

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236222/>

Version: Accepted Version

Article:

da Silva Oliveira, E., South, J., de Oliveira Vieira, L. et al. (2026) Dry season feeding profiles of a Characiformes assemblage in a Brazilian tropical stream. *Zoological Studies*, 65 (3). ISSN: 1021-5506

<https://doi.org/10.6620/ZS.2026.65-03>

© 2026 Academia Sinica, Taiwan. This is an author produced version of an article published in *Zoological Studies*. Uploaded with permission from the publisher.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 **Dry season feeding profiles of a Characiformes assemblage in a Brazilian tropical stream**

2 E. S. Oliveira, J. South, L. O. Vieira, F. P. Ottoni

3 Elioenai da Silva Oliveira^{1,2*} <https://orcid.org/0000-0002-4900-1130>,
4 oliveiraelioenai@hotmail.com, Josie South³ <https://orcid.org/0000-0002-6339-4225>,
5 J.South@leeds.ac.uk, Lucas de Oliveira Vieira^{1,2} <https://orcid.org/0000-0002-1448-0645>,
6 luscasolivier070@gmail.com, Felipe Polivanov Ottoni^{1,2,4}, <https://orcid.org/0000-0002-9390-0918>,
7 fpottoni@gmail.com

8 ¹*Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Universidade*
9 *Federal do Maranhão, Av. dos Portugueses, 1966, Cidade Universitária Dom Delgado, 65080-805,*
10 *São Luís, MA, Brazil.*

11 ²*Laboratório de Sistemática e Ecologia de Organismos Aquáticos, Universidade Federal do*
12 *Maranhão, BR-222, KM 04, Boa Vista, 65500-000, Chapadinha, Maranhão, Brazil.*

13 ³*Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2*
14 *9JT, United Kingdom.*

15 ⁴*Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Maranhão, BR-*
16 *222, KM 04, Boa Vista, 65500-000, Chapadinha, Maranhão, Brazil.*

17 ⁵*NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), P. Bag 1015, Makhanda 6140,*
18 *South Africa.*

19 Date of submission: 12/05/2025

20 **ABSTRACT:** Trophic interactions between fish and their resources depends on resource availability
21 and interspecific competition. To understand dry season trophic profiles of a speciose Characiformes
22 assemblage we performed stomach content analysis to describe diet and determine levels of niche
23 partitioning and morphological adaptations among eight Characiformes species in the dry season in
24 Mata de Itamacaoca, Chapadinha Municipality, State of Maranhão, northeastern Brazil. Insectivory
25 dominated most diets, with *Astyanax* cf. *bimaculatus* and *Characidium* cf. *bimaculatum* exhibiting
26 the broadest niches. Specialization occurred in *Curimatopsis* cf. *cryptica* (85.07% plant material) and
27 there was significant dietary segregation with indicator species analysis linking *Astyanax* cf.
28 *bimaculatus* to piscivory and *Knodus guajajara* to vermicivory. Pianka index showed extreme niche
29 overlap variations, with the highest overlap between *Bario oligolepis* and *Characidium* cf.
30 *bimaculatum* (1.68), and between *Astyanax* cf. *bimaculatus* and *Nannostomus beckfordi* (1.64).
31 Morphological PCA associated traits with feeding strategies: caudal fin length (*Astyanax* cf.
32 *bimaculatus*), body depth (*Curimatopsis* cf. *cryptica*), and oral gape width (*Bario oligolepis*). Mixed
33 models confirmed insects and plant material with a marginally significant effect as key drivers of
34 dietary variation. Therefore, the assemblage shows high niche overlap combined with diverse trophic
35 profiles. Results presented here demonstrate how dry season resource scarcity promotes trophic
36 divergence via morphological specialization, with generalists (*Astyanax* cf. *bimaculatus*) coexisting
37 with specialists through niche partitioning, which is critical for conservation in this threatened urban-
38 protected area.

39 **Keywords:** Morphological adaptations, Neotropical fishes, Resource partitioning, Seasonality,
40 Trophic ecology.

*Corresponding author: Elioenai da Silva Oliveira, Universidade Federal do Maranhão, BR-222, KM 04, Boa Vista, 65500-000, Chapadinha, Maranhão, Brazil. Email: oliveiraelioenai@hotmail.com

41 **BACKGROUND**

42 Neotropical aquatic ecosystems harbor one of the most diverse ichthyofaunas on the planet (Albert et
43 al. 2020; Tonella et al. 2022), where Characiformes play a fundamental role in structuring trophic
44 networks (Barreto and Aranha 2006; Silva-Camacho et al. 2014; Meira et al. 2022; Oliveira et al.
45 2024). In seasonal environments, hydrological variation acts as an environmental filter, shaping
46 patterns of trophic and morphological adaptations (Junk et al. 1989; Correa and Winemiller 2014;
47 Duarte et al. 2022). Previous studies have shown that the dry season imposes critical constraints on
48 resource availability, leading to increased interspecific competition (Prejs and Prejs 1987), the
49 emergence of distinct morphological strategies (Gomiero et al. 2010), and dietary specialization
50 (Novakowski et al. 2008). Although trophic segregation has been highlighted as the primary
51 mechanism structuring fish assemblages (Ross 1986), this dynamic may vary according to local
52 conditions, including dry season factors (Bouton et al. 1997). However, gaps remain in understanding
53 the mechanisms that allow the coexistence of multiple sympatric species under such extreme
54 conditions (Ross 1986; Neves et al. 2018).

55

56 Aquatic environments are generally strongly influenced by seasonal periods and flood pulse dynamics
57 (Junk et al. 1989; Pazin et al. 2006; Espírito-Santo and Zuanon 2017). As flood peaks reach their
58 maximum and the system transitions into the dry season, periods that are becoming increasingly
59 pronounced, there is a progressive decline in turbidity, resource availability, flow velocity, and water
60 level (Alho and Silva 2012). These abiotic changes result in significant transformations in fish
61 assemblages (Saint-Paul et al. 2000). While some species exhibit expansion and contraction dynamics
62 aligned with dry season reproduction, others persist throughout the entire hydrological cycle (Fialho
63 et al. 2008; Arthington and Balcombe 2011; Fitzgerald et al. 2018). Dry season variation, particularly
64 in tropical regions, plays a crucial role in shaping food resource availability and structuring trophic
65 networks (Medeiros et al. 2014; Pelage et al. 2022; Londe et al. 2024). During the dry season, reduced
66 water volume can lead to increased population density and the concentration of organisms in remnant
67 habitats, intensifying ecological interactions such as competition and predation (Duarte et al. 2022).
68 This scenario can directly impact niche partitioning, leading to shifts in dietary composition and
69 potential trophic displacements among sympatric species (Silva-Camacho et al. 2014; Bloomfield et
70 al. 2022; De Andrade et al. 2024).

71

72 In the context of dry season persistence, intraspecific morphological variation becomes a crucial
73 factor for fish survival in stochastic ecosystems, as species evolve in response to persistent

74 hydrological regimes (Poff and Ward 1989; Lytle and Poff 2004). Morphological adaptations and
75 diversity can confer specializations to specific environmental parameters, thereby increasing survival
76 among cohorts (Langerhans and Reznick 2010). morphological theory predicts that coexistence in
77 restrictive environments is mediated by three main mechanisms: (a) divergence in functional traits
78 (Winemiller 1991), (b) behavioral plasticity (Correa and Winemiller 2014), and (c) temporal resource
79 partitioning (Ross 1986). However, the application of these principles to small Characiformes
80 assemblages in seasonal microhabitats remains insufficiently tested. Studies in analogous systems
81 suggest that body and oral apparatus morphology explain up to 80% of the variation in resource use
82 (Neves et al. 2018; Duarte et al. 2022), but these patterns may differ significantly in fragmented
83 environments such as the Mata de Itamacaoca.

84

85 The order Characiformes is one of the most diverse among Neotropical fishes, comprising
86 approximately 1,700 described species (Reis et al. 2016) and encompassing a wide range of feeding
87 habits, from herbivores and detritivores to carnivores and piscivores (Barbosa et al. 2017; Burns and
88 Sidlauskas 2019). This functional diversity grants these fishes a crucial role in mediating energy and
89 matter flow in aquatic ecosystems, directly influencing the availability and renewal of trophic
90 resources (Burns and Sidlauskas 2019; Burns 2021; Burns et al. 2024). Moreover, their abundance
91 and distribution across different habitats make them ideal models for investigating trophic
92 interactions and adaptive strategies in dry season environments (Burns and Sidlauskas 2019; Burns
93 et al. 2024). Trophic ecology among Characiformes species is often associated with morphological
94 differences, particularly in mouth shape, dentition, and digestive tract structure (Silva-Camacho et al.
95 2014; Benone et al. 2020; Burns 2021; Meira et al. 2022). Specialized morphological traits enable
96 differential exploitation of available resources (Sibbing and Nagelkerke 2000; Bower and Winemiller
97 2019), reducing dietary overlap (Mise et al. 2013) and promoting the coexistence of multiple species
98 within the same environment (Oliveira et al. 2024; Oliveira et al., 2025). In environments influenced
99 by seasonal hydrological regimes, these adaptations can be essential for species survival, allowing
100 diversification of feeding strategies as resource availability fluctuates throughout the hydrological
101 cycle (Porter et al. 2022; Bloomfield et al. 2022; De Andrade et al. 2024).

102

103 The Munim River Basin (16,000 km²), an important hydrographic system of Maranhão (Koerber et
104 al. 2022), which is located in a transitional zone between the Amazon and Cerrado biomes (NuGeo
105 2016), harboring a still understudied ichthyofauna (Abreu et al. 2019; Vieira et al. 2023). Within this
106 context, the Mata de Itamacaoca stands out as a unique ecological enclave embedded within an urban

107 matrix (Oliveira et al. 2020), sustaining a diverse assemblage of small Characiformes (Oliveira et al.
108 2020), characterized by significant morphological and trophic overlap (Oliveira et al. 2024). The
109 coexistence of functionally similar species in a seasonally dynamic environment suggests (i) the
110 presence of sophisticated resource partitioning mechanisms (Burns and Sidlauskas 2019) and (ii) an
111 increased vulnerability to anthropogenic disturbances (Daufresne and Boet 2007). Although
112 preliminary studies have identified trophic segregation patterns (Oliveira et al. 2024), possible
113 mechanisms are unexplored as these studies combined both wet and dry season than accounting for
114 increased resource abundance in the wet season. Thus, dry-season ecological processes in the Munim
115 River Basin remain poorly understood, particularly regarding how seasonal reductions in water
116 volume and resource availability shape trophic interactions among fish species (Junk et al. 1989;
117 Lytle and Poff 2004; Correa and Winemiller 2014).

