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Dry season feeding profiles of a Characiformes assemblage in a Brazilian tropical stream
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ABSTRACT: Trophic interactions between fish and their resources depends on resource availability
and interspecific competition. To understand dry season trophic profiles of a speciose Characiformes
assemblage we performed stomach content analysis to describe diet and determine levels of niche
partitioning and morphological adaptations among eight Characiformes species in the dry season in
Mata de Itamacaoca, Chapadinha Municipality, State of Maranhao, northeastern Brazil. Insectivory
dominated most diets, with Astyanax cf. bimaculatus and Characidium cf. bimaculatum exhibiting
the broadest niches. Specialization occurred in Curimatopsis cf. cryptica (85.07% plant material) and
there was significant dietary segregation with indicator species analysis linking Astyanax cf.
bimaculatus to piscivory and Knodus guajajara to vermivory. Pianka index showed extreme niche
overlap variations, with the highest overlap between Bario oligolepis and Characidium cf.
bimaculatum (1.68), and between Astyanax cf. bimaculatus and Nannostomus beckfordi (1.64).
Morphological PCA associated traits with feeding strategies: caudal fin length (Astyanax cf.
bimaculatus), body depth (Curimatopsis cf. cryptica), and oral gape width (Bario oligolepis). Mixed
models confirmed insects and plant material with a marginally significant effect as key drivers of
dietary variation. Therefore, the assemblage shows high niche overlap combined with diverse trophic
profiles. Results presented here demonstrate how dry season resource scarcity promotes trophic
divergence via morphological specialization, with generalists (Astyanax cf. bimaculatus) coexisting
with specialists through niche partitioning, which is critical for conservation in this threatened urban-
protected area.

Keywords: Morphological adaptations, Neotropical fishes, Resource partitioning, Seasonality,

Trophic ecology.
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BACKGROUND

Neotropical aquatic ecosystems harbor one of the most diverse ichthyofaunas on the planet (Albert et
al. 2020; Tonella et al. 2022), where Characiformes play a fundamental role in structuring trophic
networks (Barreto and Aranha 2006; Silva-Camacho et al. 2014; Meira et al. 2022; Oliveira et al.
2024). In seasonal environments, hydrological variation acts as an environmental filter, shaping
patterns of trophic and morphological adaptations (Junk et al. 1989; Correa and Winemiller 2014;
Duarte et al. 2022). Previous studies have shown that the dry season imposes critical constraints on
resource availability, leading to increased interspecific competition (Prejs and Prejs 1987), the
emergence of distinct morphological strategies (Gomiero et al. 2010), and dietary specialization
(Novakowski et al. 2008). Although trophic segregation has been highlighted as the primary
mechanism structuring fish assemblages (Ross 1986), this dynamic may vary according to local
conditions, including dry season factors (Bouton et al. 1997). However, gaps remain in understanding
the mechanisms that allow the coexistence of multiple sympatric species under such extreme

conditions (Ross 1986; Neves et al. 2018).

Aquatic environments are generally strongly influenced by seasonal periods and flood pulse dynamics
(Junk et al. 1989; Pazin et al. 2006; Espirito-Santo and Zuanon 2017). As flood peaks reach their
maximum and the system transitions into the dry season, periods that are becoming increasingly
pronounced, there is a progressive decline in turbidity, resource availability, flow velocity, and water
level (Alho and Silva 2012). These abiotic changes result in significant transformations in fish
assemblages (Saint-Paul et al. 2000). While some species exhibit expansion and contraction dynamics
aligned with dry season reproduction, others persist throughout the entire hydrological cycle (Fialho
et al. 2008; Arthington and Balcombe 2011; Fitzgerald et al. 2018). Dry season variation, particularly
in tropical regions, plays a crucial role in shaping food resource availability and structuring trophic
networks (Medeiros et al. 2014; Pelage et al. 2022; Londe et al. 2024). During the dry season, reduced
water volume can lead to increased population density and the concentration of organisms in remnant
habitats, intensifying ecological interactions such as competition and predation (Duarte et al. 2022).
This scenario can directly impact niche partitioning, leading to shifts in dietary composition and
potential trophic displacements among sympatric species (Silva-Camacho et al. 2014; Bloomfield et

al. 2022; De Andrade et al. 2024).

In the context of dry season persistence, intraspecific morphological variation becomes a crucial

factor for fish survival in stochastic ecosystems, as species evolve in response to persistent
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hydrological regimes (Poff and Ward 1989; Lytle and Poff 2004). Morphological adaptations and
diversity can confer specializations to specific environmental parameters, thereby increasing survival
among cohorts (Langerhans and Reznick 2010). morphological theory predicts that coexistence in
restrictive environments is mediated by three main mechanisms: (a) divergence in functional traits
(Winemiller 1991), (b) behavioral plasticity (Correa and Winemiller 2014), and (c) temporal resource
partitioning (Ross 1986). However, the application of these principles to small Characiformes
assemblages in seasonal microhabitats remains insufficiently tested. Studies in analogous systems
suggest that body and oral apparatus morphology explain up to 80% of the variation in resource use
(Neves et al. 2018; Duarte et al. 2022), but these patterns may differ significantly in fragmented

environments such as the Mata de Itamacaoca.

The order Characiformes is one of the most diverse among Neotropical fishes, comprising
approximately 1,700 described species (Reis et al. 2016) and encompassing a wide range of feeding
habits, from herbivores and detritivores to carnivores and piscivores (Barbosa et al. 2017; Burns and
Sidlauskas 2019). This functional diversity grants these fishes a crucial role in mediating energy and
matter flow in aquatic ecosystems, directly influencing the availability and renewal of trophic
resources (Burns and Sidlauskas 2019; Burns 2021; Burns et al. 2024). Moreover, their abundance
and distribution across different habitats make them ideal models for investigating trophic
interactions and adaptive strategies in dry season environments (Burns and Sidlauskas 2019; Burns
et al. 2024). Trophic ecology among Characiformes species is often associated with morphological
differences, particularly in mouth shape, dentition, and digestive tract structure (Silva-Camacho et al.
2014; Benone et al. 2020; Burns 2021; Meira et al. 2022). Specialized morphological traits enable
differential exploitation of available resources (Sibbing and Nagelkerke 2000; Bower and Winemiller
2019), reducing dietary overlap (Mise et al. 2013) and promoting the coexistence of multiple species
within the same environment (Oliveira et al. 2024; Oliveira et al., 2025). In environments influenced
by seasonal hydrological regimes, these adaptations can be essential for species survival, allowing
diversification of feeding strategies as resource availability fluctuates throughout the hydrological

cycle (Porter et al. 2022; Bloomfield et al. 2022; De Andrade et al. 2024).

