

What about the delta ($\delta^{13}\text{C}$)? A case for brackish fish in Mediterranean palaeodietary isotopic baselines

Rachel M. Winter^{a,b,c,*}, Matthew von Tersch^d, Michael W. Dee^e, Canan Çakırlar^{a,1}, Michelle Alexander^{d,1}

^a Groningen Institute of Archaeology, University of Groningen, Groningen, Netherlands

^b Winterthur Museum, Gardens & Library, Winterthur, United States

^c Section for Geobiology, Globe Institute, University of Copenhagen, Copenhagen, Denmark

^d BioArch, Department of Archaeology, University of York, York, United Kingdom

^e Centre for Isotope Research, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands

ARTICLE INFO

Keywords:

Palaeodiet
Isotopic baselines
Ichthyarchaeology
Eastern Mediterranean
Aquatic resources
Stable isotope analysis
Levantine coast

ABSTRACT

While a lot of paleodietary studies in the Mediterranean region have reported $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for humans, similar data for aquatic resources is much more limited. The aim of our paper is to make relevant data available for isotopic faunal baselines and future paleodietary research in the eastern Mediterranean. We analysed the collagen extracted from the bones of freshwater and brackish fish from two coastal archaeological sites in the Levant, Kinet Höyük (n = 21) (1550 BCE – 14th c. AD, present day Turkey) and Tell el-Burak (n = 8) (975–332 BCE, present day Lebanon). From the original 29 bones sampled, 17 (59 %) produced collagen which met quality control criteria and we present the corresponding $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values here. Whereas freshwater and marine ecosystems in an area typically have distinctive $\delta^{13}\text{C}$ values, paleodietary interpretations regarding aquatic resource consumption can be challenging when isotopic values reflecting the range of exploitable aquatic environments are not available. Bearing this in mind, our data set is used to demonstrate the potential range of $\delta^{13}\text{C}$ values (−27.97 ‰ to −10.87 ‰) of freshwater and brackish environments along the Levantine coast, encouraging future palaeodietary studies in the region to consider this more robust isoscape for aquatic resources.

1. Introduction

Stable isotope analysis has been used extensively to explore the role of marine and terrestrial resources in Mediterranean palaeodiets (e.g., Alexander et al., 2015; Budd et al., 2018; Craig et al., 2009; Vika and Theodoropoulou, 2012). For decades, the capacity for having a robust aquatic isotopic baseline for such studies has been limited by recovery methods, few specialists, and access to adequate reference collections for ichthyofaunal material (Van Neer et al., 2005; Zohar and Belmaker, 2005). Along the Levantine coast in particular, while there is ample zooarchaeological evidence for fish consumption on archaeological sites (e.g., Çakırlar et al., 2016; Lernau et al., 2021; Van Neer et al., 2004; Zohar and Artzy, 2019), the published stable isotope values for fish from the region is comparatively scarce.

The most robust publications of stable isotope values from fish

remains from the Levant are composed predominantly of marine fishes (Fuller et al., 2020; Winter et al., 2025). Of these two papers, only Fuller et al. (2020) has stable isotope data from freshwater (n = 8) and brackish (n = 6) fish. In the Aegean, (Vika and Theodoropoulou, 2012) include fish that can be found in marine, brackish, and/or fresh waters, providing insight into a broader range of aquatic isoscapes encountered in a Mediterranean context. As has been demonstrated by other studies (e.g., Dierickx et al., 2024; Fuller et al., 2012; Robson et al., 2016), having fish which occupy a range of ecological niches and local environments helps to better inform the construction of a local isotopic baseline.

Many coastal sites in the Mediterranean are geographically positioned so that past inhabitants would have been able to exploit aquatic resources from the sea, estuaries, lagoons, river deltas, and/or freshwater ecosystems. With the addition of new stable isotope data from

* Corresponding author at: Groningen Institute of Archaeology, University of Groningen, Groningen, Netherlands.

E-mail addresses: rachelwinter@palaeome.org (R.M. Winter), matthew.vontersch@york.ac.uk (M. von Tersch), m.w.dee@rug.nl (M.W. Dee), c.cakirlar@rug.nl (C. Çakırlar), micelle.alexander@york.ac.uk (M. Alexander).

¹ joint senior authors.

Table 1

Fish taxa represented in this study, their aquatic ecosystems, and generalised foraging ecology. References for foraging ecology: 1. [Kadye and Booth \(2012\)](#) 2. [Spataru et al. \(1987\)](#) 3. [Mkumbo and Ligtvoet \(1992\)](#) 4. [Nkalubo et al. \(2014\)](#) 5. [Denis et al. \(2022\)](#) 6. [Deelder \(1984\)](#) 7. [Alp \(2017\)](#) 8. [Al-Shamma'a \(2006\)](#) 9. [Lammens and Hoogendoorn \(1991\)](#) 10. [Cardona \(2006\)](#).