118 Given the above, this study aims to investigate the dietary composition and trophic structure of
119 Characiformes species in the Mata de Itamacaoca during the dry season through stomach content
120 analysis, correlating it with food resource availability and species' morphological adaptations.
121 Specifically, we seek to: (1) describe dietary composition and identify the main food items consumed
122 based on stomach content analysis, (2) assess patterns of overlap and segregation in resource use
123 among species, (3) examine the relationship between morphological attributes and dietary
124 preferences, and (4) discuss the ecological implications of resource partitioning and interspecific
125 competition.

126

127 MATERIALS AND METHODS

128 Study area and sampling methodology

129 This study was conducted in the Mata de Itamacaoca (middle Munim River Basin), a protected urban
130 fragment (460 ha) within the Cerrado biome 03°44'45.2"S 43°19'15.1"W; ~90 m elevation), located
131 in the Chapadinha municipality, State of Maranhão, northeastern Brazil (Fig. 1, Table 1). Mata de
132 Itamacaoca encompasses a diverse array of microhabitats, including riparian forests, gallery forests,
133 and perennial streams that collectively support a rich biodiversity representative of the Cerrado biome
134 (Silva et al. 2008; Oliveira et al. 2020). The vegetation consists primarily of closed-canopy formations
135 with trees exceeding 10 meters in height, particularly around springs and water bodies, which are
136 essential for maintaining local water supplies (Silva et al. 2008). The area was officially designated
137 as an Area of Relevant Ecological Interest (Decreto N° 05/2018) due to its critical role in watershed
138 protection, microclimate regulation, and the conservation of regional biodiversity (Silva et al. 2008).
139 Despite its protected status, the reserve faces increasing anthropogenic pressures, including illegal

140 resource extraction (e.g., timber, fish, and game), agricultural burning practices, urban encroachment,
141 and inadequate enforcement of conservation measures (Oliveira et al. 2020). These threats have
142 significantly affected both the hydrological dynamics of the reservoir system and the conservation
143 status of aquatic biodiversity in recent years. The area's high accessibility and complete urban
144 encroachment make it particularly vulnerable to such disturbances, despite its recognized ecological
145 importance for regional water supply and climate regulation (Oliveira et al. 2020).

146

147 The regional climate exhibits strong seasonality, with a well-defined dry season lasting five to six
148 months (July to November/December), characterized by significant water deficits (150–300 mm),
149 followed by an equally distinct rainy season from January to May/June, with peak precipitation
150 occurring between February and March (Passos et al. 2016; IMESC, 2021). This marked seasonal
151 variation may create dynamic environmental conditions that profoundly influence the aquatic
152 ecosystems within the protected area.

153

154 Sampling was conducted during the dry season (from July to December 2019) at five previously
155 established collecting sites (C1-C5) distributed across the Mata de Itamacaoca within the middle
156 Munim River Basin (Fig. 1, Table 1). All sampling procedures were authorized under SISBIO permit
157 N° 64415. Because the study involved only the collection of wild fish specimens for taxonomic and
158 ecological analyses, it did not require approval from an Institutional Animal Care and Use Committee
159 (CEUA). These sites included both natural stream sections and one dam-impacted area (C4), as
160 described in Oliveira et al. (2020) (Fig. 1, Table 1). Fish collections were performed using
161 standardized techniques with dip nets (80 cm × 54 cm, 2 mm mesh) and trail nets (240 cm × 100 cm,
162 2 mm mesh) following the methodology of Souza and Auricchio (2002). All collection procedures
163 adhered to animal welfare guidelines (Underwood and Anthony 2020), with specimens euthanized in
164 a solution of ethyl-3-amino-benzoate-methanesulfonate (MS-222; 250 mg/L) until cessation of
165 opercular movement. Following euthanasia, specimens were initially preserved in 10% formalin and
166 subsequently transferred to 70% ethanol after 10-15 days for long-term storage. Voucher specimens
167 are housed at the Coleção Ictiológica do Centro de Ciências Agrárias e Ambientais (CICCAA) of the
168 Universidade Federal do Maranhão (UFMA); the complete information spreadsheets are provided in
169 Supplementary Material 1. This sampling design-maintained consistency with previous studies in the
170 area while specifically targeting the dry season to investigate trophic and morphological adaptations
171 under seasonal stress conditions.

172

173 **Fish Identification**

174 Fish were identified to the lowest possible taxonomic level, based on specific literature for each
175 taxonomic group. Species names, authorship and year of description, geographical distribution,
176 taxonomic classification, as well as other additional information were checked in Fricke et al. (2025a,
177 b).

178

179 **Stomach content analyses**

180 Only adult individuals were included in all analyses to avoid ontogenetic effects on trophic
181 composition and morphological traits (Winemiller 1991; Gerking 1994). This was confirmed by
182 examining standard length (SL) ranges for each species (Table 2), which consistently corresponded
183 to adult size classes reported in the literature. We analyzed the dietary composition of 173 specimens
184 belonging to eight Characiformes species: *Astyanax* cf. *bimaculatus* (n = 26; Acestrorhaphidae),
185 *Characidium* cf. *bimaculatum* (n = 27; Crenuchidae), *Curimatopsis* cf. *cryptica* (n = 23;
186 Curimatidae), *Holopristis* cf. *ocellifera* [*Hemigrammus* sp. 1 *sensu* Oliveira et al. (2020)] (n = 30;
187 Acestrorhaphidae), *Hypseobrycon piorskii* Guimarães, Brito, Feitosa, Carvalho-Costa & Ottoni
188 2018 (n = 16; Acestrorhaphidae), *Knodus guajajara* Aguiar, Brito, Ottoni & Guimarães 2022
189 [*Knodus victoriae* (Steindachner, 1907) *sensu* Oliveira et al. (2020)] (n = 10; Stevardiidae), *Bario*
190 *oligolepis* (Günther 1864) (n = 11; Acestrorhaphidae), and *Nannostomus beckfordi* Günther, 1872
191 (n = 30; Lebiasinidae) (Supplementary Material 1, Table 2). An ideal sample size of 30 individuals
192 per species was initially established to standardize comparisons. However, some species did not reach
193 this number due to their low abundance in the sampled environment during the dry season. Despite
194 this limitation, the available sample sizes were considered adequate for descriptive dietary and
195 morphological analyses.

196

197 To achieve this, we removed the stomach and intestine of each individual and placed the digestive
198 contents in a Sedgwick-Rafter cell, which contains 1 × 1 mm grid divisions, allowing for visualization
199 and quantification under a stereomicroscope, following the protocol described by Martin and
200 Wainwright (2013). The frequency of occurrence (FO) of each dietary item was determined as the
201 proportion of stomachs in which the item was identified relative to the total number of stomachs
202 analyzed (Hyslop 1980). The volume (V) of each item was estimated using the volumetric method
203 described by Hellawell and Abel (1971) and Hyslop (1980). Based on these values, we calculated a
204 modified alimentary index (IAi) for each species, excluding empty stomachs, as proposed by
205 Kawakami and Vazzoler (1980). The obtained proportions were rounded to 0.1% and expressed as

206 percentages. Additionally, we calculated the mean and standard deviation of the proportions of prey
207 items consumed by each species. Dietary items were identified based on partially digested remains,
208 including exoskeletal fragments, plant material, and organic matter. To facilitate analysis, all prey
209 items were classified into taxonomic and functional categories based on size, shape, and movement
210 patterns, including insect larvae, plant material, insects, crustaceans, zooplankton, worms, fish, and
211 detritus (Table 3a; Table 3b).

212 To assess the trophic organization patterns of Characiformes species, we employed a multivariate
213 approach based on the proportions of dietary items identified in stomach contents. As input data, we
214 used the mean proportions (expressed as percentages) of the following dietary items per species: adult
215 insects, insect larvae, plant material, fish, detritus, crustaceans, worms, and zooplankton.

216 We performed a non-metric multidimensional scaling (nMDS) ordination using a Bray-Curtis
217 dissimilarity matrix calculated from the proportions of dietary items. The analysis was configured
218 with two dimensions and 3,000 iterations, yielding a final stress value of 0.13, indicating a good
219 representation of the data (Clarke 1993). ANOSIM was used to test the hypothesis that differences in
220 dietary item proportions among species were greater than intraspecific variations. Additionally, we
221 conducted an indicator species analysis using the *indicspecies::multipatt* function in R to determine
222 which dietary components significantly contributed to the stomach contents of each species ($\alpha = 0.05$)
223 (Dufrêne and Legendre 1997; De Cáceres et al. 2010). Indicator values were calculated based on the
224 point-biserial correlation coefficient (r.g) between the proportions of each dietary item and species
225 occurrence.

226

227 To investigate dietary similarity patterns among species, we performed a hierarchical clustering
228 analysis using the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) method, based
229 on trophic niche overlap (Pianka 1973). Proportional dietary data were standardized using Z-score
230 transformation (scale function). Trophic similarity between species pairs was quantified using the
231 modified Pianka index (Pianka 1973), calculated as:

$$233 \quad O_{ij} = \frac{\sum_{k=1}^n (p_{ik} * p_{jk})}{\sqrt{\sum_{k=1}^n p_{ik}^2 * \sum_{k=1}^n p_{jk}^2}}$$

232

234 Where p_{ik} e p_{jk} represent the proportions of dietary item k for species i and j, respectively. This index
235 ranges from 0 (no overlap) to 1 (complete overlap). To convert this similarity measure into a
236 dissimilarity, measure suitable for clustering analysis, we calculated $D = 1 - O$.

237

238 In addition to its use in clustering analysis, the Pianka index was also applied independently to
239 quantify niche overlap between species pairs. The calculated values were compiled in a matrix to
240 identify species with the highest and lowest trophic overlap (Pianka 1973).

241

242 To complement niche overlap analysis, we estimated niche breadth using the Levins' index (Levins
243 1968), defined as:

244

$$B = \frac{1}{\sum_{i=1}^n p_i^2}$$

245 Where: B : Niche breadth index; p_i : Proportion of resource i use relative to the total resources used; n :
246 Total number of resource categories.

247

248 The index was standardized (Ba) to a 0–1 scale for cross-species comparisons:

249

$$Ba = \frac{B - 1}{n - 1}$$

250 Where $Ba = 0$: Specialist (uses only one resource); $Ba = 1$: Perfect generalist (equally uses all n
251 resources).

252

253 To summarize dietary patterns at the assemblage level, we fitted linear models (LMs) in R version
254 4.0.3 (R Core Team 2021) using pooled proportional dietary data from the eight Characiformes
255 species. Proportional data were transformed using the arcsine square root to improve variance
256 homogeneity and normality (Zar 2010; Warton and Hui 2011). The models were used descriptively
257 to evaluate whether the mean proportional contribution of major food categories differed from zero,
258 rather than to test interspecific differences. Model coefficients were therefore interpreted as
259 summaries of assemblage-level dietary composition.