The Munim River Basin (16,000 km?), an important hydrographic system of Maranhdo (Koerber et
al. 2022), which is located in a transitional zone between the Amazon and Cerrado biomes (NuGeo
2016), harboring a still understudied ichthyofauna (Abreu et al. 2019; Vieira et al. 2023). Within this

context, the Mata de Itamacaoca stands out as a unique ecological enclave embedded within an urban



107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125

126

127

128

129
130
131
132
133
134
135
136
137
138
139

matrix (Oliveira et al. 2020), sustaining a diverse assemblage of small Characiformes (Oliveira et al.
2020), characterized by significant morphological and trophic overlap (Oliveira et al. 2024). The
coexistence of functionally similar species in a seasonally dynamic environment suggests (i) the
presence of sophisticated resource partitioning mechanisms (Burns and Sidlauskas 2019) and (ii) an
increased vulnerability to anthropogenic disturbances (Daufresne and Boet 2007). Although
preliminary studies have identified trophic segregation patterns (Oliveira et al. 2024), possible
mechanisms are unexplored as these studies combined both wet and dry season than accounting for
increased resource abundance in the wet season. Thus, dry-season ecological processes in the Munim
River Basin remain poorly understood, particularly regarding how seasonal reductions in water
volume and resource availability shape trophic interactions among fish species (Junk et al. 1989;

Lytle and Poff 2004; Correa and Winemiller 2014).

Given the above, this study aims to investigate the dietary composition and trophic structure of
Characiformes species in the Mata de Itamacaoca during the dry season through stomach content
analysis, correlating it with food resource availability and species’ morphological adaptations.
Specifically, we seek to: (1) describe dietary composition and identify the main food items consumed
based on stomach content analysis, (2) assess patterns of overlap and segregation in resource use
among species, (3) examine the relationship between morphological attributes and dietary
preferences, and (4) discuss the ecological implications of resource partitioning and interspecific

competition.

MATERIALS AND METHODS
Study area and sampling methodology

This study was conducted in the Mata de Itamacaoca (middle Munim River Basin), a protected urban
fragment (460 ha) within the Cerrado biome 03°44'45.2"S 43°19'15.1"W; ~90 m elevation), located
in the Chapadinha municipality, State of Maranhao, northeastern Brazil (Fig. 1, Table 1). Mata de
Itamacaoca encompasses a diverse array of microhabitats, including riparian forests, gallery forests,
and perennial streams that collectively support a rich biodiversity representative of the Cerrado biome
(Silvaet al. 2008; Oliveira et al. 2020). The vegetation consists primarily of closed-canopy formations
with trees exceeding 10 meters in height, particularly around springs and water bodies, which are
essential for maintaining local water supplies (Silva et al. 2008). The area was officially designated
as an Area of Relevant Ecological Interest (Decreto N° 05/2018) due to its critical role in watershed
protection, microclimate regulation, and the conservation of regional biodiversity (Silva et al. 2008).

Despite its protected status, the reserve faces increasing anthropogenic pressures, including illegal
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resource extraction (e.g., timber, fish, and game), agricultural burning practices, urban encroachment,
and inadequate enforcement of conservation measures (Oliveira et al. 2020). These threats have
significantly affected both the hydrological dynamics of the reservoir system and the conservation
status of aquatic biodiversity in recent years. The area's high accessibility and complete urban
encroachment make it particularly vulnerable to such disturbances, despite its recognized ecological

importance for regional water supply and climate regulation (Oliveira et al. 2020).

The regional climate exhibits strong seasonality, with a well-defined dry season lasting five to six
months (July to November/December), characterized by significant water deficits (150-300 mm),
followed by an equally distinct rainy season from January to May/June, with peak precipitation
occurring between February and March (Passos et al. 2016; IMESC, 2021). This marked seasonal
variation may create dynamic environmental conditions that profoundly influence the aquatic

ecosystems within the protected area.

Sampling was conducted during the dry season (from July to December 2019) at five previously
established collecting sites (C1-C5) distributed across the Mata de Itamacaoca within the middle
Munim River Basin (Fig. 1, Table 1). All sampling procedures were authorized under SISBIO permit
N° 64415. Because the study involved only the collection of wild fish specimens for taxonomic and
ecological analyses, it did not require approval from an Institutional Animal Care and Use Committee
(CEUA). These sites included both natural stream sections and one dam-impacted area (C4), as
described in Oliveira et al. (2020) (Fig. 1, Table 1). Fish collections were performed using
standardized techniques with dip nets (80 cm x 54 cm, 2 mm mesh) and trail nets (240 cm x 100 cm,
2 mm mesh) following the methodology of Souza and Auricchio (2002). All collection procedures
adhered to animal welfare guidelines (Underwood and Anthony 2020), with specimens euthanized in
a solution of ethyl-3-amino-benzoate-methanesulfonate (MS-222; 250 mg/L) until cessation of
opercular movement. Following euthanasia, specimens were initially preserved in 10% formalin and
subsequently transferred to 70% ethanol after 10-15 days for long-term storage. Voucher specimens
are housed at the Colecao Ictioldgica do Centro de Ciéncias Agrarias e Ambientais (CICCAA) of the
Universidade Federal do Maranhdo (UFMA); the complete information spreadsheets are provided in
Supplementary Material 1. This sampling design-maintained consistency with previous studies in the
area while specifically targeting the dry season to investigate trophic and morphological adaptations

under seasonal stress conditions.
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Fish Identification

Fish were identified to the lowest possible taxonomic level, based on specific literature for each
taxonomic group. Species names, authorship and year of description, geographical distribution,
taxonomic classification, as well as other additional information were checked in Fricke et al. (2025a,

b).

