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Abstract

Many academic introductions suffer from inconsistencies and a lack of comprehensive
structure, often failing to effectively outline the core elements of the research. This not only
impacts the clarity and readability of the article but also hinders the communication of its
significance and objectives to the intended audience. This study aims to automate the CaRS
(Creating a Research Space) model using machine learning and natural language processing
techniques. We conducted a series of experiments using a custom-developed corpus of
50 biology research article introductions, annotated with rhetorical moves and steps. The
dataset was used to evaluate the performance of four classification algorithms: Prototypical
Network (PN), Support Vector Machines (SVM), Naïve Bayes (NB), and Random Forest (RF);
in combination with six embedding models: Word2Vec, GloVe, BERT, GPT-2, Llama-3.2-3B,
and TEv3-small. Multiple experiments were carried out to assess performance at both the
move and step levels using 5-fold cross-validation. Evaluation metrics included accuracy
and weighted F1-score, with comprehensive results provided. Results show that the SVM
classifier, when paired with Llama-3.2-3B embeddings, consistently achieved the highest
performance across multiple tasks when trained on preprocessed dataset, with 79% accuracy
and weighted F1-score on rhetorical moves and strong results on M2 steps (75% accuracy
and weighted F1-score). While other combinations showed promise, particularly NB and
RF with newer embeddings, none matched the consistency of the SVM–Llama pairing.
Compared to existing benchmarks, our model achieves similar or better performance;
however, direct comparison is limited due to differences in datasets and experimental
setups. Despite the unavailability of the benchmark dataset, our findings indicate that SVM
is an effective choice for rhetorical classification, even in few-shot learning scenarios.

Keywords: natural language processing; large language model; machine learning;
CaRS model; embedding; few shot learning

1. Introduction
Academic writing requires familiarity with frameworks to effectively structure content,

with a strong focus on the introduction to establish the research context and identify the
gap. The CaRS (Creating a Research Space) model [1,2] is widely adopted for this purpose,
guiding the writers to justify the niche of their study by identifying the research gap(s)
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being addressed. This usually involves rhetorical work to establish novelty and significance.
However, presenting a clear research gap can be challenging, particularly for non-native
English speakers, who often face added cognitive demands in balancing language structure
with evidence organisation [3,4].

The CaRS model outlines three rhetorical moves (i.e., sentences or longer chunks) that
contribute to a logical and persuasive research introduction) that serve a specific purpose
in a piece of writing. These moves include: (1) Establishing a territory, which introduces
the general topic and emphasise its significance; (2) Establishing a Niche, identifying a gap
or problem in existing research; and (3) Occupying the Niche, outlining the purpose and
relevance of current research in addressing the identified gap. The indicative sentence(s)
within each move can be decomposed into finer steps that may be considered ‘optional’,
‘obligatory’ and/or ‘expected’ (see Table 1). These rhetorical moves and steps offer authors
a roadmap to organise the context, purpose, objectives, review of the literature, and the
broader significance of their research logically and persuasively. Furthermore, there are
frameworks for structuring individual components within a presentation such as PIE (Point,
Illustration, and Explanation) and PEEL (Point, Evidence, Explanation, and Link) used to
structure paragraphs.

Inconsistent presentation of these elements can significantly impede reader compre-
hension, often arising from assumptions about the relationship between language and
culture, a complex area still under exploration [5]. A well-structured article should explic-
itly define the knowledge gaps it addresses, clarifying its contribution to existing research.
Disciplinary variations in writing structure also contribute to inconsistencies, as each aca-
demic subdiscipline functions within its own discourse community, with distinct structural
conventions. Despite these variations, a fundamental rhetorical structure underlies all
language groups and disciplines. This common structure is evident in the writing pat-
terns of native English speakers, second language learners, and foreign language learners,
emphasising the universal applicability of the CaRS model in different academic contexts
to define knowledge gaps and their contributions to the field [6]. Thus, researchers are
increasingly looking for ways to implement educational systems with knowledge of the
CaRS framework.

The effectiveness of the CaRS model has been widely endorsed in research, with
multiple studies [7–9] affirming its utility in structuring research article introductions and
helping authors effectively position their work within the academic landscape. However,
inconsistent adherence to this structure remains a challenge, as some publications fail to
address or occupy the identified research gap, further underscoring the need for structured
frameworks like CaRS to promote clarity and coherence in academic writing.

Additionally, Cotos and Pendar [10] employed a support vector machine (SVM) [11]
to classify sentences from introduction sections into both communicative moves and rhetor-
ical steps (also called CaRS steps), using semi-automated methods presented by Suryani
et al. [12] and Anthony [13]. Further studies [14] have manually compared CaRS with
IMRaD (Introduction, Methods, Results, and Discussion) [15], a different writing structure
often required in scientific and research papers. Most of these studies are domain-specific
and in an early stage, with limited publicly available annotated data. Despite advances in
NLP for tasks such as text classification, information extraction, and sentiment analysis,
there has been little public discussion about the use of NLP and machine learning (ML) to
automate the evaluation of research article introductions for structural compliance with
academic writing frameworks [16].
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Aim and Objectives

The goal of this research is to automate the support mechanisms for academic writing
by developing models capable of assisting novice writers through targeted rhetorical
discourse analysis, to augment writing skills education. The task involves supervised
learning on a small imbalanced dataset. The following objectives were deemed necessary
to demonstrate the study’s aim:

Objective 1: to address the lack of existing openly available datasets for the task. This
involves developing a curated dataset annotated with CaRS moves and steps.

Objective 2: to automate the annotation of CaRS moves and steps in a given introduction.
This involved rigorous experiments using existing NLP techniques and different ML
algorithms to develop and validate suitable models.

We note that the benchmark study [10] that performed a similar task achieved accuracy
of 72.6% and 72.9% using SVM, 10-fold cross-validation with a combined unigram and
trigram feature on move and step classifications. However, the experimental dataset is
not publicly available, so we developed a small dataset of 50 articles published in the
biology domain [17]. Given the limited size of available annotated data, we framed the
task (in this study) as a few-shot learning problem involving four algorithms (Prototypical
Networks (PN) [18], SVM, Naïve Bayes (NB) [19], and Random Forest (RF) [20]). We
hypothesised that models combining rich semantic embeddings with classifiers capable
of handling sparse or imbalanced data would perform better in detecting CaRS moves
and steps in a given introduction. We explored the performance of six embedding models,
including Word2vec [21], Global Vectors (GloVe) [22], Bidirectional Encoder Representations
from Transformers (BERT) [23], Generative Pre-trained Transformer 2 (GPT-2) [24], Large
Language Model Meta AI 3.2-3B from Transformers (Llama-3.2-3B) [25], and OpenAI’s
text-embedding-3-small (TEv3-small) (accessed on 1 May 2025). The evaluation was based
on 5-fold cross-validation to gauge performance with metrics such as accuracy, precision,
recall, and weighted F1-score. By addressing the research objectives, this study makes the
following contributions:

• We curated and publicly released a new dataset (titled CaRS-50 Dataset) annotated
with CaRS moves and steps, addressing a critical gap in open resources for rhetorical
analysis. This dataset not only underpins our experiments, but also serves as a
valuable resource for the broader research community working on academic writing
support and rhetorical structure identification.

• We provide a hypothesis-driven evaluation of few-shot learning methods for classi-
fying CaRS moves and steps, using a systematically selected set of models and em-
bedding strategies. The findings offer insight into model suitability under limited
data conditions and establish a reproducible baseline for future research in automated
rhetorical analysis.

• We demonstrate the effectiveness of combining state-of-the-art embedding models
with classical few-shot classifiers for moves and steps identification, even in small
annotated corpora. Specifically, we show that SVM combined with Llama embeddings
achieves superior performance, highlighting the importance of choosing embedding-
classifier pairs suited to the task structure and data constraints.

The rest of the paper is structured as follows: Section 2 provides details on related
work and the necessary background for the techniques and tools used in our experiment.
The experimental data and the methodology approach, including details about the setup
of the experiment and the evaluation measures, are presented in Section 3. Section 4
presents our findings. The analysis of results, including issues that are likely to threaten

https://openai.com/index/new-embedding-models-and-api-updates/
https://data.mendeley.com/datasets/kwr9s5c4nk/1
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the validity of the results, is discussed in Section 5. Section 6 summarises the study and
points out future work.

2. Background and Related Work
The CaRS model is built on centuries of scholarly inquiry, offering a structured frame-

work to understand and craft academic writing in disciplinary contexts [1]. This model
initially outlines four strategic moves that include ‘Establishing the field’, ‘Summarising
previous research’, ‘Creating a research space by indicating a gap’, and ‘Introducing the
present research’. This was later condensed and refined into three moves, i.e., ‘Establishing
a territory’, ‘Establishing a niche’, and ‘Occupying the niche’ based on experiments con-
ducted on the introduction section of forty-eight scientific articles across the natural and
social sciences field [1].

Previous studies have compared various methods to detect the compliance of scientific
articles using models such as CaRS and IMRaD [12,13,26] across computer science-related
disciplines. This has been observed in other disciplines, notably Samraj [9] who conducted
a manual comparison of the introductions of 12 research articles using CaRS, to show its
applicability across disciplines of wildlife behaviour and conservation biology. Nwogu [14],
also conducted a manual analysis of health sciences-related articles using CaRS and IMRaD,
respectively. Although thorough, this manual analysis is time-consuming and limited in
sampling, but automated tools in this research area are still developing in effectiveness.

Automating compliance detection in research articles is gaining traction, with studies
employing ML and rule-based approaches showing promising results. Previous work
by Anthony and Lashkia [3], introduced Mover, a supervised ML tool aimed at aiding
non-native English speakers in analysing and writing technical paper abstracts in the
information technology field at the discourse level. Using a modified bag of clusters model
with NB classifier, the system identified structural moves in 100 abstracts of research articles
published in the IEEE [27] index of Transactions on Parallel and Distributed Systems. It
achieved an average first-order accuracy of 68% ± 2.2% over 5-fold cross-validation, with
a potential improvement to 86% ± 1.4% when users were offered a choice between the
two main decisions of the system and additional features, such as flow optimisation and
retraining applied to the model. The dataset split was (80:20) ratio with (554:138) examples
allocated for (training:testing). Unfortunately, the data are not publicly available. However,
Mover was reported to have reduced the analysis time for students from over an hour to
15 min, allowing them to identify overlooked structural features and providing balanced
feedback compared to their self-assessments. However, its efficacy is constrained by the
limited scope of training data and the focus on a single discipline. The authors emphasised
the need for expansion to diverse text types to benefit teachers and discourse analysts.

Similarly, Knight et al. [28] introduced AcaWriter, a browser-based application that uses
NLP to identify moves in academic writing. Based on the concept-matching framework [29],
it matches metadiscourse cues with constituent concepts like [PREVIOUS], [PUBLICA-
TION], and [IDEA] using syntactic parsing, dependency extraction, and pattern-matching
rules. It combines three open-source components: AcaWriter (the user interface), Text Analyt-
ics Pipeline (TAP), and Athanor which employs Stanford CoreNLP to generate dependency
trees, part-of-speech tags, and named entity tags, then applies rules to label moves. TAP
provides a unified API for additional text analysis, such as n-grams and text cleaning. The
tool was deployed in three academic areas with varying numbers of students to gauge
the user experience: law (90 students), accounting (403 students) and doctoral students
(n = 12). The results indicate that students who receive feedback from AcaWriter are more
likely to improve their draft texts and effectively incorporate rhetorical moves into their
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writing. Unfortunately, the study does not specify the dataset used during development or
provide details about the training and testing evaluation processes.

