {[(xl,azz, conxy)o] s eCral =1, ]Ja;=1,0¢ Sn},
j=1

which is a normal subgroup of I'(d,n) of index d. For 1 <a<b<n and 0<c<d-1, set
s(a,b;e) =[(1,..., 1wz 1,...,1,w5, 1, ..., 1)|(a,b)],
and for a > b, set s(a,b;c) = s(b,a,-c). Thus, for a < b,
s(a,b;¢) (21, 2n) = (2150, 2ic1, W7 2hy « o, W20y« -y 2n)-

These elements all have order two and, as remarked in [Shi05, 1.5], they constitute the
reflections in G(d,d,n); we denote this set by 3. Thus G(d,d,n) is generated by X, the set
of reflections it contains.

Remark 2.1. For i < j, the reflection s(a,b;c) fixes the hyperplane
Hy(apey = H(a,b;c) = {(21,...,2,) €C" 1 2, = w2} = ker(s(a,b; ) —idcn).
Moreover, s(a,b; c) has associated hyperline
Lyape) = L(a,b;c) =im(s(a, b; c) —idcn).

Note that C* = Hpic) ® Lg(apic), and so each element x € C* can be written uniquely as
r=xp+x; with vy € Hyqp,e) and xp, € Ly(qpic)-
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Let

Vo=V N Uss H,.
As noted in [AlI02] 2.1] for the D,, case, V; is connected since each H; has real codimension
2in V.

It is well-known that G(d, d,n) acts freely on Vj (see e.g. [Gar23]). Since G(d,d,n) is finite,
it acts properly discontinuously on Vj, and it is clear the action is smooth, so we can form
the quotient manifold Vy/G(d,d,n) (by e.g. [Hat02, 7.10]). Let p : Vo - Vi/G(d,d,n) be
the canonical surjection, which is a manifold covering map [Leel3l Thm. 21.13]. Choose
xg € Vo. Then the fundamental group m(Vo/G(d,d,n),p(zo)) is known as the braid group
of G(d,d,n) and denoted B(d,d,n) (see BMRIS| 2B]).

The cyclic group C, acts on C, with a generator sending z to wyz. Let O, be the orbifold
C/Cy4. The underlying space of C/Cy is C, and it has a single cone point of degree d at the
origin. The n-strand pure braid space of Oy is O - A,,, where
Ay ={(z1,22,...,2,) € OF : z; = z; for some i # j}.
The symmetric group S, of degree n acts freely on O} - A,, and we can form the quotient
X = (O0f = An)/ Sy,

which is the n-strand braid space of O;. Then the n-strand braid group Z,(0;) of O4
is the orbifold fundamental group (in the sense of [Thu22, Defn. 13.2.5]) of X,, with respect
to a choice of basepoint b = (by,...,b,) € X,, which does not lie on the orbifold locus. The
n-strand pure braid group P, (Oy) of Oy is the orbifold fundamental group of A,,.

Proposition 2.2. There is an isomorphism of orbifolds V /C% = OF given by (1,22, ...,%,) ~
(z¢,24,... x%). This induces an isomorphism ¢ : V4/T'(d,n) = X,, and hence a d-fold orbifold
covering map Vy/G(d,d,n) - X, and an embedding § of B(d,d,n) = m(Vo/G(d,d,n)) as a
subgroup of index d in Z,(0,) = m(X,).

Proof. Recall that
Vo={(21,22,--,2,) €C" : z;# wkz;, foralli#jand 0<k<d-1}.

The group G(d,d,n) has a normal subgroup isomorphic to C}~! consisting of the elements
where the permutation is the identity, that is, using the notation wy := €2™/4, the elements
of the form

[(Wh wh o whn) | dd]

where ki, ko,... k, € {0,1,...,d - 1} satisfy ky + kg + --- + k, = 0 modulo d. Note that
ki, ks, ..., k, 1 can be chosen freely and they determine k,. It is easy to see that G(d,d,n) =
Cn~1% S,,. The rest of the argument goes through as in [All02, Proof of Thm. 1.1]. O

We use the same generating set of reflections for G(d, d,n) as [BMRIS, pp 151-152] with the
following notation. Note that these give a presentation of G(d,d,n) by [BMRIS|, Proposi-
tion 3.2].
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Notation 2.3. We set
I . . —2mi/d 2mifd
t2 = 8(17271)'(21722723724"'7271)'_)(6 / %2, € / 21723724...,Zn_Q,Zn_l,Zn),
t2 = 8(17270) : (217'22723724 . '7Z7’L) = (227217 23324+« 3 Zn=2y2n-1, ZTL)?

t3:=5(2,3;0) : (21,22,23,24 -, 2n) = (21,23, 22, 24 - - -y Zn-2, Zn1, Zn ) s

tn = S(n - 17na0) : (21,22,23724. .. 7Zn) = (217227Z37Z4 .. 7Z7L—27Z7L7Zn—1)'

In other words, we are taking n reflections: s(a —1,a;0) for a € {1,2,...,n} and s(1,2;1)
and renaming them as above. As pointed out in [Shi05], these are all reflections of type I
and hence they have order 2 and they lie in G(d,d, n).

We next need some paths in V; as defined in [BMRIS].

Definition 2.4. [BMROS, §B, Eq. (2.13)]. Let s € G(d,d,n) be a reflection. Note that s
has order 2. Let z € Vj, with decomposition x = xy + x; with g € Hy and xj € L, as in
Remark 2.1] Then y = s(z) = xy — xz. Then the straight path p, : [0,1] - V sending ¢ to
xg+(1-2t)xr, does not lie in V;, since ps(1/2) € H. So we take instead a version of the path
which is perturbed close to H:

v+t(y-z) =g+ (1-2t)r, 0<t<i;

i i im(t-%
pu(0) = {4 (1= R D)y ) = 4 he Dy, btk
$+t(y_l')=£L‘H+(1—2t):L‘L, %Stﬁl,

which is a special case of the construction in [BMROIS, §B, Eq. (2.13)].

Remark 2.5. In Definition the ¢th entry of p,(t) is either constant (if x; = y;) or a
path from z; to y; which is the first third of the straight path in C from z; to y; ending at
T; + %(yz - ;) = 2, followed by an anticlockwise semicircle of radius %|yz — ;| centred at the
mid-point between x; and y; and ending at x; + %(yl - x;), followed by the last third of the
straight path from x; to y;.

The following result is an instance of [BMR9S| Proposition 3.2 and Theorem 2.27].

Proposition 2.6. The set {t},t,...,t,} together with the relations described in [BMRIS|
Appendix 2 and Table 2| give a presentation by generators and relations of G(d,d,n).
Moreover, for s equal to, respectively, t5,ts,%5...,%,, the paths ps, regarded as paths in
V/G(d,d,n), are s-generators of the monodromy, denoted respectively by 74,72, 73, ..., Tn,
giving the presentation by generators and relations of B(d,d,n) illustrated in Figure , with
relations:

TiTisdTi = Tisd TiTisl,  ToTaTy = T3ToTy, 77 =757 for [i—j| > 1, 77 =775 for i >3
/ I _ / / r_
ToToT3ToToT3 = T3T2T9T3T2To, ToTo =TTy - .

d terms d terms
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T2
[ ]
T3 Ty Tao Tn
d —e ® e ° °
[ ]
A
Ty

FIGURE 2. The presentation of B(d,d,n) from [BMR9S].

Remark 2.7. We recall part of the proof of Proposition from [BMROS, Section 3].
Recall the standard presentation of the Artin braid group of type A,,1, that is A(A,.1) or
in [BMR9§| notation B(n + 1), is:

By [BMR98, Thm. 3.6], the braid group B(d,1,n) associated to the complex reflection
group G(d,1,n) is, for any d > 1, isomorphic to the subgroup of A(A,.1) generated by
{€2,65,&3,...,&,}. By the discussion following the proof of [BMRI8, Thm. 3.6], an appli-
cation of the Reidemeister-Schreier method shows that this subgroup is isomorphic to the
Artin braid group A(B,), with generators associated to the vertices of its Dynkin diagram
as follows:

é;% 52 53 £n71 gn

Recall that, if m > 1, by [BMR9S, Lemma 3.3], the complement in C" of the union of the
reflecting hyperplanes of G(md,d,n) is

M#(md,n) = {(21,29,...,20) | (Vj, k,1<j#k<n)(VaeZ)(z #0)(z # i)},
while if m =1, it is
M(d,n) = {(21,22, ... 20) | (Vi k, 1< j £k <n)(VaeZ)(z €T z)).
As remarked in [BMROS8| Section 3C], [BMRIS8] Proposition 3.8] could be stated in a more

general way, obtaining, by an application of the Reidemester-Schreier algorithm, an injective
group homomorphism

¢ (M*(md,n)/G(md,d,n)) = A(B,),
where, letting &) := £2£,¢72, the left hand side group has presentation

3
2d <: \=€.3 f.4 ..... §7L‘—1 §.n
e
d+1 !
52 (2)

In particular, if m > 1, the left hand side is isomorphic to B(md,d,n), but here we are
interested in the case m = 1. By [BMROS8, Section 3C], in this case there is an isomorphism
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of groups
T (M#(d7 n)/G(du da n))
(@ =c]

and the presentation of B(d,d,n) is obtained from by suppressing the node corresponding
to £2¢ and adding an edge labelled d between & and ).

Remark 2.8. Note that [BMRIS| Section 3| uses the base point (z1,22,Z3..., %) With
Ty < Ty < T3 < -+ < Ty, real numbers. Instead, we choose basepoint (0,-1,1,2,...,n—1).
We also modify the (2 3)-generator of the monodromy & (where (2 3) is a generating
transposition of S,.1), taking the path as in Figure @ rather than as in [BMROS8, Section 3]:
the arguments of [BMR9§| go through unchanged with these choices. See Remark for
an explanation of this choice.

B(d,d,n) =

Proposition 2.9. The injective group homomorphism 3 from B(d,d,n) to Z,(O,;) from
Proposition [2.2]is given by:

B:B(d,d,n) > Z,(O4) : 75 = hy,7; > h; for 2<i<n,

where 7}, 79, 73,..., and 7, are as in the presentation in Proposition and the braids
hi,ha, ..., h, are as illustrated in Figure [0

Proof. Let us fix the basepoint in Vg to be b= (e 1,2, ... ,n—1). We compute the paths
ps associated to each of the reflections s from Notation following Definition [2.4]

Note that t2(b) = (1,e/4,2,...,n~1). By Remark [2.5] the first entry in the path p, from
Deﬁnition is the first third of the straight path from e~/ to 1, followed by a semicircular
path centred at the midpoint between e=/¢ and 1 of radius §|1 - e~/4|, followed by the last
third of the straight path from e~"/? to 1. The second entry is a similarly-defined path going
in the other direction, while all the other entries are constant. We sketch this, for d = 3, in
Figure [3]

We have t4(b) = (e7>™i/d em/d 2, ... .n 1), so the first entry of py, is a path from e=/? to
e2mi/d while the second entry is a path from 1 to e/ and the other entries remain constant.
We sketch this, for d = 3, in Figure [4]

For 3<j <n, we have t;(b) = (e7/4,1,...,5-3,7-1,7-2,7,...,n—1), so the (j—1)st entry
of py; is a path from j -2 to j —1 and the jth entry of p;; is a path from j -1 to j-2. We
sketch this, for d = 3, in Figure [5]

By Proposition , for s equal to, respectively, t5, s, 5. .., t,, the paths py, regarded as paths
in Vo/G(d,d,n), are s-generators of the monodromy, denoted respectively by 74, 79, 73, . . ., Tp.
Their images under the covering map Vy/G(d,d,n) - X,, in Proposition are given by
taking their dth powers, entry by entry.

These images are illustrated in Figures[7][6] and [§] for d = 3. Note also that the basepoint for
Or-A,is (-1,1,2¢4,...,(n-1)4). It is easy to see, by writing the paths in polar coordinates
in C, that the paths will be in the same half plane (i.e. above or below the real axis)
as shown in these figures, for general d. Drawing these paths as braids using the same
conventions as in [AII02], that is placing the point of view from below, and recalling that
the cone point of order d at 0 is interpreted as a pole of order d, we see that the elements
Ty, T2, T3, ..., Ty are sent respectively to the braids hq, ho, hs, ..., h, illustrated in Figure |§|
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Hence, the injective group homomorphism g from Proposition sends B(d,d,n) to the

subgroup (hq, ho, hs, ..., h,) of Z,(04) of index d, as claimed. O
0 1 2 n-1
* ) P ®
672’7r/3

Ficure 3. The path p;, associated to the reflection 5. Note that only the
first two entries of the n-tuple are non-constant paths. The drawing is for
d = 3. For larger d, the endpoints of the paths are closer.

eir/3

N

e—2mi/3 e—im/3

FIGURE 4. The path py associated to the reflection #;. Note that only the
first two entries of the n-tuple are non-constant paths. The drawing is for
d = 3. For larger d, the path starting at e=*"/3 lies entirely within the fourth
quadrant of the plane and the endpoints of both paths are closer.