Stomach content analyses

Only adult individuals were included in all analyses to avoid ontogenetic effects on trophic
composition and morphological traits (Winemiller 1991; Gerking 1994). This was confirmed by
examining standard length (SL) ranges for each species (Table 2), which consistently corresponded
to adult size classes reported in the literature. We analyzed the dietary composition of 173 specimens
belonging to eight Characiformes species: Astyanax cf. bimaculatus (n = 26; Acestrorhamphidae),
Characidium cf. bimaculatum (n = 27; Crenuchidae), Curimatopsis cf. cryptica (n = 23;
Curimatidae), Holopristis cf. ocellifera [Hemigrammus sp. 1 sensu Oliveira et al. (2020)] (n = 30;
Acestrorhamphidae ), Hyphessobrycon piorskii Guimaraes, Brito, Feitosa, Carvalho-Costa & Ottoni
2018 (n = 16; Acestrorhamphidae), Knodus guajajara Aguiar, Brito, Ottoni & Guimaraes 2022
[Knodus victoriae (Steindachner, 1907) sensu Oliveira et al. (2020)] (n = 10; Stevardiidae), Bario
oligolepis (Giinther 1864) (n = 11; Acestrorhamphidae), and Nannostomus beckfordi Giinther, 1872
(n = 30; Lebiasinidae) (Supplementary Material 1, Table 2). An ideal sample size of 30 individuals
per species was initially established to standardize comparisons. However, some species did not reach
this number due to their low abundance in the sampled environment during the dry season. Despite
this limitation, the available sample sizes were considered adequate for descriptive dietary and

morphological analyses.

To achieve this, we removed the stomach and intestine of each individual and placed the digestive
contents in a Sedgwick-Rafter cell, which contains 1 x 1 mm grid divisions, allowing for visualization
and quantification under a stereomicroscope, following the protocol described by Martin and
Wainwright (2013). The frequency of occurrence (FO) of each dietary item was determined as the
proportion of stomachs in which the item was identified relative to the total number of stomachs
analyzed (Hyslop 1980). The volume (V) of each item was estimated using the volumetric method
described by Hellawell and Abel (1971) and Hyslop (1980). Based on these values, we calculated a
modified alimentary index (IAi) for each species, excluding empty stomachs, as proposed by

Kawakami and Vazzoler (1980). The obtained proportions were rounded to 0.1% and expressed as
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percentages. Additionally, we calculated the mean and standard deviation of the proportions of prey
items consumed by each species. Dietary items were identified based on partially digested remains,
including exoskeletal fragments, plant material, and organic matter. To facilitate analysis, all prey
items were classified into taxonomic and functional categories based on size, shape, and movement
patterns, including insect larvae, plant material, insects, crustaceans, zooplankton, worms, fish, and

detritus (Table 3a; Table 3b).

To assess the trophic organization patterns of Characiformes species, we employed a multivariate
approach based on the proportions of dietary items identified in stomach contents. As input data, we
used the mean proportions (expressed as percentages) of the following dietary items per species: adult

insects, insect larvae, plant material, fish, detritus, crustaceans, worms, and zooplankton.

We performed a non-metric multidimensional scaling (nMDS) ordination using a Bray-Curtis
dissimilarity matrix calculated from the proportions of dietary items. The analysis was configured
with two dimensions and 3,000 iterations, yielding a final stress value of 0.13, indicating a good
representation of the data (Clarke 1993). ANOSIM was used to test the hypothesis that differences in
dietary item proportions among species were greater than intraspecific variations. Additionally, we
conducted an indicator species analysis using the indicspecies::multipatt function in R to determine
which dietary components significantly contributed to the stomach contents of each species (a = 0.05)
(Dufréne and Legendre 1997; De Caceres et al. 2010). Indicator values were calculated based on the
point-biserial correlation coefficient (r.g) between the proportions of each dietary item and species

occurrence.

To investigate dietary similarity patterns among species, we performed a hierarchical clustering
analysis using the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) method, based
on trophic niche overlap (Pianka 1973). Proportional dietary data were standardized using Z-score
transformation (scale function). Trophic similarity between species pairs was quantified using the

modified Pianka index (Pianka 1973), calculated as:

Yi=1Pix * Djk)

Oij =
n 2 n 2
\/ k=1Dik * Lk=1 Pjk

Where pir € pjx represent the proportions of dietary item k for species i and j, respectively. This index
ranges from O (no overlap) to 1 (complete overlap). To convert this similarity measure into a

dissimilarity, measure suitable for clustering analysis, we calculated D =1 - O.
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In addition to its use in clustering analysis, the Pianka index was also applied independently to
quantify niche overlap between species pairs. The calculated values were compiled in a matrix to

identify species with the highest and lowest trophic overlap (Pianka 1973).

To complement niche overlap analysis, we estimated niche breadth using the Levins’ index (Levins

1968), defined as:

1

B= o
21?=1 plz

Where: B: Niche breadth index; p;: Proportion of resource i use relative to the total resources used; n:

Total number of resource categories.

The index was standardized (Ba) to a 0—1 scale for cross-species comparisons:

Where Ba = 0: Specialist (uses only one resource); Ba = 1: Perfect generalist (equally uses all n

resources).

To summarize dietary patterns at the assemblage level, we fitted linear models (LMs) in R version
4.0.3 (R Core Team 2021) using pooled proportional dietary data from the eight Characiformes
species. Proportional data were transformed using the arcsine square root to improve variance
homogeneity and normality (Zar 2010; Warton and Hui 2011). The models were used descriptively
to evaluate whether the mean proportional contribution of major food categories differed from zero,
rather than to test interspecific differences. Model coefficients were therefore interpreted as

summaries of assemblage-level dietary composition.

