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Abstract

Urban region representation learning has emerged as a fundamental ap-
proach for diverse urban analytics tasks, where each neighborhood is en-
coded as a dense embedding vector for effective downstream applications.
However, existing approaches suffer from insufficient multi-modal alignment
and inadequate spatial relationship modeling, limiting their representation
quality and generalizability. To address these challenges, we propose Ur-
banMMCL, a novel self-supervised framework that integrates multi-modal
multi-view contrastive pre-training with unified fine-tuning for comprehen-
sive urban representation learning. UrbanMMCL employs a dual-stage archi-

tecture. First, cross-modal contrastive learning aligns diverse data modalities
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including remote sensing imagery, street view imagery, location encodings,
and Vision-Language Model (VLM)-generated textual descriptions. Second,
multi-view adaptive graph contrastive learning captures complex spatial re-
lationships across human mobility, functional similarity, and geographic dis-
tance perspectives. The framework then integrates the learned representa-
tions through a dedicated fusion mechanism for effective adaptation to down-
stream tasks. Comprehensive experiments demonstrate that UrbanMMCL
consistently outperforms state-of-the-art methods across pollutant emission
prediction, population density estimation, and land use classification with
minimal fine-tuning requirements, thereby advancing foundation model de-
velopment for diverse Geo-Al applications.

Keywords: Urban Region Representation Learning, Contrastive Learning,

Graph Learning, Multimodal Fusion, Urban Foundation Model

1. Introduction

Urban region representation learning extracts compact features from het-
erogeneous data to capture spatial, social, and economic characteristics es-
sential for urban tasks like pollution prediction (He and Huang, 2025), so-
cioeconomic estimation (Cao et al., 2025b), and land-use classification (Cao
et al., 2025a). These applications provide valuable contributions to urban
planning and environmental management in increasingly complex urban en-
vironments driven by the rapid urbanization process.

Conventional region representation learning approaches encounter sub-
stantial difficulties in efficiently incorporating multi-source multi-modal data

to generate unified representations (Zhang et al., 2025). Urban regions are in-
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herently heterogeneous, characterized by diverse physical attributes, dynamic
socioeconomic activities, and complex interregional interactions. Thus, ur-
ban region representations require sophisticated modeling to capture this
multidimensional nature (Wang et al., 2024, 2025).

Fusing multi-perspective visual data has emerged as a promising approach
to comprehensively reveal heterogeneous urban characteristics. Remote sens-
ing images (RSIs) provide foundational macroscopic perspectives with exten-
sive coverage (Bai et al., 2023; Zhou et al., 2021), capturing urban morphol-
ogy and land use patterns (Bai et al., 2025), while street view images (SVIs)
offer complementary micro-level details by documenting street environments
and building facades (Zhao et al., 2025; Zhang et al., 2019, 2024b). Nev-
ertheless, the fusion of multi-perspective visual data presents unique chal-
lenges (Zou et al., 2025), as traditional approaches have treated these data
independently or employed simplistic fusion mechanisms, failing to preserve
complementary information (Gao et al., 2020).

Despite detailed physical characteristics, visual data alone lack seman-
tic depth for complete regional description. While existing representation
learning approaches rely on Point-of-Interest (POI) data for textual seman-
tics (Li et al., 2023a), POI data’s spatial sparsity and uneven distribution
frequently result in inconsistent representation quality (Qin et al., 2025).
Vision-Language Models (VLMs) offer promising alternatives by generat-
ing comprehensive semantic descriptions from visual content (Huang et al.,
2024), transforming RSIs and SVIs into rich textual annotations such as
"high-density residential area’ and 'busy transportation hub with commercial

activities. However, current methodologies underutilise these descriptions,
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treating them as rudimentary labels rather than leveraging their semantic
intricacy for profound visual-textual alignment (Liu et al., 2024).

The modeling inherent spatial relationships between urban regions is
imperative for the effective representation learning. Urban regions exhibit
multi-faceted spatial interdependencies characterised by geographical adja-
cency, mobility patterns, and functional similarity (Wang et al., 2024). While
recent multi-view frameworks incorporate these dependencies (Li et al., 2019;
Wu et al., 2022), they typically process views independently or use simple
aggregation strategies (Zhang et al., 2020; Chan and Ren, 2023), missing syn-
ergistic information across relational perspectives. The utilization of graph
contrastive learning in urban spatial modeling represents a potentially fruit-
ful yet underexplored research avenue (Zhang et al., 2023d; Liu et al., 2025).

To address these challenges, we propose UrbanMMCL, a Urban Multi-
Modal and Multi-View dual Contrastive Learning framework that estab-
lishes a self-supervised pre-training and fine-tuning paradigm for compre-
hensive region representation learning. Pre-training Stage consists of two
synergistic components: (1) multi-modal vision-language contrastive
learning that aligns RSI, SVI, location encodings, and semantic textual
descriptions through specialized encoders and multi-level contrastive objec-
tives; (2) adaptive multi-view graph contrastive learning that models
complex spatial relationships through dynamic graph structure optimization
across multiple relational views. This stage learns generalizable urban repre-
sentations from unlabeled multi-modal data without requiring task-specific
annotations. Fine-tuning Stage integrates the pre-trained multi-modal

and multi-view representations through dedicated fusion mechanisms, en-



&2 abling effective knowledge transfer to diverse downstream urban analytics
&3 tasks including population estimation, pollutant emission monitoring, and

s« land use classification with minimal labeled data requirements.

65 Our key innovations are fourfold:

66 1. A systematic dual-stage framework that simultaneously addresses multi-
67 modal data and multi-view relationships, overcoming prior works’ single-
68 focus limitation in urban representation learning.

69 2. An comprehensive multi-modal alignment mechanism that unifies RSI-

70 SVI-Location-Text data through triple contrastive learning, establish-

71 ing deep semantic alignment while preserving semantic richness and

7 spatial context.