Scientific name	Common name	Aquatic habitat	Diet (sexually mature fish)
<i>Clarias gariepinus</i>	North African catfish	freshwater	Omnivorous, increasing piscivory with size ^{1,2}
<i>Lates niloticus</i>	Nile perch	freshwater	Piscivorous ^{3,4}
<i>Anguilla anguilla</i>	European eel	Freshwater, brackish, and marine	Generalised carnivores ^{5,6}
Siluridae	Siluridae	Freshwater, brackish	Carnivorous ⁷ , some species omnivorous ⁸
Cyprinidae	Minnows and carps	Freshwater mostly, some species can also be in brackish waters	Many species generalists, some being specialised herbivores or predators ⁹
Mugilidae	Mullets	Freshwater, brackish, and marine	Mostly herbivores and detritivores ¹⁰

brackish and freshwater fishes from Levantine archaeological contexts, we aim to add to the corpus of data already available and further expand the existing knowledge of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for future faunal isotopic baselines. An overview of the aquatic environments utilised by the taxa presented here and their general foraging patterns are provided in [Table 1](#). The novelty of this work lies in providing the most robust sample of isotopic values from archaeologically-derived freshwater and brackish fish in the eastern Mediterranean to date.

2. Materials and methods

Twenty eight fish bones from two eastern Mediterranean archaeological sites were analysed for stable carbon and nitrogen isotopic ratios (see [Fig. 1](#) for examples). The fish originate from Kinet Höyük (n = 20) and Tell el-Burak (n = 8) and are taxonomically composed of *Clarias gariepinus* (n = 17), *Lates niloticus* (n = 3), Mugilidae (n = 3), and Siluridae (n = 3). Most of the material is from contexts spanning the Late Bronze Age to the Late Iron Age, corresponding to ca. 1550 BCE – 332 BCE, with two *C. gariepinus* from Kinet Höyük dating to the period of medieval occupation (ca. 8th/9th – 14th c. AD). Kinet Höyük is a coastal site located adjacent to Iskenderun Bay in present day Turkey. Kinet

Höyük had an estuary to the south of the site fed by the river Deli Çay, however this was filled with alluvial sediment in the Hellenistic period (332—50 BC), eliminating the preexisting estuary ([Beach and Luzzadder-Beach, 2008](#)). Tell el-Burak, in present day Lebanon, is situated on an alluvial floodplain with mountains to the east and the Mediterranean Sea to the west. The local geomorphology of both sites would have readily provided access to aquatic resources from marine, brackish, and freshwater environments.

Precise details of which skeletal element was sampled and the context of each is provided in [Table S1](#). Recovery methods for both sites include hand collection and sieving ([Winter et al., 2022](#)). Prior published work on the fish remains from both sites is largely focused on groupers (family: Epinephelidae) and includes taphonomic analysis ([Çakırlar et al., 2016](#)), palaeoproteomics ([Winter et al., 2023](#)), and catch size reconstruction ([Winter et al., 2022](#)). [Fig. 1 \(right\)](#) shows the location of the sites included in this study and discussed later in the text. Samples were morphologically identified using the reference collection at the Groningen Institute of Archaeology. All samples were documented and photographed prior to destructive analysis. Bones were sampled in a way to encapsulate all growth layers when possible.

Twenty four of these bones were analysed at the BioArCh facilities at the University of York, United Kingdom with the remaining four analysed at the Centre for Isotope Research (CIO) at the University of Groningen, Netherlands. Sample preparation and collagen extraction at the CIO followed the protocol published in [Dee et al. \(2020\)](#). The samples processed at BioArCh followed a modified [Longin \(1971\)](#) method for collagen extraction, modified to include Ezee filtering ([Bronk Ramsey et al., 2004](#)) and the use of a weaker acid for demineralisation (0.1–0.4 M HCl) to accommodate poor sample preservation. A key difference between the two methods is that the [Longin \(1971\)](#) method does not include a treatment step with a base, which the [Dee et al. \(2020\)](#) method does.

Duplicate aliquots of 0.4—0.6 mg of extracted collagen were weighed out and analysed. Isotopic compositions (carbon and nitrogen) were determined using a Sercon 20–22 continuous flow isotope ratio mass spectrometer coupled to a Sercon GSL elemental analyzer at the University of York. At the CIO, aliquots of 0.16–5.77 mg of collagen, contingent on sample yields, were weighed out for analysis via an Elemental Analyser (Elementar Vario Isotope CubeTM) connected to an Isotope Ratio Mass Spectrometer (IRMS, IsoPrime 100TM). None of the samples analysed at the CIO both produced adequate collagen and met quality control criteria and thus these samples are not further discussed.