To 1dentify significant differences in dietary proportions among Characiformes species, we
performed multiple comparisons using the non-parametric Dunn test (Dunn 1964), with Benjamini-
Hochberg correction to control the false discovery rate (Benjamini and Hochberg 1995). The analysis
was applied to the transformed data (arcsine square root of proportions; Zar 2010) and considered all

paired combinations between species, with a significance level of a = 0.05.
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Functional morphology analyses

To assess the morphological diversity related to trophic resource use, we performed standardized
linearly measurements on 20 morphological characters associated with feeding, locomotion, and
habitat use, following the morphological scheme illustrated in Oliveira et al. (2024, Supplementary
Material 1) (see Supplementary Material 2, Table 2). All morphological analyses were performed
exclusively on adult individuals, using the same 173 specimens analyzed in the dietary assessments
(Table 2). Standard length (SL) ranges confirmed that all individuals fell within adult size classes
(Table 2). For this, we adapted protocols from Balon et al. (1986), Sibbing and Nagelkerke (2000),
and Breda et al. (2005). Measurements were obtained using a digital caliper (precision of 0.01 mm)

and a stereomicroscope, ensuring data accuracy.

To isolate shape variation independently of body size, we applied the Mosimann standardization
method, calculating the geometric mean of all measurements per individual and using this value as a
divisor for each character. This approach, preferred in recent comparative analyses, allows for a more
robust evaluation of morphological adaptations while maintaining the original proportions between
characters (Jungers et al. 1995). The geometric mean (GM) was included as an independent variable

in subsequent analyses to represent total body size instead of standard length (SL) (Nawa et al. 2024).

To investigate morphological divergence patterns between species, we conducted a Principal
Component Analysis (PCA) on the correlation matrix of the standardized measurements. This
multivariate analysis allowed us to identify the axes of greatest morphological variation and assess
the overlap in the morphospace between species, revealing patterns of morphological segregation.

All analytical procedures were performed in the R environment (version 4.1.0).

RESULTS
Dietary composition

During the dry season, adult insects (61.8%), plant material (54%), and insect larvae (44.1%)
dominated the diet of most individuals (Table 3a, b). When dietary items were grouped into
autochthonous and allochthonous categories based on their Index of Alimentary Importance (IAI)
(Table 3a, b), allochthonous resources (adult insects and terrestrial plant material) accounted for
approximately 79.5% of the total dietary importance (Table 3a, b), whereas autochthonous items

(insect larvae, algae, zooplankton, detritus, and aquatic invertebrates) contributed the remaining
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20.5% (Table 3a, b). Among the species, the highest proportions of adult insect consumption were
observed in Astyanax cf. bimaculatus (42.6%), Characidium cf. bimaculatum (59.9%), Holopristis
cf. ocellifera (52.2%), Nannostomus beckfordi (43.5%), Knodus guajajara (34.1%), and
Hyphessobrycon piorskii (49.9%) (Fig. 2, Table 3a, b). In contrast, Curimatopsis cf. cryptica (85.1%)
and Bario oligolepis (39.2%) primarily consumed plant material (Fig. 2, Table 3a, b).

Some species, such as Astyanax cf. bimaculatus and Characidium cf. bimaculatum, exhibited higher
dietary diversity, incorporating detritus and other resources in smaller proportions (Fig. 2, Table 3a,

b).

Although some dietary components were rare, such as fish consumption, which was recorded only in
Astyanax cf. bimaculatus (6.86%), other items like crustaceans were observed in Astyanax cf.
bimaculatus (2.81%) and Characidium cf. bimaculatum (9.02%) (Fig. 2, Table 3a, b). Zooplankton
consumption was recorded in Characidium cf. bimaculatum (2.97%), Hyphessobrycon piorskii
(2.15%), Knodus guajajara (1.05%), and Nannostomus beckfordi (1.95%) (Fig. 2, Table 3a, b).
Additionally, worms were recorded exclusively in Hyphessobrycon piorskii (3.35%) and Knodus

guajajara (8.21%) (Fig. 2, Table 3a, b).
Clustering, Similarity, and Indicator Species

The NMDS ordination analysis (stress = 0.13, k=2) revealed a weak clustering of species based on
their dietary components, with considerable overlap among them (Fig. 3). However, a statistically

significant difference in diet among species was identified (ANOSIM: R = 0.26, p = 0.001).

The results of the indicator species analysis showed significant associations between species and their
dietary categories (Table 4). Astyanax cf. bimaculatus was associated with fish consumption (p <
0.001), while Knodus guajajara was associated with worms (p = 0.0104) (Table 4). Species
combinations showed specific preferences - crustaceans (Astyanax cf. bimaculatus + Characidium
cf. bimaculatum, p = 0.011), insects (Astyanax cf. bimaculatus + Bario oligolepis, p = 0.0009), and
plant material (Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Bario oligolepis, p = 0.0001)

(Table 4). Larger groups favored insect larvae (p = 0.007) and detritus (p = 0.0094) (Table 4).
Trophic structure and variation in trophic resource use

The Levins’ index ranged from Ba = 0.132 for Curimatopsis cf. cryptica to Ba = 0.593 for Knodus
guajajara, with Hyphessobrycon piorskii (Ba = 0.577) and Astyanax cf. bimaculatus (Ba = 0.562)
exhibiting the highest values (Table 5). The species utilized between two (Curimatopsis cf. cryptica)

and six food resources, with Characidium cf. bimaculatum and Nannostomus beckfordi displaying
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intermediate values (Ba = 0.478) (Table 5). Bario oligolepis (Ba = 0.268) and Holopristis cf.
ocellifera (Ba = 0.372) completed the observed range of variation (Table 5).

Dietary niche overlap varied substantially among species (Pianka index: 0.20-1.68) (Table 6). The
lowest overlap occurred between Hyphessobrycon piorskii and Knodus guajajara (0.20), followed by
Curimatopsis cf. cryptica and Holopristis cf. ocellifera (0.72) (Table 6). Conversely, several species
pairs showed high overlap (>1.4), particularly Bario oligolepis with Characidium cf. bimaculatum
(1.68) and Astyanax cf. bimaculatus with Nannostomus beckfordi (1.67) (Table 6). Curimatopsis cf.

cryptica exhibited low to moderate overlap with most species (0.71-1.42) (Table 6).