73 3. Adaptive multi-view spatial modeling that captures complex urban de-

74 pendencies (proximity, mobility, demographic similarity) through dy-

75 namic graph structure learning, enabling effective integration of multi-

76 ple relational perspectives without requiring predefined graph topolo-

77 gies.

78 4. A domain-specific self-supervised pre-training paradigm with superior

79 transferability across diverse urban analytics tasks, providing extensive

80 analysis of how different modalities, fusion strategies, and training ap-

81 proaches contribute to representation quality in resource-constrained

8 deployment scenarios.

8 Section 2 reviews related work on multimodal contrastive learning, graph

s« contrastive learning, and urban representation learning. Section 3 details the
ss  UrbanMMCL framework. Section 4 presents experiments and evaluations.

s oSection 5 analyzes model components, training paradigms, and limitations.
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Section 6 concludes the study.

2. Related works

2.1. Multimodal contrastive learning

Self-supervised learning (SSL) has emerged as a powerful paradigm that
leverages unlabeled data to learn generalizable representations, eliminating
the need for costly manual annotations. Among SSL approaches, contrastive
learning stands out as a particularly effective technique that learns repre-
sentations by maximizing similarity between positive pairs while minimiz-
ing similarity with negative samples (Dai et al., 2025; Zhang et al., 2023c).
Methods such as InstDis (Wu et al., 2018), SimCLR (Chen et al., 2020), and
MoCo series (He et al., 2020; Chen et al., 2021) have proven to be effective
in learning robust representations from unlabeled data.

Multimodal contrastive learning extends this paradigm by integrating
information from different data modalities to create unified representations
that capture complementary cross-modal correspondences (Wang et al., 2025;
Yong and Zhou, 2024). Vision-language contrastive learning represents a
particularly promising approach, combining rich spatial information from
imagery with semantic descriptions (Bao et al., 2022). CLIP (Radford et al.,
2021b) demonstrates the power of joint image-text representations through
contrastive training, enabling enhanced cross-modal understanding. Similar
approaches such as ALIGN (Jia et al., 2021) have expanded to billion-level
image-text pairs.

In urban analytics, multimodal approaches are particularly crucial due

to the inherently complex nature of urban environments, which generate di-
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verse data types including RSIs, SVIs, POls, and textual descriptions (Zhou
et al., 2023b; Shen et al., 2023). Recent works have explored this direc-
tion in geospatial domains (Weng et al., 2025). GeoCLIP (Cepeda et al.,
2023) applies contrastive learning for image-based geolocalization, while Sat-
CLIP (Klemmer et al., 2025) extends CLIP to RSIs, learning representations
that bridge RSIs with natural language descriptions. UrbanCLIP (Huang
et al., 2024; Yan et al., 2024) specifically targets urban region understanding
by integrating satellite imagery or street-view images with textual descrip-
tions, and other works (Liu et al., 2023) have explored vision-language mod-
eling and knowledge-infused contrastive frameworks for enhanced geographic
understanding.

However, multimodal contrastive learning for urban region representation
remains underexplored. Existing methods typically focus on single visual
modalities with limited integration and lack effective adaptation of vision-
language models for urban contexts. They treat geographical coordinates as
auxiliary features rather than fundamental organizing principles for multi-
modal alignment. These highlight the need for specialized frameworks tai-

lored to urban representation requirements.

2.2. Graph contrastive learning

Graph Neural Networks (GNNs) have revolutionized urban analysis by
modeling urban regions as graph-structured data (Khoshraftar and An, 2024;
Cao et al., 2025¢). However, most GNN models rely on supervised training
requiring substantial labeled data (Ju et al., 2024), which may be unavailable
in many urban scenarios. To address these limitations, self-supervised graph

contrastive learning (GCL) has emerged as a promising alternative that can

7



136

137

138

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

157

158

159

160

learn meaningful representations without labeled supervision.

GCL integrates both structural and attribute information by maximizing
agreement between disparate versions of the same graph while contrasting
with negative samples through the implementation of sophisticated architec-
tures and augmentation strategies (Wu et al., 2023; Sun et al., 2020a). Two
primary paradigms have emerged: global-local methods such as Deep Graph
Infomax (DGI) (Velickovi¢ et al., 2018), MVGRL (Hassani and Khasahmadi,
2020), and InfoGraph (Sun et al., 2020b) that contrast node-level with graph-
level representations, and local-local approaches such as GRACE (Zhu et al.,
2020), GraphCL (You et al., 2020) with its variants (You et al., 2021; Suresh
et al., 2021), and GCA (Zhu et al., 2021) that maximize agreement between
node embeddings across augmented graph views.

Multi-view graph contrastive learning integrates multiple graph perspec-
tives to capture diverse urban relationships (He et al., 2025). Urban appli-
cations have constructed complementary views including POI co-occurrence
networks (Huang et al., 2023; Zhang et al., 2023a), trajectory-based mobility
graphs (Zhang et al., 2024a), and spatial adjacency graphs (Luo et al., 2022).
However, contemporary multi-view GCL methods encounter critical limita-
tions. Zhang et al. (Zhang et al., 2023d) propose a multi-view framework
using triplet loss, but their node-level approach with static view construc-
tion misses subgraph-level patterns that characterize urban functional areas.
Their method relies on fixed topologies and simple augmentation strategies
that cannot adapt to dynamic urban spatial relationships. This highlights the
need for sophisticated multi-view GCL frameworks that integrate heteroge-

neous urban data through adaptive augmentation strategies while preserving
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semantic coherence of urban functional regions.

2.3. Urban representation learning

Urban region representation learning aims to generate low-dimensional
embeddings that reflect urban regional attributes and interregional relation-
ships while preserving spatial and semantic structures. A effective learning
requires mining intrinsic correlations among heterogeneous data sources, in-
cluding geographic topology, urban visual imagery and human mobility (Wang
et al., 2026; Guan et al., 2024). This paradigm enables effective analysis
across diverse urban applications from sociodemographic prediction to land
use classification.