Cotos and Pendar [10] investigated the potential of the Research Writing Tutor (RWT), an
automated writing evaluation system, to classify discourse elements within the introduction
sections of research articles. Using a supervised cascade of SVM classifiers with 10-fold
cross-validation for model evaluation, the authors categorised sentences into moves and steps
following the CaRS model [1]. The RWT was developed using a multi-disciplinary corpus
of 1020 research articles, drawn from reputable online journals spanning 51 disciplines.
The corpus, comprising 1,322,089 words, was manually annotated for rhetorical structures
by three expert coders. The reliability between the notators was calculated based on
30 texts (18 selected randomly and 12 chosen intentionally) to represent various rhetorical
challenges, producing values of the intraclass correlation coefficients indicative of high
agreement for moves r = 0.86, p < 0.005 and steps r = 0.80, p < 0.005. The corpus was
partitioned into a subset of 650:370 (training:testing) texts. The system achieved a move
classification accuracy of 72.6% and a step classification accuracy of 72.9%.

In a related study, Sun [30] investigated the potential of a web-based Scholarly Writing
Template (SWT) to help non-native English speakers improve their academic writing within
technical fields. The SWT featured two main components: an information template, de-
signed to structure moves, and a language template, which provided corpus-based examples
for sentence construction. However, this study involved 20 Taiwanese graduate students
(18 males, 2 females; 95% doctoral, 5% master’s), who specialise in fields such as communi-
cation engineering, electronics engineering, photonics, electrical and control engineering,
and computer science. Notably, 75% of the participants had experience drafting papers or
dissertations, and 50% had published in international journals.

The integration of SWT into an academic writing course yielded positive results, with
participants evaluating its usefulness in the development of writing skills at a mean of
4.03 (SD = 0.49) on a five-point Likert scale. The information template provided a clear
framework for structuring key research sections, while the language template supported
discipline-specific sentence patterns. Less proficient users relied heavily on the language
template, while advanced users used it to refine style and grammar. In general, the
participants reported improved writing processes, with variations based on proficiency and
prior experience. Unfortunately, the dataset was not publicly shared, limiting reusability
and highlighting the broader issue of data scarcity in this field.

In a recent study, Kim and Lu [31] explored the effectiveness of OpenAI’s GPT-3.5 Turbo
model for automated CaRS move and step annotation. Experiments were performed on
100 articles from Applied Linguistics, split into 80:10:10 (training:testing:validation) ratio.
This corpus, sourced from high-impact journals published between 2012 and 2016 was
cleaned and manually annotated for moves and steps by a team of seven researchers, fol-
lowing the refined version of the CaRS model [1]. Multiple experiments and evaluations
were performed iteratively using the OpenAI Playground platform which provides Appli-
cation Programming Interface (API) access through a graphical user interface for ease of
use. The experimental steps involved (i) prompt only, (ii) refined prompt only (after (i)),
(iii) fine-tuning with 3, 40, and 80 annotated articles. The results show an improvement in
the accuracy from 28.5% (moves) and 11.3% (steps) using prompt only to 92.3% (moves) and
80.2% (steps) after fine-tuning with 80 annotated articles.

Despite promising outcomes, the reviewed studies highlight several limitations that
restrict their comparability with our work. For example, Mover focuses on the abstract
section (rather than the introduction), omitting key stages like ‘Review previous research’
and ‘Indicate a gap’, which diminishes its use for the core purpose of CaRS. That said, we
note that abstracts are also a popular object of study, parallel to introductions in applied
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linguistics. AcaWriter also offers valuable tools to detect moves but does not fully address
all CaRS steps, limiting its ability to comprehensively analyse academic texts.

Contextual limitations also emerge across other tools. RWT surpasses earlier systems
like Mover in identifying rhetorical structures, but struggles to capture context-dependent
relationships due to its treatment of sentences as independent units. This challenge is
compounded by the difficulties in detecting ambiguous or sparsely represented rhetorical
steps. Notably, RWT, SWT, and the GPT-based study by Kim and Lu [31] all suffer from a
lack of publicly available datasets, which restricts reusability and further underscores the
pervasive issue of data scarcity in this research area. The GPT-based study, while promising,
raises concerns about multi-label evaluation metrics and potential biases introduced by
persistent memory during experiments. Together, these limitations highlight gaps in current
approaches to rhetorical analysis, particularly in terms of dataset accessibility, coverage
of rhetorical structures, and context sensitivity. Thus, our study involved the creation of a
new, albeit modest, corpus centred on the introduction section of articles, aligning with the
original purpose of the CaRS model. Although the corpus consists of only 50 articles in
a single domain (Biology), its focus on introductions and the transparency of the dataset
represents a valuable step in fostering further research in this area.

3. Materials and Methods
This section outlines the experimental materials, including details of the experimental

dataset and its properties; the techniques used to prepare the dataset for experiments; the ML
algorithms and embedding models used; and the evaluation metrics to measure performance.

3.1. Raw Data and Annotation Process

The dataset for this experiment comprises 50 manually annotated ‘introductions’ section
of open access articles in the biology domain obtained from BioRxiv (www.biorxiv.org/,
accessed on 1 January 2024). The articles were randomly selected from five categories:
‘Animal Behavior and Cognition’, ‘Biochemistry’, ‘Biophysics’, ‘Ecology’, and ‘Physiology’,
with ten articles obtained for each category Lam and Nnamoko [17]. Each sentence in these
introductions was annotated according to the rhetorical moves and steps defined in the CaRS
model. To support clarity and accessibility, Table 1 provides a comprehensive overview of
the CaRS framework. The model divides a typical research article introduction into three
major rhetorical moves, each serving a distinct communicative purpose. Within each move
are more granular rhetorical steps that reflect specific discourse functions.

Table 1. Experimental dataset characteristics indicating code annotation for CaRS moves and steps by [1].

Move/Steps Description Code Example

M
ov

e
1 Step 1 Claim centrality 1a The relationship between circadian rhythms and gene expression has attracted
considerable interest

Step 2 Make topic generalisations 1b Photosynthetic processes are well-documented across most plant species
Step 3 Review previous research 1c Recent studies by Smith et al. (2021) have explored chloroplast biogenesis under stress

M
ov

e
2 Step 1 Counter-claiming 2a However, the link between light exposure and root development remains disputed

Step 2 Indicate a gap 2b Few studies have examined this process in non-flowering plants
Step 3 Question-raising 2c It remains unclear whether these mechanisms are conserved across species
Step 4 Continue a tradition 2d Following earlier investigations by Lee et al., we examine. . .

M
ov

e
3 Step 1a Outline purposes 3a This study aims to investigate the genetic basis of adaptation in Arctic species

Step 1b Announce present research 3b We conducted a comparative genomic analysis of. . .
Step 2 Announce main findings 3c Our results reveal a strong correlation between gene X and phenotype Y
Step 3 Indicate article structure 3d The paper is organised as follows: Section 2 outlines the methodology. . .

These moves and steps form the annotation scheme applied to the corpus, enabling
automated rhetorical classification. Table 1 provides the shorthand codes used (e.g., 1a, 2b,

www.biorxiv.org/
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3c) and the corresponding step descriptions, serving both as a training reference and as
interpretative guidance for readers less familiar with rhetorical genre theory.

Two of the co-authors (CL and NN) were involved in the annotation task. CL, a
senior lecturer in English for Academic Purposes (EAP), with extensive experience in
teaching academic writing and rhetorical structure, actually carried out the annotation.
However, to ensure high-quality and consistent labelling aligned with the CaRS rhetorical
framework [1,2], we initially carried out an inter-rater agreement analysis on a sample
of the overall sentences in the dataset. This involved CL and a second annotator (NN)
who is a lecturer in computer science, purposefully selected to bring an outsider perspec-
tive and to mitigate potential bias arising from prior linguistic knowledge. Specifically,
38 sentences representing approximately 3% of the full dataset were selected from different
article introductions to cover a range of rhetorical moves and steps. These sentences were
not presented in isolation; instead, they were highlighted within their full-text contexts to
allow for discourse-sensitive judgement. Before annotation, NN engaged in a close reading
of the original CaRS framework [1,2] to gain a detailed understanding of the moves and
steps. Disagreements were resolved through discussion and consensus to clarify annotation
boundaries and refine shared understanding. Table 2 lists the rhetorical steps represented
in the sampled subset.

Table 2. Inter-annotator agreement statistics on approximately 3% sample by included steps
based on 2 annotators.

Step Total 3% Sample Match Non-Match

1c 567 10 9 1
3b 127 10 8 2
3c 82 8 7 1
2b 70 7 6 1
2c 28 3 3 0

Note: The ‘Total’ counts the number of sentences per step observed in the dataset after all sentences were annotated.
‘3%’ indicates number of sentences per step included at inter-annotation stage, ‘Matching’ and ‘Non-matching’
columns represents the number of sentences where Annotator 1 and Annotator 2 agree and disagree, respectively.

Inter-rater reliability was assessed using two widely adopted metrics: Cohen’s kappa (κ)
and Krippendorff’s alpha (α). Cohen’s κ measures the agreement between two annotators
while correcting for agreement expected by chance. It is computed as shown in Equation (1):

κ =
po − pe

1 − pe
(1)

where po is the observed agreement and pe is the expected agreement by chance. A κ-value
above 0.75 is generally considered excellent, while values between 0.60 and 0.75 indicate
good agreement.

Krippendorff’s alpha (α), shown in Equation (2), is a more general agreement coeffi-
cient that supports multiple raters, varying data types, and accounts for missing data and
label imbalance.

α = 1 − Do

De
(2)

where Do is the observed disagreement and De is the expected disagreement. Like κ,
α values above 0.80 are generally interpreted as strong agreement.

Based on the 38 annotated samples shown in Table 2, the observed agreement was
high at po = 0.868. After adjusting for chance agreement, the inter-rater reliability was
moderate, with κ ≈ 0.426 and α ≈ 0.424, indicating a reasonable level of agreement
between the annotators. Notably, most of the mismatches were attributable to the annotator
without formal linguistic training (NN), often involving subtle rhetorical distinctions that
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required expert interpretation. This pattern suggests that the disagreements were not due
to fundamental inconsistencies but rather to variation in the knowledge of the discipline.
Together, these results support the overall trustworthiness of the dataset, despite certain
limitations that may have influenced the moderate agreement observed, including the
relatively small sample size and the random selection of samples for the inter-rater study
(see Section 5 for a detailed discussion and planned future improvements to address these
issues). The remainder of the dataset was then annotated by CL.

The annotated dataset was stored in xlm format where each article is denoted with
document-identifier tags (e.g., fulltextID, title, doi, source, category) as well as labels
indicating the presence of rhetorical moves as defined in CaRS [1]. Specifically, each text
segment is annotated with a code corresponding to the step they represent within a rhetorical
move. A sample xml file illustrating the structure of the dataset is presented in Figure 1.