Pairwise comparisons of species' diets revealed significant differences (p < 0.05, Benjamini-
Hochberg adjusted) in feeding composition among most analyzed pairs. Astyanax cf. bimaculatus
showed significantly distinct dietary patterns compared to all other species except Knodus guajajara
(p = 0.483) (Table 7). Conversely, K. guajajara exhibited pronounced dietary differentiation from
most sympatric species, including Characidium cf. bimaculatum (p < 0.001), Curimatopsis cf.
cryptica (p < 0.001), Holopristis cf. ocellifera (p = 0.0003), Hyphessobrycon piorskii (p = 0.001),
Bario oligolepis (p = 0.020), and Nannostomus beckfordi (p = 0.003) (Table 7). The cluster analysis
based on the eight prey categories formed three distinct groups: (1) Hyphessobrycon piorskii, Knodus
guajajara, Characidium cf. bimaculatum, and Nannostomus beckfordi; (2) Astyanax cf. bimaculatus;

and (3) Holopristis cf. ocellifera, Curimatopsis cf. cryptica and Bario oligolepis (Fig. 4).

The linear model indicated that the overall mean dietary proportion differed from zero (5 = 0.605; p
= 0.001; Table 8). Among food categories, insects showed a significant positive coefficient (f =
0.368; p = 0.011; Table 8). Whereas plant material exhibited a marginally significant contribution (f
= 0.285; p = 0.051; Table 8). Other food categories, including detritus, fish, insect larvae, worms,
and zooplankton, did not differ significantly from zero (p > 0.05; Table 8).

Morphological Variation

The Principal Component Analysis (PCA) explained 41.6% of the total variance, with the first two
principal components (PC1 = 25.4%; PC2 = 16.2%) accounting for most of this variance (Fig. 5).
Species distribution in the morphological space revealed distinct groupings. Astyanax cf. bimaculatus
was primarily influenced by Caudal fin length (CFiL), while Characidium cf. bimaculatum was

determined by Caudal peduncle depth (CPD) (Fig. 5). For Curimatopsis cf. cryptica, the most
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important variable was Body depth (BD), whereas Holopristis s cf. ocellifera was more influenced
by Body width (BW) (Fig. 5). Hyphessobrycon piorskii had Head depth (HD) as the predominant
variable, while Knodus guajajara was influenced by Eye diameter (ED) (Fig. 5). In Bario oligolepis,
Dorsal fin length (DFiL) had the greatest impact, while Nannostomus beckfordi was influenced by
Pectoral fin length (PFiL). Bario oligolepis was influenced by Oral gape width (GW) (Fig. 5).

DISCUSSION

Here, we present the results of the trophic ecology and morphological analyses of Characiformes
species inhabiting the Mata de Itamacaoca, a protected area within the middle Munim River Basin,
Maranhao, Brazil. The study was conducted during the dry season and focused on the stomach
contents and morphological traits of eight fish species from four different families:
Acestrorhamphidae (Astyanax cf. bimaculatus, Bario oligolepis, Holopristis cf. ocellifera, and
Hyphessobrycon piorskii), Stevardiidae (Knodus guajajara), Lebiasinidae (Nannostomus beckfordi),
Crenuchidae (Characidium cf. bimaculatum), and Curimatidae (Curimatopsis cf. cryptica). Despite
the protected status of the area, the presence of urban influences, such as such as illegal resource
extraction, agricultural burning practices, urban encroachment, and inadequate enforcement of
conservation measures, highlights the importance of understanding the ecological dynamics of these
fish communities (Oliveira et al. 2020 2024). The analyses revealed significant dietary and
morphological adaptations, revealing into the mechanisms that allow these species to coexist in a
spatially limited and environmentally sensitive habitat during the dry season. Although seasonal
hydrological fluctuations broadly influence neotropical aquatic ecosystems, our findings highlight
the specific ecological dynamics occurring during the dry season, a critical period of resource scarcity
and intensified biotic interactions (Pelage et al. 2022; Londe et al. 2024). While some species
presented relatively low sample sizes (e.g., Knodus guajajara, Bario oligolepis), these numbers are
consistent with their observed rarity in the field during the dry season. We interpret these values as

biologically meaningful, as they reflect true patterns of local abundance rather than sampling bias.

At the assemblage level, dietary patterns during the dry season were characterized by the
predominance of insects and, marginally, plant material, as indicated by the linear model analysis
(Table 8). This descriptive overview provides a community-scale context for the morphological
patterns discussed below. Although the first two PCA axes accounted for a moderate proportion of
total variance (41.6%), such values are common in multivariate ecomorphological datasets that

include numerous correlated morphometric traits (Gatz 1979; Winemiller 1991; Jolliffe 2011;



395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

414

415
416
417
418
419
420
421
422
423
424
425
426
427

428

Zelditch et al. 2012; Oliveira et al. 2024). Despite this, the PCA revealed clear species-level
segregation in morphospace, indicating consistent morphological divergence related to trophic
structure. Morphological adaptations among species reflects their feeding preferences: Astyanax cf.
bimaculatus, with a long caudal fin, captures mobile prey (Balon et al. 1986; Breda et al. 2005);
Characidium cf. bimaculatum, with a deep caudal peduncle, enhances burst impulse for insectivory
(Sibbing and Nagelkerke 2000); Curimatopsis cf. cryptica, with a deep body, improves
maneuverability (Balon et al. 1986); Holopristis cf. ocellifera, with a wide body, adapts to vertical
movements (Balon et al. 1986); Hyphessobrycon piorskii, with a high head, has a varied diet; Knodus
guajajara, with large eyes, aids in benthic prey detection (Balon et al. 1986); Bario oligolepis, with
a long dorsal fin, processes vegetation efficiently (Balon et al. 1986; Breda et al. 2005); and
Nannostomus beckfordi, with extended pectoral fins, controls propulsion (Balon et al. 1986; Breda et
al. 2005). Insectivory in Astyanax cf. bimaculatus, Characidium cf. bimaculatum, and
Hyphessobrycon piorskii aligns with Neotropical floodplain patterns (Petry et al. 2011; Esteves et al.
2021), while phytophagy in Curimatopsis cf. cryptica (85.07%) and Bario oligolepis (39.24%)
reflects trophic plasticity (Goulding 1980; Vanni et al. 2006; Medeiros et al. 2014; Allan et al. 2021).
Trophic segregation between euryphagous (e.g., Astyanax cf. bimaculatus) and stenophagous species
(e.g., Knodus guajajara) supports the "limiting similarity" paradigm (Abrams 1983; Duarte et al.
2022), promoting niche partitioning and reducing competition in seasonal ecosystems (Abrams 1983;

Pelage et al. 2022; Londe et al. 2024; Pastore et al. 2021; Zhang et al. 2024).