Early methods primarily relied on single modalities such as POI features
(Zhai et al., 2019; Sun et al., 2021), human mobility patterns (Zhou and
Huang, 2018), or visual imagery (Li et al., 2023b). While achieving task-
specific success, single-modal approaches fail to capture multi-dimensional
urban characteristics (Zou et al., 2025). Recent advancements focus on multi-
modal fusion, integrating spatial, visual and textual data for comprehensive
regional characterization (Zou et al., 2025). Representative works include
RegionEncoder (Jenkins et al., 2019) for joint encoding of POIs, mobility
flows, and RSIs, and Urban2Vec (Wang et al., 2020) combining SVIs with
POI descriptions. However, existing approaches predominantly rely on sim-
ple concatenation and attention mechanisms, lacking sophisticated semantic
alignment and hierarchical adaptive fusion strategies.

The field has evolved from traditional techniques including matrix factor-
ization (Belkin and Niyogi, 2001) and network embedding methods such as
DeepWalk and Node2Vec (Perozzi et al., 2014; Grover and Leskovec, 2016)

9
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to GNNs (Xu et al., 2022). Traditional approaches heavily depends on task-
customized supervised paradigms (Gao et al., 2020) targeting specific objec-
tives like poverty assessment (Jean et al., 2016; Yeh et al., 2020) and urban
function classification (Cao et al., 2020). Recent advances embrace self-
supervised learning (Chen et al., 2025), with notable approaches including
ReCP (Li et al., 2024) and GraphST (Zhang et al., 2023b), and multiview
graph learning such as MVURE (Zhang et al., 2020) and CGAP (Xu and
Zhou, 2024). Notwithstanding the advances that have been made, the de-
sign of self-supervised pre-training tasks for universal urban representation

remains a critical challenge.

3. Methodology

3.1. Preliminaries

We formalize the urban region representation problem through the fol-
lowing key components.

Definition 1. Urban Spatial Partitioning. Given a city divided into
N non-overlapping grid regions R = {r;}V,, each region r; is associated with
multi-modal urban data.

Definition 2. Remote Sensing Imagery. Remote sensing imagery
RS captures aerial views of the earth’s surface, providing insights into build-
ing distributions and land use patterns. For each region r;, an orthorectified
image patch Z'S € R is used, where h and w are the dimensions of the
grid.

Definition 3. Street View Imagery. Street view imagery Z°V provides

ground-level views of urban areas. For each region r;, multi-directional street

10
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view images are collected as:
n
Iz'sv = U Iie,jv (]‘)
j=1

where {s;;}"_, represents the uniformly distributed n sampling points along
the road network within the region r;, and Iﬁ ; denotes the image captured
at the point s; ;. This collection approach ensures comprehensive coverage
of urban streetscapes from multiple viewpoints.

Definition 4. VLM-Enhanced Textual Description. Textual de-
scriptions of a region r; include satellite-derived text T,%5 and street-view-
derived text 7;°V. These descriptions are generated through advanced vi-
sual language models (VLMs). They provide contextual insights into urban
morphology, infrastructure, and functional attributes, complementing visual
data.

Definition 5. Multi-view Urban Graph. The urban system is mod-
eled as a collection of multiple view graphs G = {GW 1} where each view
G® = (V, A®) shares the set of common nodes V = {v;}¥, representing the
regions of the urban grid, but has distinct adjacency matrices A*) € RN*N
Each view graph captures a specific type of urban relationship (e.g. POI-
based functional similarity, mobility flow, or spatial proximity). This struc-
ture enables comprehensive modeling of the urban system through comple-
mentary perspectives while maintaining consistent regional representation
across views.

Definition 6. Urban Region Representation Learning. Given a
set R of urban regions and K modal feature matrices X!, X2, ..., X¥ derived

from multi-modal data sources (e.g. imagery Z, textual descriptions 7T), we

11
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aim to learn a mapping function F : (r;, x},x?,...,x}) — h; that transforms
a region r; € R, described by its feature vectors x¥ € X* (1 < j < K), into
a d-dimensional representation h; € R?, where d is a small constant. The
resulting region embeddings H = {hy, hy,... hy} should preserve essential
urban characteristics across all modalities, enabling their effective application
to a wide range of downstream tasks Y € R¥*K across N regions for K

different socioeconomic and environmental attributes.

3.2. Overview

The proposed UrbanMMCL framework (Figure 1) enriches urban region
representations through a dual-stage contrastive learning approach that es-
tablishes a self-supervised pre-training paradigm for urban tasks.

Stage 1: Multi-Modal Multi-View Contrastive Pre-training
combines two complementary learning paradigms to establish comprehensive
urban representations. The cross-modal contrastive learning leverages VLMs
to generate semantic descriptions for both RSIs and SVIs, employing special-
ized encoders (textual, visual, and location) with multiple contrastive objec-
tives including RSI-text alignment, SVI-text alignment, and location-image
correspondence. Simultaneously, the multi-view graph contrastive learning
captures complex spatial dependencies through three distinct view graphs
representing mobility patterns (Mob-view), functional similarities based on
POI attributes (Fun-view), and spatial distance relationships (Dis-view). Us-
ing adaptive graph encoders with independent processing pathways, this com-
ponent dynamically learns optimized graph structures while capturing both
intra-view dependencies and inter-view correlations for comprehensive spatial

relationship modeling.

12
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Figure 1: Overview of the UrbanMMCL framework. The framework operates in two
stages: (1) Pre-training Stage employs multi-modal contrastive learning (aligning RSI,
SVI, VLM-generated textual descriptions, and geographical coordinates) alongside multi-
view graph contrastive learning across heterogeneous graph views (mobility, functional,
and distance) using adaptive graph encoders; (2) Fine-tuning Stage integrates the pre-
trained multi-modal contrasts and multi-view graph contrasts through dedicated fusion
mechanisms, employing trainable predictors for efficient knowledge transfer to downstream

urban analytics tasks.