Version July 7, 2025 submitted to Electronics 8 of 28

The xml file sample begins with the <biology_intro> element, which contains meta- 302

data such as the article’s <title>, <authors>, <doi>, <source>, and <category>. The 303

content of the article is then structured under the <fulltext> element, which is divided 304

into <paragraph> elements. Each <paragraph> contains multiple <sentence> elements, 305

where each sentence is uniquely identified by a <sentenceID> and includes the actual 306

text under the <text> element. Each sentence is also linked to a specific CaRs step/move, 307

indicated by the <step> element. 308

1 <biology_intro>
2 <fulltextID>text001</fulltextID>
3 <title>Article</title>
4 <authors>First Author , Second Author</authors>
5 <doi>https :// doi.org /10.1101/2023.10.23. xxxxxx</doi>
6 <source>biorxiv</source>
7 <category>Animal_Behavior_and_Cognition</category>
8 <fulltext>
9 <paragraph>

10 <sentence>
11 <sentenceID>t001s0001</sentenceID>
12 <text>Central components of animal cognition are ...</text>
13 <step>1a</step>
14 </sentence>
15 <sentence>
16 <sentenceID>t001s0002</sentenceID>
17 <text>In honeybees , a classical model of learning and memory studies , a

↪→ large body of data document how cognitive functions are essential
↪→ for their foraging success and survival of their colonies [1].</
↪→ text>

18 <step>1b</step>
19 </sentence>
20 <sentence>
21 <sentenceID>t001s0003</sentenceID>
22 <text>Evolutionary selections are ...</text>
23 <step>1c</step>
24 </sentence>
25 </paragraph>
26 </fulltext>
27 </biology_intro>

Figure 1. Sample XML file showing curated article with CaRS annotations

309

310

3.2. Dataset Preprocessing 311

A range of preprocessing stages were applied to the raw dataset illustrated in Figure 1. 312

Specifically, we used the Natural Language Toolkit (NLTK) [32] to perform initial cleanup 313

(e.g., punctuation removal), tokenisation, stop-word removal, and word inflection. These 314

are common preprocessing stages that are typically applied to clean textual data before 315

vectorisation (see Section 3.4.1) and an example is presented in Table 3 to illustrate their 316

effects on t001s0002 data sample shown in line 17 within Figure 1. 317

3.2.1. Punctuation correction 318

The raw text contains punctuation and other irregular texts that do not add value to 319

the classification tasks described in Section 3.4. These include punctuation such as commas, 320

full stops, and irregular text such as ‘[1]’. Such representations were corrected in this prepro- 321

Figure 1. Sample XML file showing curated article with CaRS annotations.

The xml file sample begins with the <biology_intro> element, which contains meta-
data such as the article’s <title>, <authors>, <doi>, <source>, and <category>. The
content of the article is then structured under the <fulltext> element, which is divided
into <paragraph> elements. Each <paragraph> contains multiple <sentence> elements,
where each sentence is uniquely identified by a <sentenceID> and includes the actual
text under the <text> element. Each sentence is also linked to a specific CaRs step/move,
indicated by the <step> element.

3.2. Dataset Preprocessing

A range of preprocessing stages were applied to the raw dataset illustrated in Figure 1.
Specifically, we used the Natural Language Toolkit (NLTK) [32] to perform initial cleanup
(e.g., punctuation removal), tokenisation, stop-word removal, and word inflection. These
are common preprocessing stages that are typically applied to clean textual data before
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vectorisation (see Section 3.4.1) and an example is presented in Table 3 to illustrate their
effects on t001s0002 data sample shown in line 17 within Figure 1.

Table 3. Sample of a preprocessed text sample from the raw dataset.

Dataset Sentences Words

Raw data
In honeybees, a classical model of learning and memory studies, a large body of data
documents how cognitive functions are essential for their foraging success and survival
of their colonies [1].

31

Punctuation correction In honeybees a classical model of learning and memory studies a large body of data document
how cognitive functions are essential for their foraging success and survival of their colonies 30

After Tokenisation
‘In’, ‘honeybees’, ‘a’, ‘classical’, ‘model’, ‘of’, ‘learning’, ‘and’, ‘memory’, ‘studies’, ‘a’, ‘large’,
‘body’, ‘of’, ‘data’, ‘document’, ‘how’, ‘cognitive’, ‘functions’, ‘are’, ‘essential’, ‘for’, ‘their’,
‘foraging’, ‘success’, ‘and’, ‘survival’, ‘of’, ‘their’, ‘colonies‘

30

After Stop-word ‘honeybees’, ‘classical’, ‘model’, ‘learning’, ‘memory’, ‘studies’, ‘large’, ‘body’, ‘data’,
‘document’, ‘cognitive’, ‘functions’, ‘essential’, ‘foraging’, ‘success’, ‘survival’, ‘colonies‘ 17

After Word Inflection ‘honeybee’, ‘classical’, ‘model’, ‘learning’, ‘memory’, ‘study’, ‘large’, ‘body’, ‘data’, ‘document’,
‘cognitive’, ‘function’, ‘essential’, ‘forage’, ‘success’, ‘survival’, ‘colony‘ 17

3.2.1. Punctuation Correction

The raw text contains punctuation and other irregular texts that do not add value to
the classification tasks described in Section 3.4. These include punctuation such as commas,
full stops, and irregular text such as ‘[1]’. Such representations were corrected in this prepro-
cessing step to avoid experimental bias and skewness. We used the RegexpTokenizer class
with the pattern r’\w+’ to match only word characters (letters, digits, and underscores),
effectively removing punctuation like commas and full stops.

3.2.2. Tokenisation

Tokenisation is a technique used to remove meaningless symbols and split text into
tokens, i.e., a set of characters that have a meaning by themselves [33]. A simple tokeniser
splits a string by white space, but a more efficient tokeniser can use other techniques to
separate elements, e.g., punctuation and abbreviations [32]. This was achieved using the
word_tokenize() class which effectively breaks down the text into a sequence of words
based on whitespace and the word.isalnum() list comprehension was further employed
to filter out any remaining tokens that are not alphanumeric.

3.2.3. Stop-Word Removal

Natural language often contains common terms like prepositions, known as stop-
words, which are used to construct sentences. If stop-words constitute a large portion of
a textual dataset, they can unnecessarily increase the dimensionality of the data [34]. In
our experiments, these stop-words can reduce the efficiency of text representation with
word embeddings like Word2Vec [21] and GloVe [22] by causing information loss during
centroid vector generation (i.e., averaging word vectors). To address this, we filtered out
common English stop-words using the stopwords.words(’english’) class, as illustrated
by the removal of terms like ‘a’ in Table 3.

3.2.4. Word Inflection

Word inflection involves altering the form of a word according to factors such as tense,
number, gender, and case. Stemming and lemmatisation are techniques used to address
inflection by reducing words to their root or base forms. For the word ‘studies’, used in
its ‘Noun (plural)’ form within Table 3, stemming might produce the stem studi (which is
not a standard English word, but represents the root form), as it removes the suffix ‘es’ to
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return a base form. Meanwhile, lemmatisation considers the word’s context and grammar,
potentially yielding the lemma ‘study’ (singular noun). We used NLTK implementation
of the Porter stemming algorithm [35] for stemming, and this was accessed through the
PorterStemmer class. For lemmatisation, NLTK offers the WordNet lemmatiser, which uses
WordNet, a lexical database of English. The lemmatisation process was performed using
the WordNetLemmatizer class.

3.3. Experimental Dataset

The dataset (after preprocessing) includes a total of 1297 steps, with 869 steps in move 1,
140 steps in move 2, and 288 steps in move 3. This is visually represented in Figure 2 where
all the steps in the dataset are shown in Figure 2a and the distribution of steps within the
rhetorical moves are shown in Figure 2b–d. The overall statistics of the raw and preprocessed
versions of the dataset is shown in Table 4.

(a) Distribution of steps in moves 1 to 3 (step count =1297). (b) Distribution of steps in move 1 (step count = 868).

(c) Distribution of steps in move 2 (step count = 140). (d) Distribution of steps in move 3 (step count = 288).

Figure 2. Detailed distribution of moves and related steps within the entire dataset.

Table 4. Overall sentence and word count statistics of raw vs. preprocessed dataset.

Dataset Sentences Words

Raw dataset 1297 36,055
preprocessed dataset 1297 22,451

3.4. Experimental Design

This section presents the methodology used to automate the identification of CaRS
moves and steps, with the aim of testing the hypothesis that specific combinations of embed-
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ding representations and classification algorithms are more effective at capturing rhetorical
intent in low-data scenarios. Four classifiers (in Section 3.4.2) were trained using embed-
dings generated from each of the six embedding models (in Section 3.4.1), resulting in
multiple classifier–embedding configurations. For each configuration, experiments were
conducted to identify the three CaRS moves (move 1, move 2, and move 3) and the associated
steps within each move. This systematic pairing and evaluation enabled a comprehen-
sive assessment of how different representation–classification strategies perform in the
rhetorical structure-prediction task. It is important to note that the initial experiments
were conducted using the preprocessed version of the dataset described in Section 3.1.
However, due to the differing characteristics of the embedding models (i.e., some being
static word embeddings and others contextual and capable of handling stopwords) we also
ran an ablation experiment using the raw (non-preprocessed) dataset. The design follows a
stepwise approach described in Algorithm 1.

Algorithm 1: Experimental Design Pipeline
Input: 50 annotated introductions (with moves and steps)
Output: Performance metrics for each classifier and task
foreach preprocessing option ∈ {preprocessed, non-preprocessed} do

foreach embedding model ∈ {Word2vec, GloVe, BERT, GPT-2, LlaMA, TEv3} do
Generate embeddings;
foreach classification task ∈ {moves, step1, step2, step3} do

foreach classifier ∈ {PrototypicalNet, SVM, Naïve Bayes, Random Forest} do
Apply 5-fold cross-validation;
Record performance metrics;

end
end

end
end

As shown in Algorithm 1, experiments were conducted iteratively for CaRS moves and
the steps within moves, each including the associated label. Line 1 of the algorithm shows
both preprocessed and non-processed dataset options representing the ‘initial’ and ‘ablation’
experiments respectively. To facilitate training on the datasets, sentence vectorisation was
applied using six embedding models (i.e., Word2vec, GloVe, BERT, GPT2, Llama-3.2-3B
and TEv3-small). Further details of the six embedding models and vectorisation process are
presented in Section 3.4.1. Training and validation was conducted with each dataset option
with k-fold cross validation (k = 5) using PN, SVM, NB and RF algorithms. This process is
done independently for the resulting embeddings generated in line 3 of Algorithm 1. A
block diagram showing details of the experiment pipeline is shown in Figure 3.

3.4.1. Text Embedding and Vectorisation

As indicated in Algorithm 1, text vectorisation is an important step before training ML
algorithms, and this requires the use of several embedding models to transform textual
data (words, phrases, and/or sentences) into machine-readable format (vectors). Various
embedding models exist for transforming textual data into vectors, so we explored models
from the two main categories, i.e., word and contextual approaches. For word-based
models, we considered Word2Vec [21] and GloVe [22]. For contextual models, we used
BERT [23], GPT2 [24], Llama-3.2-3B [25], and TEv3-small. These models have received
much empirical evaluation and have been shown to be efficient in learning high-quality
distributed vector representations.
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Figure 3. Block diagram of the experimental design pipeline.

It is important to note that Word2Vec and GloVe only account for single words. Specif-
ically, Word2Vec and GloVe generate static embeddings, providing a single representation
for each word regardless of context. Word2Vec employs shallow neural networks to predict
surrounding words based on a target word, while GloVe uses matrix factorisation to capture
global word relationships from a large corpus.

Since Word2Vec and GloVe return a k-dimensional vector for a given word (rather
than sentence) and the experimental dataset (i.e., CaRS moves and steps) consist of sen-
tences, we computed sentence vectors from the constituent words using the ‘document
centroid vector’ [36] approach which simply takes the average of all the word vectors in
a given document. Thus, for each step si, we pass the sequence of words w1, w2, . . . , wn

through embedding models to transform each word into a fixed-length numerical vector vi

mathematically represented as Equation (3):

si = w1, w2, . . . , wn

= v1, v2, . . . , vn
(3)

where v1, v2, . . . , vn is the fixed-length embedding vector associated with word sequence
v1, v2, . . . , vn.