The consistency between our results and those of Oliveira et al. (2024), conducted in the same area
but without accounting for dry season, underscores the significance of insects and plant material as
key resources for Characiformes species in the Mata de Itamacaoca during the dry season. Astyanax
cf. bimaculatus diet was characterized by fish and crustaceans in our study, whereas data from
Oliveira et al. (2024) emphasized seed intake thus reflecting dry season abundance of resources.
Similarly, Hyphessobrycon piorskii displayed the presence of worms in our analysis, a dietary
component not previously recorded. These discrepancies may reflect dry season fluctuations in
resource availability or dietary plasticity, a phenomenon frequently observed in fish inhabiting
seasonally dynamic environments, particularly during the dry season (Keller et al. 2019).
Nevertheless, the consistent consumption of insects by Characidium cf. bimaculatum and plant
material by Holopristis cf. ocellifera suggests that these resources play a fundamental role in the
trophic ecology of Characiformes species in the Mata de Itamacaoca regardless of environmental

variability.
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Although species-specific trophic ecology studies were not available for most of the taxa analyzed,
we compared our findings with the general trophic patterns reported for their respective genera. Our
results generally align with these broader patterns, although notable species-specific differences
emerged. For instance, while literature suggests that species of the genera Knodus Eigenmann 1911
and Hyphessobrycon Durbin 1908 are typically generalist insectivores (Ceneviva-Bastos and Casatti
2007; Prado et al. 2016; Benone et al., 2020), we recorded high insectivory in Knodus guajajara
(34.1% adult insects) and Hyphessobrycon piorskii (49.9%), but also observed niche diversification,
such as Hyphessobrycon piorskii consumption of worms (3.4%), a resource rarely mentioned in prior
studies. Similarly, Holopristis cf. ocellifera (52.2% insects) and Bario oligolepis (39.2% plant
material) matched the insectivorous tendency described for their genera (Castro 1999; Graciolli et al.
2003), although Bario oligolepis reliance on plant matter was unexpectedly high. Astyanax cf.
bimaculatus and Characidium cf. bimaculatum exhibited the generalist omnivory documented in
earlier work (Casatti et al., 2001; Silva-Camacho et al., 2014), including detritus and crustaceans, but
in our data, A. cf. bimaculatus also consumed fish remains (6.9%), a trophic behavior less frequently
reported for the genus. Both species showed elevated insectivory (42.6% and 59.9%, respectively),
surpassing values commonly described in the literature. Nannostomus beckfordi, consistent with the
varied diet described for its genus (Silva 1993), also showed high insectivory (43.5%), while
incorporating zooplankton and detritus. The most striking divergence was observed in Curimatopsis
cf. cryptica, which predominantly consumed plant material (85.1%) rather than the fine organic

matter commonly reported for the genus (Brejao et al., 2013).

These findings corroborate the well-established paradigm that morphological traits are critical
determinants of trophic niche specialization, facilitating the efficient exploitation of specific
resources through adaptive divergence (Gatz 1979; Sibbing and Nagelkerke 2000; Novakowski et al.
2016). Such morphological relationships are particularly pronounced in freshwater ecosystems,
where selective pressures drive functional trait diversification, thereby promoting dietary
specialization and mitigating niche overlap via resource partitioning (Ferry-Graham et al. 2002;
Montana and Winemiller 2013; Montafia et al. 2020; Paz Cardozo et al. 2021). The observed
congruence between morphology and diet aligns with niche theory (Hutchinson 1957; Chase and
Leibold 2009), which posits that phenotypic divergence reduces interspecific competition by enabling
differential resource acquisition (Breda et al. 2005; Oliveira et al. 2024). However, the presence of
dietary overlap among morphologically distinct species suggests that niche differentiation may also
be mediated by non-morphological mechanisms (Chesson 2000; Leibold and McPeek 2006). These

could include behavioral plasticity (Gomiero et al. 2010; Garcia et al. 2020), temporal or microhabitat
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segregation (Schoener 1974; Brandao-Gongalves and Sebastien 2013), or differential prey selectivity
driven by foraging strategies (Lubich et al. 2024). Such compensatory mechanisms may stabilize
coexistence in high-diversity assemblages, underscoring the multidimensional nature of niche
partitioning (Chesson 2000; Leibold and McPeek 2006). Future studies should integrate functional
morphology with spatiotemporal foraging data to disentangle the relative contributions of these

factors in structuring trophic interactions.

CONCLUSIONS

Finally, the ecological implications of resource partitioning and interspecific competition are evident
in the coexistence strategies adopted by these species. The observed dietary plasticity, combined with
morphological adaptations, suggests that dry season changes in resource availability drive adaptive
feeding behaviors that minimize direct competition. This finding supports the hypothesis that
environmental dry season acts as a selective pressure, shaping trophic interactions and promoting
species coexistence (Bloomfield et al. 2022). However, the proximity of the Mata de Itamacaoca to
urban areas raises concerns about anthropogenic disturbances, such as habitat degradation and water
quality deterioration, which could disrupt the delicate balance of resource availability and trophic
dynamics (Daufresne and Boet 2007; Matono et al. 2014; Iacarella et al. 2018; Candolin and Rahman
2023). In this context, our study has important conservation implications by identifying functionally
vulnerable guilds (e.g., species with restricted diets), establishing baseline data for long-term
monitoring, and highlighting critical microhabitats for conservation. Effective protection of this
ecosystem thus requires strategies that consider both natural dry season ecological processes and
cumulative anthropogenic impacts, integrating aquatic connectivity and the maintenance of habitat

heterogeneity.
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Table 1. Description of the collecting sites, including coordinates and habitat characteristics, in Mata de

Itamacaoca, Chapadinha, Maranhao, Brazil.