°
e—iﬁ/i’)

FIGURE 5. The path p;; associated to the reflection ¢; for 3 < j < n. Note
that only the (7 —1)st and jth entries of the n-tuple (with initial values j — 2
and j — 1 respectively) are non-constant paths. We draw the case d = 3.

Remark 2.10. Our choice of basepoint, together with the modified choice of (2 3)-generator
for the monodromy for the braid group of type A (see Remark allows to use the same
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generating set of reflections for G(d,d,n) as in [BMROIS, Section 3A] (see Notation while
ensuring that the diagram in Figure [I] commutes and the images of the generators under
in Proposition [2.9| are the h;.

If we did not modify the (2 3)- generator of the monodromy, we would need to replace the
reflection ¢, = s(1,2;1) with the reflection ¢J = s(1,2;-1); by [Shi05, Theorem 2.19], we
would still have a generating set of G(d,d,n). We would also need to replace the basepoint
b= (e /4 1,2,...,n—1) in the proof of Proposition with (¢4 1,2,...,n - 1) and the
element &) in Remarkwith £726:€2, also switching the labels & and &), on the presentation
of B(d,d,n) given there. Modifying the morphisms «, ¢ and 7 in Figure [1| appropriately (so
that Oé(CLQ) = tQ, Oé(bQ) = S_thS, QO(CI,Q) = Ta, gO(bQ) = 7'2,, ﬁ(Tz) = hl, B(Té) = hQ, ’)/(tg) = hl
and (s 'tys) = hy), this would also be a valid construction. For d = 2, the paths p, we
consider here do not coincide with the paths ¢i,...g, from [All02, proof of Theorem 1.1]
(even choosing € = 1). However, with this change, the basepoint would be (i,1,2,...,n-1)
as in [All02], and we would recover exactly the same paths as in [AII02].

* [ ] P (]

-1 1 2d (n—-1)4

FIGURE 6. Path p;, to power d.

* [ ] °

-1 0 1 2d (n-1)4

FIGURE 7. Path p;, to the power d.

[ ] * [ ] . .. . [ ]

5 0 1 (-2 (G-t (n-1)

FIGURE 8. Path p;; to the power d for 3 <j <n.
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2.2. Building o and ¢.

Lemma 2.11. The subgroup N := (stas™! to, t3, ..., t,) C é(;jz)) is a normal subgroup of index
d and
A(By)

=NuNsuNs*u...Ns“ 1
(s?=e)

Proof. We first prove N is a normal subgroup by showing that its normaliser is the whole
ambient group. Note that by construction stes™' € N and for ¢ = 3,...,n we have st;s7! =
t; € N. Moreover, using the relation stysty = tostys, or equivalently stos™! = t;ls‘ltgstg, we
have that

s(stys™)s7 = styls Hgstys™h = (stas™H) T (ty) (stash),

and this is an element in N since it is a product of three elements in N. Hence sNs~t ¢ N.

Then the normaliser of N contains both s and all the elements of N. In particular it contains

the generators s, t,,...,t, of the ambient group. Hence N is a normal subgroup of “é(fj:? .

We now show that é(di)) is the semidirect product of (s) and N. First we show that s ¢ N.
Recall that s7! = s9-1 and the relations in the group preserve the sum of the exponents of
copies of s modulo d in the expression of any element of the group. Then, we have that the
sum of the exponents of copies of the element s in the expression for any element in N is
always a multiple of d. Hence s ¢ N and N n(s) = {e}, where e is the identity element. Now,

we have

B
ABL) _ vy NowNstw. . Nt
(s=e)

and “égz)) =(N,(s)) and N is a normal subgroup, so

A(Bn)

=N

(st =e) ()
and N is a subgroup of index d. 0
We define o to be the embedding of N into “Z‘S((EZ))

Theorem 2.12. There is a group isomorphism

©: N — B(d,d,n) : stys™ = 15, t; > 73, for 2<i<n.

Proof. This can be seen by applying the Reidemester-Schreier algorithm to find a presenta-
tion of the subgroup N, using the set of coset representatives {e,s,s?,...,s% 1} and noting
the presentation of B(d,d,n) in Proposition [2.6| (from [BMROS]). This is very similar to the
proof of Proposition in [BMROg, Sections 3.7 and 3C]; see Remark [2.7] O

2.3. Building 7.

Lemma 2.13. The element [ € Z,(0O,) has order d.

Proof. By [Rou2ll, §4], P, (O,) is a subgroup of Z,,(Oy), embedded as the subgroup of braids
in Z,(0,) in which each strand starts at ends at the same corresponding point in Oy (i.e. pure

braids). By |[Rou2ll, Rk. 2.15], there is a homomorphism &, : P,(0,4) - P,-1(0,) obtained
by removing the nth strand. Iterating this homomorphism gives a homomorphism ¢ from
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(n-1)% -1 1 2d (n-1)4

L/

il A

d

-1 1 9d gd (n-1)4 -1 1 (i-2)¢ (-1 (n-1)4

/ /

hs = e h; = cee e

d d

FIGURE 9. The braids hy, ho, ..., h,. The thicker line (pole) represents the
cone point of degree d.

1 1 od
I

[ = cee
/
d

F1GURE 10. The loop I.

(n-1)

P,(0,) to P1(Oy) = m(0,) removing all strands except the first. It follows from [Jr.19, Rk.
2.2.2] that £(I") is not equal to the identity for 1 <7 < d-1, from which the result follows. [

Lemma 2.14. Let hy,...,h,,[ be the elements of Z,(0;) shown in Figures [0 and [10] We
have that

Z,(0,) = (imB) v (imB)l v (imB)2 v -+ (imB)I% = (hy, ..., hn, 1),

Proof. Note that B(d,d,n) is torsion free by [Besld, Thm. 0.4] (see discussion after the
theorem), noting that G(d,d,n) is well-generated (see, for example, [LM21], §2.2.2]). Hence,
imf = (B(d,d,n)) € Z,(O,) is torsion-free. Hence, apart from the identity element, im/
has no element of finite order. Since the element [ has finite order d, we conclude that
7 ¢ imp for any ¢ ¢ dZ. Suppose now that bl? = '[P for some b, b’ € imf3 and non-negative
integers ¢, p. Then 197 = ()')~'b € im$ and so [97P = e. By Lemma [2.13] ¢ = p modulo d and
[P =14. In other words, if IP + (4, that is p # ¢ modulo d, then (imf)” n (imf)Il? = @ and,
since imf3 is a subgroup of index d in Z,(0,) by Propositions [2.2] and 2.9 the cosets of im/3
are (imf)IP for 0 <p <d-1. Since imf = (hy,..., h,) by Proposition 2.9, we conclude that
Z2(04) =(h1,... hy,l). O
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~

ho

{ "
g J
{ "

: J\ﬁj\/z
RV as

d d

F1GURE 11. The braids lholho on the left and holhsl on the right are equal.

Theorem 2.15. The following is a group isomorphism
A(B,
VT )
(s?=e)
satisfying v(stas™) = hy. See Figures[q and [1( for hy,....h,, 1. Furthermore, the diagram
in Figure[1 commutes.

—>Zn(0d)18|—>l,t2'—>h2,ti'—>hi f0r3£i£n,

Proof. We first show that the map ~ preserves the relations and it is hence a well-defined
group homomorphism. By composing the braids, it is easy to see that y(stas™) = lhyl™! = hy.

Composing the corresponding braids, it is immediate to see that the following relations are
preserved by ~:

titHlti = ti+1titi+1 for 2 <i1<n- 1, tzt] = t]tz for | Z—j ’Z 2,’i,j > 3,
tQti:titQ for4$i£n, stiztis for 3<i<n.

Moreover, since the pole has degree d, it follows that ¢ is the identity and the relation s¢ = e
is preserved. It only remains to show that the relation stysts = tastas is preserved. Note
that [hslhy = holhsl as braids, see Figure and note that this relation does not depend
on the order of the pole. Since only the first two strands and the pole are involved in
this computation, we have omitted all the remaining strands from the pictures. Hence we
conclude that ~ is a well-defined group homomorphism.

Using the description of ¢ in Theorem and the description of 8 in Proposition 2.9, we
have v(a(t;)) = v(t;) = hi, and Bp(t;) = 5(7:) = h;. We also have ya(stas™) = y(stas™!) = by
(as noted above), while S¢(stes™!) = 5(75) = h1. Hence the diagram in Figure [1] commutes.

We now prove that 7y is a group isomorphism. First note that v is surjective by Lemma [2.14}
noting that hq, hs, ..., h,,[ are all in the image of ~.
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Recall that by Lemma [2.11]
A(By)

=NuUNsuNs?u... Ns“ 1
(s?=e)

Then, if v(nsP) = y(n's?) for two elements ns? and n’s? in “gﬁz;, where n,n’ € N and

0 < p,qg <d-1, we have that y(n)lP = y(n')l,. Since the diagram in Figure [l commutes,
we have 3(p(n))lP = B(p(n'))le. By Lemma 2.14, 5(p(n)) = B(p(n)) and p = ¢. Since
and ¢ are injective, n = n’ and we see that ~ is injective and therefore an isomorphism as
required. 0

This completes the proof of Theorem [A]

3. PRESENTATIONS OF B(d,d,n) AND G(d,d,n)

In this section, we give new presentations of the complex braid groups B(d,d,n) and their
corresponding complex reflection groups G(d,d,n). In Definition 3.2 we associate a (dec-
orated) quiver Q)7 to an arbitrary tagged triangulation 7" of a disk with n marked points
on the boundary and a cone point of degree d > 2 in its interior. (Note that we assume
d > 2 throughout this section, except where otherwise stated, for some lemmas where it is
convenient to allow the case d = 1). The quiver may have 2-cycles, which we consider to
be unoriented edges. In Definition we associate a group G to such a quiver, given by
generators and relations. A special case is Figure [12 The corresponding presentation is
the known presentation of B(d,d,n) from [BMR9IS, Thm. 2.27]. The associated quiver in
this case is an orientation of the diagram associated to the presentation in [BMRIS| Table
5] (drawn on the right in Figure [12); this formed part of the motivation for the approach
we employ here. In Definition [3.9] we introduce a mutation rule for such a quiver which
is compatible with flipping triangulations. We complete this section by showing that the
group G is invariant under mutation. Since the mutation graph of tagged triangulations
of the disk is connected [EST08, Prop. 7.10], it follows that all the quivers constructed as
above give presentations of the group B(d,d,n). Adding the relations that the square of each
generator is the identity gives a presentation of G/(d,d,n) by applying a result from [Ari95];
see Theorem [5.1]

- T T
/// \\
.7,/ n-1~ . @
n-2 _-
,n///'/p’\ o-"
VAN | P _ -
s, - 1
;s _ - °
A
ot
égfi:_h—\\ R \
) TTell Toal T 3 4 5 n-2 n-1 n
: =~ RS N d —— 0 «— @ «— O < ® «— © °
N \i\\q \\

FI1GURE 12. Original presentation from [BMRI§| (shown on the right) em-
bedded in a disk with n marked points on the boundary and a cone point of
degree d in its interior.
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3.1. Quivers from triangulated surfaces and groups from quivers. We now fix the
surface (X, M) we will be working with: X is the disk S with an interior marked point
interpreted a cone point of degree d > 2 denoted by @ in figures, and M is a set of n > 2
marked points on its boundary.

Next, we give a way of associating a decorated quiver Q7 to each tagged triangulation of
(X, M). We then give a way of associating a group G, to any such quiver.

Let T be a tagged triangulation of (X, M), regarding C' as a marked point, as in [FSTOS,
§7]. Note that C' is the unique marked point in the interior of S.

Remark 3.1. By [FSTO08, Rk. 4.2], the tagged triangulation 7" can be built up by gluing
puzzle pieces of the kind shown in Figure [13| by matching their boundary arcs (respecting
the orientation).