260

261 To identify significant differences in dietary proportions among Characiformes species, we
262 performed multiple comparisons using the non-parametric Dunn test (Dunn 1964), with Benjamini-
263 Hochberg correction to control the false discovery rate (Benjamini and Hochberg 1995). The analysis
264 was applied to the transformed data (arcsine square root of proportions; Zar 2010) and considered all
265 paired combinations between species, with a significance level of $\alpha = 0.05$.

266 **Functional morphology analyses**

267 To assess the morphological diversity related to trophic resource use, we performed standardized
268 linearly measurements on 20 morphological characters associated with feeding, locomotion, and
269 habitat use, following the morphological scheme illustrated in Oliveira et al. (2024, Supplementary
270 Material 1) (see Supplementary Material 2, Table 2). All morphological analyses were performed
271 exclusively on adult individuals, using the same 173 specimens analyzed in the dietary assessments
272 (Table 2). Standard length (SL) ranges confirmed that all individuals fell within adult size classes
273 (Table 2). For this, we adapted protocols from Balon et al. (1986), Sibbing and Nagelkerke (2000),
274 and Breda et al. (2005). Measurements were obtained using a digital caliper (precision of 0.01 mm)
275 and a stereomicroscope, ensuring data accuracy.

276

277 To isolate shape variation independently of body size, we applied the Mosimann standardization
278 method, calculating the geometric mean of all measurements per individual and using this value as a
279 divisor for each character. This approach, preferred in recent comparative analyses, allows for a more
280 robust evaluation of morphological adaptations while maintaining the original proportions between
281 characters (Jungers et al. 1995). The geometric mean (GM) was included as an independent variable
282 in subsequent analyses to represent total body size instead of standard length (SL) (Nawa et al. 2024).

283

284 To investigate morphological divergence patterns between species, we conducted a Principal
285 Component Analysis (PCA) on the correlation matrix of the standardized measurements. This
286 multivariate analysis allowed us to identify the axes of greatest morphological variation and assess
287 the overlap in the morphospace between species, revealing patterns of morphological segregation.
288 All analytical procedures were performed in the R environment (version 4.1.0).

289

290 **RESULTS**

291 **Dietary composition**

292 During the dry season, adult insects (61.8%), plant material (54%), and insect larvae (44.1%)
293 dominated the diet of most individuals (Table 3a, b). When dietary items were grouped into
294 autochthonous and allochthonous categories based on their Index of Alimentary Importance (IAI)
295 (Table 3a, b), allochthonous resources (adult insects and terrestrial plant material) accounted for
296 approximately 79.5% of the total dietary importance (Table 3a, b), whereas autochthonous items
297 (insect larvae, algae, zooplankton, detritus, and aquatic invertebrates) contributed the remaining

298 20.5% (Table 3a, b). Among the species, the highest proportions of adult insect consumption were
299 observed in *Astyanax* cf. *bimaculatus* (42.6%), *Characidium* cf. *bimaculatum* (59.9%), *Holopristis*
300 cf. *ocellifera* (52.2%), *Nannostomus beckfordi* (43.5%), *Knodus guajajara* (34.1%), and
301 *Hyphessobrycon piorskii* (49.9%) (Fig. 2, Table 3a, b). In contrast, *Curimatopsis* cf. *cryptica* (85.1%)
302 and *Bario oligolepis* (39.2%) primarily consumed plant material (Fig. 2, Table 3a, b).

303 Some species, such as *Astyanax* cf. *bimaculatus* and *Characidium* cf. *bimaculatum*, exhibited higher
304 dietary diversity, incorporating detritus and other resources in smaller proportions (Fig. 2, Table 3a,
305 b).

306 Although some dietary components were rare, such as fish consumption, which was recorded only in
307 *Astyanax* cf. *bimaculatus* (6.86%), other items like crustaceans were observed in *Astyanax* cf.
308 *bimaculatus* (2.81%) and *Characidium* cf. *bimaculatum* (9.02%) (Fig. 2, Table 3a, b). Zooplankton
309 consumption was recorded in *Characidium* cf. *bimaculatum* (2.97%), *Hyphessobrycon piorskii*
310 (2.15%), *Knodus guajajara* (1.05%), and *Nannostomus beckfordi* (1.95%) (Fig. 2, Table 3a, b).
311 Additionally, worms were recorded exclusively in *Hyphessobrycon piorskii* (3.35%) and *Knodus*
312 *guajajara* (8.21%) (Fig. 2, Table 3a, b).

313 Clustering, Similarity, and Indicator Species

314 The NMDS ordination analysis (stress = 0.13, k=2) revealed a weak clustering of species based on
315 their dietary components, with considerable overlap among them (Fig. 3). However, a statistically
316 significant difference in diet among species was identified (ANOSIM: R = 0.26, p = 0.001).

317

318 The results of the indicator species analysis showed significant associations between species and their
319 dietary categories (Table 4). *Astyanax* cf. *bimaculatus* was associated with fish consumption (p <
320 0.001), while *Knodus guajajara* was associated with worms (p = 0.0104) (Table 4). Species
321 combinations showed specific preferences - crustaceans (*Astyanax* cf. *bimaculatus* + *Characidium*
322 cf. *bimaculatum*, p = 0.011), insects (*Astyanax* cf. *bimaculatus* + *Bario oligolepis*, p = 0.0009), and
323 plant material (*Astyanax* cf. *bimaculatus* + *Curimatopsis* cf. *cryptica* + *Bario oligolepis*, p = 0.0001)
324 (Table 4). Larger groups favored insect larvae (p = 0.007) and detritus (p = 0.0094) (Table 4).

325 Trophic structure and variation in trophic resource use

326 The Levins' index ranged from $B_a = 0.132$ for *Curimatopsis* cf. *cryptica* to $B_a = 0.593$ for *Knodus*
327 *guajajara*, with *Hyphessobrycon piorskii* ($B_a = 0.577$) and *Astyanax* cf. *bimaculatus* ($B_a = 0.562$)
328 exhibiting the highest values (Table 5). The species utilized between two (*Curimatopsis* cf. *cryptica*)
329 and six food resources, with *Characidium* cf. *bimaculatum* and *Nannostomus beckfordi* displaying

330 intermediate values ($Ba \approx 0.478$) (Table 5). *Bario oligolepis* ($Ba = 0.268$) and *Holopristis* cf.
331 *ocellifera* ($Ba = 0.372$) completed the observed range of variation (Table 5).

332

333 Dietary niche overlap varied substantially among species (Pianka index: 0.20–1.68) (Table 6). The
334 lowest overlap occurred between *Hyphessobrycon piorskii* and *Knodus guajajara* (0.20), followed by
335 *Curimatopsis* cf. *cryptica* and *Holopristis* cf. *ocellifera* (0.72) (Table 6). Conversely, several species
336 pairs showed high overlap (>1.4), particularly *Bario oligolepis* with *Characidium* cf. *bimaculatum*
337 (1.68) and *Astyanax* cf. *bimaculatus* with *Nannostomus beckfordi* (1.67) (Table 6). *Curimatopsis* cf.
338 *cryptica* exhibited low to moderate overlap with most species (0.71–1.42) (Table 6).

339

340 Pairwise comparisons of species' diets revealed significant differences ($p < 0.05$, Benjamini-
341 Hochberg adjusted) in feeding composition among most analyzed pairs. *Astyanax* cf. *bimaculatus*
342 showed significantly distinct dietary patterns compared to all other species except *Knodus guajajara*
343 ($p = 0.483$) (Table 7). Conversely, *K. guajajara* exhibited pronounced dietary differentiation from
344 most sympatric species, including *Characidium* cf. *bimaculatum* ($p < 0.001$), *Curimatopsis* cf.
345 *cryptica* ($p < 0.001$), *Holopristis* cf. *ocellifera* ($p = 0.0003$), *Hyphessobrycon piorskii* ($p = 0.001$),
346 *Bario oligolepis* ($p = 0.020$), and *Nannostomus beckfordi* ($p = 0.003$) (Table 7). The cluster analysis
347 based on the eight prey categories formed three distinct groups: (1) *Hyphessobrycon piorskii*, *Knodus*
348 *guajajara*, *Characidium* cf. *bimaculatum*, and *Nannostomus beckfordi*; (2) *Astyanax* cf. *bimaculatus*;
349 and (3) *Holopristis* cf. *ocellifera*, *Curimatopsis* cf. *cryptica* and *Bario oligolepis* (Fig. 4).

350

351 The linear model indicated that the overall mean dietary proportion differed from zero ($\beta = 0.605$; p
352 = 0.001; Table 8). Among food categories, insects showed a significant positive coefficient ($\beta =$
353 0.368; $p = 0.011$; Table 8). Whereas plant material exhibited a marginally significant contribution (β
354 = 0.285; $p = 0.051$; Table 8). Other food categories, including detritus, fish, insect larvae, worms,
355 and zooplankton, did not differ significantly from zero ($p > 0.05$; Table 8).

356 Morphological Variation

357 The Principal Component Analysis (PCA) explained 41.6% of the total variance, with the first two
358 principal components (PC1 = 25.4%; PC2 = 16.2%) accounting for most of this variance (Fig. 5).
359 Species distribution in the morphological space revealed distinct groupings. *Astyanax* cf. *bimaculatus*
360 was primarily influenced by Caudal fin length (CFiL), while *Characidium* cf. *bimaculatum* was
361 determined by Caudal peduncle depth (CPD) (Fig. 5). For *Curimatopsis* cf. *cryptica*, the most

362 important variable was Body depth (BD), whereas *Holopristis* s cf. *ocellifera* was more influenced
363 by Body width (BW) (Fig. 5). *Hyphessobrycon piorskii* had Head depth (HD) as the predominant
364 variable, while *Knodus guajajara* was influenced by Eye diameter (ED) (Fig. 5). In *Bario oligolepis*,
365 Dorsal fin length (DFiL) had the greatest impact, while *Nannostomus beckfordi* was influenced by
366 Pectoral fin length (PFiL). *Bario oligolepis* was influenced by Oral gape width (GW) (Fig. 5).