Subsequently, the sentence vector was obtained by applying the document centroid
vector method [36] that computes the sample mean of si as shown in Equation (4):

s̄i =
v1 + v2 + . . . vn

n
(4)

where r̄i is the mean of the word vectors v1, v2, . . . , vn within a sentence, and n represents
the total number of words in the response.

We explored different vector lengths (i.e., dimensions) of the 6 embedding models.
For Word2vec and GloVe, we used Gensim 4.3.2 [37] implementation in Python 3.12
and experimented with 50, 100, 200 and 300 vector dimensions. We observed that our
method was stable when the dimension was set to a value between 200 and 300 but the
best performance was obtained when the dimension was set to 300. This is consistent with
the recommendations of the founding study of both word2vec [21] and Glove [22]. Thus,
the dimensionality of the vectors used for both the Word2vec and GloVe models is 300.

In contrast to Word2vec and GloVe, the contextual embeddings (GPT2, BERT, Llama-
3.2-3B and OpenAI’s TEv3-small) produce sentence representation. These were used to
vectorise the CaRS moves and steps. For BERT, GPT2, and Llama-3.2-3B, we used the
base model of the Hugging face Transformer library [38] to arrive at the optimal vector
dimensions of 768 (BERT and GPT2), and 4098 (Llama-3.2-3B). The TEv3-small model has
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a vector dimension of 512. The characteristics of each embedding, as well as the specific
parameters used for the experiments are outlined in the top half of Table 5.

Table 5. Descriptive characteristics and parameters for the classifiers and embeddings.

Models Parameters and Characteristics Family

Em
be

dd
in

gs

W2v dimension: 300, parameter: ≈Few million Static word-based embedding
GloVe dimension: 300, parameter: ≈Few million Static word-based embedding
BERT dimension: 768, parameter: ≈110 million Contextual, bidirectional transformer
GPT2 dimension: 768, parameter: ≈117 million Contextual, autoregressive transformer
Llama dimension: 4096, parameter: ≈3.2 billion Contextual, autoregressive transformer
TEv3 dimension: 512, parameter: <300 million Contextual, sentence-level transformer

C
la

ss
ifi

er
s Prototypical Net n_way: 5, k_shot: 5 & distance: euclidean Neural Network & discriminative

SVM kernel: ‘linear, c: 1, probability: True Margin-based, geometric & discriminative
Naïve Bayes var_smoothing: 1 × 10−9 Probabilistic & generative
Random Forest max_depth: 10, n_estimators: 100 Tree-based (non-parametric)

3.4.2. Classifier Choices

A key goal of this study was to explore the effectiveness of few-shot learning ap-
proaches for rhetorical move and step classification by evaluating a diverse set of classifiers,
each representing a distinct class of ML paradigms. The classifiers were selected not only for
their suitability in low-resource scenarios but also to capture variability in the underlying
learning mechanisms, enabling a comprehensive assessment of the model behaviours.

Support Vector Machine (SVM): SVM was included as a strong and widely used
baseline, particularly effective in high-dimensional, small-sample-size settings. Its ability to
find optimal separating hyperplanes with maximal margins makes it well suited for tasks
like rhetorical classification, where subtle boundary distinctions may exist between classes.
The optimisation problem is mathematically represented as Equation (5):

min
w,b

1
2
∥w∥2 subject to yi(w⊤xi + b) ≥ 1, ∀i (5)

where: xi ∈ Rn denotes the feature vector of the i-th training sample, yi ∈ {−1,+1} is the
corresponding class label, w is the weight vector that defines the decision hyperplane, and
b is the bias term.

The inclusion of SVM is also motivated by its prior success in similar tasks; notably, the
benchmark study by Cotos and Pendar [10] reported classification accuracies of 72.6% and
72.9% for move and step labels, respectively, using an SVM with 10-fold cross-validation and
combined unigram-trigram features. This positions SVM as a valuable point of comparison
for evaluating modern embedding-based approaches.

Naïve Bayes (NB): NB was chosen to represent probabilistic learning approaches.
It assumes conditional independence of the features given the class [19] as shown
in Equation (6):

ŷ = arg max
c∈C

P(c)
n

∏
j=1

P(xj | c) (6)

where: ŷ is the predicted class label, C is the set of possible classes, P(c) is the prior
probability of class c, xj is the j-th feature of the input, P(xj | c) is the likelihood of feature
xj given class c.

Despite its simplifying assumption of feature independence, NB is known for its
efficiency, particularly in text classification tasks [39,40]. Its probabilistic formulation allows
it to handle uncertainty in sparse data scenarios, which aligns with the few-shot setting of
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this study. Including NB enables an assessment of how a lightweight, ML model performs
relative to more complex alternatives like SVM, PN and RF.

Random Forest (RF): RF serves as an ensemble-based method that uses multiple
decision trees with bagging to enhance generalisation. It makes predictions by aggregating
the outputs from multiple decision trees as shown in Equation (7):

ŷ = mode
(
{Tk(x)}K

k=1

)
(7)

where: ŷ is the predicted class label, x is the input feature vector, Tk(x) is the prediction
of the k-th decision tree, K is the total number of trees in the forest, mode(·) returns the
majority class among all predictions.

Its strength lies in handling non-linear relationships and capturing interactions be-
tween features without requiring extensive feature engineering, thus making it suitable for
this study. The inclusion of RF provides a contrast to both the linear decision boundary
of SVM and the probabilistic nature of NB, thus broadening the scope of methodological
diversity evaluated in this study.

Prototypical Network (PN): Snell et al. [18] implementation of PN was selected as a
representative of metric-based few-shot learning. This approach computes class prototypes
in an embedding space and classifies samples based on distance to these prototypes, as
shown in Equation (8).

ŷ = arg min
c∈C

d( f (x), pc) (8)

where: ŷ is the predicted class, C is the set of classes, f (x) is the embedding of the input
instance x, pc = 1

|Sc | ∑xi∈Sc f (xi) is the prototype for class c computed as the mean of
support examples Sc, d(·, ·) is a distance function (e.g., Euclidean).

PN is particularly well-suited for low-resource tasks where generalisation from a small
number of examples is critical. Its inclusion allowed us to assess the potential of embedding-
driven, inductive reasoning for rhetorical structure classification. It is important to note
that PN operates an episodic training mechanism where the model is trained through a
series of few-shot classification tasks (episodes), each constructed using a small support set
and a query set sampled from the training data. To reconcile this training approach in our
experiments which was evaluated with k-fold cross validation (described in Section 3.5),
we implemented a cross-fold episodic training setup in which each fold was used as a test
(query) set exactly once. For each cross validation split, episodes were constructed using
data from four of the five folds (i.e., 80% of the data), and the model was evaluated on the
remaining fold. For example, in the moves classification task with three classes, we used
a 3-way 5-shot setup, sampling 5 support examples and 10 query examples per class in
each episode. This means that during testing, query sets were created from the held-out
fold representing classes and examples not already seen during training. This procedure
was repeated across all five folds, such that each data instance served as part of the test set
in at least one fold. This setup ensures complete test coverage and preserves the fairness
expected of standard k-fold cross validation, while respecting PN’s episodic nature.

The characteristics of each classifier as well as specific parameters used for experiments
are outlined in the bottom half of Table 5.

3.5. Evaluation Method and Metrics

The evaluation of the performance of the model was conducted using k-fold cross-
validation, with k = 5. This method is a robust approach to estimate the generalisability of
the model. In k-fold cross-validation, the dataset is partitioned into k equally sized subsets
or ‘folds’. The model is trained k times, each time using k − 1 folds for training and the
remaining fold for testing. This process ensures that every data point is used once for
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validation and k − 1 times for training. The performance of each model is then computed
using the predictions of each fold to derive standard evaluation metrics including accuracy,
precision, recall, and weighted F1-score.

4. Results
This section presents the results of experiments that evaluate the performance of

the four classification algorithms (PN, SVM, NB, and RF) across six different embedding
models (Word2Vec, GloVe, BERT, GPT2, Llama-3.2-3B, and TEv3-small). Initial experiment
results presented in Section 4.1 used the preprocessed dataset. To explore the characteristic
differences between static and contextual embedding models, we also performed ablation
experiments on the raw dataset and the results are presented in Section 4.2. For brevity,
only the accuracy and weighted F1-scores are reported, but a comprehensive list of results,
including additional evaluation metrics, is provided in Appendix A.

4.1. Initial Experiment Results

Table 6 separates the performance in rhetorical moves and individual steps (M1 steps,
M2 steps, and M3 steps) into distinct sections. Several key observations emerge:

Move-Level Performance: Among all algorithm-embedding combinations, SVM com-
bined with Llama-3.2-3B achieved the best performance, with both accuracy and weighted
F1-score reaching 0.79, indicating its superior capability in capturing the contextual struc-
ture of rhetorical moves. This combination significantly outperformed others, including
competitive pairings such as SVM with GPT2 (0.74 F1-score) and NB with TEv3-small
(0.72 F1-score). In contrast, the PN algorithm consistently yielded the lowest scores across
embeddings, reinforcing its relative inadequacy for this classification task.

Step-Level Performance: Performance across the rhetorical steps was more variable,
with no single model dominating all three step categories (M1 steps, M2 steps, M3 steps):

M1 steps: SVM with Word2Vec achieved the highest accuracy (0.69), closely followed
by BERT and Llama-3.2-3B with various classifiers. Performance across embeddings was
relatively close, suggesting that step M1 benefits from simpler embedding models when
paired with robust classifiers like SVM.

M2 steps: This move proved most challenging overall, yet SVM combined with Llama-
3.2-3B again delivered the best result, achieving both accuracy and weighted F1-score
of 0.75. NB with TEv3-small also performed competitively (0.68 accuracy, 0.62 F1-score),
suggesting that these embeddings may be particularly effective in capturing the semantic
subtleties of M2.

M3 steps: Performance dropped significantly for all models, but NB with TEv3-small
achieved the highest weighted F1-score (0.63) and accuracy (0.64), indicating a relatively
strong ability to model the complex and diverse nature of this step, although absolute
performance remained modest.

Overall, embedding models and algorithms showed stronger performance on rhetor-
ical moves than on individual steps, possibly due to the broader and more consistent
patterns characterising moves. Among all configurations, the combination of SVM and
Llama-3.2-3B stood out as the most effective, consistently delivering top results across
multiple tasks, especially for the rhetorical moves and M2 steps. This is visually evident in
Figure 4 which compares the classifier performance using the Llama-3.2-3B embedding.
SVM consistently outperforms other classifiers across all datasets, with the highest median
values and lowest variance in both accuracy and weighted F1-scores. Notably, in the
moves and M2 steps datasets, the SVM achieves peak weighted F1-scores of 0.79 and 0.75,
respectively—well above the scores of other classifiers. This strong and stable performance
indicates that the SVM-Llama combination is not only effective but also more robust across
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varied tasks, making it the most reliable choice in this setup. This supports our hypothesis
that models combining rich semantic embeddings with classifiers capable of handling
sparse or imbalanced data would perform better in detecting CaRS moves and steps in a
given introduction.

Table 6. Performance of PN, SVM, NB, and RF with preprocessed dataset.