Let Br be the skew-symmetric matrix associated to 7" in [FSTO08, Rk. 4.2], and let @T be
the corresponding quiver.

Definition 3.2. We associate a quiver Qr to each tagged triangulation 7' as considered
above by modifying Q)7 in the following way.

If the triangulation 7" has precisely two arcs incident with the cone point then, from each of
the two vertices in Qr that have arrows to or from the corresponding vertices in Q, we draw
a double edge pointing towards the conepoint. Thus, we draw such a double edge from each
vertex labelling an arc in the triangulation 7" bounding a region in the complement that has
the cone point on its boundary. We also add an unoriented edge, labelled d, between these
two vertices.

If the triangulation has at least 3 arcs adjacent to the cone point, there will be an oriented

cycle between the corresponding vertices in @T. We put the label (@D in the middle of such
a cycle. Note that there is at most one such labelled cycle.

See Figure [I2 for a complete example of Definition [3.2] and Figures [17], [18] [19] [20] and [21] for
local portions of a triangulation and the associated quiver.

F1GURE 13. Puzzle pieces for a disk with a single interior marked point.

Remark 3.3. It follows from Remark that the quiver @ is built up from individual
portions associated to triangles (as on the left of Figure and a portion associated to
the union of the puzzle pieces incident with the cone-point as shown in Figure (or with
versions of the three right hand figures where the tags on all the arcs incident with the cone
point have been flipped).
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7N e (0

. \ / \. _— o s

F1GURE 14. Building up the associated quiver for a disk with cone point. We
show the corresponding quivers separately. Note that the cone point itself does
not appear in the quiver in the second and third cases.

Definition 3.4. Let () be a quiver as in Definition and G be the group with generators
So = {si}icg, subject to the following relations:

(1) s;s;=s;s; if i and j are vertices with no arrows between them,
(2) sis;si = s;s;s; if there is an arrow between i and j (in either direction).

(3) siSjSkS; = 8jSKSiS; = Sk5;S;Sy if () contains an oriented 3-cycle with no label @ in the
middle of the form

i J
o——» O

A4

k
(4) s;sj:-- = 558, if there is an (unoriented) edge labelled d between i and j,
— Y
d terms d terms
(5) S189°8p81 ... = Sp++8p81... = +++ = 8,818,871 ... if () contains an oriented labelled
—_—
d(r —1) terms d(r—-1) terms d(r-1) terms

chordless r-cycle, for r > 3, of the form
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(6) sksiSjSkSiS; = 5;SjSkSis;sk if the vertices 4, j, k appear in either of the following con-
figurations in @

RN
./ ./

J J

d d

Note that s; appears before s; in the relation because ¢ appears to the right of the
double edge.

(7) 5i5jSkS15:5j = §15:5jSkpS15; and §jS,S15;5;SK = Spsi15:8;5ks; if the vertices 4, 7, k, [ appear
as follows in @)

o 'y

_
A
k [

Let Hg be the group defined as above, omitting the length d relations (4) and the cycle
relations (5).

Remark 3.5. Note that when n = 2, the only possible tagged triangulations are the middle
two figures in Figure with the outer edges part of the boundary, or the same figures with
tags flipped. In each case, the corresponding quiver is a pair of vertices connected by an
unoriented edge labelled d, and the corresponding group has two generators, s; and s, with
a relation of type (4) from Definition [3.4] i.e. it is the Artin braid group of type I»(d).

The construction of Grant and Marsh [GM17] becomes a special case of the above construc-
tion as follows. Our aim is to generalise their construction for larger values of d.

Remark 3.6. Note that when d = 2, the relations from Definition [3.4] simplify. In fact,
arrows labelled 2 give commutation relations, so they can be omitted following rule .
Moreover, we can see that double edges can be omitted as well. In fact, in the situation of
relation @, we have s;s; = 555, 5i5kS; = 555, and $;5,5; = 51555, and so
SkSiSjSkSiSj = SkS;jSiSkSiSj = SkSjSkSiSkSj = SjSkSjSiSkS; = SjSkSiSjSkS;
= 8jSkSiSkSjSk = SjSiSkSiSjSk = SiSjSkSiS;Sk,
that is relation @ becomes a consequence of the other relations. Note also that cycle
relations as in and reduce to cycle relations as in [GMI17, Defn. 2.2]. Hence in this
case the defining relations coincide with those in [GMI17, Defn. 2.2] and G¢ is isomorphic

to A(D,,), that is the Artin braid group of type D,, by [GM17, Remark 2.3 and Theorem
2.12]. Recall also that A(D,) = B(2,2,n); see for example [BMROIS, pp 188].

Remark 3.7. Note that there are only two relations in @ corresponding to the 4-cycle
i—>j—k—1-1i, in contrast to the four relations appearing in |[GMI7, Defn. 2.2]:

S5iSjSkS15iS5 = SjSkS15iSjSk = SkS1SiSjSkSI = S15iSjSkSISi-

When d = 2, these relations are equivalent to those in (7)) (see Remark , but when
d > 2, we can see that the relations in [GMIT, Defn. 2.2] would imply the unexpected
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relation s;sp = sgs;. In fact, using one of the two equalities from @, together with the other
relations, we have

8iSjSES18iS5 = S15;8jSkS1S5; <= S;SkS15:S; = Si_lslSiSjSkslSi <~ S;SkS15:S; = SlSiSl_lstkSlSi

— S;SkS15iS5; = SlSiSjsl_lskSlSi — S;SkS15:S; = SlSiSjSkSlsglsi

-1
<~ S;SkS15:iS; SkSittt = S18iS;SkS1S, Si SkSite
~—— N~——
d— 2 terms d— 2 terms
<~ SjSES1SiS; SkSittt = S1SiSjSkSIS; SkSi"'Sml
~—— N———
d -2 terms d -1 terms

<~ S;SkS1S5iS;Sk SiSk Sz = S15:5;SkS1S; SkSitt

———— —_——
d -2 terms d -2 terms
where x = ¢ or k depending on whether d is odd or even respectively. If the four relations
from [GMI7, Defn. 2.2] were true for d > 2, this would imply that s;s5--- = sgs;-- and so
~—— N~——

d-2 terms d-2 terms

by , that sis; = s;s,. However, this statement is false for d > 2 (see Remark .

We can now use our construction to embed the presentation of the group B(d,d,n) given
by Broué, Malle and Rouquier [BMRI8| B(d,d,n) into a triangulation of the surface S as
follows.

Remark 3.8. Consider the triangulated surface in Figure [12, where we have drawn the
corresponding quiver following the rules in Definition . The associated group G with
generators and relations as in Deﬁnition is exactly the presentation of the group B(d,d,n)
given by Broué, Malle and Rouquier in [BMROS8, Table 5].

3.2. Mutation of quivers and triangulations. By [FSTO0S8, §7], given a tagged triangu-
lation T of the disk S, and a choice of tagged or untagged arc, there is a unique tagged
triangulation which coincides with T except for this arc, i.e. the flip of T" at the given arc.
We give a way of mutating the quivers constructed as in the previous section that agrees with
flipping the triangulation. This will coincide with Fomin-Zelevinsky mutation, see [FZ03],
Lemma 8.5], for the portion of the quiver “far from the cone point”, but we need different
rules for the double edges, labelled (unoriented) edges and labelled cycles.

Note that by the construction of @), all 3-cycles in () where arrows have no labels are
oriented cyclically by [FZ03 Lemma 7.5]; see also [BM15, pp. 1948]. On the other hand, we
sometimes have an unoriented edge labelled d creating “unoriented” cycles, see for example
the situation of in Definition .

Definition 3.9. Let @ be a quiver as in Definition [3.2) and k be a vertex in ). We define
the mutation of @ at k, denoted by i (Q), as the following quiver on the same vertex set.
See Figure (15| for a pictorial representation of the following rules.

(1) Reverse the orientations of all (oriented) arrows in ) incident with k.
(2) For any path of the form j -k — i in Q:
e if there is no arrow between i and j in @), then there is an arrow j — i in (@),
e if there is an arrow 7 — j and 7, k, 2 do not form a 3-cycle labelled @ in Q, then
there is no arrow between i and j in u(Q),
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e if j, k, i form a 3-cycle labelled @ in @, then there is an edge labelled d between
i and j in ug(Q), the 3-cycle looses the label and the neighbours of 4, 7 in 1 (Q)
acquire a double edge towards the labelled edge in (@),

o if there is an edge labelled d between j and ¢ in (), then there is an arrow j — ¢ in

e (Q), the 3-cycle j, i, k acquires the label (D and all double edges are removed
n :Uk(Q)a

(3) If j - k — i is part of an r-cycle labelled @ in Q@ for r > 4, then the rules above apply
and the label is kept in the (r — 1)-cycle including 4, j but not k in ux(Q).

(4) If there are arrows j — k — ¢ and 4, j, but not k, are part of an r-cycle labelled @
in @ for r > 3, then the rules above apply and the label is kept in the (r + 1)-cycle
which includes i - k — j in pp(Q).

(5) If in @ there is one of the following configurations:

R S WA
NI |

[ ]
k k

<
~

then follow the above rules (keeping also the double edge at k) and
e if there is a vertex [ different from k with a double edge in @), remove the double

edge at [ in up(Q),
e if there is a vertex n different from [ and k£ such that in Q

J i J i
doorod

=
™
=
N

Se— o

then add a double edge at n.

Remark 3.10. Note that when d = 2 the mutation rules simplify. In fact, as explained in
Remark [3.6] arrows labelled 2, double edges and labels on cycles can be omitted and we
simply recover Fomin-Zelevinsky mutation.

Lemma 3.11. Let 7" and 7" be tagged triangulations of S such that 7" is obtained from T’
by flipping the arc a as in [EST08, §7]. Let Q7 and Q7 be the corresponding quivers as in
Definition 3.2l Then

(a) The flip of « is given locally by one of the mutations in Figures u 20| or
(from left to right or right to left), or by one of the mutations from Flgure 18 m or
with all of the tags flipped.

(b) The quiver Q7 can be obtained from the quiver Q7 by applying the mutation rule
in Definition 3.9l

Proof. Part (a) follows from Remarks and on consideration of which vertex is the
conepoint when gluing together puzzle pieces. Part (b) follows from part (a) by computing
the quiver in each case before and after mutation (see Figure [14)). O
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FIGURE 15. Local mutations following the rules from Definition In the
third line, in the first mutation vertex [ might not exist (if it corresponds to a
boundary segment of the disc); in the second mutation we are assuming k is
at least 4.

3.3. Mutation of groups. In this section we will show that the group associated in Def-
inition to a quiver as in Definition is invariant under the mutation introduced in
Definition [3.9

Theorem 3.12. Let () be a quiver as in Definition Gq its associated group as in
Definition with generators s;, and k a vertex of Q. Let ux(Q) be the mutation of @
at k as in Definition and let t; be the generators of G, (q). Then there is a group
isomorphism gog :Gg 2 Gy ) given by gog(si) =ttt if i >k in Q or the vertices i and k
correspond to the only two arcs incident with the conepoint in I' and the arc corresponding
to k is rotated anti-clockwise to the flipped arc; and ¢(s;) =t; otherwise.

Note that, in the above theorem, the situation when there are only two arcs incident with the
conepoint in 7" means that there is an unoriented edge between the corresponding vertices,
labelled d.

We have already seen that the triangulation from Figure [12]satisfies G 2 B(d,d,n), so this
will allow us to conclude that every tagged triangulation gives a presentation of the group
B(d,d,n).

Proposition 3.13. [GMI17, Prop. 2.9] Let @ be one of the quivers on the left or right of
(a)—(f) in Figure [L6] Let k be a vertex of Q. Let @' = 114,(Q) be the quiver obtained from
@ by mutating at k. Suppose that the ¢; are elements of a group satisfying the defining
relations (1), (2) and (3) from Definition [3.4| for the quiver @'. For i € Q, let

g _ tetityt, 1~k in Q;
o, else.

Then, for each of the cases in Figure , the elements S; satisfy the defining relations (1),
(2) and (3) of Definition [3.4] for the quiver Q).
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FIGURE 17. A mutation far from the conepoint.