367

368 DISCUSSION

369 Here, we present the results of the trophic ecology and morphological analyses of Characiformes
370 species inhabiting the Mata de Itamacaoca, a protected area within the middle Munim River Basin,
371 Maranhão, Brazil. The study was conducted during the dry season and focused on the stomach
372 contents and morphological traits of eight fish species from four different families:
373 Acestrorhaphidae (*Astyanax* cf. *bimaculatus*, *Bario oligolepis*, *Holopristis* cf. *ocellifera*, and
374 *Hyphessobrycon piorskii*), Stevardiidae (*Knodus guajajara*), Lebiasinidae (*Nannostomus beckfordi*),
375 Crenuchidae (*Characidium* cf. *bimaculatum*), and Curimatidae (*Curimatopsis* cf. *cryptica*). Despite
376 the protected status of the area, the presence of urban influences, such as such as illegal resource
377 extraction, agricultural burning practices, urban encroachment, and inadequate enforcement of
378 conservation measures, highlights the importance of understanding the ecological dynamics of these
379 fish communities (Oliveira et al. 2020 2024). The analyses revealed significant dietary and
380 morphological adaptations, revealing into the mechanisms that allow these species to coexist in a
381 spatially limited and environmentally sensitive habitat during the dry season. Although seasonal
382 hydrological fluctuations broadly influence neotropical aquatic ecosystems, our findings highlight
383 the specific ecological dynamics occurring during the dry season, a critical period of resource scarcity
384 and intensified biotic interactions (Pelage et al. 2022; Londe et al. 2024). While some species
385 presented relatively low sample sizes (e.g., *Knodus guajajara*, *Bario oligolepis*), these numbers are
386 consistent with their observed rarity in the field during the dry season. We interpret these values as
387 biologically meaningful, as they reflect true patterns of local abundance rather than sampling bias.

388

389 At the assemblage level, dietary patterns during the dry season were characterized by the
390 predominance of insects and, marginally, plant material, as indicated by the linear model analysis
391 (Table 8). This descriptive overview provides a community-scale context for the morphological
392 patterns discussed below. Although the first two PCA axes accounted for a moderate proportion of
393 total variance (41.6%), such values are common in multivariate ecomorphological datasets that
394 include numerous correlated morphometric traits (Gatz 1979; Winemiller 1991; Jolliffe 2011;

395 Zelditch et al. 2012; Oliveira et al. 2024). Despite this, the PCA revealed clear species-level
396 segregation in morphospace, indicating consistent morphological divergence related to trophic
397 structure. Morphological adaptations among species reflects their feeding preferences: *Astyanax* cf.
398 *bimaculatus*, with a long caudal fin, captures mobile prey (Balon et al. 1986; Breda et al. 2005);
399 *Characidium* cf. *bimaculatum*, with a deep caudal peduncle, enhances burst impulse for insectivory
400 (Sibbing and Nagelkerke 2000); *Curimatopsis* cf. *cryptica*, with a deep body, improves
401 maneuverability (Balon et al. 1986); *Holopristis* cf. *ocellifera*, with a wide body, adapts to vertical
402 movements (Balon et al. 1986); *Hyphessobrycon piorskii*, with a high head, has a varied diet; *Knodus*
403 *guajajara*, with large eyes, aids in benthic prey detection (Balon et al. 1986); *Bario oligolepis*, with
404 a long dorsal fin, processes vegetation efficiently (Balon et al. 1986; Breda et al. 2005); and
405 *Nannostomus beckfordi*, with extended pectoral fins, controls propulsion (Balon et al. 1986; Breda et
406 al. 2005). Insectivory in *Astyanax* cf. *bimaculatus*, *Characidium* cf. *bimaculatum*, and
407 *Hyphessobrycon piorskii* aligns with Neotropical floodplain patterns (Petry et al. 2011; Esteves et al.
408 2021), while phytophagy in *Curimatopsis* cf. *cryptica* (85.07%) and *Bario oligolepis* (39.24%)
409 reflects trophic plasticity (Goulding 1980; Vanni et al. 2006; Medeiros et al. 2014; Allan et al. 2021).
410 Trophic segregation between euryphagous (e.g., *Astyanax* cf. *bimaculatus*) and stenophagous species
411 (e.g., *Knodus guajajara*) supports the "limiting similarity" paradigm (Abrams 1983; Duarte et al.
412 2022), promoting niche partitioning and reducing competition in seasonal ecosystems (Abrams 1983;
413 Pelage et al. 2022; Londe et al. 2024; Pastore et al. 2021; Zhang et al. 2024).

414

415 The consistency between our results and those of Oliveira et al. (2024), conducted in the same area
416 but without accounting for dry season, underscores the significance of insects and plant material as
417 key resources for Characiformes species in the Mata de Itamacaoca during the dry season. *Astyanax*
418 cf. *bimaculatus* diet was characterized by fish and crustaceans in our study, whereas data from
419 Oliveira et al. (2024) emphasized seed intake thus reflecting dry season abundance of resources.
420 Similarly, *Hyphessobrycon piorskii* displayed the presence of worms in our analysis, a dietary
421 component not previously recorded. These discrepancies may reflect dry season fluctuations in
422 resource availability or dietary plasticity, a phenomenon frequently observed in fish inhabiting
423 seasonally dynamic environments, particularly during the dry season (Keller et al. 2019).
424 Nevertheless, the consistent consumption of insects by *Characidium* cf. *bimaculatum* and plant
425 material by *Holopristis* cf. *ocellifera* suggests that these resources play a fundamental role in the
426 trophic ecology of Characiformes species in the Mata de Itamacaoca regardless of environmental
427 variability.

428

429 Although species-specific trophic ecology studies were not available for most of the taxa analyzed,
430 we compared our findings with the general trophic patterns reported for their respective genera. Our
431 results generally align with these broader patterns, although notable species-specific differences
432 emerged. For instance, while literature suggests that species of the genera *Knodus* Eigenmann 1911
433 and *Hyphessobrycon* Durbin 1908 are typically generalist insectivores (Ceneviva-Bastos and Casatti
434 2007; Prado et al. 2016; Benone et al., 2020), we recorded high insectivory in *Knodus guajajara*
435 (34.1% adult insects) and *Hyphessobrycon piorskii* (49.9%), but also observed niche diversification,
436 such as *Hyphessobrycon piorskii* consumption of worms (3.4%), a resource rarely mentioned in prior
437 studies. Similarly, *Holopristis* cf. *ocellifera* (52.2% insects) and *Bario oligolepis* (39.2% plant
438 material) matched the insectivorous tendency described for their genera (Castro 1999; Graciolli et al.
439 2003), although *Bario oligolepis* reliance on plant matter was unexpectedly high. *Astyanax* cf.
440 *bimaculatus* and *Characidium* cf. *bimaculatum* exhibited the generalist omnivory documented in
441 earlier work (Casatti et al., 2001; Silva-Camacho et al., 2014), including detritus and crustaceans, but
442 in our data, *A. cf. bimaculatus* also consumed fish remains (6.9%), a trophic behavior less frequently
443 reported for the genus. Both species showed elevated insectivory (42.6% and 59.9%, respectively),
444 surpassing values commonly described in the literature. *Nannostomus beckfordi*, consistent with the
445 varied diet described for its genus (Silva 1993), also showed high insectivory (43.5%), while
446 incorporating zooplankton and detritus. The most striking divergence was observed in *Curimatopsis*
447 cf. *cryptica*, which predominantly consumed plant material (85.1%) rather than the fine organic
448 matter commonly reported for the genus (Brejão et al., 2013).

449

450 These findings corroborate the well-established paradigm that morphological traits are critical
451 determinants of trophic niche specialization, facilitating the efficient exploitation of specific
452 resources through adaptive divergence (Gatz 1979; Sibbing and Nagelkerke 2000; Novakowski et al.
453 2016). Such morphological relationships are particularly pronounced in freshwater ecosystems,
454 where selective pressures drive functional trait diversification, thereby promoting dietary
455 specialization and mitigating niche overlap via resource partitioning (Ferry-Graham et al. 2002;
456 Montaña and Winemiller 2013; Montaña et al. 2020; Paz Cardozo et al. 2021). The observed
457 congruence between morphology and diet aligns with niche theory (Hutchinson 1957; Chase and
458 Leibold 2009), which posits that phenotypic divergence reduces interspecific competition by enabling
459 differential resource acquisition (Breda et al. 2005; Oliveira et al. 2024). However, the presence of
460 dietary overlap among morphologically distinct species suggests that niche differentiation may also
461 be mediated by non-morphological mechanisms (Chesson 2000; Leibold and McPeek 2006). These
462 could include behavioral plasticity (Gomiero et al. 2010; Garcia et al. 2020), temporal or microhabitat

463 segregation (Schoener 1974; Brandão-Gonçalves and Sebastien 2013), or differential prey selectivity
464 driven by foraging strategies (Lubich et al. 2024). Such compensatory mechanisms may stabilize
465 coexistence in high-diversity assemblages, underscoring the multidimensional nature of niche
466 partitioning (Chesson 2000; Leibold and McPeek 2006). Future studies should integrate functional
467 morphology with spatiotemporal foraging data to disentangle the relative contributions of these
468 factors in structuring trophic interactions.

469

470 CONCLUSIONS

471 Finally, the ecological implications of resource partitioning and interspecific competition are evident
472 in the coexistence strategies adopted by these species. The observed dietary plasticity, combined with
473 morphological adaptations, suggests that dry season changes in resource availability drive adaptive
474 feeding behaviors that minimize direct competition. This finding supports the hypothesis that
475 environmental dry season acts as a selective pressure, shaping trophic interactions and promoting
476 species coexistence (Bloomfield et al. 2022). However, the proximity of the Mata de Itamacaoca to
477 urban areas raises concerns about anthropogenic disturbances, such as habitat degradation and water
478 quality deterioration, which could disrupt the delicate balance of resource availability and trophic
479 dynamics (Daufresne and Boet 2007; Matono et al. 2014; Iacarella et al. 2018; Candolin and Rahman
480 2023). In this context, our study has important conservation implications by identifying functionally
481 vulnerable guilds (e.g., species with restricted diets), establishing baseline data for long-term
482 monitoring, and highlighting critical microhabitats for conservation. Effective protection of this
483 ecosystem thus requires strategies that consider both natural dry season ecological processes and
484 cumulative anthropogenic impacts, integrating aquatic connectivity and the maintenance of habitat
485 heterogeneity.

486

487 **Acknowledgments:** We thank CAPES - Fundação Coordenação de Aperfeiçoamento de Pessoal de
488 Nível Superior, Brazil (Finance Code 001), and CNPq - Conselho Nacional de Desenvolvimento
489 Científico e Tecnológico, Brazil for the fellowships: CNPq grants no. 307974/2021-9 and no.
490 306490/2024-2 to FPO.; CAPES grant no. 88887.699722/2022-00 to E.S.O.; and CAPES grant no.
491 88887.950525/2024-00 to L.O.V. J.S. acknowledges funding from the UKRI Future Leaders
492 Fellowship (Grant Number: MR/X035662/1).