Dataset
PN SVM NB RF

Acc F1 Acc F1 Acc F1 Acc F1

M
O

V
ES

W2v 0.55 ± 0.22 0.54 ± 0.22 0.72 ± 0.01 0.67 ± 0.02 0.59 ± 0.23 0.62 ± 0.22 0.68 ± 0.01 0.57 ± 0.01
GloVe 0.64 ± 0.01 0.52 ± 0.02 0.69 ± 0.03 0.68 ± 0.03 0.18 ± 0.01 0.15 ± 0.02 0.70 ± 0.01 0.60 ± 0.02
BERT 0.67 ± 0.02 0.54 ± 0.02 0.71 ± 0.02 0.70 ± 0.01 0.63 ± 0.03 0.65 ± 0.03 0.69 ± 0.01 0.58 ± 0.02
GPT2 0.22 ± 0.21 0.08 ± 0.20 0.74 ± 0.02 0.74 ± 0.03 0.61 ± 0.03 0.63 ± 0.03 0.68 ± 0.01 0.58 ± 0.01
Llama 0.66 ± 0.01 0.54 ± 0.02 0.79 ± 0.02 0.79 ± 0.02 0.63 ± 0.03 0.66 ± 0.03 0.69 ± 0.01 0.58 ± 0.02
TEv3 0.67 ± 0.01 0.54 ± 0.02 0.73 ± 0.01 0.68 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.69 ± 0.01 0.58 ± 0.02

M
1

ST
EP

S

W2v 0.59 ± 0.17 0.50 ± 0.17 0.69 ± 0.02 0.63 ± 0.02 0.60 ± 0.02 0.63 ± 0.02 0.65 ± 0.02 0.54 ± 0.16
GloVe 0.66 ± 0.02 0.54 ± 0.01 0.60 ± 0.02 0.59 ± 0.02 0.16 ± 0.02 0.11 ± 0.01 0.66 ± 0.01 0.53 ± 0.01
BERT 0.66 ± 0.17 0.55 ± 0.11 0.66 ± 0.03 0.66 ± 0.02 0.61 ± 0.02 0.63 ± 0.02 0.67 ± 0.01 0.58 ± 0.02
GPT2 0.65 ± 0.21 0.52 ± 0.20 0.65 ± 0.04 0.64 ± 0.03 0.57 ± 0.04 0.59 ± 0.04 0.65 ± 0.01 0.53 ± 0.01
Llama 0.66 ± 0.01 0.53 ± 0.01 0.65 ± 0.02 0.64 ± 0.01 0.60 ± 0.02 0.63 ± 0.02 0.66 ± 0.01 0.55 ± 0.01
TEv3 0.62 ± 0.10 0.55 ± 0.04 0.66 ± 0.01 0.54 ± 0.01 0.64 ± 0.03 0.65 ± 0.02 0.65 ± 0.01 0.52 ± 0.01

M
2

ST
EP

S

W2v 0.18 ± 0.13 0.19 ± 0.10 0.57 ± 0.05 0.47 ± 0.07 0.57 ± 0.13 0.55 ± 0.10 0.61 ± 0.04 0.55 ± 0.08
GloVe 0.28 ± 0.10 0.28 ± 0.08 0.46 ± 0.04 0.40 ± 0.06 0.25 ± 0.10 0.12 ± 0.08 0.50 ± 0.02 0.33 ± 0.01
BERT 0.25 ± 0.14 0.14 ± 0.14 0.61 ± 0.08 0.60 ± 0.09 0.64 ± 0.09 0.63 ± 0.10 0.54 ± 0.03 0.41 ± 0.04
GPT2 0.50 ± 0.19 0.34 ± 0.17 0.61 ± 0.06 0.60 ± 0.09 0.61 ± 0.10 0.58 ± 0.10 0.53 ± 0.02 0.40 ± 0.04
Llama 0.46 ± 0.05 0.32 ± 0.03 0.75 ± 0.11 0.75 ± 0.12 0.71 ± 0.10 0.69 ± 0.11 0.57 ± 0.06 0.46 ± 0.06
TEv3 0.21 ± 0.16 0.18 ± 0.18 0.50 ± 0.00 0.33 ± 0.00 0.68 ± 0.07 0.62 ± 0.08 0.53 ± 0.03 0.40 ± 0.4

M
3

ST
EP

S

W2v 0.16 ± 0.15 0.13 ± 0.09 0.50 ± 0.02 0.45 ± 0.03 0.48 ± 0.15 0.48 ± 0.09 0.52 ± 0.03 0.43 ± 0.03
GloVe 0.31 ± 0.05 0.32 ± 0.06 0.53 ± 0.04 0.52 ± 0.05 0.31 ± 0.05 0.17 ± 0.06 0.50 ± 0.03 0.40 ± 0.05
BERT 0.36 ± 0.10 0.26 ± 0.13 0.44 ± 0.04 0.43 ± 0.04 0.46 ± 0.04 0.46 ± 0.04 0.57 ± 0.07 0.52 ± 0.08
GPT2 0.29 ± 0.17 0.24 ± 0.12 0.43 ± 0.03 0.42 ± 0.03 0.50 ± 0.05 0.49 ± 0.05 0.54 ± 0.06 0.46 ± 0.06
Llama 0.38 ± 0.04 0.28 ± 0.06 0.53 ± 0.04 0.53 ± 0.04 0.52 ± 0.05 0.51 ± 0.05 0.58 ± 0.05 0.55 ± 0.08
TEv3 0.21 ± 0.04 0.20 ± 0.05 0.58 ± 0.04 0.52 ± 0.06 0.64 ± 0.07 0.63 ± 0.06 0.55 ± 0.02 0.48 ± 0.03

The accuracy and weighted F1-scores are average from the 5-fold cross validation. Since evaluation was based on
5-fold cross validation, results also show the standard deviation.

While SVM maintained its lead overall, NB and RF occasionally closed the gap in
specific scenarios, particularly when paired with newer embedding models like TEv3-small,
as shown in Figure 5. This is especially evident in the M1 and M2 steps datasets, where NB
achieved accuracy and weighted F1-scores comparable to, and at times even exceeding,
those of SVM for select embeddings. RF also showed good performance across multiple
datasets, often outperforming SVM on traditional embeddings like GloVe and BERT. These
trends suggest that while SVM-Llama remains a strong contender, its superiority is not
absolute; the competitive performance of NB and RF, especially in conjunction with modern
or task-specific embeddings, shows the importance of evaluating classifier-embedding
pairings in context rather than assuming one-size-fits-all superiority.

However, it is worth noting that four of the six embedding models used are contextual
in nature, and the preprocessing applied to the textual data may suppress important
contextual cues that these models rely on. To investigate this potential limitation, we
conducted an ablation experiment to assess the impact of preprocessing on contextual
embeddings, the findings of which are discussed in Section 4.2.
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(a) Accuracy by classifier (b) Weighted F1-score by classifier

Figure 4. Boxplot showing accuracy and weighted F1-score comparison of the classifiers with
Llama-3.2-3B

(a) Accuracy in MOVES and STEPS (b) Weighted F1-score in MOVES and STEPS

Figure 5. Boxplot showing distribution of accuracy and weighted F1-scores across all classifiers, with
SVM-specific data points highlighted in red

4.2. Ablation Experiment Results

Table 7 presents the results of an ablation experiment conducted without applying
preprocessing to the dataset. The table mirrors the structure of the earlier analysis, cate-
gorising performance into rhetorical moves and the three step types (M1 steps, M2 steps, and
M3 steps). Several important trends emerge:

Move-Level Performance: The best overall performance was also achieved by the
SVM-Llama-3.2-3B combination, with an impressive 0.84 F1-score and 0.85 accuracy, sur-
passing all other configurations. Other contextual embeddings also showed notable gains
when used without preprocessing. For example, BERT achieved an F1-score of 82% and
TEv3-small reached 80% with SVM. These results highlight the potential suppression of
context caused by preprocessing and underscore the strength of contextual embeddings
when operating on unaltered text. Non-contextual embeddings (e.g., Word2Vec, GloVe)
showed either modest improvements (e.g., GloVe with RF: 0.71 F1) or remained static,
reaffirming the benefits of context preservation for transformer-based models.
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Table 7. Performance of PN, SVM, NB, and RF with raw dataset.

Dataset
PN SVM NB RF

Acc F1 Acc F1 Acc F1 Acc F1

M
O

V
ES

W2v 0.54 ± 0.20 0.54 ± 0.21 0.78 ± 0.01 0.73 ± 0.02 0.62 ± 0.04 0.64 ± 0.03 0.70 ± 0.01 0.60 ± 0.01
GloVe 0.67 ± 0.01 0.54 ± 0.02 0.75 ± 0.00 0.73 ± 0.02 0.25 ± 0.06 0.15 ± 0.05 0.76 ± 0.01 0.71 ± 0.01
BERT 0.67 ± 0.01 0.54 ± 0.01 0.82 ± 0.01 0.82 ± 0.01 0.70 ± 0.03 0.72 ± 0.03 0.76 ± 0.01 0.70 ± 0.01
GPT2 0.22 ± 0.25 0.08 ± 0.25 0.80 ± 0.01 0.78 ± 0.01 0.62 ± 0.01 0.64 ± 0.01 0.72 ± 0.01 0.64 ± 0.01
Llama 0.66 ± 0.01 0.54 ± 0.03 0.85 ± 0.01 0.84 ± 0.01 0.70 ± 0.03 0.73 ± 0.03 0.76 ± 0.01 0.71 ± 0.02
TEv3 0.67 ± 0.01 0.54 ± 0.03 0.83 ± 0.02 0.80 ± 0.02 0.78 ± 0.03 0.79 ± 0.03 0.72 ± 0.01 0.64 ± 0.02

M
1

ST
EP

S

W2v 0.57 ± 0.20 0.52 ± 0.13 0.66 ± 0.01 0.54 ± 0.01 0.61 ± 0.03 0.62 ± 0.03 0.67 ± 0.02 0.56 ± 0.02
GloVe 0.66 ± 0.02 0.52 ± 0.04 0.64 ± 0.02 0.62 ± 0.02 0.15 ± 0.01 0.11 ± 0.02 0.66 ± 0.02 0.52 ± 0.02
BERT 0.68 ± 0.18 0.59 ± 0.13 0.71 ± 0.05 0.71 ± 0.04 0.70 ± 0.05 0.72 ± 0.05 0.73 ± 0.04 0.68 ± 0.05
GPT2 0.66 ± 0.23 0.52 ± 0.22 0.64 ± 0.02 0.62 ± 0.01 0.61 ± 0.04 0.63 ± 0.04 0.67 ± 0.01 0.57 ± 0.02
Llama 0.65 ± 0.01 0.52 ± 0.01 0.70 ± 0.02 0.69 ± 0.01 0.67 ± 0.03 0.68 ± 0.03 0.71 ± 0.02 0.64 ± 0.03
TEv3 0.51 ± 0.08 0.52 ± 0.02 0.68 ± 0.01 0.58 ± 0.01 0.66 ± 0.03 0.67 ± 0.03 0.67 ± 0.01 0.55 ± 0.02