Lemma 3.14. Let () be the quiver on the left of Figure and @' the quiver on the
right. Let Gg (respectively G¢) be the group with generators s; (respectively ¢;) with
1 <7 <5 satisfying the relations associated with @ (respectively @'). Then, there are group
homomorphisms:

o 905Q : Gg — G with go?(sl) =Sy = tstits!, @?(33) = Sy = tststs!, gp?(si) =9, =t, for
1=2,4,5;

° 90?, : GQ' - GQ with g05(t4) =Ty = 8584851, (,D5(t2) =T = 8582851, §05(tz) =T, =s; for
i=1,3,5.

Proof. For the first statement, it is enough to check that the elements S; satisfy the defining
relations of Gg. This follows directly from Proposition [3.13] The proof of the second
statement is similar. O

Setup 3.15. Let @ be the quiver on the left of Figure[L§|a) (respectively, the quiver on the
left of Figure [L§|(b)) for n > 3 (respectively, for n = 2) and let Q' be the quiver on the right
in each case. Let Hg be the group defined in Definition with generators s;, and let Hgy
be the group defined in Definition , with generators ¢;. Let Sy = totitgt, S. = tot.ty',and
S; = t; for i # n,c. We regard the subscripts of the s; and S; for 1 <7 <n to be taken modulo
n (with representatives {1,2...,n}), and the subscripts of the ¢; for 0 <i < n to be taken
modulo n + 1 (with representatives {0,1,2,...,n}).
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FIGURE 18. A mutation involving a cycle around the conepoint. In case (b),
one of the vertices is labelled a to avoid confusion in arguments involving
indices taken modulo n.

Lemma 3.16. Let n > 2 be an integer. In Setup the elements S; satisfy the defining
relations of Hy.

Proof. This follows from Proposition [3.13] O

Lemma 3.17. Let n > 2 and d > 1 be integers. Suppose we are in Setup [3.15 and that
0<i,r<nandr#i-1,4 modn+1. Then we have the following:

()
(b)

tronsitrnea ity =ttt pia
brdn+1° 't”'—ltrti_l = tc_l}-itT—dn+1' “lro1ty.

Proof. For (a), we have
trnettropeas bty = by ittt
= tyns1-titily tisot,
= trons1- i titioitivet,

_ 41
= ti+1tr—n+1tr—n+2' ' 'tr .
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For (b), we argue by induction on d. If d = 1, the result follows from part (a). Suppose the
result holds for d. Then

trf(d+1)n+1 . 'tr—ltrti_l = tr—(d+1)n+1 “lr—dntr-dn+1 'trti_l
= tr—(d+1)n+1 t 'tr—dnti_.&dtr—dn+1 by
= t7;_+1d+1tr—(d+1)n+1' “lp1ty,

using the induction hypothesis and then noting that r—dn #i+d,i+d—-1 mod n + 1, since

r—dn=r+d modn+1. 0
Lemma 3.18. Let n > 2 and d > 1 be integers. Then, in Setup [3.15} for any 1 <r < n, we
have:

tatag-1--t1 Srfd(n71)+1"'87"—1sr = lr—dn+1tr-1tr -
—_—

d(n-1) terms dn terms

Proof. We prove the result by induction on d. For d = 1, we have (for the case r = n),
tISQ"'Sn = t1t2...tn7
as required. For r # n, we have
t1Sr—(n-1)+1°"Sr = t1.Sp42°-SpS17++S;
= titrro - tatotity o t,
= tityyortaty oty -ty
= tltfltr+2‘“tntot1"'tr
= trrotatoty -ty
=l (ns1)42 Tty

=tr_pi1troaty,

as required, giving the result for d = 1. Assume the result holds for an integer d > 1. Then,
using the induction hypothesis, we have (for r =n):

tar1 b1 Sn—(de1)(n-1)+1""Sn = tas1 (ta 1) (Sn—(ds1) (n-1)+1°-SnS1) S2-Sy,

(d+1)(n—-1)terms

= td+1(td".t1)(Sl—d(n—l)+l'"Snsl)SQ“'Sn
= td+1(tl—dn+1"'t1)t2‘“tn’
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as required, noting that 1 -dn+1=d+2 mod n+ 1. For r # n, we have,

tar1 1 Sr—(as1)(n-1)+1Sr = tas1 (tat1) (Sr—(ds1)(n-1)+1""Sr—(n-1) Sr—(n-2)"*-Sr

(d+1)(n-1)terms d(n-1)terms n-1 terms
= tge1 (tat1) (Sr—(a+1)(n-1)+1°Sr—(n-1) Sps2--SpS1-+-5;
d(n-1)terms n-1 terms
= tge1(tat1) (Sre1-d(n-1)+1-Sr+1) Sre2-5nS1--- Sy

d(n-1)terms n-1 terms

-1
= tae1 brat—dns1tra1 trsar - tplotity Lo -t
| —
dn terms

-1
= tgs1 brs1—dns1tre1 tryoe Tty Totita 1,
—_—
dn terms

= tae1 tratmdner bre 1 traae tototitos -ty
N— —

dn terms

using the induction hypothesis. Note that the subscripts of the T's are reduced mod n first
before being applied to the T's (and then reduced mod n+1!). Since 1 <r<n-1,r+1#0,1
mod n + 1, so by Lemma [3.17]

bri1—dns1tre1 til = tgh bri1—dns1 - tre1

— —
dn terms dn terms

It follows that

tae1 11 Sr—(de1) (1)1 Sr = tantbgiy tratmdne1 trat broastatotito-ty,
—_—

(d+1)(n—1)terms dn terms
= lrsl-dn+1 tre e tntotita iy,

(S —
dn terms

with (d+1)n terms in total, as required, noting that r+1-dn+1 = r—(d+1)n+1 mod n+1. O

We have the following generalization of [GMI1T7, Lem. 2.4].

Lemma 3.19. Let d be a positive integer and n > 3 be an integer. Let go,91,...,9,-1 be
elements of a group GG, with subscripts taken modulo n, satisfying the relations:
9i9i+19i = 9i+19igiv1, 0<1<n—1
Gi9; = 9j9:,0<i,j<n-1,74#4,i+1 mod n.
Then

(a) 97190 Gisn—2 = giGisn-2g; ', for 1 <i <.
(b) 971 (9091 G(n-1ya-1) = 9091'"g(nf1)d719(£,1)d+1
(c) If the relation
9rGr+1""G(n-1)d+r-1 = Gr+19r+2°"G((n-1)d+r (3)
holds for some 7 € {0,1,...,n -1}, then it holds for all r.
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Proof. For (a), we have:
97195 9ie1Giv2  Givn-2 = GiGis10;  Giva- Gisn—2
= 9iGis1 Gisn-20i s
as required, using commutations in the second step. For part (b), we have:
gl_l(gogl"'g(n—l)d—l) = QII(90"'gn—z)(gn—r“92n—3)'“9(d—1)(n-1)'"g(n-1)d—1)
= (90“'gn—2)(gn—1“'g2n—3)"'(g(d—1)(n—1)..-g(n,1)d,1))91—d7
using part (a) d times. Finally, note that 1 -d = (n-1)d+ 1 mod n. For part (c), assume
first that equation holds for r =0, so that

gogi-"g(n-1)d+r-1 = 9192 ""9((n-1)d-

1

Multiplying this on the left by gi* and on the right by g(,-1ya«1 gives

gog1-"9(n-1)d-1 = 9293°"g(n-1)d+1»
by part (b). Repeated application of this argument gives the desired result. O

Lemma 3.20. Let n > 3 be an integer. Let @ be the quiver on the left of Figure [1§(a)
and @' the quiver on the right. Let G¢ (respectively G¢/) be the group with generators s;
(respectively t;), with ¢ ranging through the vertices of the quivers, satisfying the relations
associated with @ (respectively Q’). Then, there is a group homomorphism

9082 : Gg — Gg given by goOQ(sl) = S| = totaty?, 9082(36) =S, = totty, gpgg(si) =S;=t;fori+1,c.

Proof. The defining relations for G, apart from those corresponding to the n-cycle 1 - 2 —
-« —>n — 1, hold by Lemma [3.16]

The defining relations for G/ corresponding to the n + 1-cycle 0 -1 - -+ > n+1 - 0 can
be written in the form:

br—nds1tr-1tr = try1-par1-trtren,

dn terms dn terms
for 0 <r<n.

The defining relations for G corresponding to the n-cycle 1 - 2 - --- - n — 1 can be written
in the form:

(Sr—d(n—1)+1"'Sr—1Sr) = (Sr+1—d(n—1)+1'"SrSr+1)a

d(n-1) terms d(n-1) terms

for1<r<n.

The cycle relations for G¢ for 1 <r <n -1 now follow from Lemma [3.18] The cycle relation
for r = n follows from Lemma [3.19(c), taking go = S1, g2 = S2, ..., gn-1 = Sy This gives the
required result. ([l

Lemma 3.21. Let n =2. Let () be the quiver on the left of Figure (b) and ()’ the quiver
on the right. Let Gg (respectively G¢r) be the group with generators s; (respectively ¢;),
with ¢ ranging through the vertices of the quivers, satisfying the relations associated with @)
(respectively @'). Then, there is a group homomorphism

cp(? : Gg — Gg given by goOQ(sl) = S| =ttty go(?(sc) = S, = totety?, goOQ(si) =S;=t;fori+1,c.
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Proof. The defining relations for G, apart from those corresponding to the 3-cycle 0 - 2 —
1 - 0, the 4-cycle 0 > 2 - a - 1 - 0, the double edges and the unoriented edge labelled d
in @, all hold by Lemma [3.16

We have titot = totity, which gives:
Sy1515082551518) = S2551.515Ss.

Multiplying on the left by Sy gives
5150525515150 = 50592551.51.5Ss.

Applying the braid relations corresponding to the arrows 1 - 0 and 0 - 2 in ) we obtain:
515052518051t = 5515752515055,

and hence, multiplying on the left by S; and on the right by Si:

525150925150 = 5052515052571,

which is the relation associated to the double edge incident with 0 in Q.

The relation associated to the double edge incident with the vertex a in @ is:
SaSlSQSasng = SlsgSasngSa. (4)

We apply transformations to to give a series of equivalent versions. Firstly, is equiv-
alent to

tatotity tatatotity ta = tot1ty tatalotity taty
Applying the commutation t,ty = tot, and the braid relation corresponding to the arrow
0 - 11in @' on both sides gives

totatito ot t T ot 1ts = totity tat oty tot1tats.
We multiply on the left by ¢7'¢y to obtain:

1 ity ot t ot te = Ty tataty ot itat,.
Since tot, t1ty = tytitat,, we may substitute in
titot, =t totatits
on the right-hand side, while on the left-hand side we apply the braid relation for the arrow
3—1in Q' to get:
tat1t, o tat ot ot ats = to ot ety ot ot ot L.
Multiplying on the right by ¢;'¢;! and on the left by ¢, gives:
totatity, ty tataty to = tataty tot, toty.

Applying the commutation tyt, = t,to twice on the left hand side, and multiplying on the
right by ¢, gives:
tatotito t, ot oty o = tat oty ot oty

We apply the braid relation corresponding to the arrow 2 — 3 in )’ to obtain:
tatotito t, tatat M o = tataty  totatats

and, multiplying on the right by ¢, we obtain:
tatotity t, Hataty ots = totat totat,.

Applying the braid relations corresponding to the arrows 0 — 1 and 2 — a in Q' gives:
tot1 ot 1tataty 7 oty = totty totat,.
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Since tot,tits = tatitat,, we may substitute in
titotty ! = 1 oty
on the left-hand side to obtain:
taty tot; ot gtots = tot 7 totot,.
Applying the commutation tgt, = t,to on the left hand side twice, we obtain:
tot Mt otatotats = tataty totaty.
Applying the braid relation corresponding to the arrow a — 1 in Q' gives:
t7 ;i totatotots = totaty Hotat,.
Multiplying on the left by t,t; gives:
titotatotats = tatitataty totat,.
Since t,tqtat, = titat,t, we may substitute in tatthtatil = tlot, on the right to get:
titotatotats = titatatotat,.
Applying the braid relation corresponding to the arrow 2 — 0 in @’ on the left-hand side,
we obtain:
titatotatats = titatatotata.
Multiplying both sides on the left by t;1¢;! gives
totatalo = tatotot,.
Since this final equivalent version holds, we see that holds, as desired.