Fig. 1. Selection of the fish bones sampled a) pectoral spines (x2) of *Clarias gariepinus*, b) vertebrae (x3) of Mugilidae, and c) damaged vertebra of a *Lates niloticus* (left panel). Map showing where the archaeological sites discussed, Kinet Höyük, Tell el-Burak, Sidon, and Tell Tweini, are in relation to each other and within the broader context of the Mediterranean basin (right panel).

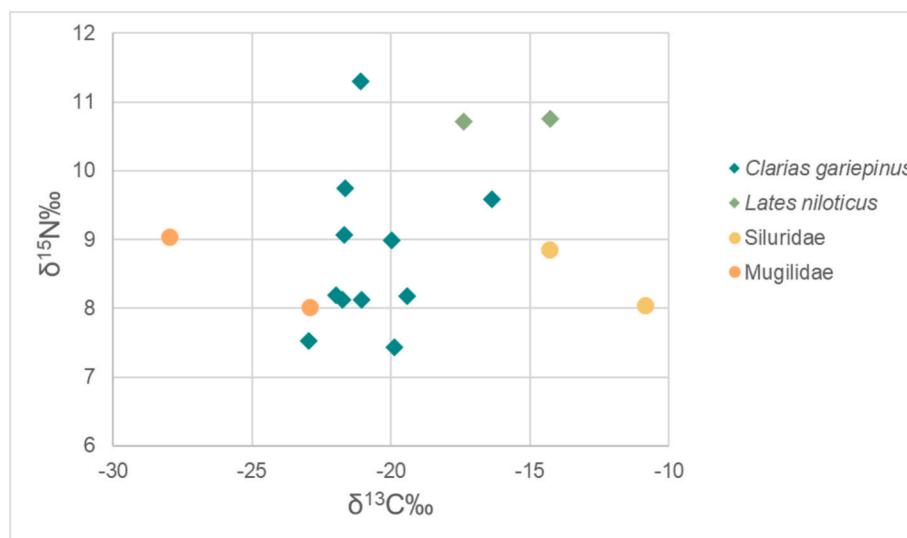


Fig. 2. $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of freshwater and brackish fish from Kinet Höyük and Tell el-Burak.

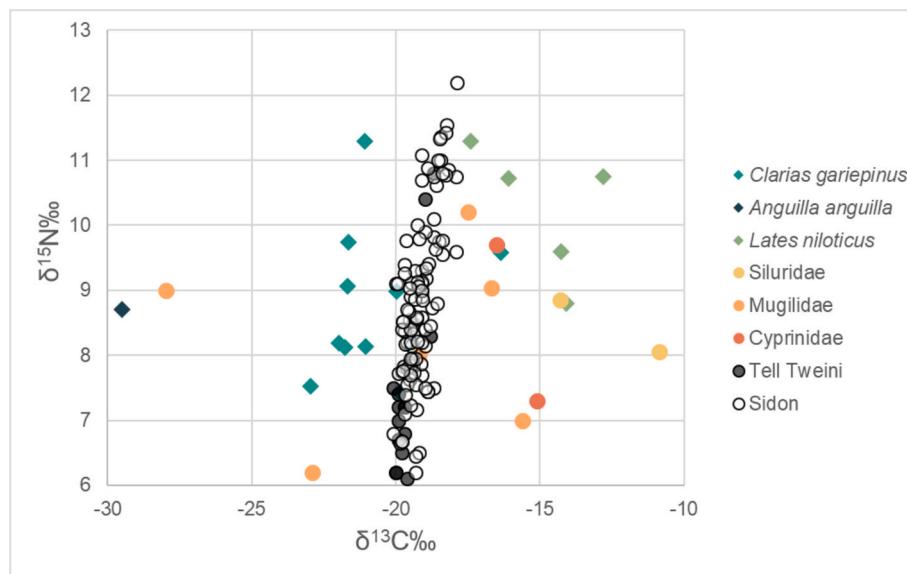
Table 2
Bulk $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values from fish bone collagen of ichthyofauna recovered from the archaeological sites of Kinet Höyük and Tell el-Burak.