Stage 2: Unified Fine-tuning integrates the pre-trained multi-modal
and multi-view representations through dedicated fusion mechanisms, en-
abling efficient knowledge transfer to diverse downstream urban analytics
tasks including population estimation, pollutant emission prediction (PM 5,
CO), and land use classification with minimal computational overhead and

labeled data requirements. Details are provided in Sections 3.3, 3.4, and 3.5.
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3.3. Multi-modal contrastive learning
3.3.1. VLM knowledge distillation for text generation

We employ BLIP-2, a state-of-the-art vision-language model, to perform
knowledge distillation from large-scale pre-trained models, extracting rich
semantic information from urban imagery. While advanced models like
GPT-4V or Gemini possess extensive knowledge capabilities, their prohibitive
costs make them impractical for our dataset of tens of thousands of images.
BLIP-2 provides an efficient alternative through knowledge distillation via
its lightweight Querying Transformer (Q-Former) architecture, which bridges
a frozen image encoder and a frozen language model without requiring end-
to-end fine-tuning, significantly reducing computational demands while dis-
tilling comprehensive knowledge into high-quality textual descriptions. For
each RSI or SVI, BLIP-2 processes the input with prompts to generate de-
scriptive text that distills general knowledge into urban-specific semantic

representations. Figure 2 illustrates these pairs of prompt descriptions.

3.8.2. Vision-language-location feature encoders

Using VLM-enhanced text generation, we create a dataset of visual-
textual pairs (Z,7T), where Z represents RSIs 1% or SVIs Z°V, and T in-
cludes the corresponding textual descriptions 77% or 7°V. We implement a
factorized encoder architecture with dedicated visual, textual, and location
encoders, enabling each to capture modality-specific characteristics while es-
tablishing the foundation for multimodal alignment.

Visual encoder. We deploy the Vision Transformer (ViT) architecture
(Dosovitskiy et al., 2021) to process urban RSIs and SVIs. Recognizing

that standard pre-trained models are optimized for general scenes rather

14



Prompt = “Describe the \
satellite image”

Prompt = “Describe the
satellite image”

This is a satellite image
showing a forested area
surrounded by urban
buildings, with a highway
running through the top
section.

This is a satellite image
showing a densely
populated urban area with
intersecting roads,
compact buildings, and
scattered greenery.

~

Prompt = “Describe the
street view image”

This is a street view showing
an intersection, tall
buildings, and trees along
the roads under a clear sky.

)

Prompt = “Describe the
street view image”

This is a street view showing
a construction site with
high-rise buildings,
temporary structures, and
scattered debris, surrounded
by trees.

Figure 2: Examples of prompts and corresponding BLIP-2 generated descriptions for RSI
and SVI.

than urban environments, we fine-tune this encoder to better capture the
unique structural patterns and spatial relationships characteristic of urban
landscapes.

Our encoding process begins by dividing each input image Z; into p non-
overlapping patches. Each patch P; is flattened and projected into a d-

dimensional embedding space with positional encodings:
z/® = E" - Flatten(P;) + pJ®, j=1,2,...,p, (2)
where EV € R(")xd ig a learnable projection matrix and p; € R? is the

15
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©

¢ positional embedding.
207 These patch embeddings {z}’is}le, prepended with a [CLS] token, are
208 processed through L Transformer layers. Each layer applies multi-head self-

20 attention (MSA) followed by a multi-layer perceptron (MLP):

2" = MSA(LN(2"™)) + 2** (3)
zvis“ _ MLP(LN(ZViS/)) + zvis’ (4)
300 The self-attention mechanism allows each patch to attend to all others.
) Ny - vis Kvis T )
Attention(Q"*, K", V'®) = softmax (—Q (K™) ) vvE (5)
Vi,
301 where Q'S = gsz"is, KV = WiEz"s V¥ = WSz are linear projec-
302 tions.
303 After processing through all transformer layers, we obtain the following:
X" = ¢yis(Z;) = Transformer({z*}:_)), (6)
304 where X}* = [z{yy, @i, x3™, - @¥™] € R™PT contains embeddings

s for the [CLS] token and all image patches. We extract the [CLS] token

ViSi

26 embedding s as the global image representation:

. Vis; d
v =Xy, U € RN (7)
307 The resulting vector v}® or v;¥ serves as our visual feature for subsequent
w8 cross-modal alignment.
300 Textual encoder. Concurrently, we employ a transformer encoder ar-

s0  chitecture (Vaswani et al., 2017) to process textual descriptions generated by

=

1 BLIP-2 for our urban imagery.

3

-
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Given a text sequence 7T; with tokens n, we tokenize it and map each token
to an embedding vector using a learnable embedding matrix Ef € RY*?,
where V' is the vocabulary size and d is the embedding dimension. Positional

embeddings are added to preserve sequential information:
7 = B[] + pi™, i=1,2,...,n. (8)

The sequence passes through L transformer layers:

X = g1 (T5) = Tramsformer ({2}, ©)

where X! = (0™ hy™ . hisd] € R*CHD - We extract the [EOS]

token embedding as the global text representation:
text;
t;=hpod, t;€R% (10)

This global text embedding ¢7° or 3" captures the semantic content of
the entire description, enabling alignment with visual features in subsequent
stages.

Locational encoder. We integrate geospatial context by encoding the
precise coordinates associated with each visual image. For RSIs, we encode
the center coordinates, while for SVIs, we encode the exact sampling loca-
tions. Inspired by GeoCLIP (Vivanco et al., 2023), our location encoder
transforms geographic coordinates (lon,lat) into meaningful semantic rep-
resentations, producing high-dimensional embeddings that capture spatial
context.

l; = ¢;(lon, lat) (11)

These locational embeddings are also further associated with correspond-

ing outputs derived from RSI (I}*) and SVI (I5V). They can capture crucial

17
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geographic context that complements visual and textual features, enabling
our model to understand location-specific urban patterns within a unified
representation that preserves both semantic content and spatial relation-

ships.