Next we check the two relations associated to the 4-cycle 0 - 2 - a - 1 - 0 in ). Since
tatltgta = tltgtatl, we have:

S,5518150558, = S5t51505995.55151Sp.
Multiplying on the left by Sy and applying the commutation SyS, = 5,5y gives:
S,515089S5, = 5150525,5515150.
Applying the braid relation associated to the arrow 1 - 0 in () gives:
S,515052S5, = 5150525,51 5051
Then, multiplying on the right by S; gives:
55150525451 = 515052545150,
which is one of the relations associated to the 4-cycle in Q).
Since tot,t1ts = tat1tat, we have, multiplying on the left by t5t, that:
tatotatatits = tatotatitat,.
Applying the braid relation corresponding to the arrow 2 - 0 in Q' gives:
totatotatrts = tototatitat,.
Applying the commutation tyt, = t,to on the right hand side gives:
totatatotits = totatotitots.
We insert the product ¢5'¢y in two places to obtain:

totatatotity tots = tatatotity totata,
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which can be rewritten as:
S05290515052 = 525451505254
which is the other relation associated to the 4-cycle in Q).
One of the relations corresponding to the 3-cycle 1 2 -0 —1in )’ is
lilo--tag = lols - tad+1-
By Lemma [3.18] taking r = 1,2, we have
tatg—1--t151-d+1--S0S1 = ti—aas1--tola

and
tatg-1--t152-as1°-S152 = ta sas1--tits.
SO
S1-ds1+5051 = Sa-gs1+5152,
which can be rewritten as
515554 = S3S5Saen
(switching the two sides of the equality if d is even). This is the remaining required defining
relation of G (corresponding to the unoriented edge labelled d in @)). Hence all the defining
relations of G hold, and the result is shown. ([l

We consider the following setup:

Setup 3.22. Let Q be the quiver on the right of Figure [I8|a) (respectively, the quiver on
the right of Figure [1§|(b)) for n > 3 (respectively, for n = 2) and let @’ be the quiver on the
left in each case. Let Hg be the group defined in Definition , with generators s;, and let
Hg be the group defined in Definition , with generators t;. Let S, = tot,tg', Sy = totsty,
and S; = t; for © #+ n,b. We regard the subscripts of the s; and S; for 0 <7 < n to be taken
modulo n + 1 (with representatives {0,1,2...,n}), and the subscripts of the ¢; for 1 <i<n
to be taken modulo n (with representatives {1,2,...,n}).

We note the following:

Lemma 3.23. Let n > 2 be an integer. In Setup the elements S; satisfy the defining
relations of Hy.

Proof. For n > 3, this follows from Proposition |3.13

For n = 2, the braid and commutation relations and the relations for the 3-cycles all hold
by Proposition [3.13] except for the relation for arrow from 1 to 2 and the relations for the
3-cycle2>a—-1-2.

The relation for the double edge incident with 0 in @)’ is:
totat1totaty = tat1totatily.
Substituting, this gives
S0S551.558051 50551525051 = Sy15250515055 1555051 S0,

which simplifies to
S0525051525051 = 5250515250515
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Using the braid relations for the arrows 0 - 2 and 1 — 0 in Q:
S50525051525051 = 5250515250150
gives:
525052:51.525051 = 5250515251 50571,
which, after cancelling elements on the left and right, gives

525155 = 51525.

There are two relations for the 4-cycle on vertices 2, a, 1 and 0 in @’. One of these is:
lotatatitots = latalitotata,

which gives
5055152505a51505515250 = 36152505a515056132505a,
and hence

5052505515250 = 5250525152505
Applying the braid relation for the arrow 2 — 0 in ) and the commutation SyS, = 5,5y gives

5250525515250 = 5250545152550
Applying cancellations on the left and right gives

59505152 = 5451525,
By [GM17, Lem. 2.4], we conclude that
52545152 = 5251525, = 51525451,

giving the result for n = 2. U
Lemma 3.24. In Setup [3.22] let d > 1 be an integer. We have:

()
(b)

Si_lsi+2"'si+n+1 = Si+2"'Si+n+ISz‘_—11;
S H(S189+-Sna) = (S1++-Sna) S5ty

Proof. We use Lemma throughout. For (a), we have:
SZ‘_ISi+QSz’+3"'Si+n+1 = Si+25i+3'"Si+n—15i_15i+nsi+n+l
= Si+2Si3Sisn-15inSirn+1 Sioms

as required, using commutations in the first step and noting that i+n+1=7andi+n=1-1
mod n + 1. For part (b), note that

S1-+Sna = (818, ) (Snr1--San)-(Sa-Saan—1),
and use part (a) d times. O
Lemma 3.25. In Setup [3.22] let d > 1 be an integer. Then, for any 1 <r < n, we have:
(trtrertagm-1)+r-1) (SnSn-1--Sn-as1) = SpSre1-Srind-1

~—

d(n—-1) terms d terms dn terms
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Proof. We prove the result by induction on d, using Lemma throughout. For d =1,
we have tqty--t,, 15, = S152:-S,. For r > 2, we have (recalling that subscripts of the t; are
written modulo n):

trtri1tran-2Sn = Lo tnitptite - trin o nSn
= (S,5,-1)(S518,50) (51955, _2) Sn
= (S,5,-1)(5,505:1) (51855, _2) Sn
= (S,+50-1)SnSo(S1-+S,-2) S 1S,
and we see that the result holds for d = 1.

Assume the result holds for an integer d > 1. Then, using the induction hypothesis,
(t1t2"'t(d+1)(n—1))(SnSn—l"'Sn—(d+1)—1) = (tth s tn—l) (tntn+l"'t(d+1)(n—1))((SnSn—l"'Sn—d+l)Sn—d

~~

(d+1)(n-1) terms d+1 terms d(n—1) terms d terms
= (t1t2"'tn—1) (Sn5n+1"'sn+nd—1) Sn—d

nd terms

= Sl SZ' : 'Sn+nd—1Sn+dn7

noting that n —d = n+dn modn + 1. We also have, for 2 < r < n, using the inductive
hypothesis in the second step:

(trtrar - tids1)(n-1)+r-1) (SnSn-1--Sn-(d+1)+1)

(d+1)(n-1) terms d+1 terms
= (trtrertrin—2) (tren-1tron = t(@r1)(n-1)+r-1) (SnSn-1-Sn-d+1) Sn-d
n—1 terms d(n-1) terms d terms
= (trtrsrtren—2) (tratrtro1vd(n-1)-1) (SnSn-1""Sn-d+1) Sn-d
n -1 terms d(n - 1) terms d terms
= (trtpsrtrin-2) (Sr15r-Sr_14nd-1) Sn-d
n -1 terms dn terms
= (51 Spa1+-Sn-1) 5515050 (S192-+-Sr-2) (Sr-15r++-Snasr-2) Sn-d
T artems r~2 torms dn terms
= (S, Srs1Sn-1) S80Syt (5152++San) (San+1San+2:+San+r-2) Sn-d
S e—— dn torms r—2 torms
= (5,Sp41+5n-1) SnS0S;" (S1.82-+-San) (San+1San+2-Sansr—2) Sn-d
[—— dn terms r -2 terms
= (5,Sr41-Sn-1) SnSo (S152:-San) S;tq (San+1San+2-*San+r—2) Sn-d
n—r terms dn terms r -2 terms

as required, using Lemma in the last but one step. Note that dn+i = n—-d+:+1 mod n+1
for 1<i<r-2,so0 S, commutes with S,q.1 = Sp_di2, Snar2 = Sn-dsss - - - » Snder—2 = Sn-dar-1,
giving the required result for d+ 1, since 2 <r <n. The result follows by induction on d. U

Lemma 3.26. Let n > 3 be an integer. Let @ be the quiver on the right of Figure [18|a)
and ()’ the quiver on the left. Let G¢ (respectively G¢ ) be the group with generators s;
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(respectively ¢;)with ¢ ranging through the vertices of the quivers, satisfying the relations
associated with @ (respectively Q). Then, there is a group homomorphism, gp(? :Gg - G
given by:

0 (50) = S = totuts", F (s5) = Sy = totoly", 05 (s;) = S = t; for i # n, b,
Proof. The defining relations for G, apart from the relations corresponding to the (n +1)-

cycle 0 -1 — -+ - n -0, hold by Lemma [3.23, The relations for G¢s corresponding to the
n-cycle 1 -2 - -+ ->n -1 are:

(trtr+1' : 'td(n—1)+r—1) = (tr+1tr+2' : 'td(n—1)+7") )

d(n-1) terms d(n-1) terms

for 1 <r <n. The relations for G¢ corresponding to the (n+1)-cycle 0 > 1 —» -+ >n+1-0
are:

SrSr+1' : 'Sr+nd—1 = Sr+ls'r+2' : 'Sdn+7’7

~~

dn terms dn terms
for 0 <r <n. For 1 <r <n-1, these relations now follow from Lemma [3.25] The relations
for r =0 and r = n follow from Lemma [3.19) applied to go = So, g1 =51, -+, gn = Sn. O

Lemma 3.27. Let n = 2. Let @) be the quiver on the right of Figure (b) and )’ the quiver
on the left. Let Gg (respectively G¢) be the group with generators s; (respectively ¢;),
with ¢ ranging through the vertices of the quivers, satisfying the relations associated with @)
(respectively @'). Then, there is a group homomorphism, ngQ : Gg — G given by:

gooQ(sn) =S, = totnty", go(?(sb) = Sy = totyty’, QOOQ(SZ') =S;=t; fori+n,b.

Proof. The defining relations for G, apart from the relations corresponding to the 3-cycle
0—-1-2-0, hold by Lemma [3.23]

The relations for the G corresponding to the unoriented edge in )" between vertices 1 and
2 labelled d are
lity-tq = tatz--ta1
By Lemma [3.25] taking r = 1,2, we have
(titg-ta)(S251-+-Sa—ar1) = S152--S2q
and
(tatgtae1)(S2S1+-Sa—as1) = 5295 Sade1,
giving
5159594 = 525352441,
which is one of the cycle relations for the 3-cycle 0 - 1 - 2 — 0 in ). The other cycle

relations for this cycle follow from Lemma [3.19] taking go = Sp, g1 = S1 and g2 = S5. Hence
all the defining relations for G¢ hold. 0

Lemma 3.28. Let () be the quiver on the left of Figure and @)’ the quiver on the
right. Let Gg (respectively G¢) be the group with generators s; (respectively ¢;) with
0 <4 <5 satisfying the relations associated with @) (respectively @)'). Then, there is a group
homomorphism:

07 : Gg — G given by ©F(s0) = So = tatots", ¥F (s2) = Sz = tataty”,

QD4Q(S5) = S5 = t4t5t11, g04Q(Sz) = Sz = tz fOl" Z = ].,3,4.
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FIGURE 19. A mutation near the cone point.

Proof. In order to check that gof is well-defined, it is enough to prove that the elements .5;,
for 0 <4 <5, satisfy the defining relations of Gg.

All the braid and commutation relations for G, as well as the cycle relations:
54515054 = 51505451 = 50545150,
51515254 = 51525451 = 525451 5%,
54535554 = 53555153 = 55515355,
hold by Proposition [3.13] Moreover, the relation
tatolato - = tolatole

—_——— e —
d terms d terms

implies that
S;155548,150548,152548,1 S5y ++Sy = 571805457 1955455 15054551555,y

3d terms 3d terms

Since 5,51 is the identity, we can cancel the d—1 occurrences of this product on both sides,
reducing the number of terms to 3d — (2d - 2) = d + 2 on both sides. Finally, since the two
sides start and end with the same element, these can be cancelled to obtain

52505250+ = S0525052+- .

d terms d terms

The double edge relation at vertex 4 in Q' is:
totolatatols = tatatolatato.
This, together with the definition of the S;’s, implies that
S;152548,15054545,155545,15054S = S4571595545;15054545, 152545150y

Multiplying both sides by S, on the left and by S;* on the right and cancelling the occurrences
of S5, we obtain 595054555054 = S15250515250. It only remains to show the double edge
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relation at vertex 1 holds. Using the definition of the S;’s and the defining relations of Gy,
we have

S550515250S] = tatat Ptatoty titatat atot ty = tatototitaty tatot,
= tytitototatatot ity ) = tatitatotatatot sty s
= tytitatatotatatol; ity = titat tatotatatoty s
= titgtototitat otot st = titatatoty titatototy
= titataty tatoty titatoty tatots! = 5155505159550,
where the underlined relation is the relation for the double edge at vertex 4 in ), while all the

other equalities follow from braid relations, commutations or multiplying by, or simplifying,
the identity ¢;'t;. Hence all the defining relations of G¢ hold. O

Lemma 3.29. Let () be the quiver on the right of Figure and ()’ the quiver on the
left. Let G (respectively Ggr) be the group with generators s; (respectively ¢;) with 0 <
i < 5 satisfying the relations associated with @ (respectively @’). Then, there is a group
homomorphism

gaf :Gg — Gg given by gof(sl) = S1 = tytaty gof(sg) = S5 = tytsty gof(si) =S;=t; fori+1,3.