493 **Author's Contributions:** Substantial contribution in the concept and design of the study: E.S.O.;
494 J.S.; F.P.O. Specimens' identification: L.O.V.; F.P.O. Contribution to data collection: E.S.O.; L.O.V.;
495 F.P.O. Contribution to data analysis and interpretation: J.S.; E.S.O.; F.P.O. Language revision: J.S.

496 Map preparation: L.O.V. Project financing: F.P.O. Contribution to manuscript preparation: E.S.O.;
497 L.O. V.; J.S.; F.P.O. Contribution to critical revision, adding intellectual content: E.S.O.; L.O.V.;
498 J.S.; F.P.O.

499 **Competing interests:** The authors declare no conflict of interest. The funders had no role in the
500 design of the study; in the collection, analyses, or interpretation of data; in the writing of the
501 manuscript; or in the decision to publish the results.

502 **Availability of data and materials:** The data presented in this study are available on request from
503 the corresponding author.

504 **Consent for publication:** Not applicable.

505 **Ethics approval/consent to participate:** Not applicable.

506

507 **REFERENCES**

508 Abrams P. 1983. The theory of limiting similarity. *Annual review of ecology and systematics* **14**: 359-
509 376. <https://www.jstor.org/stable/2096978>

510 Abreu JMS, Craig JM, Albert JS, Piorski NM. 2019. Historical biogeography of fishes from coastal
511 basins of Maranhão State, northeastern Brazil. *Neotropical Ichthyology* **17**: 1-10. doi:10.1590/1982-
512 0224-20180156.

513 Albert JS, Tagliacollo VA, Dagosta F. 2020. Diversification of Neotropical freshwater fishes. *Annual
514 Review of Ecology, Evolution, and Systematics* **51**: 27-53. [https://doi.org/10.1146/annurev-ecolsys-011620-031032](https://doi.org/10.1146/annurev-ecolsys-
515 011620-031032)

516 Alho CJ, Silva JS. 2012. Effects of severe floods and droughts on wildlife of the Pantanal wetland
517 (Brazil)—a review. *Animals*, **2**: 591-610. doi:10.3390/ani2040591

518 Allan JD, Castillo MM, Capps KA. 2021. Energy flow and nutrient cycling in aquatic communities. *In:*
519 Castillo MM, Capps KA (eds), *Stream ecology: structure and function of running waters*. JD. Springer
520 International Publishing, pp. 357-381. doi:10.1007/978-3-030-61286-3_12

521 Arthington AH, Balcombe SR. 2011. Extreme flow variability and the 'boom and bust' ecology of fish in
522 arid-zone floodplain rivers: a case history with implications for environmental flows, conservation and
523 management. *Ecohydrology* **4**: 708-720. doi:10.1002/eco.221

524 Balon EK, Crawford SS, Lelek A. 1986. Fish communities of the upper Danube River (Germany,
525 Austria) prior to the new Rhein-Main-Donau connection. *Environmental Biology of Fishes*, **15**: 243-
526 271. <https://api.semanticscholar.org/CorpusID:88826468>. Accessed 15 Jan. 2025.

527 Barbosa JM, Soares EC, Cintra IHA, Hermann M, Araújo AR. 2017. Perfil da ictiofauna da bacia do rio
528 São Francisco/Profile of the fish fauna of the São Francisco River basin. *Acta of Fisheries and Aquatic
529 Resources*, **5**: 70–90. doi: 10.2312/ActaFish.2017.5.1.70-90.

530 Barreto AP, Aranha JM. 2006. Diet of four species of Characiforms in an Atlantic forest stream,
531 Guaraquecaba, Paraná, Brazil. *Revista Brasileira de Zoologia*, **23**: 779-788. doi:10.1590/S0101-
532 81752006000300023

533 Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach
534 to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*, **57**: 289-300.
535 doi:10.1111/j.2517-6161.1995.tb02031.x

536 Benone NL, Lobato CM, Soares, BE. and Montag, L. F. A., 2020. Spatial and temporal variation of the
537 diet of the flag tetra *Hyphessobrycon heterorhabdus* (Characiforms: Characidae) in streams of the
538 Eastern Amazon. *Neotropical Ichthyology*, vol. 18, no. 4, pp. 1-16. doi: 10.1590/1982-0224-2020-0078.

539 Bloomfield EJ, Guzzo MM, Middel TA, Ridgway MS, McMeans BC. 2022. Seasonality can affect
540 ecological interactions between fishes of different thermal guilds. *Frontiers in Ecology and Evolution*,
541 **10**: 986459. doi: 10.3389/fevo.2022.986459.

542 Bouton N, Seehausen O, Van Alphen JJM. 1997. Resource partitioning among rock-dwelling
543 haplochromines (Pisces: Cichlidae) from Lake Victoria. *Ecology of Freshwater Fish*, **6**: 225-240.
544 doi:10.1111/j.1600-0633.1997.tb00165.x

545 Bower LM, Winemiller KO. 2019. Fish assemblage convergence along stream environmental gradients:
546 an intercontinental analysis. *Ecography*, **42**: 1691–1702. doi: 10.1111/ecog.04690.

547 Brandão-Gonçalves L, Sebastien NY. 2013. Feeding activity and influence of intraspecific competition
548 on zooplankton communities by jundiá (*Rhamdia quelen* Quoy and Gaimard, 1824) in laboratory.
549 *Brazilian Journal of Biology*, **73**: 765-773. doi: 10.1590/S1519-69842013000400012.

550 Breda L, Fontes E, Goulart E. 2005. Ecomorfologia de locomoção de peixes com enfoque para espécies
551 neotropicais. *Acta Scientiarum Biological Science*, **27**: 371–381. doi: 10.4025/actascibiolsci.v27i4.1271

552 Brejão GL, Gerhard P, Zuanon J. 2013. Functional trophic composition of the ichthyofauna of forest
553 streams in eastern Brazilian Amazon. *Neotropical Ichthyology* **11**: 361–373. doi: 10.1590/S1679-
554 62252013005000002

555 Burns MD, Sidlauskas BL. 2019. Ancient and contingent body shape diversification in a hyperdiverse
556 continental fish radiation. *Evolution*, **73**: 569–587. doi: 10.1111/evo.13658.

557 Burns MD. 2021. Adaptation to herbivory and detritivory drives the convergent evolution of large
558 abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes). *Evolution*, **75**: 688–
559 705. doi:10.1111/evo.14178

560 Burns MD, Knouft JH, Dillman CB. 2024. The role of abiotic and biotic factors in the unequal body
561 shape diversification of a Gondwanan fish radiation (Otophysi: Characiformes). *Evolution*, **78**: 253–
562 266. doi:10.1093/evolut/qpad203

563 Candolin U, Rahman T. 2023. Behavioural responses of fishes to anthropogenic disturbances: adaptive
564 value and ecological consequences. *Journal of Fish Biology*, **103**: 773–783. doi:10.1111/jfb.15322

565 Castro RMC. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis
566 processos causais. In: Caramaschi EP, Mazzoni R, Bizerril CRSF, Peres-Neto PR (Eds) *Ecologia de*
567 *peixes de riachos: estado atual e perspectivas*. Rio de Janeiro: PPGE-UFRJ. p.139–155.
568 doi:10.4257/oeco.1999.0601.04

569 Casatti L, Langeani F, Castro RMC. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, Bacia
570 do Alto Rio Paraná, SP. *Biota Neotropica* **1**: BN00201122001. doi: 10.1590/S1676-
571 06032001000100005

572 Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. *Australian*
573 *Journal of Ecology*, **18**: 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

574 Ceneviva-Bastos M, Casatti L. 2007. Feeding opportunism of *Knodus moenkhausii* (Teleostei:
575 Characidae): an abundant species in streams of the northwestern state of São Paulo, Brazil. *Iheringia,*
576 *Série Zoologia* **97**: 7–15. doi: 10.1590/S0073-47212007000100002

577 Chesson P. 2000. Mechanisms of maintenance of species diversity. *Annual Review of Ecology and*
578 *Systematics*, **31**: 343–366. doi:10.1146/annurev.ecolsys.31.1.343

579 Chase JM, Leibold MA. 2009. Ecological niches: linking classical and contemporary approaches.
580 University of Chicago Press.

581 Correa SB, Winemiller KO. 2014. Niche partitioning among frugivorous fishes in response to
582 fluctuating resources in the Amazonian floodplain forest. *Ecology*, **95**: 210–224. doi:10.1890/13-0393.1

583 Daufresne M, Boet P. 2007. Climate change impacts on structure and diversity of fish communities in rivers.
584 *Global Change Biology*, **13**: 2467–2478. doi:10.1111/j.1365-2486.2007.01449.x

585 De Andrade FS, Possamai B, Freitas CEDC, Da Silva Batista J, Hoeinghaus DJ, Clements L, Siqueira-
586 Souza FK. 2024. Niche partitioning and seasonality may mediate coexistence of piranha species in
587 Amazonian floodplain lakes. *Hydrobiologia*, **851**: 4325–4340. doi:10.1007/s10750-024-05536-z

588 De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by combining groups
589 of sites. *Oikos*, **119**: 1674–1684. doi: 10.1111/j.1600-0706.2010.18334.x

590 Decreto Nº 05/2018, 23 de Março de 2018. Dispõe sobre a criação de área de Relevante Interesse
591 Ecológico (Arie) Itamacaoca. Prefeitura Municipal de Chapadinha, Maranhão, MA.

592 Duarte C, et al. 2022. Shifts in fish community composition and structure linked to seasonality in a
593 tropical river. *Freshwater Biology*, **67**: 1789–1800. doi:10.1111/fwb.13975

594 Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible
595 asymmetrical approach. *Ecological Monographs*, **67**: 345–366.
596 doi:10.1890/00129615(1997)067[0345:SAAIST]2.0.CO;2

597 Dunn OJ. 1964. Multiple comparisons using rank sums. *Technometrics*, **6**: 241-252.
598 doi:10.1080/00401706.1964.10490181

599 Espírito-Santo HM, Zuanon J. 2017. Temporary pools provide stability to fish assemblages in Amazon
600 headwater streams. *Ecology of Freshwater Fish*, **26**: 475–483. doi:10.1111/eff.12292

601 Esteves KE, Aranha JMR, Albrecht MP. 2021. Ecologia trófica de peixes de riacho: uma releitura 20
602 anos depois. *Oecologia Australis*, **25**: 282–282. doi:10.4257/oeco.2021.2502.04

603 Ferry-Graham LA, Bolnick DI, Wainwright PC. 2002. Using functional morphology to examine the
604 ecology and evolution of specialization. *Integrative and Comparative Biology*, **42**: 265–277.
605 doi:10.1093/icb/42.2.265

606 Fialho AP, Oliveira LG, Tejerina-Garro FL, de Mérona B. 2008. Fish-habitat relationship in a tropical
607 river under anthropogenic influences. *Hydrobiologia*, **598**: 315–324. doi:10.1007/s10750-007-9165-3

608 Fitzgerald DB, Perez MHS, Sousa LM, Gonçalves AP, Py-Daniel LR, Lujan NK, et al. 2018. Diversity
609 and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation
610 amid large-scale hydroelectric development. *Biological Conservation*, **222**: 104–112.
611 doi:10.1016/j.biocon.2018.04.002

612 Fricke, R., Eschmeyer, W.N., Fong, J.D., 2025a. SPECIES BY FAMILY/SUBFAMILY. Electronic
613 version accessed 09 May 2025.
614 <http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp>

615 Fricke, R., Eschmeyer, W.N., van der Laan, R. (Eds.), 2025b. ESCHMEYER'S CATALOG OF
616 FISHES: GENERA, SPECIES, REFERENCES. Electronic version accessed 09 May 2025.