M
2

ST
EP

S

W2v 0.18 ± 0.18 0.10 ± 0.14 0.50 ± 0.00 0.33 ± 0.00 0.54 ± 0.05 0.48 ± 0.05 0.57 ± 0.03 0.47 ± 0.05
GloVe 0.18 ± 0.05 0.18 ± 0.05 0.46 ± 0.07 0.43 ± 0.06 0.46 ± 0.11 0.33 ± 0.12 0.50 ± 0.02 0.33 ± 0.01
BERT 0.11 ± 0.06 0.10 ± 0.08 0.61 ± 0.07 0.57 ± 0.06 0.64 ± 0.09 0.64 ± 0.10 0.61 ± 0.08 0.54 ± 0.08
GPT2 0.50 ± 0.22 0.33 ± 0.16 0.64 ± 0.13 0.63 ± 0.12 0.61 ± 0.11 0.59 ± 0.11 0.54 ± 0.04 0.40 ± 0.05
Llama 0.50 ± 0.05 0.33 ± 0.05 0.57 ± 0.05 0.49 ± 0.01 0.61 ± 0.11 0.56 ± 0.10 0.57 ± 0.03 0.50 ± 0.07
TEv3 0.21 ± 0.15 0.19 ± 0.17 0.54 ± 0.02 0.40 ± 0.03 0.79 ± 0.13 0.77 ± 0.15 0.61 ± 0.04 0.55 ± 0.08

M
3

ST
EP

S

W2v 0.19 ± 0.15 0.12 ± 0.13 0.54 ± 0.03 0.49 ± 0.05 0.50 ± 0.06 0.49 ± 0.05 0.52 ± 0.02 0.46 ± 0.03
GloVe 0.33 ± 0.04 0.31 ± 0.05 0.48 ± 0.05 0.48 ± 0.05 0.34 ± 0.03 0.12 ± 0.04 0.50 ± 0.03 0.39 ± 0.06
BERT 0.25 ± 0.13 0.18 ± 0.13 0.48 ± 0.04 0.49 ± 0.04 0.52 ± 0.04 0.52 ± 0.05 0.60 ± 0.06 0.58 ± 0.07
GPT2 0.45 ± 0.18 0.28 ± 0.12 0.57 ± 0.07 0.58 ± 0.07 0.55 ± 0.07 0.55 ± 0.06 0.53 ± 0.01 0.48 ± 0.02
Llama 0.40 ± 0.05 0.34 ± 0.06 0.53 ± 0.03 0.53 ± 0.03 0.61 ± 0.07 0.61 ± 0.07 0.65 ± 0.07 0.64 ± 0.09
TEv3 0.21 ± 0.04 0.19 ± 0.08 0.63 ± 0.05 0.62 ± 0.08 0.58 ± 0.10 0.57 ± 0.10 0.66 ± 0.06 0.63 ± 0.09

The accuracy and weighted F1-scores are average from the 5-fold cross validation. Since evaluation was based on
5-fold cross validation, results also show the standard deviation.

Step-Level Performance: Similar to the previous analysis, step-level classification
remained more challenging, but contextual embeddings benefited more clearly from the
removal of preprocessing.

M1 steps: BERT again emerged as the top performer across all classifiers, with the
SVM-BERT combination yielding an F1-score of 0.71, closely followed by RF-BERT at 0.68.
Other contextual embeddings such as Llama-3.2-3B and TEv3-small also performed well
(e.g., 0.69 and 0.67 F1 with SVM and NB respectively). This suggests that for M1 steps,
richer contextual information, preserved in the raw text, improves classification, even more
so than in the preprocessed scenario.

M2 steps: The most notable gains from removing preprocessing occurred here.
TEv3-small combined with NB achieved the best performance with an F1-score of 0.77
and accuracy of 0.79, significantly higher than in the preprocessed setting. Other contex-
tual models also improved modestly (e.g., BERT-NB at 0.64 F1, GPT2-SVM at 0.63 F1).
This confirms that preprocessing likely discarded nuances critical for understanding this
rhetorically complex step.

M3 steps: Performance improved for many contextual embeddings, although absolute
scores remained lower than for other dataset labels. TEv3-small achieved the highest
F1-score (0.63) with RF, followed closely by Llama-3.2-3B (0.64 F1 with RF). Compared
to the preprocessed results, most contextual embeddings show improved stability and
precision here, albeit still facing challenges in modelling the high variability of M3 steps.

4.3. Comparison with Existing Study

A comparative summary of our results and those reported by Cotos and Pendar [10]
is presented in Table 8. While the two studies differ substantially in terms of dataset
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size, annotation granularity, feature representations, and evaluation methodology, the
comparison offers useful contextual grounding. Cotos employed a SVM classifier with
unigram and trigram features, reporting average precision, recall, and F1-score values of
70.3%, 61.2%, and 65.4% for moves, and 68.6%, 54.9%, and 61.0% for steps, respectively,
based on 10-fold cross-validation on a large dataset comprising over 1000 introductions
across 51 disciplines.

Table 8. Comparison with related study.

Study Labels Feature Data Method
Result Average (%)

Class Acc Prec Rec F1

Cotos
and
Pendar
[10]

Long CaRS version:
3 moves & 17 steps.
move 1 (3 steps), move
2 (5 steps), move 3
(9 steps)

n-grams (mostly
unigrams &
trigrams)

1020 articles;
1,322,089 words;
51 disciplines, each
represented by 20

Train (650), Test
(370), Model (SVM),
10-fold CV on
testset only

moves — 70.3 61.2 65.4

steps — 68.6 54.9 61.0

Our
model

Short CaRS version:
3 moves & 11 steps.
move 1 (3 steps), move
2 (4 steps), move 3
(4 steps)

Embeddings

50 articles;
36,055 words;
5 disciplines, each
represented by 10

Train & Test (50),
Model
(SVM/Llama),
5-fold CV on all
data.

moves 79.0 79.0 79.0 79.0
85.0 † 84.0 † 85.0 † 84.0 †

steps 64.7 64.0 64.3 64.0
60.0 † 54.6 † 60.0 † 57.0 †

Cotos and Pendar [10] did not report accuracy. Our performance for steps was average of M1 step, M2 step, and M3
step for the best model i.e., SVM with Llama-3.2-3B. Results with raw data is marked with (†). Best performance
on each metric is highlighted in bold typeface.

In our study, SVM again proved to be a top performing model when paired with
contextual embeddings from LlaMA-3.2-3B. Using the preprocessed version of the dataset,
this combination achieved 79.0% across all metrics (accuracy, precision, recall, and F1-score)
for moves, and 64.7% accuracy, 64.0% precision, 64.3% recall, and 64.0% F1-score for steps,
based on 5-fold cross-validation on our smaller, domain-specific dataset (i.e., CaRS-50).

Importantly, when the same model was evaluated without applying preprocessing,
performance on moves improved substantially, reaching 85.0% accuracy, 84.0% precision,
85.0% recall, and 84.0% F1-score. This suggests that preserving contextual cues in the
raw text can enhance the effectiveness of contextual embeddings. For steps, however,
the unprocessed setup yielded 60.0% accuracy, 54.6% precision, 60.0% recall, and 57.0%
F1-score which are slightly lower than the preprocessed configuration.

While these results are not directly comparable to those reported by Cotos and Pen-
dar [10] (given differences in dataset size, label granularity, feature representation, and
evaluation strategy), they nonetheless confirm that SVM consistently maintains strong per-
formance across varied setups. These findings underscore its effectivenes and adaptability,
particularly when paired with semantically rich embeddings in low-resource classification
tasks. Moreover, the ablation study highlights how data preparation choices (i.e., raw or
preprocesed) can influence the effectiveness of contextual models and should therefore
be considered carefully. For example, improvement in performance on the moves-level
classification when using raw (unprocessed) text. Specifically, the SVM-LlaMA configura-
tion improved from accuracy and F1-score of 0.79 to 85% accuracy and 84% F1-score on
the moves data subset. This suggests that removing preprocessing preserved contextual
signals that are beneficial to transformer-based embeddings like LlaMA, which leverage
surrounding tokens to build meaningful representations.

However, a contrasting trend emerged in the steps-level subsets. As shown in Table 8,
average performance declined across all metrics for M2 steps when raw (unprocessed)
data was used (accuracy decreased from 64.7% to 60.0%, precision from 64.0% to 54.6%,
recall from 64.3% to 60.0%, and F1-score from 64.0% to 57.0%). More granular performance
differences are visible in Table A6, where the SVM-LlaMA configuration on M2 steps
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showed a substantial drop: accuracy fell from 75% to 57%, precision from 76% to 43%,
recall from 75% to 57%, and F1-score from 75% to 49%. In contrast, performance on M3
steps remained unchanged across all metrics, staying flat at 53%. Meanwhile, M1 steps
benefited from the absence of preprocessing, showing improvements in accuracy (from
65% to 70%), precision (from 63% to 68%), recall (from 65% to 70%), and F1-score (from
64% to 69%). Despite these gains, the model exhibited greater difficulty in distinguishing
step-level rhetorical units when trained on raw data.

This degradation appears to correlate with the density of stop words across these steps.
As shown in Table 9, M2 steps exhibited a relatively high stopword ratio (30.58%), which is
disproportionately high considering its smaller size (only 140 sentences and 4140 words).
Similarly, M3 steps had a stopword ratio of 31.11% across 9019 words, slightly higher
than the M1 steps ratio (26.62%). This may have led to excessive noise in shorter or more
semantically subtle steps-level contexts, where stopwords, while contextually useful, could
overshadow the limited signal-bearing terms when no preprocessing is applied.

Table 9. Characteristics of the raw (unprocessed) dataset.

Dataset Sentence Word Stopword Ratio (%)

MOVES 1297 36,055 12,065 33.45
M1 STEPS 869 30,028 7994 26.62
M2 STEPS 140 4140 1266 30.58
M3 STEPS 288 9019 2805 31.11

Note: ‘Sentence’, ‘Word’, and ‘Stopword’ columns represent counts while the ‘Ratio’ column represents the
stopword percentage.

Although contextual models are designed to process natural language in its raw form,
research suggests that the overrepresentation of stop words can introduce challenges in fine-
grained or imbalanced classification tasks. Belinkov and Glass [41] highlights that noise,
including irrelevant or non-informative tokens can distort learned representations in deep
models, thereby affecting downstream performance. Complementing this, El-Khair [42]
demonstrates that the inclusion of stopwords can negatively impact classification accuracy,
particularly in settings with small or imbalanced datasets, where signal-bearing features are
already limited. Thus, in our case, the raw dataset may have enhanced the model’s capacity
for broader discourse structure (i.e., moves), where stopwords helped encode syntactic and
rhetorical flow. But at the finer granularity of steps-level classification, especially M2 steps,
which already suffer from class sparsity, these same stopwords may dilute discriminative
features. This highlights a nuanced trade-off between preserving contextual integrity and
controlling noise, which should inform future preprocessing decisions for hierarchical
rhetorical structure modeling.

5. Discussion
The observed differences in the performance of Word2vec, GloVe, BERT, GPT2, Llama-

3.2-3B and TEv3-small when combined with PN, SVM, NB and RF can be attributed to their
underlying architectures, the way they process textual data, and the size and distribution
of the dataset. Word2vec and GloVe are static word embeddings, where each word is
assigned a single fixed vector regardless of its context. For this study, sentence vectors
were computed as the mean of their constituent word vectors, a simplistic approach that
may fail to capture nuanced relationships within sentences. Also, some of the words in
the experimental data may not exist in the vocabulary which may affect the resultant
sentence vector as proven in existing studies [43]. These limitation likely contributed to
their relatively weak performance on tasks requiring fine-grained contextual understanding,
such as the identification of rhetorical steps. Moreover, the varying size of training data for
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different steps further compounded this issue, as smaller datasets (e.g., M2 step 4 with only
13 sentences) would exacerbate the inability of static embeddings to generalise effectively
especially if words are missing from the vocabulary. In such cases, static embedding like
fastText [44] is a useful alternative because it uses subword information (character n-grams)
to represent words. This feature allows fastText to generate embeddings for words that
are not in its dictionary (i.e., out-of-vocabulary words) and this has proven successful in
existing studies [45].