Site	Taxa	$\delta^{13}\text{C}\text{\%}$	$\delta^{15}\text{N}\text{\%}$	C:N ratio
Kinet Höyük	Mugilidae	-27.97	9.04	3.2
Kinet Höyük	Mugilidae	-22.91	8.02	3.13
Kinet Höyük	<i>Clarias gariepinus</i>	-19.87	7.43	3.23
Kinet Höyük	<i>Clarias gariepinus</i>	-21.68	9.07	3.23
Kinet Höyük	<i>Clarias gariepinus</i>	-21.64	9.74	3.15
Kinet Höyük	<i>Clarias gariepinus</i>	-21.09	11.3	3.28
Kinet Höyük	<i>Clarias gariepinus</i>	-21.75	8.12	3.29
Kinet Höyük	<i>Clarias gariepinus</i>	-19.43	8.18	3.17
Kinet Höyük	<i>Clarias gariepinus</i>	-21.96	8.19	3.35
Kinet Höyük	<i>Clarias gariepinus</i>	-21.05	8.13	3.19
Kinet Höyük	<i>Clarias gariepinus</i>	-19.96	8.99	3.23
Kinet Höyük	<i>Clarias gariepinus</i>	-22.95	7.53	3.16
Tell el-Burak	<i>Clarias gariepinus</i>	-16.36	9.58	3.41
Tell el-Burak	<i>Lates niloticus</i>	-14.26	10.75	3.3
Tell el-Burak	<i>Lates niloticus</i>	-17.39	10.72	3.25
Tell el-Burak	Siluridae	-14.31	8.85	3.3
Tell el-Burak	Siluridae	-10.87	8.05	3.19

For the BioArCh samples, accuracy was determined by measurements of international standard reference materials within each analytical run. These were IAEA 600 $\delta^{13}\text{C}_{\text{raw}} = -27.69 \pm 0.08 \text{\%}$, $\delta^{13}\text{C}_{\text{true}} = -27.77 \pm 0.043 \text{\%}$, $\delta^{15}\text{N}_{\text{raw}} = 0.78 \pm 0.19 \text{\%}$, $\delta^{15}\text{N}_{\text{true}} = 1 \pm 0.2 \text{\%}$; IAEA N2 $\delta^{15}\text{N}_{\text{raw}} = 20.58 \pm 0.32 \text{\%}$, $\delta^{15}\text{N}_{\text{true}} = 20.3 \pm 0.2 \text{\%}$; IA Cane, $\delta^{13}\text{C}_{\text{raw}} = -11.68 \pm 0.09 \text{\%}$; $\delta^{13}\text{C}_{\text{true}} = -11.64 \pm 0.03 \text{\%}$. We calibrated our data to these reference materials, as per recommended best practices (Szpak et al., 2017).

The overall uncertainties on the measurements of each sample were calculated based on the method of Kragten (1994) by combining uncertainties in the values of the international reference materials and those determined from repeated measurements of samples and reference materials. These are expressed as one standard deviation. The maximum uncertainty for all successful samples across all runs was 0.21 \% for $\delta^{13}\text{C}$ and 0.30 \% for $\delta^{15}\text{N}$.

Additionally, at the BioArCh laboratory, a homogenised bovine bone extracted and analysed within the same batch as the samples produced the following average values; $\delta^{13}\text{C} = -23.01 \pm 0.05$; $\delta^{15}\text{N} = 5.75 \pm 0.20$. This was within the overall mean value from 50 separate extracts of this bone sample, which produced values of $\delta^{13}\text{C} = -23.09 \pm 0.26$ and $\delta^{15}\text{N} = 6.27 \pm 0.38$.


3. Results

Seventeen of the twenty nine (59 %) bones sampled passed quality control, with C:N ratios between 2.9–3.6 and being at least 13 % C and 4.8 % N by weight (Ambrose 1990; DeNiro 1985; Guiry and Szpak 2021; van Klinken 1999). Isotopic values range from -27.97\% to -10.87\% for $\delta^{13}\text{C}$ and 7.43\% and 11.3\% for $\delta^{15}\text{N}$ (Fig. 2). Full details can be found in Table 2 (see Supplementary Materials Table S1 for additional details, e.g., skeletal element, quality control data). The average collagen yield for the samples which passed quality control was 4.6 %. Whilst our sample sizes per taxa is small, the fish in our study reflect their expected ecological niches in freshwater and brackish environments.