617 Garcia TD, Quirino BA, Pessoa LA, Cardoso ALP, Goulart E. 2020. Differences in ecomorphology and
618 trophic niche segregation of two sympatric heptapterids (Teleostei: Siluriformes). *Acta Scientiarum*
619 *Biological Sciences*, **42**: 1–12. doi: 10.4025/actascibiolsci.v42i1.49835.

620 Gatz Jr AJ. 1979. Community organization in fishes as indicated by morphological features. *Ecology*,
621 **60**: 711–718. doi: 10.2307/1936608.

622 Gerking, S.D. 1994. Feeding Ecology of Fish. Academic Press, San Diego, 416 p.

623 Gomiero LM, Villares Junior GA, Naous F. 2010. Seasonal and ontogenetic variations in the diet of
624 *Cichla kelberi* Kullander and Ferreira, 2006 introduced in an artificial lake in southeastern Brazil.
625 *Brazilian Journal of Biology*, **70**: 1033–1037. doi: 10.1590/S1519-69842010000500017.

626 Goulding M. 1980. The fishes and the forest: explorations in Amazonian natural history Berkeley,
627 University of California Press. p. 280.

628 Graciolli G, Azevedo MA, Melo FAG. 2003. Comparative study of the diet of Glandulocaudinae and
629 Tetragonopterinae (Ostariophysi, Characidae) in a small stream in southern Brazil. *Studies on*
630 *Neotropical Fauna and Environment* **38**: 95–110. doi: 10.1076/snfe.38.2.95.15932

631 Hellawell JM, Abel R. 1971. A rapid volumetric method for the analysis of the food of fishes. *Journal of*
632 *Fish Biology*, **3**: 29–37. doi:10.1111/j.1095-8649.1971.tb05903.x

633 Hutchinson GE. 1957. Concluding remarks. In: *Cold Spring Harbor symposia on quantitative biology*,
634 **22**: 415-427. doi:10.1101/SQB.1957.022.01.039

635 Hyslop EJ. 1980. Stomach contents analysis: a review of methods and their application. *Journal of Fish*
636 *Biology*, **17**: 411–429. doi: 10.1111/j.1095-8649.1980.tb02775.x.

637 Iacarella JC, Adamczyk E, Bowen D, Chalifour L, Eger A, Heath W, et al. 2018. Anthropogenic
638 disturbance homogenizes seagrass fish communities. *Global Change Biology*, **24**: 1904–1918.
639 doi:10.1111/gcb.14090

640 IMESC (Instituto Maranhense de Estudos Socioeconômicos e Cartográficos). 2021. *Boletim Climático*
641 do Maranhão. <http://imesc.ma.gov.br/portal/Home> (last access on 11/03/2025).

642 Jungers WL, Falsetti AB, Wall CE. 1995. Shape, relative size, and size-adjustments in morphometrics.
643 *American Journal of Biological Anthropology*, **38**: 137–161. doi: 10.1002/ajpa.1330380608.

644 Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in river-floodplain systems. Canadian
645 Special Publication of Fisheries and Aquatic Sciences, **106**: 110–127.

646 Jolliffe I. 2011. Principal component analysis. In International encyclopedia of statistical science.
647 Springer, Berlin, Heidelberg. p. 1094-1096.

648 Kawakami E, Vazzoler G. 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de
649 alimentação de peixes. Boletim do Instituto Oceanográfico, **29**: 205–207. doi: 10.1590/S0373-
650 55241980000200043.

651 Keller K, Allsop Q, Brim Box J, Buckle D, Crook DA, Douglas MM, et al. 2019. Dry season habitat use
652 of fishes in an Australian tropical river. Scientific Reports, **9**: 5677. doi:10.1038/s41598-019-41287-x

653 Koerber S, Guimarães EC, Brito PS, Bragança PHN, Ottoni FP. 2022. Checklist of the freshwater fishes
654 of Maranhão, Brazil (CLOFFBR-MA). Ichthyological Contributions of Peçes Criollos, **79**: 1–94.

655 Langerhans RB, Reznick DN. 2010. Ecology and evolution of swimming performance in fishes:
656 predicting evolution with biomechanics. Fish Locomotion: An Eco-Ethological Perspective, **200**: 248.

657 Londe V, Prince CM, Flory SL. 2024. Coexistence in long-term managed lakes: Limited evidence
658 of negative impacts of invasive macrophytes on fish communities. Ecological Indicators, **169**:
659 112931. doi:10.1016/j.ecolind.2024.112931

660 Levins R. 1968. Evolution in changing environments: Some theoretical explorations. Princeton
661 University Press.

662 Leibold MA, McPeek MA. 2006. Coexistence of the niche and neutral perspectives in community
663 ecology. Ecology, **87**: 1399–1410. doi:10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2

664 Lubich C, Aguiar-Santos J, Corrêa F, Freitas C, Siqueira-Souza FK. 2024. Trophic ecology of
665 *Acestrorhynchus falcirostris* Cuvier, 1819 in island lakes on the lower stretch of the Solimões River,
666 Amazon Basin. Brazilian Journal of Biology, **84**: e253852. doi: 10.1590/1519-6984.253852.

667 Lytle DA, Poff NL. 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution, **19**: 94–
668 100. doi:10.1016/j.tree.2003.10.002

669 Martin CH, Wainwright PC. 2013. On the measurement of ecological novelty: scale-eating pupfish are
670 separated by 168 my from other scale-eating fishes. PloS One, **8**: e71164.
671 doi:10.1371/journal.pone.0071164

672 Matono P, Bernardo JM, Costa AM, Ilhéu M. 2014. Fish response to anthropogenic pressures in
673 temporary streams: the importance of environmental drivers. *River Research and Applications*, **30**:
674 1281–1295. doi:10.1002/rra.2780

675 Medeiros TN, Rocha AA, Santos NC, Severi W. 2014. Influência do nível hidrológico sobre a dieta de
676 *Leporinus reinhardtii* (Characiformes, Anostomidae) em um reservatório do semiárido brasileiro.
677 *Iheringia. Série Zoologia*, **104**: 290–298. doi:10.1590/1678-476620141043290298

678 Meira BR, Oliveira FR, Lansac-Tôha FM, Segovia BT, Progênio M, Lansac-Tôha FA, Velho LFM.
679 2022. The importance of protists as a food resource for *Astyanax lacustris* (Osteichthyes,
680 Characiformes) larvae at different stages of development. *Hydrobiologia*, **849**: 781–794.
681 doi:10.1007/s10750-021-04734-3

682 Mise FT, Fugi R, Pagotto JPA, Goulart E. 2013. The coexistence of endemic species of *Astyanax*
683 (Teleostei: Characidae) is propitiated by ecomorphological and trophic variations. *Biota Neotropica*, **13**:
684 21–28. doi: 10.1590/S1676-06032013000300001.

685 Montaña CG, Ou C, Keppeler FW, Winemiller KO. 2020. Functional and trophic diversity of fishes in
686 the Mekong-3S river system: comparison of morphological and isotopic patterns. *Environmental*
687 *Biology of Fishes*, **103**: 185–200. doi:10.1007/s10641-020-00947-y

688 Montaña CG, Winemiller KO. 2013. Evolutionary convergence in Neotropical Cichlids and Nearctic
689 centrarchids: evidence from morphology, diet, and stable isotope analysis. *Biological Journal of the*
690 *Linnean Society*, **109**: 146–164. doi: 10.1111/bij.12021.

691 Nawa N, South J, Ellender BR, Pegg J, Madzivanzira TC, Wasserman RJ. 2024. Complex selection
692 processes on invasive crayfish phenotype at the invasion front of the Zambezi floodplains ecoregion.
693 *Freshwater Biology*, **69**: 1322-1337. doi:10.1111/fwb.14308

694 Neves MP, Da Silva JC, Baumgartner D, Baumgartner G, Delariva RL. 2018. Is resource partitioning
695 the key? The role of intra-interspecific variation in coexistence among five small endemic fish species
696 (Characidae) in subtropical rivers. *Journal of Fish Biology*, **93**: 238–249. doi:10.1111/jfb.13662

697 Novakowski GC, Hahn NS, Fugi R. 2008. Diet seasonality and food overlap of the fish assemblage in a
698 pantanal pond. *Neotropical Ichthyology*, **6**: 567–576. doi:10.1590/S1679-62252008000400004

699 Novakowski GC, Cassemiro FAS, Hahn NS. 2016. Diet and ecomorphological relationships of four
700 cichlid species from the Cuiabá River basin. *Neotropical Ichthyology*, **14**: e150151. doi: 10.1590/1982-
701 0224-20150151.

702 Núcleo Geoambiental - NuGeo. 2016. Bacias hidrográficas e climatologia no Maranhão. Universidade
703 Estadual do Maranhão, São Luís - MA, p. 165.

704 Oliveira ES, South J, Vieira LO, Oliveira RF, Ottoni FP. (2025). Trophic dynamics and morphometric
705 divergence of coexisting neotropical cichlid species (Teleostei: Cichliformes) in relation to a dam.
706 Brazilian Journal of Biology, **85**: e293810. doi: 10.1590/1519-6984.293810

707 Oliveira ES, South J, Guimarães EC, Vieira LO, Campos DS, Ottoni FP. 2024. Characterizing
708 functional morphology and trophic niches in a neotropical Characiforms (Actinopterygii: Teleostei)
709 assemblage in middle Munim River basin, Maranhão, Brazil. Brazilian Journal of Biology, **26**: e279881.
710 doi: 10.1590/1519-6984.279881.

711 Pastore AI, Barabás G, Bimler MD, Mayfield MM, Miller TE. 2021. The evolution of niche overlap and
712 competitive differences. Nature Ecology & Evolution, **5**: 330–337. doi: 10.1038/s41559-020-01357-2.