3.3.3. Cross-modality alignment

We implement a cross-modality alignment framework that integrates vi-
sual, textual, and location features through specialized contrastive objectives.
For each RSI, we aggregate features from all corresponding SVIs via average
pooling, creating comprehensive representations that preserve both spatial
correspondence and semantic coherence across diverse urban data modalities.

Vision-language alignment. We establish bidirectional alignment be-
tween visual and textual modalities through contrastive learning, optimizing
the relationships between visual features and their corresponding textual
features. The principle is that representations of the same region across
modalities converge in semantic space while remaining distinct from other
regions.

For each visual-textual pair, we jointly optimize encoders by contrasting
matched pairs against others within the batch through a dual-directional
contrastive loss:

N .
£v1s text _i Z log exXp (Slm(via tz)/T)
N\& 7SN exp (sim(v;, ;) /7)

+Zl exp (sim(t;, v;)/T) )

J 1 exp (sim(¢;, v;/7)

(12)

where v; represents visual features (either v$ or v®), ¢; denotes the corre-

sponding textual features t°¥ and ¢, sim(+, ) represents cosine similarity and

18
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Figure 3: Cross-modal contrastive learning framework integrating visual, textual, and

location features through RSI-text, SVI-text, and location-image contrastive objectives.

T is a temperature hyperparameter that controls the similarity distribution.
The first term optimizes image-to-text retrieval, while the second addresses
text-to-image retrieval, creating a unified semantic space for effective cross-
modal understanding.

Visual-location alignment. To incorporate spatial context, we align
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visual characteristics v; with location features l; using contrastive learning:

Evis-loc

vis . (Z log exp (sim(vy, ;) /7)

P Zjvzl exp (sim(v;, 1;)/7)

oy CXP (sim(k:, v)/7) )
! ; i S exp (sim(l;, v;)/7)

where I; denotes the corresponding location features (either I3 or I;*), and 7

(13)

is the temperature hyperparameter. Bidirectional loss optimizes both loca-
tion retrieval from visual features and visual content retrieval from coordi-
nates, associating street-level features with precise locations while capturing
broader spatial relationships in overhead views.

Overall objective. The complete multi-modal contrastive learning loss
integrates all cross-modal alignments:

‘Cmmcl — Ersi—text + Ersi—loc + Esvi—text + sti—loc‘ (14>

con con con con

This unified optimization creates a shared embedding space where visual,
textual, and spatial information are semantically coherent and mutually re-
inforcing.

Fusion of multi-modal region features. To construct comprehen-
sive region representations, we integrate features from multiple modalities.
Given that each region’s RSI typically encompasses multiple SVIs, we first

consolidate the SVI features using an averaging operation:

k - 1 k
2u L= (15)
j=1 Jj=1

where k is the number of SVIs within the region .

| =

—SV __
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The final region feature representation is formed by concatenating RSI vi-
sual features, RSI location features, aggregated SVI features, and aggregated
SVI location features:

X; = [0 1505 1 (16)

i iUl

This unified embedding seamlessly combines aerial and ground-level vi-
sual information with their corresponding geographic contexts, providing a
holistic representation that serves as the initial node feature for subsequent

region graph construction.

3.4. Multi-view graph contrastive learning

To enhance urban region representations with complex spatial relation-
ships, we employ adaptive multi-view graph contrastive learning that cap-
tures intricate interdependencies between urban regions. This component
leverages heterogeneous graph views that represent spatial proximity, func-
tional similarity, and mobility flows, using adaptive graph encoders with
VGAEs and GCNs to dynamically learn optimized graph structures rather
than relying on fixed topologies. The framework incorporates random walk-
based subgraph sampling and employs inter-view contrastive learning to
model spatial dependencies while preserving view-specific characteristics. This
multi-view approach transcends single-view limitations by learning optimal
graph representations that demonstrate enhanced robustness against noise

and data sparsity in urban spatial interactions.

3.4.1. Multi-view region graph construction
We model geographic regions through a multi-view graph G = {G*) =

(V, A®M)|k € K}, where V represents region nodes, A*) denotes the adja-
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cency matrix of the relationship type k, and L = {P, M, D} specifies rela-
tionship type sets. Our multi-view representation integrates three comple-
mentary urban relationships: human mobility flows between regions, POI
category similarity reflecting functional characteristics, and geographical
distance capturing spatial proximity. The adjacency matrix A*) e RV*N
for each relationship type k € K defines the pairwise connections between
the regions, where Ag?) quantifies the strength of the connection between the
regions v; and v; under the corresponding relationship.

Function-aware Region Graph G*) = (V, A(")): We characterize ur-
ban functionality through POIs using a distribution matrix P € RN*¢ where
C' denotes POI categories (restaurants, hotels, hospitals, etc.). Each element
pi,c counts places in the region r; belonging to the c-th POI category, with the
functionality of each region encoded as a vector p; € R'*“. The adjacency
matrix AP = [al] € R¥*N encodes functional similarity through cosine
similarity: afj = sim(p;, p;), allowing information flow between functionally
similar areas regardless of geographical distance.

Mobility-based Region Graph ¢ = (V, AM)): Human movement
patterns are captured through trajectory records in format (rs, 74, msq), cap-
turing source/destination regions and departure/arrival times. These trajec-
tories are aggregated into an origin-destination flow matrix M = [m;;] €

RN*N where m;; measures trips from region r; to r;. The adjacency matrix

(M) _ [,m NxN ; m _ __ log(l+mi;) : : :
A =[af}] € R is defined as aj; SV loa(1 gy USING logarithmic
normalization to balance flow variations in regions of different populated
regions while preserving movement patterns.

Distance-based Region Graph GP) = (V, A(”): Spatial proximity
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relationships are encoded in a distance matrix D € RV*Y based on Eu-
clidean distances between the centroids of the region. The adjacency matrix
AP = [af] € RN*N is calculated as af; = 1/d;;, creating stronger connec-
tions between the physically proximate regions. This structure facilitates the
propagation of information between adjacent or nearby areas that typically

share similar urban characteristics due to their spatial proximity.