In contrast, BERT, GPT2, Llama-3.2-3B and TEv3-small are context-aware embeddings
based on transformer architectures. BERT, a bidirectional encoder, processes the entire
input sequence to capture rich contextual information, making it particularly effective for
tasks involving complex relationships between words. Its strong performance on rhetorical
moves across the algorithms reflects this capability, as moves often encompass broader and
more general structures that BERT can identify using its contextual embedding mechanism.
However, BERT’s advantage over static embeddings narrowed at the step level, where
smaller datasets and more granular classification challenges reduced its effectiveness. For
instance, BERT’s accuracy on M2 steps dropped to 0.25 when used with PN, highlighting
the difficulty of handling fine-grained rhetorical structures with limited data. Nonetheless,
when used with SVM, BERT achieved an F1-score of 0.70 for moves, indicating strong
consistency and relevance in broader rhetorical categories.

GPT2, an autoregressive transformer-based language model optimised for text gen-
eration, demonstrated inconsistent performance. While it generally performed poorly
on moves, it achieved relatively good results on M2 steps (accuracy of 0.50 and weighted
F1-score of 0.34). This unexpected performance may stem from GPT2’s ability to capture
sequential dependencies, which could be advantageous for certain step structures but less
so for broader rhetorical moves. However, its weaker overall performance relative to BERT
suggests that GPT2’s unidirectional architecture and optimisation for generation tasks limit
its effectiveness in classification tasks. On the other hand, TEv3-small performed relatively
well on moves and M1 steps. This may stem from the large amount of dataset available for
both compared to M2 and M3 steps where it performed generally low across the algorithms.
However, Llama-3.2-3B performed relatively well across all algorithms except when used
with PN for M2 and M3 steps. In particular, Llama-3.2-3B with SVM achieved the highest
overall accuracy (0.79) and F1-score (0.79) on preprocessed moves, demonstrating both
precision and consistency.

An important consideration is the variability of the results, as shown by the standard
deviations. For instance, Word2vec combined with PN yielded a high standard deviation
on moves (accuracy: 0.55 ± 0.22; F1-score: 0.54 ± 0.22), indicating unstable performance
across folds. This is also evident for BERT with PN on M2 steps (0.25 ± 0.14), showing
susceptibility to overfitting or variance due to the low sample size. In contrast, models
such as Llama with SVM on moves (0.79 ± 0.02) and BERT with SVM (0.71 ± 0.02) display
low variance, indicating stable and reliable predictions across folds. These observations
underscore the importance of not only considering mean performance but also assessing
the model’s robustness through standard deviation.

This variability becomes more critical when comparing results between preprocessed
and raw datasets. Notably, for M2 steps, SVM+Llama configuration experienced a substan-
tial performance drop from 0.75 ± 0.12 (F1) in the preprocessed dataset to 0.49 ± 0.01 in
the raw version, with a corresponding decline in accuracy from 0.75 ± 0.11 to 0.57 ± 0.05.
Despite the lower mean, the raw dataset’s lower standard deviation for F1 suggests more
consistent (albeit lower) predictions. As noted in Section 4.3, this might imply that noise
from unfiltered tokens (e.g., stopwords) dampened discriminability uniformly across folds
rather than sporadically.
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Similarly, on M3 steps, the SVM+Llama configuration performance remained flat across
datasets at 0.53 ± 0.04 F1 (preprocessed) and 0.53 ± 0.03 F1 (raw), again with minimal
standard deviation. This stability, despite changing preprocessing, might reflect either
a plateau effect in model capacity for that class or inherent difficulty in distinguishing
M3 categories, regardless of token filtering. Taken together, these patterns suggest that
while standard deviation offers insights into robustness, consistent low variance in poor-
performing categories (as with raw M2) strenghtens the argument about the influence of
noisy tokens, such as stopwords, on decision boundaries. Hence, preprocessing remains
a valuable intervention for enhancing discriminability in low-sample or semantically
subtle classes.

Data size also played a significant role in the observed results. Moves, with larger
datasets (e.g., M1 with 868 sentences), offered better opportunities for embeddings to learn
patterns, resulting in stronger performance across all models. In contrast, steps like M2
step 4 (13 sentences) and M1 step 1 (91 sentences) provided insufficient data for reliable
training, leading to diminished performance, particularly for static embeddings. The
discrepancy between the performance of embeddings on moves and steps underscores the
importance of dataset size and distribution in training embedding models. Notably, high
variance in performance was especially evident in these smaller datasets. For instance,
GPT2 with PN on M2 steps yielded an accuracy of 0.50± 0.19, highlighting instability due to
sample scarcity.

A related consideration on data size is the reliability of the manual annotation process
used to construct the dataset. Specifically, we acknowledge the limitations inherent in
the inter-rater evaluation, which was conducted on only 38 sentences out of a total of
1297 (≈3% of the dataset). While the inter-rater reliability results indicated moderate
agreement, this may not fully reflect the true trustworthiness of the annotations. The CaRS
framework is conceptually clear, particularly for annotators with relevant disciplinary
knowledge, and the lower agreement scores can, in part, be attributed to our decision
to purposefully include an annotator without such background in order to stress-test
the clarity and robustness of the scheme. This led to constructive discussions around
mismatched cases and ultimately strengthened the annotation protocol. We also note that
the 3% sample proportion is not uncommon in comparable studies. For instance, Cotos
and Pendar [10] conducted reliability checks on 30 (out of 1020) texts (18 randomly selected
and 12 purposefully chosen) representing a similar portion (≈3%) of their dataset. In our case,
however, the sample was selected entirely at random, and we used individual sentences rather
than full article introductions. This may have resulted in under-representation or complete
omission of rarer rhetorical steps—such as step 3d, which occurred only once in the dataset,
further contributing to reduced agreement scores. Future work (described in Section 6) will
expand the annotated corpus and repeat the inter-rater study using stratified sampling and
annotators with comparable expertise to better assess and ensure annotation consistency.

Overall, the results suggest that Llama-3.2-3B’s contextual embedding mechanism
makes it robust for the rhetorical classification task conducted in this study, particularly for
broader constructs like moves. However, its performance is not immune to challenges posed
by limited data at the step level. Static embeddings like Word2vec and GloVe, despite their
simplicity, can perform reasonably well on moves due to the aggregation of word vectors,
but their limitations become apparent in more nuanced tasks. GPT2 and TEv3-small’s
performance highlights the potential benefits of sequential modelling, but their architecture
and training objectives make them less suited to classification tasks than BERT. Among the
algorithms, SVM consistently yielded the most balanced results with low variance across
datasets, reinforcing its suitability for text classification tasks involving both contextual
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(observed in our experiments) and static embeddings (also observed in our experiments as
well as Cotos and Pendar [10]).

Implications of the Study

This research has significant implications for both educational and research contexts.
Automating the CaRS framework provides a structured means of analysing and generating
well-formed research article introductions, particularly by identifying and classifying rhetor-
ical moves and steps. The best-performing model in our study (SVM with LlaMA-3.2-3B
embeddings) offers a promising balance of performance and scalability that can be applied
in a variety of practical scenarios.

In education, this model could be embedded in academic writing support tools to
provide formative feedback. For instance, it could be implemented as a writing assistant
plugin within learning management systems (e.g., Moodle, Blackboard or Canvas) or as an
extension in word processors (e.g., Microsoft Word or Overleaf). By identifying rhetorical
gaps such as missing justification of significance or failure to outline research purpose, the
tool can guide students in real time as they draft introductions. This promotes self-directed
learning and a better understanding of academic discourse structures.

Educators could also use the tool for instructional purposes, using annotated examples
to teach rhetorical conventions in scientific writing. Highlighting automatically detected
moves and steps during workshops or tutorials can make abstract writing principles more
tangible for learners, while also enabling scalable feedback in large cohorts.

For researchers, the model can serve as a quality assurance mechanism to verify
whether their introductions follow established rhetorical patterns. Such tools may help
accelerate the writing process without compromising structure and coherence. Moreover,
automatic annotation of introductions can support corpus-driven studies or meta-analyses
in rhetorical genre research by reducing the labour associated with manual coding.

6. Conclusions and Future Work
This study explored the automation of the CaRS model to analyse and enhance the

rhetorical structures in research article introductions. By employing various embedding
techniques and algorithms, the study examined the effectiveness of different embed-
dings in capturing both rhetorical moves and finer-grained steps. The results highlight
the strengths of contextual embeddings like Llama-3.2-3B in identifying broader rhetorical
moves, while revealing challenges in handling more granular steps, particularly when data
are sparse. This underscores the potential of automated rhetorical analysis to improve
academic writing by providing structure, enhancing clarity, and guiding authors in crafting
impactful introductions.

The research demonstrates that the integration of ML and NLP to automate rhetorical
frameworks can play a transformative role in academic writing, education, and research.
While practical deployment introduces important considerations around usability and
generalisability, the current study focuses primarily on evaluating technical feasibility and
model performance. The following analysis highlights how different embeddings and
algorithms perform across rhetorical levels, offering insights into what combinations are
most effective under data-scarce conditions.

The findings of this study demonstrate that model performance varies significantly
depending on the combination of embeddings, algorithms, and data granularity. Contextual
models such as Llama-3.2-3B and BERT showed strong performance on moves, achieving
up to 79% accuracy and 79% F1-score (Llama with SVM), while static embeddings like
Word2vec and GloVe were comparatively weaker, especially under PN, where variance
was high (e.g., Word2vec accuracy on moves: 0.55 ± 0.22). However, this trend did not
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consistently hold at the step level, where dataset imbalance and label sparsity undermined
classification accuracy.

Particularly, the classification of rhetorical steps in M2 and M3 was adversely affected
by limited training data. For instance, PN with BERT for M2 steps achieved an accuracy of
only 0.25 ± 0.14, indicating instability. In contrast, the same step dataset combined with
Llama-3.2-3B and SVM achieved a much stronger 0.75 ± 0.11 accuracy. This stark contrast
suggests that transformer-based embeddings benefit from more expressive contextual
representations, but only if supported by sufficient data and appropriate classifiers.

Furthermore, SVM’s consistent performance with low variance across tasks confirms
its robustness in low-resource conditions, aligning with results from Cotos and Pendar [10],
who reported average precision, recall, and F1-score values of 70.3%, 61.2%, and 65.4% for
moves, and 68.6%, 54.9%, and 61.0% for steps, respectively. Our experiments exceeded these
benchmarks in most cases (e.g., Llama-3.2-3B + SVM: 79% for moves, 75% for M2 steps),
despite using different feature representations and smaller training sets. This highlights
the promise of modern embeddings in achieving competitive performance under more
constrained and realistic educational scenarios.

Limitations and Future Work

While the findings offer valuable insights, the study also highlights several limitations
that must be addressed in future research. A key challenge is the limited dataset, particu-
larly at the step level, where some steps had very few sentences (e.g., M2 step 4 and M3 step
4 with only 13 and 1 sentences respectively). This data paucity restricts the generalisability
of the findings and hinders the ability of the models to effectively capture the nuances of
CaRS steps. As such, caution should be exercised when generalising the findings to other
academic texts or disciplines.

One potential strategy to mitigate this limitation is data augmentation through syn-
thetic data generation to boost the training data samples and tackle the class imbal-
ance. However, traditional techniques such as Synthetic Minority Oversampling TEch-
nique (SMOTE) algorithm [46] are unsuitable for textual data due to the complexity and
semantic sensitivity of natural language. Generating synthetic text using large language
models (LLMs) is a useful alternative to increase dataset size, but it introduces concerns
around the originality and authenticity of rhetorical structures. Since the rhetorical pur-
pose and tone are context-dependent, synthetic text might not accurately reflect genuine
academic writing. Thus, while data augmentation is theoretically possible, its practical
implementation must be approached with caution as well.