Proof. In order to check that ¢, is well-defined, it is enough to prove that the elements 5;,
for 0 <i <5, satisfy the defining relations of G.

First note that the relations
595054525054 = 545250545250, SoSa--- = 5250

d terms d terms

trivially follow from the corresponding relations for ). Moreover, all the braid and commu-
tation relations for (), as well as the cycle relations

51545551 = 54555154 = 55515455,
52535452 = 53545253 = 52525354,
30533450 = 53843051 = 54505184

hold by Proposition It only remains to show the second double edge relation holds.
Using the definition of the elements S; and the defining relations of G, we have

5550535259053 = tototatsty tatotatsty = totots tatstatotatsty’ = t3 tototatototstatsty!
= t3 tototatototatstaty s = t3' tatototatatots = taty  t3 tatatotatstaty
= tytat 3 ot ot atstoto = tatsty totots tatstaty = tatsty tototatsty oty
= 535250535250,

where the underlined relation is the relation for the double edge at vertex 4 in ', while all the
other equalities follow from braid relations, commutations or multiplying by, or simplifying,
the identity ¢;¢;!. Hence all the defining relations of G hold as required. O

Lemma 3.30. Let d > 1 be an integer and let G' be a group containing elements a, b satisfying
ab--- = ab--- . (5)

—— ——
d terms  d terms



36 FRANCESCA FEDELE AND BETHANY ROSE MARSH

]
P
- 7 1
- . I
e [ § I
3,7 // 0 !
/
M2 Y] 4 /
- ’ 4 /
’ / /
/ /
/ d /
/ ’
/ /I /
/ , 4
/ , e
| L e
! 2 -1
I A -
I e -7
‘:i——’/

F1GURE 20. Mutation of a tagged to an untagged arc and viceversa, case 1.

Then the elements A = a and B = aba™! satisfy the same relation:
AB-- = AB--- .

—_——  —\—
d terms d terms

Proof. By relation , we have
A'BAAATBAA A= AATBAAATAB A,

3-[d/2] +|d/2] terms 3-|d/2] +[d/2] terms

where for a real number r, |r| (respectively [r]) is the largest (respectively smallest) integer
at most (respectively at least) equal to r. Cancelling the occurrences of AA~!, on the left
hand side we cancel 2- ([d/2] - 1) terms, while on the right hand side we cancel 2 -|d/2]
terms. Hence we have d + 2 terms on the left hand side and d terms on the right hand side.
Since the last term on both sides is A, we can cancel it. Moreover, multiplying both sides
by A on the left and simplifying the left hand side, we obtain

BA.--- = AB’
d terms d terms

as required. O

Lemma 3.31. Let () be the quiver on the left of Figure and Q' the quiver on the
right. Let Gg (respectively G¢/) be the group with generators s; (respectively ¢;) with
0 < i < 3 satisfying the relations associated with @ (respectively @'). Then there is a group
homomorphism as follows:

gon :Gg — G defined as goQQ(sl) = S| = totyty ", gon(ti) =S;=T; fori=0,2,3.

Proof. In order to check that gp? is well-defined, it is enough to prove that the elements .5;,
for 0 <4 < 3, satisfy the defining relations of Gg.

The relations SoSgSo = SgSoSg, 525083525053 = 535280535250 and

S()SQ"‘ = SQS()“‘
N~ Y~
d terms d terms

trivially follow from the corresponding defining relations of G¢. Moreover, the relations
525359 = 535953, 515351 = 535153, 52515, = 515251 and 57525551 = 52535152 = 53515255
hold by Proposition [3.13]
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The relation for the double edge at 1 in @':
totatitotat: = titotatitots
implies that
S0825575155505285 75152 = S5151525082557515250S2 <= 525051525051 = 5152505155,
that is the double edge relation corresponding to vertex 1 in ).
The braid relation titgt; = tot1to together with the relations proved above imply that
5151558055518 = 55551815250 <= 5152505192571 = 5580515257 1Sy
> 5755519250515, ' S1 ' = 559551925 ' So
= 51551 = 50515.

The relation tottgtstaty = tstat totsts together with the relations proved above imply
52857515250535255 7515 = 535285 75152809382 <= 5152505351 = 5351525055
— 515555505955, S1 = Fr575551.55" 5053
<~ 53:1508331 = 515053561
= 50535150 = 53515053.

By [GM17, Lem. 2.4], we conclude that Sy535150 = 53515053 = S1505351. Hence all the
defining relations of G hold, as required. O

Lemma 3.32. Let ) be the quiver on the right of Figure and @' the quiver on the
left. Let G¢ (respectively G¢) be the group with generators s; (respectively ¢;) with 0 <
i < 3 satisfying the relations associated with @) (respectively @’). Then there is a group
homomorphism as follows:

09 : Gy — G defined as 9 (s3) = S5 = tatsts", 3 (s0) = So = tatots", @5 (s;) = t; for i=1,2.

Proof. In order to check that go? is well-defined, it is enough to prove that the elements .S;,
for 0 <7 < 3, satisfy the defining relations of Gy.

The relations 525352 = 538253, 525152 = 515251 and 5153 = 5351 hold by PI‘OpOSitiOH m,
while

S()SQ"' = 525'0... .
—_———  ~——
d terms d terms

holds by Lemma |3.30l The relation tstots = totsty implies that

S315555851505285 1552 = S5'50.52851535285 150 S

Since the first and last term are equal on the two sides, we can cancel them and obtain
535053 = 505350. The relation totgt tatots = titatotitaty for the double edge at 1 in )" implies

that
92557505519255 750551 = 5152557505251 5255 7Sy S

So the relation for the double edge at 1 in @
505251505251 = 515052515052
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follows after cancellations. The relation totgtstatots = tstatotstaty for the double edge at 3 in
@' implies that

828575052857 53.55.5285 150825515552 = 531555552851 505285 153925255 T Sy S

Multiplying both sides by S on the left and by S;! on the right and simplifying, the relation
for the double edge at 3 in Q:

595053555053 = 555950535550
follows.

Using one of the braid relations from the left diagram and the relations found above, we
have that

tltotl Ztotlto <~ 51551508251 = 5518032515£1S052 <~ SfISQSlso;S’QSl = 805{152515052
— 53518059251 = 51505711.525150S, <= Sy S1Sy5FETSTSs = 515057 5555655
<~ 815051 = 505150,

where the underlined relation follows from the double edge relation at vertex 1 in Q).

The last two relations left to prove correspond to the 4-cycle around the cone point in Q).
The relation tltotgtl = totgtlto = tgtltotg 1mphes that

155 50.52851535251 = S51505255 7555251551 5052 = 85153555155 150S5255 1S5S

Using the relations already proved, we see that the equality of the first and third expressions
above is true if and only if

5515518055555 = S5571555150535 <= S7155515055525 = S71535551.505355
= 525150535251 = 535251505352.

Similarly, the equality of the second and third expressions above is true if and only if
505557155515y = 5357152515055 <= 5150575352515y = 5352515053
<« 5515150535251 S0 = 9552515053
<—> 515053525150 = 505352515055.

Hence all the relations corresponding to the quiver () hold, as required. ([l
-t
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FIGURE 21. Mutation of a tagged to an untagged arc and viceversa, case 2.
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Lemma 3.33. Let () be the quiver on the left of Figure and @' the quiver on the
right. Let Gg (respectively Gg/) be the group with generators s; (respectively ¢;) with
0 < i < 3 satisfying the relations associated with @ (respectively @'). Then there is a group
homomorphism: gp? : G = G defined as:

(,DQQ(Sl) = Sl = t2t1t517 (,DQQ(S()) = S() = t2t0t517 (,DQQ(SZ) = Sz = tz fOI' Z = 2,3

Proof. In order to check that gp? is well-defined, it is enough to prove that the elements S;,
for 0 <4 < 3, satisfy the defining relations of Gg. The relations 52535, = 535553, 515351 =
538133, 325182 = 813251 and 51823351 = 52535152 = 83515253 hold by Pl"OpOSitiOIl m,

while the relation

SZSO"' = 5'052...
—_— Y
d terms d terms

holds by Lemma |3.30, The relation titot; = totitp implies that

S31515585 750528515192 = 851505255 7515285 7Sy Ss.

Since the first and last term are equal on the two sides, we can cancel them and obtain

5150571 = 50515p. The relation for the double edge at 1 in ()’
totgtltotgtl = tltotgtltotg
implies that
3150525255 7515255 7505552857515 = S71.5152877.5052.9255 7518255750525
<~ S[)SQSlSoSQSl = 515052515052,
that is the double edge relation corresponding to vertex 1 in (). Similarly, the relation for
the double edge at 3 in Q"
tototstalols = t3lalolstaty
implies that
So85"505295.9255 1509553 = 5382855095 535255 5052 <= 505253505295 = 55095535055,
that is the double edge relation corresponding to vertex 3 in ). Using the defining relations
of (), we have that

S0S3S0 = tatoty tatatoty' = tototstatotsts ty ts tots "
= tatototstotety ts tatols' = tatatoty tatat; = S3505s.

The relation ot tgtstat; = tatatitotsts, together with the relations proved above, implies that

82857519255 75052 53528575155 = 5392557515255 7552.53.5

<~ 518052535152 = 538150525352
> 515053515753 = 5351505935753

By [GMI17, Lem. 2.4|, we conclude that 57505351 = 53515053 = S0535150. Hence all the
defining relations of Gg hold, as required. U
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Lemma 3.34. Let () be the quiver on the right of Figure and @' the quiver on the
left. Let Gg (respectively G¢) be the group with generators s; (respectively ¢;) with 0 <
i < 3 satisfying the relations associated with @) (respectively @’). Then there is a group
homomorphism as follows:

cpg : Gg = G defined as <p§9(53) = S3 = totsty?, @?(Si) =S;=t; fori=0,1,2.

Proof. In order to check that gp? is well-defined, it is enough to prove that the elements .S;,
for 0 <7 < 3, satisfy the defining relations of Gy.

The relation 575051 = S0S515p trivially follows from the relation t1tgt, = tot1to. The relations
525352 = 535253, 525152 = 515251 and 5155 = 5351 hold by Proposition 313, while the

relation

825'0... = SOSQ"' .
—_——  —
d terms d terms

is trivial to check. The relation 575551505251 = 515052515052 for the double edge at 1
follows trivially from the corresponding relation for ). Moreover, the relation tgtotstotats =
tstotatstots for the double edge at 3 in ()’ implies that

50%535280%8352 = 52‘1535250%53825052 > 525053595055 = 555250535250,
that is, the relation for the double edge in @) follows.

Using the relations found above, we have that

totsto = tatots <= SpS5'5555S50 = 5515552505515y = 555515955550 = S515955250555955*
= 51551555,50 = 505955250535, S5t = 5355505550 = 5253525053
> 5353505350 = 5353535053 = 505350 = 535053,

where the underlined relation follows from the double edge relation at vertex 3 in ). The
last two relations left to prove correspond to the 4-cycle around the cone point in (). The
relation tltotgtl = totgtlto = tgtltotg 1mphes that

5180551535251 = 5085133525150 = 551533251805515352.

Using the relations already proved, we see that the equality of the first two expressions above
is true if and only if

5150535255151 = 50535253_15150 <~ 5150535251551 = 5053525155150
= 5150535251 = 50535251505’3561
<~ 515053525150 = 505352515053.