4. Discussion

While there is a recognition for the need of a well-constructed faunal isotopic baseline for paleodietary studies, an aquatic component to that baseline which encapsulates the full range of environments locally available is often challenging to obtain. The $\delta^{15}\text{N}$ values obtained here suggest that these fishes were not feeding at a wide range of trophic levels. This can be attributed to the small range of taxa, which are mostly of comparable sizes (ca. 20–40 cm Standard Length), being present in this sample. The largest taxonomic group present in this data set is the North African catfish, *C. gariepinus*, ($n = 11$). Most of the *C. gariepinus* in this sample ($n = 10$) come from Kinet Höyük with the final individual being from Tell el-Burak, notably this particular fish has the lowest $\delta^{13}\text{C}$ value (-16.4\%). The range of $\delta^{15}\text{N}$ values within this group, which encompasses sizes ca. 20–50 cm Standard Length, is most likely attributed to feeding at higher trophic levels with ontogeny, which has been observed in modern studies of *C. gariepinus* (Kadye and Booth, 2012). With the exception of the Nile perch (*Lates niloticus*), which would have most likely have been imported from Egypt (Van Neer et al. 2004), the taxa present were locally available at the archaeological sites discussed here. However, it is also possible that the Siluridae may have also been imported from either Egypt or the Euphrates or Tigris rivers both to the east.

The largest fish datasets published from the Levant, Fuller et al. (2020) and Winter et al. (2025), are composed predominantly of marine fish. Among the freshwater and brackish fish from (Fuller et al. 2020) are *Anguilla anguilla* ($n = 1$), *Lates niloticus* ($n = 5$), Cyprinidae ($n = 2$), and Mugilidae ($n = 6$). The Nile perch and Mugilidae are the only taxa present in both of our data sets that have, for the most part, comparable

Fig. 3. $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for freshwater and brackish fish from the Levant including data from our study ($n = 17$) and previously published by Fuller et al. (2020) ($n = 14$) with the addition of human isotope values from Sidon ($n = 108$; Stantis et al., 2021) and Tell Tweini ($n = 16$; Fuller et al., 2024).

isotopic values. However, with the addition of our data, we have shown a wider range of $\delta^{13}\text{C}$ values for Nile perch and wider range of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values for mullets. Two of the Mugilidae have notably depleted $\delta^{13}\text{C}$ values of -27.98 ‰ and -22.91 ‰ , consistent with these two fish having passed their full lives in freshwater indicating this sample belongs to a species which can tolerate freshwater such as *Chelon labrosus*, *Liza ramada*, or *Mugil cephalus*. A notable taxonomic addition that our data offers is providing isotopic values for Siluridae and *Clarias gariepinus*, which in turn will aid in greater robusticity of future faunal baselines in the Levant. The taxonomic composition of these data sets combined is fairly representative of common fresh and brackish water found in eastern Mediterranean archaeological contexts, however some taxa, such as cichlids (perch-like fish, including tilapia), are absent from our data sets despite being regular finds in eastern Mediterranean archaeological contexts (Van Neer et al., 2005). Furthermore, this data set represents two sites and spans multiple millennia, future aquatic faunal baselines would benefit from more biodiversity, larger sample sizes of key taxa, time periods, and geographic regions in the Levant.

Our data are combined with the previously published freshwater and brackish fish isotope data from Levantine archaeological sites (Fuller et al. 2020) and two paleodietary studies in the Levant (Fuller et al. 2024; Stantis et al. 2021) in Fig. 3. Isotopic analysis of inhabitants of Middle Bronze Age (ca. 2000–1600 BCE) Sidon suggests minimal marine resource consumption, though overlap with brackish/freshwater isotopic signatures still leaves an aquatic component possible (Stantis et al., 2021). Similarly, Fuller et al. (2024) found no isotopic evidence of marine diets at Bronze and Iron Age Tell Tweini. Our additional data points, whilst a small sample size, they add further support for the range of $\delta^{13}\text{C}$ values encountered in the Levant and provide further data for key taxa (e.g., *C. gariepinus*) in the ancient Levantine region. As demonstrated with ancient freshwater fish from the inland archaeological site of Sagalassos in southwest Anatolia (Van Neer et al., 2024), a local ecosystem may unexpectedly exhibit a wide range of $\delta^{13}\text{C}$ values, including those typically associated with marine signals (Schoeninger & DeNiro, 1984). This highlights the need for caution when considering aquatic ecosystems and thus, trophic resources that might have been locally exploited or accessed through trade routes. The use of compound-specific stable isotope analysis, rather than bulk collagen analysis, has proven essential for achieving a more refined understanding of palaeodiet in the western Mediterranean (Fontanals-Coll et al., 2023) and could lend further insight to the eastern Mediterranean.

5. Conclusion

This study adds to the meagre freshwater fish isotopic data from Levantine archaeological contexts that currently exists. We have increased the number of data points available to illustrate the range of carbon and nitrogen values encountered in Levantine estuarine and freshwater environments in the Late Holocene. With our data for freshwater and brackish ecosystems in the Levant, we hope to encourage future research to move beyond seeing aquatic resource consumption as a dichotomy of either marine or freshwater resources and also consider the in-between environments of lagoons, estuaries, and deltas.