Collecting Site Coordinates Habitat Characteristics
C1 3°44'45.20"S Stream near a spring, surrounded by gallery and riparian forest,
43°19'15.10"W in Mata de Itamacaoca, Chapadinha, Maranhdo. Sampling
covered ~200 meters of the watercourse.
C2 3°44'58.24"S Stream in the Repouso do Guerreiro area, within Mata de
43°2023.91"W Itamacaoca, Chapadinha, Maranhdo.
C3 3°44'27.1"S Stream near a natural water source, with gallery and riparian
43°19'36.4"W forest, in Mata de Itamacaoca, Chapadinha, Maranhdo.
C4 3°44'55.16"S Itamacaoca Dam, located in Chapadinha, Maranhao.
43°19'57.10"W
C5 3°45'8.20"S Stream downstream of the dam, within Mata de Itamacaoca,
43°20'4.13"W Chapadinha, Maranhao.
Table 2. Standard length (SL) variation of Characiformes fishes sampled in Mata de Itamacaoca during the dry
season of 2019. Values represent: N = sample size per species, size range (min-max), mean + standard deviation
(SD), and median SL in millimeters.
SL Range SL Mean + SD L
Family Species N . Median
(mm) (mm)
(mm)
Astyanax cf. bimaculatus 26 27.5-76.96 53.35+0.1 53.86
Acestrorhamphidae Bario oligolepis 11 45.86-68.44 52.65+6.02 51.73
Holopristis cf. ocellifera 30 25.09-34.15 30.76£2.08 31.17
Hyphessobrycon piorskii 16 21.02-28.5 25.24£2.01 25.26
Crenuchidae Characidium cf. bimaculatum 27 22.91-27.55 24.99+1.07 24.77
Curimatidae Curimatopsis cf. cryptica 23 30.48-40.42 33.57£2.94 32.63
Lebiasinidae Nannostomus beckfordi 30 25.83-29.8 27.75+1.04 27.89
Stevardiidae Knodus guajajara 10 23.88-36.48 30.00+4.57 30.56




803  Table 3a. Stomach content analysis of Characiformes fishes from Mata de Itamacaoca (dry season 2019; N=8
804  specimens), showing dietary composition by: frequency of occurrence (F%), volumetric proportion (V%), and
805  Index of Alimentary Importance (IAl). Food items are categorized by taxonomic group, with dominant resources

806  (IAl) indicating key dietary components.

Food items/Groups Frequency of Volume (%) TIAI
Occurrence (%)
Insects
Coleoptera 19.653 10.268 4.036
Diptera 9.2455 4.4009 0.8140
Ephemeroptera 4.0462 1.9588 0.1585
Hemiptera 8.6705 5.1450 0.8922
Isoptera 4.0462 1.4471 0.1171
Tricophtera 3.4682 2.0771 0.1440
Insect remains 35.260 13.388 9.4413
Insect larvae
Coleoptera larvae 7.5144 3.1509 0.4735
Diptera larvae 11.560 6.7482 1.5602
Hemiptera larvae 3.4682 1.6484 0.1143
Tricophtera larvae 0.5780 0.2600 0.0030
Plant material
Flowers 2.8901 1.4261 0.0824
Seeds 18.497 12.898 4.771
Filamentous algae 7.5144 4.6643 0.7010
Plant remains 26.011 12.079 6.2841
Zooplankton
Hydracarina 3.4682 0.5327 0.0369
Cladocera 0.5780 0.0209 0.0002
Detritus
Debris 16.184 7.4193 2.4016
Sediment 10.404 3.9495 0.8218
Fish
Fish scale 9.2485 2.7751 0.5133
Fish remains 0.5780 0.2516 0.0029
Worms
Nematodeo 1.7341 1.1694 0.0405
Crustaceans
Decapoda 4.6242 2.3195 0.2145

807

808 Table 3b. Relative contribution of autochthonous and allochthonous food resources to the diet of Characiformes

809 assemblage in Mata de Itamacaoca during the 2019 dry season, based on the Index of Alimentary Importance (IAI).

Origin of food items Main items included IAI (%)
Allochthonous Adult insects (Coleoptera, Diptera, Ephemeroptera, Hemiptera, 79.5
Isoptera, Trichoptera, insect remains), flowers, seeds, plant remains
Autochthonous Insect larvae (Coleoptera, Diptera, Hemiptera, Trichoptera), 20.5
filamentous algae, zooplankton (Hydracarina, Cladocera), detritus
(debris, sediment), fish tissues (scales, remains), worms (Nematodea),
crustaceans (Decapoda)

810



811  Table 4. Results of the indicator species analysis (indicspecies) testing for significant dietary preferences among
812  fish species based on stomach content composition. Bold values indicate the most strongly associated prey items

813  for each predator species.

Pre Indicator
Associated Species Group Cate ﬁr Value p
gory (stat)
Astyanax cf. bimaculatus Fish 0.556  0.00071***
Knodus guajajara Worms 0.385  0.0001 %%
Astyanax cf. bimaculatus + Characidium cf. bimaculatum Crustaceans 0.364 0.0104*
Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Bario oligolepis ml:iltZ?;al 0.532  0.0001%**
Astyanax cf. bimaculatus + Bario oligolepis Insects 0.426  0.0009**
Astyanax cf. bimaculatus + Hyphessobrycon piorskii + Knodus guajajara + Insects
; 0.361 0.007%*
Nannostomus beckfordi larvae

Astyanax cf. bimaculatus + Curimatopsis cf. cryptica + Knodus guajajara + Bario

; ek
oligolepis + Nannostomus beckfordi Detritus 0354 0.0094

814
815

816  Table 5. Levin's niche breadth measures: prey proportions (rows 1-8), resource count (N), raw (B) and standardized

817  (Ba) indices.