3.4.2. Variational graph auto-encoder

We employ Variational Graph Auto-Encoder (VGAE) as the first com-
ponent of our multi-view graph contrastive learning framework. VGAE’s
probabilistic nature effectively models variability across all three views, while
providing regularized latent representations that prevent overfitting and en-
able meaningful interpolation between region embeddings.

For each view-specific region graph G*) with adjacency matrix A®*) and
feature matrix X, VGAE employs graph convolutional networks (GCNs) to
encode graph structure into latent space parameters, specifically the mean
vector p and the diagonal covariance vector o. For notational simplicity, we

omit the superscript (k):
1= GON,(A,X), o =GCN,(A,X). (17)

Latent representations are sampled using the reparameterization trick.

For each node i, we have:
zi =p;+0,0€, €~N(0I), (18)

where z; € R? is the embedding for node 7, and ¢; is random noise. The
complete embedding matrix Z = [z1;2y;...;2y] € RY*? contains all node

embeddings.
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The decoder reconstructs the adjacency matrix from the latent node rep-

resentations. For each pair of nodes (i, 7), the edge probability is:
Ay; = Softplus(z, z,), (19)

where Softplus(-) is the activation function.
The VGAE is trained by optimizing both reconstruction loss and KL-
divergence. The reconstruction loss minimizes the difference between original

and reconstructed adjacency matrices:

L NN s
Liccon = 3z >N (Aij - Aij> : (20)

i=1 j=1

The KL divergence loss regularizes the latent space by minimizing diver-
gence between the learned latent distribution ¢(z;|X, A) = N (u,, diag(o?))
and a prior distribution p(z;) = N(0,1):

N

d
Z Z (L+1logoy, — i, — 03) (21)

i=1 j=1

N | —

Lxi = —

This process is applied independently to each view G*¥)| yielding respec-
tive reconstructed adjacency matrices A®). These view-specific embeddings
capture different aspects of urban region relationships for subsequent multi-

view contrastive learning.

3.4.3. Random walk-based subgraph generation

To efficiently handle complex urban graph structures and enhance ro-
bustness against data skewness, we employ adaptive random walks on the
reconstructed view-specific graphs G, M) and GP). For each node i in a

given graph G, we perform a single random walk of fixed length L to capture
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both local and global structural properties while ensuring equal contribution
from each node.
Starting from node i, the walker transitions from the current node v; to

neighboring node v, based on adaptive transition probabilities:

Avt V41
P(vilor) = el (22)

ka EN (vt) Avt,vk

where N (v;) denotes neighbors of v, and A is the learned edge weight.

Ve,V
These adaptive allow transition probabilities to prioritize stronger connec-
tions while reducing influence of weaker relationships.

The walker continues for L steps, with probabilistic rather than deter-
ministic sampling to introduce variability and enhance robustness. If a node
lacks neighbors, the walk terminates early. Upon completion, the visited
node sequence [vg, vy, ..., vr] forms subgraph G;, including all visited nodes
and their interconnecting edges.

This sampling strategy effectively addresses noisy edges by utilizing VGAE-

learned weights to guide walks toward relevant connections. For each sub-

graph, we learn node-level representations through:
H; = GCN(G;, X[V))), (23)

where H; € RVil*? contains learned node embeddings, and X[V;] represents
features restricted to the subgraph nodes.
We then aggregate subgraph information into a single comprehensive vec-

tor through readout operations:

s; = READOUT(H,), (24)
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where s; € R? encapsulates structural and semantic information of the neigh-
borhood centered on node .

The process is repeated independently for each view, generating three sets
of subgraph representations s , where k € K = {P, M, D}, each capturing
view-specific structural properties. Unlike rule-based methods, this approach
adaptively captures region dependencies through learnable parameters, pro-

viding enhanced resilience against data skewness and noise.

3.4.4. Inter-view contrastive learning

After generating view-specific subgraphs and their embeddings, we design
a multi-view contrastive learning objective that maximizes mutual informa-
tion between different view representations of the same node while minimiz-
ing it between different nodes. This core intuition is that subgraphs centered
around the same urban region should exhibit semantic similarities despite
structural differences across views. This contrastive mechanism achieves au-
tomatic feature selection through the InfoNCE loss structure, where the nu-
merator enforces cross-view alignment while the denominator ensures inter-
node discrimination. This design amplifies features that are consistently
discriminative across multiple views while suppressing view-specific noise
that fails to maintain cross-view consistency. Consequently, the model auto-
matically prioritizes meaningful urban relationships while filtering out noisy
connections, resulting in robust representations that capture fundamental
regional patterns.

For any pair of views (k1, ko), the contrastive loss is formulated as:

(kz)
Ekzl,kz — Z €xXp Slm( )/T) (25)
con 1 k2

N > e 1eXp(Slm(( )7 s\ /1)’
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Figure 4: Architecture of the adaptive graph encoder framework. The top component
shows the Variational Graph Auto-Encoder (VGAE) that learns latent graph representa-
tions through an encoder-decoder structure with reparameterization, incorporating both
KL divergence and reconstruction losses for adaptive graph structure learning. The bot-
tom component illustrates the random walk-based subgraph generation process, where
random walks from each node create diverse subgraphs that are processed through GCNs
to generate enhanced node representations.

where sg Y and SZ(» ») are the embeddings of node i in views k; and ki, sim(-, -)
denotes cosine similarity, and 7 is a temperature parameter.

Overall objective. The complete multi-view graph contrastive learning

loss combines view-specific graph reconstruction with cross-view alignment:
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Loga = 2 (L8 +£8) + 30 Lhl, (26)

kek (k1,k2)EXXK
where IC x K = {(P, M), (P, D),(M, D)} represents all view pairs.
The first term maintains view-specific structural information through
VGAE reconstruction and regularization losses, ensuring each view preserves
its inherent graph properties. The second term enforces cross-view consis-

tency by aligning representations across pairwise views.