713 Passos ML, Zambrzycki GC, Pereira RS. 2016. Balanço hídrico e classificação climática para uma
714 determinada região de Chapadinha-MA. Revista Brasileira de Agricultura Irrigada, **10**: 758–76. doi:
715 10.7127/rbai.v10n400402

716 Paz Cardozo AL, Quirino BA, Yofukuji KY, Ferreira Aleixo MH, Fugi R. 2021. Habitat complexity and
717 individual variation in diet and morphology of a fish species associated with macrophytes. Ecology of
718 Freshwater Fish, **30**: 184–196. doi: 10.1111/eff.12527.

719 Pazin VF, Magnusson WE, Zuanon J, Mendonca FP. 2006. Fish assemblages in temporary ponds
720 adjacent to ‘terra-firme’ streams in Central Amazonia. Freshwater Biology, **51**: 1025–1037. doi:
721 10.1111/j.1365-2427.2006.01537.x.

722 Pelage L, Lucena-Frédu F, Eduardo LN, Le Loc'h F, Bertrand A, Lira AS, Frédu T. 2022. Competing
723 with each other: Fish isotopic niche in two resource availability contexts. Frontiers in Marine Science,
724 **9**: 975091. doi: 10.3389/fmars.2022.975091.

725 Petry AC, Thomaz SM, Esteves FA. 2011. Comunidade de peixes. In: Esteves FA (ed) Fundamentos de
726 limnologia, 3rd edn. Rio de Janeiro, Interciênciac. p. 609-624.

727 Pianka ER, 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, **4**:
728 53–74. <https://www.jstor.org/stable/2096804>

729 Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community
730 structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic
731 Sciences, **46**: 1805-1818. doi: 10.1139/f89-235.

732 Porter CK, Golcher-Benavides J, Benkman CW. 2022. Seasonal patterns of dietary partitioning in
733 vertebrates. *Ecology Letters*, **25**: 2463-2475. doi:10.1111/ele.14083.

734 Prado AVR, Goulart E, Pagotto JPA. 2016. Ecomorphology and use of food resources: inter- and
735 intraspecific relationships of fish fauna associated with macrophyte stands. *Neotropical Ichthyology* **14**:
736 e150140. doi: 10.1590/1982-0224-20150140

737 Prejs A, Prejs K. 1987. Feeding of tropical freshwater fishes: seasonality in resource availability and
738 resource use. *Oecologia*, **71**: 397-404. doi: 10.1007/BF00379478.

739 R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R
740 Foundation for Statistical Computing.

741 Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA. 2016. Fish biodiversity and
742 conservation in South America. *Journal of Fish Biology*, **89**: 12-47. doi: 10.1111/jfb.13016.

743 Ross ST. 1986. Resource partitioning in fish assemblages: a review of field studies. *Copeia*, 352-388.

744 Saint-Paul U, Zuanon J, Correa MAV, García M, Fabré NN, Berger U, Junk WJ. 2000. Fish
745 communities in central Amazonian white-and blackwater floodplains. *Environmental Biology of Fishes*,
746 **57**: 235-250. doi:10.1023/A:1007699130333

747 Sibbing FA, Nagelkerke LA. 2000. Resource partitioning by Lake Tana barbs predicted from fish
748 morphometrics and prey characteristics. *Reviews in Fish Biology and Fisheries*, **10**: 393-437. doi:
749 10.1023/A:1012270422092.

750 Silva ALG, Martins F, Santos R, Nunes JLS. 2008. Conservação da Reserva da Itamacaoca de
751 Chapadinha/MA. In: Selbach JF, Leite JRSA, eds. *Meio Ambiente no Baixo Parnaíba: Olhos no mundo,*
752 pés na região. São Luís, Brazil: EDUFMA. p. 97-104.

753 Silva CPD. 1993. Alimentação e distribuição espacial de algumas espécies de peixes do igarapé do
754 Candirú, Amazonas, Brasil. *Acta Amazonica* **23**: 271–285. doi: 10.1590/1809-43921993233285

755 Silva-Camacho DDS, Santos JNDS, Gomes RDS, Araújo FG. 2014. Ecomorphological relationships
756 among four Characiformes fish species in a tropical reservoir in South-eastern Brazil. *Zoologia*
757 (Curitiba), **31**:28-34. doi:10.1590/S1984-46702014000100004

758 Schoener TW. 1974. Resource partitioning in ecological communities: research on how similar species
759 divide resources helps reveal the natural regulation of species diversity. *Science*, **185**: 27–39.
760 doi:10.1126/science.185.4145.27

761 Souza AM, & Auricchio P. 2002 Peixes. In: Auricchio P, Salomão MG (Eds) Técnicas de coleta e
762 preparação de vertebrados para fins científicos e didáticos. Instituto Pau Brasil de História Natural. São
763 Paulo. p. 17-42.

764 Tonella LH, et al. 2022. Neotropical Freshwater Fishes: A dataset of occurrence and abundance of
765 freshwater fishes in the Neotropics. *Ecology*, **1**: e3713. doi:10.1002/ecy.3713

766 Underwood W, Anthony R. 2020 [viewed 01 November 2022]. AVMA Guidelines for the Euthanasia of
767 Animals: 2020 Edition. Retrieved 30 March 2020, 2020-01. Available from:
768 <https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf>.

769 Vanni MJ, Bowling AM, Dickman EM, Hale RS, Higgins KA, Horgan MJ, Knoll LB, Renwick WH,
770 Stein RA. 2006. Nutrient cycling by fish supports relatively more primary production as lake
771 productivity increases. *Ecology*, **87**: 1696-1709. doi:10.1890/0012-9658(2006)87[1696:ncbfsr]2.0.co;2.

772 Vieira LO, Campos DS, Oliveira RF, South J, Coelho MSP, Paiva MJS, Bragança PHN, Guimarães EC,
773 Katz AM, Brito PS, Santos JP, Ottoni FP. 2023. Checklist of the fish fauna of the Munim River Basin,
774 Maranhão, north-eastern Brazil. *Biodiversity Data Journal*, **11**: e98632. doi: 10.3897/BDJ.11.e98632.

775 Warton DI, Hui FK. 2011. The arcsine is asinine: the analysis of proportions in ecology. *Ecology*, **92**: 3-
776 10. doi:10.1890/10-0340.1

777 Winemiller KO. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from
778 five biotic regions. *Ecological Monographs*, **61**: 343-365. doi:10.2307/2937046

779 Zar JH. 2010. *Biostatistical analysis* pearson prentice-hall. Upper Saddle River, NJ.

780 Zelditch M, Swiderski D, Sheets HD. 2012. *Geometric morphometrics for biologists: a primer*.
781 academic press. 478pp.

782 Zhang Y, Li J, Li Y, Tarkan AS, Liu C, Britton JR. 2024. Trophic niche diversity and redundancy across
783 trophic positions in a subtropical river fish assemblage. *Hydrobiologia*, **851**: 2417-2428.
784 doi:10.1007/s10750-023-05467-1

785

786

787

788

789

790

791 **Table 1.** Description of the collecting sites, including coordinates and habitat characteristics, in Mata de
 792 Itamacaoca, Chapadinha, Maranhão, Brazil.

793

Collecting Site	Coordinates	Habitat Characteristics
C1	3°44'45.20"S 43°19'15.10"W	Stream near a spring, surrounded by gallery and riparian forest, in Mata de Itamacaoca, Chapadinha, Maranhão. Sampling covered ~200 meters of the watercourse.
C2	3°44'58.24"S 43°20'23.91"W	Stream in the Repouso do Guerreiro area, within Mata de Itamacaoca, Chapadinha, Maranhão.
C3	3°44'27.1"S 43°19'36.4"W	Stream near a natural water source, with gallery and riparian forest, in Mata de Itamacaoca, Chapadinha, Maranhão.
C4	3°44'55.16"S 43°19'57.10"W	Itamacaoca Dam, located in Chapadinha, Maranhão.
C5	3°45'8.20"S 43°20'4.13"W	Stream downstream of the dam, within Mata de Itamacaoca, Chapadinha, Maranhão.

794

795

796 **Table 2.** Standard length (SL) variation of Characiformes fishes sampled in Mata de Itamacaoca during the dry
 797 season of 2019. Values represent: N = sample size per species, size range (min-max), mean \pm standard deviation
 798 (SD), and median SL in millimeters.

Family	Species	N	SL Range (mm)	SL Mean \pm SD (mm)	SL Median (mm)
Acestrorhamphidae	<i>Astyanax</i> cf. <i>bimaculatus</i>	26	27.5-76.96	53.35 \pm 9.1	53.86
	<i>Bario oligolepis</i>	11	45.86-68.44	52.65 \pm 6.02	51.73
	<i>Holopristis</i> cf. <i>ocellifera</i>	30	25.09-34.15	30.76 \pm 2.08	31.17
	<i>Hypseobrycon piorskii</i>	16	21.02-28.5	25.2 \pm 2.01	25.26
Crenuchidae	<i>Characidium</i> cf. <i>bimaculatum</i>	27	22.91-27.55	24.99 \pm 1.07	24.77
Curimatidae	<i>Curimatopsis</i> cf. <i>cryptica</i>	23	30.48-40.42	33.57 \pm 2.94	32.63
Lebiasinidae	<i>Nannostomus beckfordi</i>	30	25.83-29.8	27.75 \pm 1.04	27.89
Stevartiidae	<i>Knodus guajajara</i>	10	23.88-36.48	30.00 \pm 4.57	30.56

799

800

801

802

803 **Table 3a.** Stomach content analysis of Characiformes fishes from Mata de Itamacaoca (dry season 2019; N=8
 804 specimens), showing dietary composition by: frequency of occurrence (F%), volumetric proportion (V%), and
 805 Index of Alimentary Importance (IAI). Food items are categorized by taxonomic group, with dominant resources
 806 (IAI) indicating key dietary components.

Food items/Groups	Frequency of Occurrence (%)	Volume (%)	IAI
Insects			
Coleoptera	19.653	10.268	4.036
Diptera	9.2455	4.4009	0.8140
Ephemeroptera	4.0462	1.9588	0.1585
Hemiptera	8.6705	5.1450	0.8922
Isoptera	4.0462	1.4471	0.1171
Trichoptera	3.4682	2.0771	0.1440
Insect remains	35.260	13.388	9.4413
Insect larvae			
Coleoptera larvae	7.5144	3.1509	0.4735
Diptera larvae	11.560	6.7482	1.5602
Hemiptera larvae	3.4682	1.6484	0.1143
Trichoptera larvae	0.5780	0.2600	0.0030
Plant material			
Flowers	2.8901	1.4261	0.0824
Seeds	18.497	12.898	4.771
Filamentous algae	7.5144	4.6643	0.7010
Plant remains	26.011	12.079	6.2841
Zooplankton			
Hydracarina	3.4682	0.5327	0.0369
Cladocera	0.5780	0.0209	0.0002
Detritus			
Debris	16.184	7.4193	2.4016
Sediment	10.404	3.9495	0.8218
Fish			
Fish scale	9.2485	2.7751	0.5133
Fish remains	0.5780	0.2516	0.0029
Worms			
Nematodeo	1.7341	1.1694	0.0405
Crustaceans			
Decapoda	4.6242	2.3195	0.2145

807

808 **Table 3b.** Relative contribution of autochthonous and allochthonous food resources to the diet of Characiformes
 809 assemblage in Mata de Itamacaoca during the 2019 dry season, based on the Index of Alimentary Importance (IAI).