Data Statement

All isotope and quality control data for bones analysed are provided in the Supplementary Materials and have additionally been submitted to the IsoArCh database.

CRedit authorship contribution statement

Rachel M. Winter: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing – original draft preparation, Writing – review & editing, Visualization, Project administration. **Matthew von Tersch:** Validation, Investigation, Data curation, Writing – review & editing. **Michael W. Dee:** Writing – review & editing, Validation, Resources, Investigation, Data curation. **Canan Çakırlar:** Writing – review & editing, Supervision, Project administration, Funding acquisition. **Michelle Alexander:** Writing – review & editing, Supervision, Resources, Investigation.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (agreement no. 813383). We are grateful to the excavation team at Kinet Höyük, in particular Marie-Henriette Gates and Salima Ikram, excavation team at Tell el-Burak, notably Jens Kamlah, and to the Turkish Ministry of Culture and Tourism for the permit to study the archaeological assemblages from Kinet Höyük. Additional thanks are extended to two reviewers for their time, attention to detail, and constructive comments.

Data availability

Data is available through the IsoArch initiative and is provided in the Supplementary Materials.

References

Alexander, M.M., Gerrard, C.M., Gutiérrez, A., Millard, A.R., 2015. Diet, society, and economy in late medieval Spain: stable isotope evidence from Muslims and Christians from Gandia, Valencia. *Am. J. Phys. Anthropol.* 156, 263–273. <https://doi.org/10.1002/ajpa.22647>.

Alp, A., 2017. Diet shift and prey selection of the native European catfish, *Silurus glanis*, in a Turkish reservoir. *J. Lim. Fresh. Fish. Res.* 3, 15–23.

Al-Shamma'a, A.A., 2006. Diet composition of three catfishes from Al-Hammar Marsh, Al-Fahoud, Iraq. *Marsh Bulletin* 2, 154–159.

Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. *J. Archaeol. Sci.* 17, 431–451. [https://doi.org/10.1016/0305-4403\(90\)90007-R](https://doi.org/10.1016/0305-4403(90)90007-R).

Beach, T.P., Luzzadder-Beach, S., 2008. Geoarchaeology and aggradation around Kinet Höyük, an archaeological mound in the Eastern Mediterranean, Turkey. *Geomorphology* 101, 416–428. <https://doi.org/10.1016/j.geomorph.2007.04.025>.

Bronk Ramsey, C., Higham, T., Bowles, A., Hedges, R., 2004. Improvements to the pretreatment of bone at Oxford. *Radiocarbon* 46, 155–163. <https://doi.org/10.1017/S0033822200039473>.

Budd, C., Karul, N., Alpaslan-Roodenberg, S., Galik, A., Schulting, R., Lillie, M., 2018. Diet uniformity at an early farming community in northwest Anatolia (Turkey): carbon and nitrogen isotope studies of bone collagen at Aktopraklik. *Archaeol. Anthropol. Sci.* 10, 2123–2135. <https://doi.org/10.1007/s12520-017-0523-4>.

Çakırlar, C., İkram, S., Gates, M.-H., 2016. New evidence for fish processing in the ancient Eastern Mediterranean: formalised *Epinephelus* butchery in fifth century BC Kinet Höyük, Turkey. *Int. J. Osteoarchaeol.* 26, 3–16.

Cardona, L., 2006. Habitat selection by grey mullets (Osteichthyes: Mugilidae) in Mediterranean estuaries: the role of salinity. *Sci. Mar.* 70, 443–455. <https://doi.org/10.3989/scimar.2006.70n3443>.

Craig, O.E., Bazzzo, M., O'Connell, T.C., Garnsey, P., Martinez-Labarga, C., Lelli, R., Salvadei, L., Tartaglia, G., Nava, A., Renò, L., Fiammenghi, A., Rickards, O., Bondioli, L., 2009. Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd centuries AD) in Southern Italy. *Am. J. Phys. Anthropol.* 139, 572–583. <https://doi.org/10.1002/ajpa.21021>.

Deelder, C.L., 1984. Synopsis of biological data on the eel, *Anguilla anguilla* (Linnaeus, 1758). *FAO Fish. Synop.* 80, 1–73. <https://doi.org/10.5555/19851472511>.

Dee, M.W., Palstra, S.W.L., Th Aerts-Bijma, A., Bleeker, M.O., de Brujin, S., Ghebrem, F., Jansen, H.G., Kuitem, M., Paul, D., Richie, R.R., Spiersma, J.J., et al., 2020. Radiocarbon Dating at Groningen: New and Updated Chemical Pretreatment Procedures. *Radiocarbon* 62, 63–74. <https://doi.org/10.1017/RDC.2019.101>.

DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. *Nature* 317, 806–809. <https://doi.org/10.1038/317806a0>.

Denis, J., Rabhi, K., Le Loc'h, F., Ben Rais Lasram, F., Boutin, K., Kazour, M., Diop, M., Gruselle, M.-C., Amara, R., 2022. Role of estuarine habitats for the feeding ecology of the European eel (*Anguilla anguilla* L.). *PLoS One* 17, e0270348. <https://doi.org/10.1371/journal.pone.0270348>.

Dierickx, K., Schauer, P., Harland, J., Pipe, A., Oueslati, T., Lehock, A., Ervynck, A., Wouters, W., Von Tersch, M., Orton, D., Alexander, M., 2024. Finding the right plaice at the right time: Multi-molecular analysis of flatfish reveals historical catch habitats. *Fish Fish.* 25, 811–822. <https://doi.org/10.1111/faf.12847>.

Fontanals-Coll, M., Soncin, S., Talbot, H.M., von Tersch, M., Gibaja, J.F., Colonese, A.C., Craig, O.E., 2023. Stable isotope analyses of amino acids reveal the importance of aquatic resources to Mediterranean coastal hunter-gatherers. *Pro. Roy. Soc. B: Biol. Sci.* 290. <https://doi.org/10.1098/rspb.2022.1330>.

Fuller, B.T., Müldner, G., Van Neer, W., Ervynck, A., Richards, M.P., 2012. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). *J. Anal. At. Spectrom.* 27, 807–820. <https://doi.org/10.1039/C2JA10366D>.

Fuller, B.T., Riehl, S., Linseele, V., Marinova, E., De Cupere, B., Bretschneider, J., Richards, M.P., Van Neer, W., 2024. Agropastoral and dietary practices of the northern Levant facing Late Holocene climate and environmental change: Isotopic analysis of plants, animals and humans from Bronze to Iron Age tell Tweini. *PLoS One* 19, e0301775. <https://doi.org/10.1371/journal.pone.0301775>.

Fuller, B.T., Van Neer, W., Linseele, V., De Cupere, B., Chahoud, J., Richards, M.P., 2020. Fish $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ results from two Bronze/Iron Age sites (tell Tweini & Sidon) along the Levantine coast. *J. Archaeol. Sci. Rep.* 29, 102066. <https://doi.org/10.1016/j.jasrep.2019.102066>.

Guiry, E.J., Szpak, P., 2021. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. *J. Archaeol. Sci.* 132, 105416. <https://doi.org/10.1016/j.jas.2021.105416>.

Kadye, W.T., Booth, A.J., 2012. Integrating stomach content and stable isotope analyses to elucidate the feeding habits of non-native sharptooth catfish *Clarias gariepinus*. *Biol. Invasions* 14, 779–795. <https://doi.org/10.1007/s10530-011-0116-6>.

Kragten, J., 1994. Tutorial review: calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. *Analyst* 119, 2161–2165. <https://doi.org/10.1039/AN9941902161>.

Lammens, E.H.R.R., Hoogenboezem, W., 1991. Diets and feeding behaviour. In: *Cyprinid Fishes*. Springer, Netherlands, Dordrecht, pp. 353–376. https://doi.org/10.1007/978-94-011-3092-9_12.

Lernau, O., Shapiro, J., Paz, S., Greenberg, R., 2021. Fishing, fish consumption, urbanism and migrants at Tel Bet Yerah, 3200–2700 BC. *Antiquity* 95, 885–899. <https://doi.org/10.15184/aqy.2021.70>.

Longin, R., 1971. New method of collagen extraction for radiocarbon dating. *Nature* 230, 241–242. <https://doi.org/10.1038/230241a0>.

Mkumbo, O.C., Ligvoet, W., 1992. Changes in the diet of Nile perch, *Lates niloticus* (L.), in the Mwanza Gulf, Lake Victoria. *Hydrobiologia* 232, 79–83. <https://doi.org/10.1007/bf00014615>.

Nkalubo, W., Chapman, L., Muyodi, F., 2014. Feeding ecology of the intensively fished Nile Perch, *Lates niloticus*, in Lake Victoria, Uganda. *Aquat. Ecosyst. Health Manag.* 17, 62–69. <https://doi.org/10.1080/14634988.2014.880639>.

Robson, H.K., Andersen, S.H., Clarke, L., Craig, O.E., Gron, K.J., Jones, A.K.G., Karsten, P., Milner, N., Price, T.D., Ritchie, K., Zabilska-Kunek, M., Heron, C., 2016. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. *Environ. Archaeol.* 21, 105–118. <https://doi.org/10.1179/1749631415Y.0000000014>.