3.5. Urban Region Representation Task

3.5.1. Pre-training stage

Our framework employs a unified pre-training strategy that jointly op-
timizes multi-modal contrastive learning and multi-view graph contrastive
learning. This approach aligns heterogeneous data modalities into a coher-
ent feature space while learning view-invariant representations across differ-
ent urban graph perspectives. The complete pre-training objective combines

both learning stages:
£total - aﬁmmcl + Bﬁmvgcla (27>

where o and f are hyperparameters to balance cross-modal alignment
and inter-view consistency.

This self-supervised framework generates complementary learning signals
through modality fusion and view integration, producing robust representa-
tions that are both semantically meaningful and structurally consistent. Af-
ter pre-training, we obtain region embeddings Z* € RV*?, providing a strong

foundation for downstream urban analysis tasks.

28



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

3.5.2. Fine-tuning for downstream tasks

We employ a task-specific fine-tuning approach to tailor our region em-
beddings to various urban prediction tasks. In this process, all model pa-
rameters are updated, and the generated embeddings Z* are used as input
features for a lightweight MLP classifier or regressor: Y; = M LP(Z*). This
strategy capitalizes on the rich representations learned during pre-training to
demonstrate how effectively our framework captures essential urban patterns
across various applications.

We evaluated our framework on three downstream tasks: pollutant emis-
sion prediction (PEP), population density estimation (PDE), and land use
classification (LUC). PEP involves predicting environmental pollutant levels,
which tests the model’s ability to capture environmental and spatial factors
that influence emissions. PDE is a regression task that estimates regional
population density, assessing how well the embeddings capture demographic
patterns. LUC is a multi-class classification task categorizing regions into
specific land use types (residential, commercial, industrial, etc.), evaluating
the model’s capacity to identify distinct urban functional patterns. This
fine-tuning approach demonstrates efficient transfer of learned representa-
tions to diverse urban applications spanning environmental, demographic,

and land-use domains with minimal additional training.

4. Experiments and analyses

4.1. Study areas and datasets

As illustrated in Figure 5, our research focuses on Shenzhen, a rapidly

developing metropolitan city in China with distinct urban characteristics. he
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study leverages diverse datasets for both pre-training and fine-tuning phases
to conduct comprehensive experiments and analyses.

The Pre-training Data. The pre-training phase utilizes multi-modal
urban data including RSI, SVI, POI data, and human mobility data to learn
comprehensive urban representations. RSI, sourced from the GaoFen-2 satel-
lite via Tianditu, features 1.0 meter spatial resolution and three spectral
bands (RGB). These images were segmented into 1 km x 1 km tiles to align
with the grid-based analysis framework. Complementing this, 224,826 high-
resolution panoramic SVIs of Shenzhen (4096 x 1036 pixels), obtained from
Baidu Maps at approximately 15-meter intervals along the road network,
provide comprehensive 360-degree ground-level visual coverage. POI data,
sourced from AMap!, includes 1,064,085 points of interest categorized into
23 primary classes such as Life Services, Corporate Entities and Mixed-use
Commercial and Residential Areas. Furthermore, human mobility data from

2 consist of 34,960,199 hourly movement records, aggregated

China Unicom
to daily origin-destination flows at a 1 km x 1 km resolution.

The Fine-tuning Data. The fine-tuning phase employs task-specific
datasets for downstream urban analysis applications. Population density
data from WorldPop? uses random forest-based dasymetric mapping to de-
liver high-resolution estimates (30 arc seconds, approximately 1 km at the

equator) of people per km? resampled to align with our grid structure.

Pollutant emission data include key air pollutants—carbon monoxide (CO,

Thttps://Ibs.amap.com
Zhttp://www.smartsteps.com/
3https://hub.worldpop.org
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mg/m?) and particulate matter (PMy 5, ng/m?)—sourced from the National
Tibetan Plateau Scientific Data Center (Wei et al., 2023; Wei and Li, 2024),
providing high-quality 1 km x 1 km resolution raster data. Land use clas-
sification data are derived from SinoLC-1 (Li et al., 2022, 2023¢), China’s
first national-scale 1 meter resolution land cover map developed using deep

learning techniques, with the Shenzhen portion specifically utilized for our

analysis.

Figure 5: Overview of the datasets used in this study.

4.2. Experiment setup
4.2.1. Baselines

To comprehensively evaluate our model, we compare with six recent base-
lines in two categories: (1) Vision-based methods, including ViT, PG-
SimCLR, and UrbanVLP, where the latter two employ contrastive learn-
ing strategies. (2) Graph-based methods, including MVURE, HREP and
ReMVC:
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« ViT (Dosovitskiy et al., 2021). ViT adapts transformers to com-

puter vision by partitioning images into fixed-size patches and demon-
strates strong performance with sufficient pre-training data. In our
experiments, we employ ViT-B as the baseline image encoder, con-
catenating extracted features from different modalities for final em-

beddings.

PG-SimCLR (Xi et al., 2022). A contrastive learning framework
that adapts SimCLR(Chen et al., 2020) for urban region representa-
tion using satellite imagery by incorporating geographic proximity con-
straints and POI category distributions, allowing the model to learn
representations that respect both spatial relationships and functional

similarities.

UrbanVLP (Hao et al., 2025). A multi-granularity vision-language
pretraining framework that combines RSI, SVI, and high-quality tex-
tual descriptions to predict urban socioeconomic indicators through

cross-modal alignment and automatic text calibration.

MVURE (Zhang et al., 2020). Leverages human mobility data and
urban region attributes (POI and check-in data) to construct multi-
view correlations through graph attention networks, enabling cross-
view information sharing and adaptive fusion for comprehensive urban

region embeddings. In our experiments, we did not use check-in data.

HREP (Zhou et al., 2023a). A relation-aware graph-based ap-
proach using human mobility, POI information, and geographic neigh-

bor data, combined with prompt learning to capture intra-region and
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inter-region correlations for robust region embeddings.

« ReMVC (Zhang et al., 2023a). Employs multi-view contrastive
learning with POI data and human mobility records to extract robust
region embeddings by capturing intra-view distinctions and cross-view

correlations.