Dietary Astyanax cf. Characidium cf. Curimatopsis Holopristis cf. Hyphessobrycon Knodus Bario Nannostomus
component bimaculatus bimaculatum cf. cryptica ocellifera piorskii guajajara oligolepis beckfordi
Insects
larvae 0.156 0.2061 0 0.1877 0.272 0.1841 0 0.232
Plant
material 0.197 0 0.5971 0.2815 0.1786 0.1439 0.3242 0.1787
Insects 0.3149 0.2482 0 0.371 0.2206 0.2274 0.4226 0.2862
Fish 0.0727 0 0 0 0 0 0 0
Detritus 0.1025 0.1248 0.4029 0.1598 0.1294 0.1319 0.2532 0.242
Crustaceans 0.1568 0.315 0 0 0 0 0 0
Worms 0 0 0 0 0.1605 0.26 0 0
Zooplankton 0 0.1058 0 0 0.0388 0.0528 0 0.0611
N 6 5 2 4 6 6 3 5
B 4933 4.346 1.927 3.601 5.036 5.153 2.875 4.349
Ba 0.562 0.478 0.132 0.372 0.577 0.593 0.268 0.478

818

819

820
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Table 6. Pianka’s measure of niche overlap (Pianka 1973) among Characiformes species from Mata de Itamacaoca.

Values range from 0-1, with 0 being no niche overlap and 1 being complete niche overlap.

Species Astyanax cf. Characidium cf.  Curimatopsis Holopristis Hyphessobrycon Knodus Bario Nannostomus
bimaculatus bimaculatum cf. cryptica cf. ocellifera piorskii guajajara___ oligolepis beckfordi

Characidium cf. 1.1311 1.0000

bimaculatum

Curimatopsis cf. 1.4241 1.3096 1.0000

cryptica

Holopristis cf. 1.0375 1.4281 0.7242 1.0000

ocellifera

Hyphessobrycon 1.2865 0.9031 1.4173 1.0622 1.0000

piorskii

Knodus guajajara 1.4006 0.8876 1.3554 1.4127 0.1959 1.0000

Bario oligolepis 0.9190 1.6867 0.7074 0.8392 1.6209 1411 1.0000

Nannostomus 1.6715 0.5843 0.7844 0.9553 0.8329 0.9763 1.3218 1.0000

beckfordi

Table 7. Mean comparisons between groups adjusted using the Benjamini-Hochberg method. The table displays

pairwise mean differences and adjusted p-values among species groups. ns (not significant). Significant results (p <

0.05) indicate substantial differences between species pairs.

Group 1 Group 2 g[i:‘?el:'ence Adjusted p-value Significance
Characidium cf. -6.097 0.001 s
bimaculatum
Curimatopsis cf. 5337 0.001 s
cryptica
Holopristis cf. -4.829 0.001 s

Astyanax cf. ocellifera

bimaculatus Hyphessobrycon 4.007 0.0001 sk
piorskii
Knodus guajajara -0.043 0.483 ns
Bario oligolepis -2.776 0.007 o
Nannostomus
beckfordi -3.866 0.0002 ok
Curimatopsis cf. 0.238 0.437 ns
cryptica
Holopristis cf. 1,689 0.080 ns
ocellifera

Characidium cf. Hyphessobrycon 0.979 0.241 ns

bimaculatum piorskii
Knodus guajajara 5.097 0.001 wE
Bario oligolepis 1.969 0.049 *
Nannostomus
beckfordi 2.154 0.034 *
Holopristis cf. 1319 0146 ns
ocellifera
Hyphessobrycon

Curimatopsis cf. pi);l:fskii Y 0.723 0.299 ns

cryptica Knodus guajajara 4.562 0.001 o
Bario oligolepis 1.674 0.078 ns
Nannostomus 1.774 0.071 ns

beckfordi




Mean

Group 1 Group 2 Difference Adjusted p-value Significance
Hyphessobrycon 0411 0.381 ns
pilorskii ’ ’

Holopristis cf. Knodus guajajara 3.862 0.0002 hokok

ocellifera Bario oligolepis 0.669 0.307 ns
Nannostomus
beckfordi 0.590 0.324 ns
Knodus guajajara 3.495 0.0007 wokE

Hyphessobrycon Bario oligolepis 0.912 0.253 ns

piorskii Nannostomus
beckfordi 0.866 0.258 ns
Bario oligolepis -2.424 0.018 *

Knodus guajajara Nannostomus o
beckfordi -3.154 0.002

. . . Nannostomus
Bario oligolepis beckfordi -0.189 0.441 ns

830

831  Table 8. Table 8. Results of linear models (LMs) summarizing assemblage-level dietary composition of

832  Characiformes during the dry season. The table presents estimated coefficients, standard errors, t-values, and

833  significance levels for major food categories. Model coefficients indicate whether the mean proportional

834  contribution of each food category differs from zero. Proportional data were variance-stabilized using an arcsine
835  square root transformation. ms = marginally significant. Statistically significant predictors (P < 0.05) are shown in

836  bold.

Coefficients Estimate Std. Error T value P
Intercept 0.605 0.138 4.358 0.0071 %**
Detritus 0.155 0.151 1.028 0.305
Fish -0.194 0.186 -1.043 0.298
Insect 0.368 0.144 2.545 0.011*
Insect larvae 0.147 0.152 0.963 0.335
Plant material 0.285 0.146 1.955 0.051 ms
Worms 0.087 0.266 0.328 0.743
Zooplankton -0.116 0.212 -0.550 0.582
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Fig. 1. Location of the colleting sites (C1-C5) distributed across the Mata de Itamacaoca, Chapadinha

municipality, State of Maranhao, northeastern Brazil.

Fig. 2. Proportion of food items in the diet of the analyzed species. The graphs show the percentage
composition (%) of each food category identified in stomach/intestinal contents.

Fig. 3. Non-metric Multidimensional Scaling (NMDS) ordination of dietary overlap among of the
eight Characiformes species based on stomach content composition (Bray-Curtis dissimilarity).
Convex hulls enclose each species' dietary niche space, with closer positions indicating greater
similarity in prey composition. Stress value = 0.13, indicating acceptable representation of

multidimensional dietary patterns in 2D space.

Fig. 4. Dendrogram from cluster analysis on Index of Trophic similarity between species pairs
quantified using the modified Pianka index (Pianka 1973) for the eight examined Characiformes

fish species in Mata de Itamacaoca, dry season.

Fig. 5. Biplot of Principal Component Analysis (PCA) of morphological trait space between

Characiformes species; and variable loadings on the PC axes.