Origin of food items	Main items included	IAI (%)
Allochthonous	Adult insects (Coleoptera, Diptera, Ephemeroptera, Hemiptera, Isoptera, Trichoptera, insect remains), flowers, seeds, plant remains	79.5
Autochthonous	Insect larvae (Coleoptera, Diptera, Hemiptera, Trichoptera), filamentous algae, zooplankton (Hydracarina, Cladocera), detritus (debris, sediment), fish tissues (scales, remains), worms (Nematodea), crustaceans (Decapoda)	20.5

810

811 **Table 4.** Results of the indicator species analysis (indicspecies) testing for significant dietary preferences among
 812 fish species based on stomach content composition. Bold values indicate the most strongly associated prey items
 813 for each predator species.

Associated Species Group	Prey Category	Indicator Value (stat)	p
<i>Astyanax cf. bimaculatus</i>	Fish	0.556	0.0001***
<i>Knodus guajajara</i>	Worms	0.385	0.0001***
<i>Astyanax cf. bimaculatus + Characidium cf. bimaculatum</i>	Crustaceans	0.364	0.0104*
<i>Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Bario oligolepis</i>	Plant material	0.532	0.0001***
<i>Astyanax cf. bimaculatus + Bario oligolepis</i>	Insects	0.426	0.0009**
<i>Astyanax cf. bimaculatus + Hyphessobrycon piorskii + Knodus guajajara + Nannostomus beckfordi</i>	Insects larvae	0.361	0.007**
<i>Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Knodus guajajara + Bario oligolepis + Nannostomus beckfordi</i>	Detritus	0.354	0.0094**

814

815

816 **Table 5.** Levin's niche breadth measures: prey proportions (rows 1-8), resource count (N), raw (B) and standardized
 817 (*Ba*) indices.

Dietary component	<i>Astyanax cf. bimaculatus</i>	<i>Characidium cf. bimaculatum</i>	<i>Curimatopsis cf. cryptica</i>	<i>Holopristis cf. ocellifera</i>	<i>Hyphessobrycon piorskii</i>	<i>Knodus guajajara</i>	<i>Bario oligolepis</i>	<i>Nannostomus beckfordi</i>
Insects larvae	0.156	0.2061	0	0.1877	0.272	0.1841	0	0.232
Plant material	0.197	0	0.5971	0.2815	0.1786	0.1439	0.3242	0.1787
Insects	0.3149	0.2482	0	0.371	0.2206	0.2274	0.4226	0.2862
Fish	0.0727	0	0	0	0	0	0	0
Detritus	0.1025	0.1248	0.4029	0.1598	0.1294	0.1319	0.2532	0.242
Crustaceans	0.1568	0.315	0	0	0	0	0	0
Worms	0	0	0	0	0.1605	0.26	0	0
Zooplankton	0	0.1058	0	0	0.0388	0.0528	0	0.0611
N	6	5	2	4	6	6	3	5
B	4.933	4.346	1.927	3.601	5.036	5.153	2.875	4.349
<i>Ba</i>	0.562	0.478	0.132	0.372	0.577	0.593	0.268	0.478

818

819

820

821

822 **Table 6.** Pianka's measure of niche overlap (Pianka 1973) among Characiformes species from Mata de Itamacaoca.
 823 Values range from 0-1, with 0 being no niche overlap and 1 being complete niche overlap.

Species	<i>Astyanax</i> cf. <i>bimaculatus</i>	<i>Characidium</i> cf. <i>bimaculatum</i>	<i>Curimatopsis</i> cf. <i>cryptica</i>	<i>Holopristis</i> cf. <i>ocellifera</i>	<i>Hyphessobrycon</i> <i>piorskii</i>	<i>Knodus</i> <i>guajajara</i>	<i>Bario</i> <i>oligolepis</i>	<i>Nannostomus</i> <i>beckfordi</i>
<i>Characidium</i> cf. <i>bimaculatum</i>	1.1311	1.0000						
<i>Curimatopsis</i> cf. <i>cryptica</i>	1.4241	1.3096	1.0000					
<i>Holopristis</i> cf. <i>ocellifera</i>	1.0375	1.4281	0.7242	1.0000				
<i>Hyphessobrycon</i> <i>piorskii</i>	1.2865	0.9031	1.4173	1.0622	1.0000			
<i>Knodus</i> <i>guajajara</i>	1.4006	0.8876	1.3554	1.4127	0.1959	1.0000		
<i>Bario</i> <i>oligolepis</i>	0.9190	1.6867	0.7074	0.8392	1.6209	1.411	1.0000	
<i>Nannostomus</i> <i>beckfordi</i>	1.6715	0.5843	0.7844	0.9553	0.8329	0.9763	1.3218	1.0000

824

825

826 **Table 7.** Mean comparisons between groups adjusted using the Benjamini-Hochberg method. The table displays
 827 pairwise mean differences and adjusted p-values among species groups. ns (not significant). Significant results ($p \leq$
 828 0.05) indicate substantial differences between species pairs.

829

Group 1	Group 2	Mean Difference	Adjusted p-value	Significance
<i>Astyanax</i> cf. <i>bimaculatus</i>	<i>Characidium</i> cf. <i>bimaculatum</i>	-6.097	0.001	**
	<i>Curimatopsis</i> cf. <i>cryptica</i>	-5.337	0.001	**
	<i>Holopristis</i> cf. <i>ocellifera</i>	-4.829	0.001	**
	<i>Hyphessobrycon</i> <i>piorskii</i>	-4.007	0.0001	***
	<i>Knodus</i> <i>guajajara</i>	-0.043	0.483	ns
	<i>Bario</i> <i>oligolepis</i>	-2.776	0.007	**
	<i>Nannostomus</i> <i>beckfordi</i>	-3.866	0.0002	***
<i>Characidium</i> cf. <i>bimaculatum</i>	<i>Curimatopsis</i> cf. <i>cryptica</i>	0.238	0.437	ns
	<i>Holopristis</i> cf. <i>ocellifera</i>	1.689	0.080	ns
	<i>Hyphessobrycon</i> <i>piorskii</i>	0.979	0.241	ns
	<i>Knodus</i> <i>guajajara</i>	5.097	0.001	**
	<i>Bario</i> <i>oligolepis</i>	1.969	0.049	*
<i>Curimatopsis</i> cf. <i>cryptica</i>	<i>Nannostomus</i> <i>beckfordi</i>	2.154	0.034	*
	<i>Holopristis</i> cf. <i>ocellifera</i>	1.319	0.146	ns
	<i>Hyphessobrycon</i> <i>piorskii</i>	0.723	0.299	ns
	<i>Knodus</i> <i>guajajara</i>	4.562	0.001	**
	<i>Bario</i> <i>oligolepis</i>	1.674	0.078	ns
	<i>Nannostomus</i> <i>beckfordi</i>	1.774	0.071	ns

Group 1	Group 2	Mean Difference	Adjusted p-value	Significance
<i>Holopristis cf. ocellifera</i>	<i>Hyphessobrycon piorskii</i>	-0.411	0.381	ns
	<i>Knodus guajajara</i>	3.862	0.0002	***
	<i>Bario oligolepis</i>	0.669	0.307	ns
	<i>Nannostomus beckfordi</i>	0.590	0.324	ns
<i>Hyphessobrycon piorskii</i>	<i>Knodus guajajara</i>	3.495	0.0007	***
	<i>Bario oligolepis</i>	0.912	0.253	ns
	<i>Nannostomus beckfordi</i>	0.866	0.258	ns
<i>Knodus guajajara</i>	<i>Bario oligolepis</i>	-2.424	0.018	*
	<i>Nannostomus beckfordi</i>	-3.154	0.002	**
<i>Bario oligolepis</i>	<i>Nannostomus beckfordi</i>	-0.189	0.441	ns

830

831 **Table 8.** Table 8. Results of linear models (LMs) summarizing assemblage-level dietary composition of
 832 Characiformes during the dry season. The table presents estimated coefficients, standard errors, t-values, and
 833 significance levels for major food categories. Model coefficients indicate whether the mean proportional
 834 contribution of each food category differs from zero. Proportional data were variance-stabilized using an arcsine
 835 square root transformation. ms = marginally significant. Statistically significant predictors ($P < 0.05$) are shown in
 836 bold.

Coefficients	Estimate	Std. Error	T value	p
Intercept	0.605	0.138	4.358	0.001***
Detritus	0.155	0.151	1.028	0.305
Fish	-0.194	0.186	-1.043	0.298
Insect	0.368	0.144	2.545	0.011*
Insect larvae	0.147	0.152	0.963	0.335
Plant material	0.285	0.146	1.955	0.051 ms
Worms	0.087	0.266	0.328	0.743
Zooplankton	-0.116	0.212	-0.550	0.582

837

838

839

840

841

842

843

844

845 **Fig. 1.** Location of the collecting sites (C1-C5) distributed across the Mata de Itamacaoca, Chapadinha
846 municipality, State of Maranhão, northeastern Brazil.

847

848 **Fig. 2.** Proportion of food items in the diet of the analyzed species. The graphs show the percentage
849 composition (%) of each food category identified in stomach/intestinal contents.

850

851 **Fig. 3.** Non-metric Multidimensional Scaling (NMDS) ordination of dietary overlap among of the
852 eight Characiformes species based on stomach content composition (Bray-Curtis dissimilarity).
853 Convex hulls enclose each species' dietary niche space, with closer positions indicating greater
854 similarity in prey composition. Stress value = 0.13, indicating acceptable representation of
855 multidimensional dietary patterns in 2D space.

856

857 **Fig. 4.** Dendrogram from cluster analysis on Index of Trophic similarity between species pairs
858 quantified using the modified Pianka index (Pianka 1973) for the eight examined Characiformes
859 fish species in Mata de Itamacaoca, dry season.

860

861 **Fig. 5.** Biplot of Principal Component Analysis (PCA) of morphological trait space between
862 Characiformes species; and variable loadings on the PC axes.

863