Schoeninger, M.J., DeNiro, M.J., 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. *Geochim. Cosmochim. Acta* 48, 625–639. [https://doi.org/10.1016/0016-7037\(84\)90091-7](https://doi.org/10.1016/0016-7037(84)90091-7).

Spataru, P., Viveen, W.J.A.R., Gophen, M., 1987. Food composition of *Clarias gariepinus* (= *C. lazera*) (Cypriniformes, Clariidae) in Lake Kinneret (Israel). *Hydrobiologia* 144, 77–82. <https://doi.org/10.1007/BF00008053>.

Stantis, C., Maaranen, N., Kharobi, A., Nowell, G.M., Macpherson, C., Doumet-Serhal, C., Schutkowski, H., 2021. Sidon on the breadth of the wild sea: Movement and diet on the Mediterranean coast in the Middle Bronze Age. *Am. J. Biol. Anthro.* <https://doi.org/10.1002/ajpa.24423>.

Szpak, P., Metcalfe, J.Z., Macdonald, R.A., 2017. Best practices for calibrating and reporting stable isotope measurements in archaeology. *J. Archaeol. Sci. Rep.* 13, 609–616. <https://doi.org/10.1016/j.jasrep.2017.05.007>.

van Klinken, G.J., 1999. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. *J. Archaeol. Sci.* 26, 687–695. <https://doi.org/10.1006/jasc.1998.0385>.

Van Neer, W., Lernau, O., Friedman, R., Mumford, G., Poblome, J., Waelkens, M., 2004. Fish remains from archaeological sites as indicators of former trade connections in the Eastern Mediterranean. *Paléorient* 30, 101–147. <https://www.jstor.org/stable/41496685>.

Van Neer, W., Zohar, I., Lernau, O., 2005. The Emergence of Fishing Communities in the Eastern Mediterranean region: a Survey of evidence from Pre-and Protohistoric periods. *Paléorient* 31, 131–157. <https://www.jstor.org/stable/41496728>.

Van Neer, W., Fuller, B.T., Fahy, G.E., De Cupere, B., Bouillon, S., Utterhoeven, I., Richards, M.P., 2024. Early拜占庭 fish consumption and trade revealed by archaeoichthyology and isotopic analysis at Sagalassos, Turkey. *J. Archaeol. Sci. Rep.* 53, 104322. <https://doi.org/10.1016/j.jasrep.2023.104322>.

Vika, E., Theodoropoulou, T., 2012. Re-investigating fish consumption in Greek antiquity: results from $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analysis from fish bone collagen. *J. Archaeol. Sci.* 39, 1618–1627. <https://doi.org/10.1016/j.jas.2012.01.016>.

Winter, R., Desiderà, E., Guidetti, P., Vermeersch, S., Demirel, N., Çakırlar, C., 2022. Catch of the Day: Abundance and size Data of Groupers (Epinephelidae) and Combers (Serranidae) from Middle to Late Holocene Levantine Archaeological Contexts. *J. Isl. Coast. Archaeol.* 17, 31–50. <https://doi.org/10.1080/15564894.2022.2138643>.

Winter, R.M., de Kock, W., Mackie, M., Ramsøe, M., Desiderà, E., Collins, M., Guidetti, P., Presslee, S., Alegre, M.M., Oueslati, T., Muniz, A.M., Michailidis, D., van den Hurk, Y., Taurozzi, A.J., Çakırlar, C., 2023. Grouping groupers in the Mediterranean: Ecological baselines revealed by ancient proteins. *Ecol. Evol.* 13, e10625. <https://doi.org/10.1002/ee.4039>.

Winter, R.M., Desiderà, E., Guidetti, P., von Tersch, M., Dee, M.W., Alexander, M., Çakırlar, C., 2025. Pre-Lessepian isotopic niche spaces: using paleoecological proxies to assess the impact of ongoing bioinvasions on fishes in the eastern Mediterranean Sea. *Med. Mar. Sci.* 26, 504–514. <https://doi.org/10.12681/mms.40039>.

Zohar, I., Artzy, M., 2019. The role of preserved fish: evidence of fish exploitation, processing and long-term preservation in the Eastern Mediterranean during the late Bronze Age (14th–13th Century BCE). *J. Archaeol. Sci. Rep.* 23, 900–909. <https://doi.org/10.1016/j.jasrep.2018.12.008>.

Zohar, I., Belmaker, M., 2005. Size does matter: methodological comments on sieve size and species richness in fishbone assemblages. *J. Archaeol. Sci.* 32, 635–641. [https://doi.org/10.1016/S0305-4403\(03\)00037-2](https://doi.org/10.1016/S0305-4403(03)00037-2).