Similarly, the equality of the first and third expression above is true if and only if
5551505395551 51 = 5555515053955 = 5551505559251 55" = 9555515)555,55"
= 555150535251 = 555251505355.
Hence all the defining relations for @) hold, as required. O

Remark 3.35. Flipping all of the tags in Figure Figure [20] or 21] does not affect the
corresponding quivers or groups, so it follows that Lemmas [3.20], [3.26], [3.21], [3.27, [3.31], [3.32]
.33 and [3.34] hold for these cases too.
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Proof of Theorem[3.19. Let T be a tagged triangulation of S, and Qr the associated quiver
as in Definition . Let G, be the associated group as in Definition with generators
s;. Let a be an arc in T" and k the corresponding vertex of ). Let 7" be the tagged
triangulation obtained by ﬂipping T at «a, so that Q7 = ux(Q) is the mutation of @ at k as
in Definition [3.9] by Lemma (b) By Lemma [3.11](a), the flip of « is given locally by one
of the mutations in Figures (17| . or [21] ( frorn left to right or right to left), or by one
of the mutations from Flgure . . or . 21] with all of the tags ﬂlpped

It follows from Lemmas |3.1 20| [3 28 [3 3.33] [3.34] and
Remark |3.35| that there are group homomorphlsms gpk : GQ - GQ/ and gok : GQ/ - Go.

Note that arcs appearing on the boundary in each figure could be on the actual boundary
of S. Each defining relation in Gg to be checked involves a certain collection of unmutated
vertices, plus possibly the mutated vertex. It is easy to check that, in each case, the proof
that this relation holds involves relations involving only the same collection of vertices. If we
consider the same situation where one of the vertices corresponds to an arc on the boundary
of S, the corresponding relation does not appear and therefore does not need to be shown. It
follows that the corresponding results hold in the situation where some or all of the dashed
diagonals on the boundary of the figure are on the boundary of the disk.

It is easy to check in each case that gpglgpg(si) = s,;lsis,k for all 7, so gog/gog is an isomorphism.
By the same argument, the other composition @Sgpf is also an isomorphism, and hence so
o A9

is 7. U

Theorem 3.36. Let T be any tagged triangulation of (X, M), and Qr the associated quiver.
Then G, is isomorphic to the braid group B(d,d,n), and thus gives a presentation for
B(d,d,n).

Proof. There is a tagged triangulation of (X, M) for which the corresponding group G, is the
presentation of B(d,d,n) from [BMRIS|, Thm. 2.27] (see Figure[L2)). The result follows from
combining this with Theorem [3.12] and the fact that there is a sequence of flips connecting
any two tagged triangulations of (X, M) by [FSTOS, Prop. 7.10]. O

4. GEOMETRIC INTERPRETATION OF THE NEW PRESENTATIONS

We work with the same surface (X, M) as in the previous section: X is the disk S with
an interior marked point, interpreted as a cone point of degree d > 2, and M a set of n > 2
marked points on the boundary of X. In Section [3.1] we defined a way to associate a quiver
Qr to any tagged triangulation 7" of (X, M) and a group Gg,. As in [GMI17, Defn 3.1}, we
associate another graph to T as follows.

Definition 4.1. Let T" be a tagged triangulation of (X, M). We define the braid graph
Dy of T to be the geometric dual of T regarded as a graph embedded in the disk. Thus
Dt has a vertex in each connected component of the complement of 7" and, whenever two
connected components share an edge of T, there is a corresponding edge in Dy between
the two corresponding vertices. Note that, in general, D can have multiple edges between
vertices.

If we regard T as a graph embedded in the plane, then Dy is the geometric dual in the plane
with the vertex corresponding to the external face removed. Note that this geometric dual
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is isomorphic to the combinatorial dual of 7' by [Whi32l Theorem 30] (see also [Har69l §11,
page 115]), since T is a non-separable graph, so Dy also is well-defined as an abstract graph.

Moreover, note that the interior of X is isomorphic as an orbifold to Oy := C/Cy and hence
we identify the two orbifolds in our arguments.

Given a set of n vertices V in O, that is Oy minus the cone point, one can define the
corresponding braid group Z,(O4) (denoted I'(Oy, V') in [GMI17]). Each element of Z,(0,),
also called braid, can be regarded as a permutation g of V' together with a tuple vy = (7 )vev
of paths v, : [0,1] = OF with 7, (0) = v and 7,(1) = g(v) for each v € V and, for each ¢ € [0,1],
the points v, (t) for v e V are all distinct for all v e V. See [AlI02] and [GMI17, Section 3] for
further details. Moreover, each path 7w in O with endpoints in V' determines a braid o, in

Zn(04) (see e.g. [GM17, Defn 3.3]).

Let T be a tagged triangulation of (X, M), and note that this is a collection of n (tagged)
arcs. Each (tagged) arc «; in T' corresponds to a vertex i in the quiver Q7 and to an edge m;
in the braid graph Dr. Following the same notation as [GMI7], we let o, := o, denote the
corresponding braid in Z,(04) and Br be the subgroup of Z,(0,) generated by the braids
0;, for ¢ vertex in Q7.

Proposition 4.2. Let T} be the triangulation of (X, M) shown in Figure Then there is an
isomorphism from Br, to Gg,, taking the braid o; to the generator s; of G, . Furthermore,
the subgroup By, is a subgroup of Z,,(0y) of index d.

Proof. Note that, via an isomorphism of the kind in [GMI17, Remark 3.2], the element
o; coincides with h;! for 1 < i < n, for the braids h; in Z,(0,) illustrated in Figure |§]
Hence, Br, coincides with the subgroup of Z,,(0;) generated by the h; and the map g from
Proposition gives an isomorphism from B(d,d,n) to Br, taking 75 to hy and 7; to h; for

2 <i <n. By Proposition Br, is a subgroup of Z,(0y4) of index d.

Since reversing the defining relations of B(d,d,n) gives the same relations with 7 and 7,
exchanged, there is an isomorphism from B(d, d,n) to By, taking 75 to hi! = 01, 75 to hy! = 09
and 7; to h; = 0; for 3 <7 <n. By Remark there is an isomorphism GQTO ~ B(d,d,n)
(with the presentation from [BMRIg|) taking s; to 72, so to 75 and s; to 7; for 3 <i<n. The
composition of these two isomorphisms gives the required isomorphism. 0

Before stating and proving our final result, we recall a result from [Ser93, Théoreme, part(iv)],
see also [GM17, Lemma 3.5].

Lemma 4.3. Let A, B, C' be three distinct points in O and suppose there is a topological
disk in O with A, B, C lying in order clockwise around its boundary. Let AB denote the
arc on its boundary between A and B, and define BC' and C'A similarly. Then ocs4popc =

OBCOCA-

Definition 4.4. Let T be a tagged triangulation of (X, M). Suppose that there is an arrow
1 = k in Q7. Then there are vertices X;, Y; and Z; and edges X,;Y; and Y;Z; in Dy such that
0; = 0x,y, and o} = 0y, z,. We say that an embedding of Dy into (X, M) is good at k if, for
every such 7, the vertices X;,Y; and Z; are in clockwise order.

Remark 4.5. Note that our convention for orienting the arrows of the quiver of a triangu-
lation is opposite to the convention used in [GM17]. However, the proof of [GMI17, Thm.
3.6] actually requires this opposite convention: then it goes through as stated (provided we
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FiGURE 22. Flip of an arc: type A situation.

regard k as the mutation vertex). For example, in the notation used there (see [GMI17, Fig.
6]), we have oz, = o7'oq01, while 75 = 0y as there is no arrow from 2 to 1 in the quiver
used there. Thus the claim that oz, = 7» does not hold, but this is resolved if the opposite
convention for orienting the quiver is adopted, as we do here.

Theorem 4.6. Let T be a tagged triangulation of (X, M). Then there is an isomorphism
from Br to Gg, taking the braid o; to the generator s; of Gg,. Furthermore, Br is a
subgroup of index d of Z,(Oy).

Proof. By Proposition the result holds for the triangulation 7" = Tj. Since any tagged
triangulation can be obtained by flipping T} a finite number of times, it is enough to show
that if the theorem holds for a tagged triangulation 7', then it also holds for the flip of T" at
any of its tagged arcs.

Assume that the result holds for a tagged triangulation 7', that is there is an isomorphism
Yr + Bp - G, sending the braid o; to the generator s;. Let the triangulation 7" be
obtained by flipping 7" at the arc «; and the generators of By and G, be denoted by 7;
and ¢; respectively. In the following arguments, we label the paths in O as the corresponding
braids in By and By, to avoid heavy notation.

Define 7; = a,;laiak. € Brifi - kin Q7 or the vertices ¢ and k correspond to the only two arcs
incident with the conepoint in 7" and the arc corresponding to k is rotated anti-clockwise
to the flipped arc; and 7; = 0; € Br otherwise. Note that Br is generated by the 7;, for ¢
running through the vertices of Qr.

The possible types of flips that can occur are given locally by one of the mutations in
Figures [17] [18] [19] [20] or 21] (from left to right or right to left), or by one of the mutations
from Figure [18] [20] or 21] with all of the tags flipped.

Consider first the flip in Figure [I7, that is a flip far from the cone point. The left hand
side of Figure 22 shows an embedding of Dy which is good at 5. Applying Lemma [£.3] the
middle figure shows the paths corresponding to the braids 7;. Rotating the vertices A and
B clockwise, we get the diagram on the right of Figure 22, where we used the isomorphism
L : By — Br given by 7; —» 7; from |[GMI7, Remark 3.2]. Consider the composition of
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isomorphisms @5 o 7 o ¢, where 5 is the isomorphism from Theorem 3.12} If i - 5 in Qr,
then

s 0Py o L(T;) = 5 0 Yr(05'0405) = 585 sis5) = 15 tstits s = L,
and otherwise

@5 0t 0 ¢(7i) = 5 0 Yr(0:) = p5(s;) =1
Hence we obtain an isomorphism By — GQ’T sending 7; to t; as required. A symmetric
argument works if we start with the triangulation on the right, with the shown embedding
of the dual graph good at 5, and flip it to the triangulation on the left of Figure [22]

For the flips in Figures [18] and [19] (from left to right or right to left or with all the tags
flipped), the result follows by arguments very similar to the above case, hence we omit the
details. Since flipping the tags does not affect the arguments, it only remains to show that
the result holds for the flips in Figures 20 and [21]

FIGURE 23. Mutation of a tagged to an untagged arc or vice versa, case 1.

Consider the flip in Figure with T" on the left. The left hand side of the top part of
Figure 23| shows an embedding of Dy which is good at 2. Applying Lemma the middle
figure shows the paths corresponding to the braids 7;. Note that, following the definition
of 7;, the only conjugated element is oy in this case as the mutated arc as is not rotated
anti-clockwise to the flipped arc and so oq is not conjugated. Rotating the vertices A and
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B clockwise about the cone point, we get the diagram on the right of Figure 23] where we
used the isomorphism By — Br given by 7; = 7; from [GMI17, Remark 3.2]. Composing this
with the isomorphism s o 97, where 5 is the isomorphism from Theorem [3.12] we obtain
an isomorphism By - G sending 7; to ¢; as required.

FIGURE 24. Mutation of a tagged to an untagged arc or viceversa, case 2.

Consider now the flip in Figure[21|with 7" on the left. The left hand side of the top of Figure
shows an embedding of the braid graph Dy which is good at 2. Applying Lemma [£.3] the
middle figure shows the paths corresponding to the braids 7;. Note that this time, the
conjugated elements are o1, as there is an arrow 1 — 2, and oy, as the mutated arc ay is
rotated anti-clockwise to the flipped arc and «y is also an arc at the cone point. Rotating
the vertices A and B (with A moving clockwise and B anti-clockwise around the cone point)
we obtain the diagram on the right of Figure [24] where we used the isomorphism Br — Br
given by 7; » 7; from [GM17, Remark 3.2]. Composing this with the isomorphism ¢s o ¥,
where ¢, is the isomorphism from Theorem , we obtain an isomorphism Brr — G,
sending 7; to ¢; as required. Note that not conjugating oy would result in a final braid 7
swirling around the conepoint. In the case d = 2, 7 is isotopic to the braid 7y and hence
conjugating oo or not does not make a difference, see [GM17, proof of Thm 3.6]. However,
for d > 2, 7] is not isotopic to the braid 7, appearing in By and hence it is necessary to
conjugate oy.
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Note that the right hand side diagrams in Figures [23| and [24] coincide. Consider this as T’
and mutate the red arc. There is now a choice on whether rotating this arc anti-clockwise,
see the bottom row of Figure [23], or clockwise, see the bottom row of Figure 24, The two
options correspond respectively to conjugating or not conjugating the braid corresponding
to vertex 0 in the associated quiver. Following arguments similar to the above two cases,
one can check that in both cases the result holds.