Looking ahead, we plan to address the data limitations by first extending the corpus
to ensure more balanced representation of all moves and steps, especially those that are
currently underrepresented. Second, we will conduct an enhanced inter-rater reliability
study that accounts for the insights gained from the initial round. The improved design will
incorporate stratified sampling (on full text rather than individual sentences) to ensure all
rhetorical categories are adequately covered and will involve annotators with comparable
disciplinary knowledge, enabling a more accurate estimation of annotation consistency
under optimal conditions.

We also acknowledge that the reliance on manual annotation to train the models is
labour-intensive and time-consuming, making it difficult to scale the approach to larger
datasets or different domains. Thus, future studies will prioritise automating the annotation
process to expand the dataset while maintaining quality. One avenue we intend to explore
is few-shot learning within a semi-supervised framework, where existing annotated data
is used to train models capable of labelling additional texts with minimal supervision.
Specifically, we aim to leverage the SVM-Llama combination, which yielded the strongest
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performance, to retrain on an expanded dataset with improved representation of the
moves and steps. The resulting model will then be applied to classify new, unseen texts,
using a high-confidence threshold (e.g., ≥90% prediction confidence) as an indicator of
reliable labeling. This semi-supervised strategy allows confident predictions to be treated
as pseudo-labels, thus growing the annotated dataset iteratively. To safeguard annotation
quality, a small subset of the automatically labelled data will be manually reviewed to
validate model reliability and guide further refinement.

To improve accuracy of predictions, transfer learning represents a promising avenue.
By fine-tuning domain-specific models such as BERT, GPT2, Llama-3.2-3B and TEv3-small
we can better tailor these models to handle the nuanced context of CaRS steps and improve
accuracy. Combining transfer learning with active learning strategies could further enhance
annotation efficiency and model performance. Additionally, expanding the study to include
datasets from multiple disciplines would improve the model’s versatility and applicability
across academic fields. Furthermore, optimising the algorithms by incorporating deeper
architectures or advanced features could improve its capacity to capture complex rhetorical
structures across both moves and steps.
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Appendix A
The appendix shows all the evaluation metrics for the four algorithms with the six

embedding models when trained on CaRS moves and constituent steps. The top half of each
table shows results when trained with the preprocessed version of the dataset while the
bottom half represents performance on raw (unprocessed) datset.

Table A1. Model performance with Word2vec embedding.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.55 0.54 0.55 0.54 0.72 0.73 0.72 0.67 0.59 0.69 0.59 0.62 0.68 0.63 0.68 0.57
M1 STEPS 0.59 0.46 0.59 0.50 0.69 0.67 0.69 0.63 0.60 0.67 0.60 0.63 0.65 0.58 0.65 0.54
M2 STEPS 0.18 0.54 0.18 0.19 0.57 0.49 0.57 0.47 0.57 0.55 0.57 0.55 0.61 0.64 0.61 0.55
M3 STEPS 0.16 0.12 0.16 0.13 0.50 0.51 0.50 0.45 0.48 0.47 0.48 0.48 0.52 0.48 0.52 0.43

https://data.mendeley.com/datasets/kwr9s5c4nk/1
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Table A1. Cont.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

−
Pr

ep

MOVES 0.54 0.53 0.54 0.54 0.78 0.82 0.78 0.73 0.62 0.71 0.62 0.64 0.70 0.69 0.70 0.60
M1 STEPS 0.57 0.48 0.57 0.52 0.66 0.62 0.66 0.54 0.61 0.64 0.61 0.62 0.67 0.68 0.67 0.56
M2 STEPS 0.18 0.10 0.18 0.10 0.50 0.25 0.50 0.33 0.54 0.46 0.54 0.48 0.57 0.57 0.57 0.47
M3 STEPS 0.19 0.10 0.19 0.12 0.54 0.61 0.54 0.49 0.50 0.49 0.50 0.49 0.52 0.55 0.52 0.46

Table A2. Model performance with GloVe embedding.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.64 0.44 0.64 0.52 0.69 0.67 0.69 0.68 0.18 0.59 0.18 0.15 0.70 0.79 0.70 0.60
M1 STEPS 0.66 0.67 0.66 0.54 0.60 0.59 0.60 0.59 0.16 0.66 0.16 0.11 0.66 0.55 0.66 0.53
M2 STEPS 0.28 0.35 0.28 0.28 0.46 0.35 0.46 0.40 0.25 0.09 0.25 0.12 0.50 0.25 0.50 0.33
M3 STEPS 0.31 0.33 0.31 0.32 0.53 0.51 0.53 0.52 0.31 0.54 0.31 0.17 0.50 0.38 0.50 0.40

−
Pr

ep

MOVES 0.67 0.45 0.67 0.54 0.75 0.73 0.75 0.73 0.25 0.53 0.25 0.15 0.76 0.83 0.76 0.71
M1 STEPS 0.66 0.43 0.66 0.52 0.64 0.61 0.64 0.62 0.15 0.69 0.15 0.11 0.66 0.67 0.66 0.52
M2 STEPS 0.18 0.19 0.18 0.18 0.46 0.43 0.46 0.43 0.46 0.26 0.46 0.33 0.50 0.25 0.50 0.33
M3 STEPS 0.33 0.34 0.33 0.31 0.48 0.49 0.48 0.48 0.34 0.54 0.34 0.23 0.50 0.45 0.50 0.39

Table A3. Model performance with BERT embedding

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.67 0.45 0.67 0.54 0.71 0.69 0.71 0.70 0.63 0.69 0.63 0.65 0.69 0.65 0.69 0.58
M1 STEPS 0.66 0.72 0.66 0.55 0.66 0.66 0.66 0.66 0.61 0.68 0.61 0.63 0.67 0.65 0.67 0.58
M2 STEPS 0.25 0.10 0.25 0.14 0.61 0.62 0.61 0.60 0.64 0.65 0.64 0.63 0.54 0.35 0.54 0.41
M3 STEPS 0.36 0.21 0.36 0.26 0.44 0.44 0.44 0.43 0.46 0.47 0.46 0.46 0.57 0.60 0.57 0.52

−
Pr

ep

MOVES 0.67 0.45 0.67 0.54 0.82 0.82 0.82 0.82 0.70 0.77 0.70 0.72 0.76 0.70 0.76 0.70
M1 STEPS 0.68 0.63 0.68 0.59 0.71 0.71 0.71 0.71 0.70 0.75 0.70 0.72 0.73 0.72 0.73 0.68
M2 STEPS 0.11 0.05 0.11 0.06 0.61 0.54 0.61 0.57 0.64 0.64 0.64 0.64 0.61 0.62 0.61 0.54
M3 STEPS 0.25 0.14 0.25 0.18 0.48 0.51 0.48 0.49 0.52 0.53 0.52 0.52 0.60 0.64 0.60 0.58

Table A4. Model performance with GPT-2 embedding.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.22 0.05 0.22 0.08 0.74 0.73 0.74 0.74 0.61 0.72 0.61 0.63 0.68 0.74 0.68 0.58
M1 STEPS 0.65 0.43 0.65 0.52 0.65 0.64 0.65 0.64 0.57 0.62 0.57 0.59 0.65 0.55 0.65 0.53
M2 STEPS 0.50 0.26 0.50 0.34 0.61 0.60 0.61 0.60 0.61 0.60 0.61 0.58 0.53 0.47 0.53 0.40
M3 STEPS 0.29 0.21 0.29 0.24 0.43 0.43 0.43 0.42 0.50 0.49 0.50 0.49 0.54 0.54 0.54 0.46

−
Pr

ep

MOVES 0.22 0.04 0.22 0.08 0.80 0.78 0.80 0.78 0.62 0.69 0.62 0.64 0.72 0.70 0.72 0.64
M1 STEPS 0.66 0.43 0.66 0.52 0.64 0.61 0.64 0.62 0.61 0.68 0.61 0.63 0.67 0.58 0.67 0.57
M2 STEPS 0.50 0.25 0.50 0.33 0.64 0.63 0.64 0.63 0.61 0.59 0.61 0.59 0.54 0.47 0.54 0.40
M3 STEPS 0.45 0.20 0.45 0.28 0.57 0.61 0.57 0.58 0.55 0.56 0.55 0.55 0.53 0.54 0.53 0.48
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Table A5. Model performance with Llama-3.2-3B embedding.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.66 0.45 0.66 0.54 0.79 0.79 0.79 0.79 0.63 0.72 0.63 0.66 0.69 0.62 0.69 0.58
M1 STEPS 0.66 0.67 0.66 0.53 0.65 0.63 0.65 0.64 0.60 0.67 0.60 0.63 0.66 0.56 0.66 0.55
M2 STEPS 0.46 0.24 0.46 0.32 0.75 0.76 0.75 0.75 0.71 0.73 0.71 0.69 0.57 0.59 0.57 0.46
M3 STEPS 0.38 0.25 0.38 0.28 0.53 0.53 0.53 0.53 0.52 0.51 0.52 0.51 0.58 0.64 0.58 0.55

−
Pr

ep

MOVES 0.66 0.45 0.66 0.54 0.85 0.84 0.85 0.84 0.70 0.78 0.70 0.73 0.76 0.81 0.76 0.71
M1 STEPS 0.65 0.43 0.65 0.52 0.70 0.68 0.70 0.69 0.67 0.71 0.67 0.68 0.71 0.73 0.71 0.64
M2 STEPS 0.50 0.25 0.50 0.33 0.57 0.43 0.57 0.49 0.61 0.53 0.61 0.56 0.57 0.46 0.57 0.50
M3 STEPS 0.40 0.35 0.40 0.34 0.53 0.53 0.53 0.53 0.61 0.65 0.61 0.61 0.65 0.69 0.65 0.64

Table A6. Model performance with TEv3-small embedding.

Dataset
PN SVM NB RF

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

+
Pr

ep

MOVES 0.67 0.45 0.67 0.54 0.73 0.76 0.73 0.68 0.71 0.74 0.71 0.72 0.69 0.68 0.69 0.58
M1 STEPS 0.62 0.55 0.62 0.55 0.66 0.53 0.66 0.54 0.64 0.65 0.64 0.65 0.65 0.43 0.65 0.52
M2 STEPS 0.21 0.17 0.21 0.18 0.50 0.25 0.50 0.33 0.68 0.66 0.68 0.62 0.53 0.38 0.53 0.40
M3 STEPS 0.21 0.19 0.21 0.20 0.58 0.59 0.58 0.52 0.64 0.63 0.64 0.63 0.55 0.57 0.55 0.48

−
Pr

ep

MOVES 0.67 0.45 0.67 0.54 0.83 0.86 0.83 0.80 0.78 0.81 0.78 0.79 0.72 0.67 0.72 0.64
M1 STEPS 0.51 0.54 0.51 0.52 0.68 0.65 0.68 0.58 0.66 0.70 0.66 0.67 0.67 0.53 0.67 0.55
M2 STEPS 0.21 0.19 0.21 0.19 0.54 0.47 0.54 0.40 0.78 0.82 0.79 0.77 0.61 0.59 0.61 0.55
M3 STEPS 0.21 0.17 0.21 0.19 0.63 0.66 0.63 0.62 0.58 0.59 0.58 0.57 0.66 0.72 0.66 0.63
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