As the above covers all the possible mutations, and the theorem follows. 0

We now have the ingredients we need to complete Remark [3.7]

Remark 4.7. In the situation of Remark with d > 2, we have s;sy, # sgs;. The situation
described there is the (top) right hand diagram of Figure 23| with ¢ = 0 and k = 2. The
element o = 75175 7270 is a pure braid and (o) € m1(0y) is a single strand winding around
the pole twice, where ¢ is the map from the proof of Lemma [2.13] Arguing as in the proof of
Lemma , we have that o is not equal to the identity, so 7972 # 7279 and hence sps3 # $259

by Theorem

5. PRESENTATIONS OF G(d,d,n)

Let T be a tagged triangulation of (X, M), and Q7 the associated quiver. Let G, be the
group defined in the same way as G, (see Definition with the additional relations s? = e
for all 7. Then we have:

Theorem 5.1. Let T be a tagged triangulation of (X,M). Then Gg, s isomorphic to
G(d,d,n), thus giving a presentation of G(d,d,n).

Proof. The fact that this is true for the tagged triangulation in Figure follows from
Theorem and the presentation of G(d,d,n) given in [Ari95] (see [BMRIS, Prop. 3.2]).
Note that the braid diagram that gives the presentation of B(d,d,n) in [BMRIS] Table 5]
is the opposite of the diagram that gives the presentation of G(d,d,n) in [BMRIS8] Table 2]
(see [BMRIS, Thm. 2.27]), but the presentation corresponding to the opposite diagram in
this case is equivalent to that corresponding to the original diagram: passing to the opposite
diagram amounts only to a relabelling, and therefore does not change the isomorphism class
of the presented group.

The fact that it is true for an arbitrary tagged triangulation follows from iterated application
of Theorem [3.12 noting that the proof of this goes through when adding relations stating
that the generators have square equal to the identity, and the connectedness of the mutation
graph [FSTO0S, 7.10]. O

Finally, we will show that, by applying a result from [Shi05], the generators can be regarded
as reflections in G(d,d,n), and explain how this can be done explicitly. Note that, although
Shi assumes that d > 2 and n > 2, the results in [Shi05] §2,83] still hold for d = 2 or n = 2
(replacing ‘reflection of order m’ with ‘reflection of Type II of order m’ throughout, e.g.
in [Shi05, Lems. 2.1, 2.9, Thm. 2.8]).

We also note that if n = 2, the presentation from Theorem is just given by the relation
(4) from Definition [3.4] together with s? = s2 = e: in this case G(d, d,2) is the real reflection

group of type I5(d); see Remark



PRESENTATIONS OF THE BRAID GROUP OF THE COMPLEX REFLECTION GROUP G(d,d,n) 47

We first recall the result of Shi [Shi05] that we need. For this we need the following definition
of a graph from the paper (slightly modified in our discussion here).

Definition 5.2. Let R be a set of reflections in G(d,d,n). Then 'y is the edge-labelled
directed (multi-)graph with vertex set {1,2,...,n}. We take R as the set of directed edges.
An element r = s(a,b;c) in R (see Section has start vertex a, end vertex b and is
labelled ¢. We adopt the convention that such a directed edge is equivalent to a directed
edge from b to a labelled —c. This convention ensures that I'p is well-defined, noting that
s(a,b;c) = s(b,a;—c). We define I'p to be the underlying unoriented graph of T' with the
labels removed: note that this graph is also well-defined.

Suppose that I'g is connected and contains precisely one cycle. By reversing some directed
edges in T'g if necessary (and thus also negating their labels), we may assume that the
corresponding directed edges in T form an oriented cycle, C. Set §(R) to be the absolute
value of the sum of the labels on the directed edges in C'. Note that by taking the absolute
value here, we ensure that 0(R) is well-defined. Then, we have the following:

Theorem 5.3 ([Shi05, Thm. 2.19]). Let R be a set of reflections in G(d,d,n) such that I'r
is connected and contains precisely one cycle. Then R generates G(d,d,n) if and only if
d(R) and d are coprime.

Lemma 5.4. Let T be a tagged triangulation of (X, M), and let Dy be the corresponding
braid graph (see Definition[4.1)). Then Dy contains a unique cycle. In fact, it can be obtained
from a cycle by adjoining a binary tree (possibly consisting of a single vertex) to each of its
vertices.

Proof. By Remark [3.3] the induced subgraph of the braid graph on the vertices associated
to the connected components of the complement of 7' incident with the cone point will be
a cycle of length at least two. The vertices on the boundary of this union U of connected
components must be on the boundary of X (since they are not the cone point), so the tagged
triangulation must be built up from U by adding a triangulated polygon to each boundary
edge of U intersecting U only in that edge (where we allow a degenerate case consisting of
an edge only, i.e. where no polygon is attached).

It follows that the braid graph can be obtained from an oriented cycle by adjoining a binary
tree (possibly consisting only of a single vertex) to each of the vertices of the cycle. In
particular, it contains a unique cycle as claimed. O]

For the rest of this section, we will work in the following setup.

Setup 5.5. Let T be a tagged triangulation of (X, M), and let Dy be the corresponding
braid graph (see Definition . Fix a numbering 1,2, ..., n of the n vertices of Dr. Let Dy
be a directed graph with underlying unoriented graph D7, chosen so that the unique cycle
in Dr is an oriented cycle in Dr.

We then associate a reflection s(e) = s(a, b; c(e)) to each edge e of Dy, where the correspond-
ing directed edge in Dy has initial vertex a and end vertex b and c(e) is an integer. We do
this in such a way that, if the unique oriented cycle in Dy consists of vertices aq, as, . .., a,
with a directed edge f,,, from a,, to a,,,1 for all m (with a,,; interpreted as ay), then [¥7 _; ¢l
and d are coprime, where ¢,, = ¢(f,,). We define R to be the set of all reflections s(e) for e
an edge of Dp. Note that, by construction, I'g, can be identified with Dy.
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Proposition 5.6. Let T be a tagged triangulation of (X, M). Then the set R of reflections
satisfies the defining relations of Gy, , where each s(e) is identified with the generator s;
associated to the vertex ¢ of Q1 corresponding to the edge e of Dy.

Proof. Note first that each s(e) squares to the identity by definition. The commuting and
braid relations from Definition parts and respectively, are then satisfied by
[Shi05l Sec. 3.3(2),(3)]. Moreover, if the unique cycle in Dy has length 7 = 2 then, by [Shi05],
Sec. 3.3(4)] we have that

s(ay, ag;c1)s(ag, a1;c2)s(ar, ag;cr)- = s(ay, ar;c2)s(ar, az;c1)s(az, ay;c)- .

~~

d terms d terms

Hence, the relation from Definition is satisfied.

Consider the situation of the left drawing in Figure 25, where s, ¢t and u are the associated
reflections. Then, by [Shi05l Sec. 4.5(v)], we have sutu = utus. Using the braid relations and
the fact that the reflections square to the identity, we have that

sutu = utus <= stut = tuts <= stutts = tutsts <= stus = tuttst <= stus = tust.

Similarly, one can see that the third equality in the cycle relation is true and stus = tust =

ustu, i.e. the relations from Definition are satisfied.

As pointed out before, double edges in ()1 only appear if there are exactly two arcs at the
conepoint in 7', or equivalently the only cycle in D7 has length 2. Suppose that this is the
case. Let 7 be a vertex connected to one of two vertices a; and as in the 2-cycle, say ay via
an edge g. In other words, there is a double edge at the vertex in Q1 corresponding to the
edge g between ay and j in Dr. Denote the vector with a 1 in the #*-entry and 0 everywhere
else by e; and recall that wy = e2™/4, By direct computation, one can check that

(s(az, j; cg)S(ala as; cr)s(as, ay; 02))2 = (s(a1,az;c1)s(az, ar;c2)s(as, J; Cg))27

that is, the expected double edge relation from Definition (@ holds. In fact, both products
clearly only affect the entries in aq, ay and j positions and we compute that under both the
left and the right hand side products of reflections, we have

—2¢c2—-2c1 ca2+C1

ca2+cCy
€a; '—>wd €a15 €ay '—>wd

€ayy €5 7 Wy €j.

Similarly, it is easy to see by direct computation that when there are exactly two arcs at
the conepoint, incident with two different vertices on the boundary, then the corresponding
reflections satisfy the relations from Definition .

Consider now the situation on the right hand side of Figure 25, showing the unique cycle
in Dy of length r, where » > 3. We show that the reflections satisfy the relations from
Definition . In the following computations, subscripts are taken modulo r and addition
of the elements ¢; is carried out modulo d. For 1 <m <r, consider the product of d(r - 1)
reflections

$( Qs Arma1s Cm ) S (@t s Qs Cms1) = S(Qrd(r-1)-15 Cmrd(r-1); Crmsd(r—1)-1)- (6)

Fix j € {0,1,...,7 - 2}. When computing the image of Camrd(rr)-1-; under the product @,
only the reflections s(am+d(r_1)_i(r_1), Am+d(r-1)-i(r-1); Cm+d(r—1)—i(r—1)) for ¢ = 0, 1, ...d—-1 act
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F1GURE 25. Two possible local behaviours appearing in 7'. The dashed arcs
are arcs in T (in the right hand picture the arcs shown on the boundary are
also allowed to be boundary segments). The solid edges are edges in Dy and
edges in Q)7 are oriented.

non-trivially. We compute that:

d-1 d-1
2520 Cmad(r-1)-1—j—i(r—1) 2520 Cmad(r-1)-1—j+i

6am+d(r—1)—1—j = wd eamq—j =Wy eam—l—j'

When computing the image of e, a1y under the product @, every reflection in the product
acts non-trivially, and we compute that:

_ Z'mﬁd(rfl)fl ¢

ea/'mﬁrd(v‘fl) = wd o 6am'
Note that
m+dr—1
- Z ¢; =0 mod d,
i=m

since this involves adding up a multiple of d copies of each ¢;. Hence, we have:

m+dr—1 m+d(r-1)-1 m+dr-1 m+d(r-1)-1 d-1
0=- Z Ci - Z Ci = Z G > — Z Ci = Z Cr+d(r-1)+i mod d.
i=m i=m i=m+dr—d i=m =0

It follows that

d-1
Xito Cm+d(r-1)+i

€q = W)

m+d(r-1) m *

Hence, for p=1,2,...,r we have:

z;i;()l Cp+i
ea’P e wd er*d(T‘*l)’

and we see that the products () are equal for all 1 <m <r and hence the reflections satisfy
the relations from Definition [3.4[5]). This completes the proof of the result. O

Theorem 5.7. In the situation of Setup there is an isomorphism of groups v : G, —
G(d,d,n) sending the generator of Go, associated to vertex v in Qr to the reflection asso-
ciated to the edge in Dy that is the dual of v.

Proof. Let R be the set of reflections associated to the edges in Dr, as in Setup By
Proposition these reflections satisfy the defining relations of Gf, , so there is a group
homomorphism v : G, — G(d,d,n) sending the generator of Gy, associated to vertex v in
Q7 to the reflection associated to the edge in Dy that is the dual of v.
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By Lemma Dr has a unique cycle. By assumption (see Setup 7 d(R) and d are
coprime. Hence, by Theorem , R generates G(d,d,n). Hence v is surjective. By Theo-
rem , |G£2T| =|G(d,d,n)|, so v is also injective, giving the required result. O

Remark 5.8. Note that, in contrast to the braid group case, in the complex reflection
group presentation the double edge relations can be made more symmetric. In fact, for
reflections chosen as in Setup [5.5] by direct computations one can check that in the situation

of Definition @, we have

5,5i5jSkSiS; = 8i5jSkSiS;Sk = 5j5kSiSjSkKS;-

On the other hand, in the situation of Definition , for d > 2, we still get two sep-
arate relations also in the complex reflection group. To see this, let s; = s(a,az;¢1),
s; = s(ay,5;¢(9)), sk = s(az,a1;¢2) and s; = s(az,l;¢(h)) be reflections satisfying Setup
and corresponding respectively to the vertices 7, 7,k and [ in Definition . Then, it is
easy to compute that

. c
5iSjSkS1SiSj 1 €qy > W, €qy,
. —2co—cC
5jSkS1SiSjSk P €qy P W T 2 eg,.
As, by assumption, ¢; + ¢y is coprime to d, and hence invertible modulo d, we have that
200 -c1=cpmod d <= 2(c;+¢3)=0mod d < d=2.

Hence, for d > 2 we have that s;5;5,5;5;5; # 5;51,515i5;5k-
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