4.2.2. Evaluation metrics

To quantitatively evaluate the performance of our method, we employ
standard metrics for regression and classification tasks (| indicates lower is
better, and 1 indicates higher is better):

Metrics for Regression Tasks. For regression tasks, the goal is to pre-
dict continuous variables. We assess model performance using three comple-
mentary metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Coefficient of Determination (R?).

Metrics for Classification Tasks. For classification tasks, our objec-
tive is to evaluate the ability of the model to correctly classify samples into
their respective categories. We employ two complementary metrics: F1 Score
and Recall. These metrics provide a comprehensive assessment of the accu-

racy and robustness of our method across different task types.

4.2.3. Implementation details

Pre-training Setup. We divide the dataset into 60% training, 20%
validation and 20% testing sets. For image inputs, we apply data augmenta-
tion techniques that include random cropping, flipping, and normalization,
following the methodology described in Radford et al. (2021a). During the

multi-modal contrastive learning stage, we generate textual descriptions for
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each image using the BLIP-2 model, leveraging OPT-2.7b (a large language
model with 2.7 billion parameters). Text descriptions are limited to 77 to-
kens. For the visual encoder, we use ViT-B/32 with a hidden dimension of
768 and an output dimension of 512. For the textual encoder, both the hid-
den and output dimensions are 512. For the location encoder, we adopt the
architecture and configuration settings proposed by Vivanco et al. (2023).
For feature aggregation, SVI features within the same RSI coverage area are
aggregated using average pooling. The aggregated SVI features are then
added element-wise to the RSI features to form unified regional representa-
tions. In the multi-view graph contrastive learning stage, we construct three
graph structures based on population flow, POI similarity, and spatial dis-
tance. VGAE is used to reconstruct these graphs. VGAE uses a one-layer
GCN encoder with an output latent space size of 64, and LeakyReLU ac-
tivation, and Adam optimizer with learning rate le-4. Next, random walks
with walk length 20 are performed on the reconstructed graphs to generate
subgraphs. Finally, GCNs with hidden layer size 128, output size 64, and
LeakyReLU activation are applied for graph representation embedding. The
temperature parameter 7 for contrastive learning is 0.5. The Adam optimizer
is used with a learning rate of 1le-6 and weight decay of 1le-4. The model is
trained for 1000 epochs with early stopping based on validation loss.
Fine-tuning Setup. During fine-tuning, we update both the pre-trained
encoders and the task-specific components. For regression tasks, we use mean
squared error loss, while for classification tasks, we use cross-entropy loss
with accuracy as the evaluation metric. The training runs for 1000 epochs

using the Adam optimizer, with learning rate le-6 and weight decay le-4.
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Early stopping is applied based on validation loss to prevent overfitting. All
experiments were performed on NVIDIA A6000 GPUs with 48GB memory.

4.83. Model performance

4.3.1. Hyperparameter sensitivity analysis

To understand the interaction between multi-modal and multi-view graph
contrastive learning, we conduct sensitivity analysis of hyperparameters «
and f in our unified objective function Liota = @Lmme + SLmvga With
constraint o + [ = 1. Table 1 shows the optimal configuration occurs at
a = 0.5, = 0.5 across all tasks, indicating that indicating equal weighting
between multi-modal contrastive learning and spatial learning yields best
performance.

The results also reveal asymmetric degradation patterns. Pure graph
learning (o = 0) causes dramatic performance drops, while pure multi-modal
learning (o = 1.0) shows moderate decreases. This asymmetry indicates that
multi-modal information provides fundamental semantic grounding, while
spatial learning offers crucial structural guidance. The consistent optimal
ratio (v : f = 1: 1) across diverse urban tasks suggests that effective urban
representation learning requires balanced integration of semantic richness
and urban spatial structure, , rather than over-relying on either component

alone.

4.8.2. Comparison with baseline methods
We conduct comprehensive comparisons with state-of-the-art methods.

Table 2 presents the overall results, from which we can derive the following
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| PEP(CO) | PEP(PM, ;) | PDE | LUC

| MAE| MSE| Rt |MAE| MSE| Rt |MAE| MSE| R?% | F11 Recall {

1.0 0.0 | 0.0382 0.0018  0.4025 1.4009 3.2739  0.5019 | 4134.67  14969395.03  0.4817 | 0.4106 0.4235
0.8 0.2 | 0.0248 0.0012  0.6034 1.2431 2.1900  0.6756 | 3816.31  15647112.25  0.4841 | 0.4189 0.4673
0.6 0.4 | 0.0250 0.0012  0.5927 0.8591 1.4778  0.7654 | 3622.39  13598495.15  0.6556 | 0.4504 0.4957
0.5 0.5 0.0212 0.0009 0.7417 | 0.6785 1.0212 0.8481 | 1931.64 9943831.52 0.7670 | 0.6058 0.5994
04 0.6 | 0.0247 0.0012  0.6857 0.8140 1.3593  0.7895 | 3656.10  16647168.90  0.6777 | 0.4844 0.5229
02 08 | 0.0238 0.0011  0.6290 1.0394 1.7856  0.7234 | 3860.65  19548932.31  0.5648 | 0.4738 0.5068
0.0 1.0 | 0.0327 0.0018  0.4341 1.4808 3.6995  0.4824 | 3824.24 1754243841 0.5194 | 0.4223 0.4445

Table 1: Hyperparameter sensitivity analysis for « and 8. The best results are highlighted

in boldface.

Methods | PEP(CO) \ PEP(PM,5) \ PDE \ LUC
|MAE| MSE| Rt |[MAE| MSE| R’t | MAE| MSE| R2{ | F11 Recall
ViT 00252  0.0012 05569 | 1.0062 1.7733 0.7225 | 2086.0500 12767905.19 0.6654 | 0.5136  0.5235
PG-SimCLR 0.0358  0.0020 04158 | 1.4840 3.6337 0.4280 | 21947627 13386507.27 0.7116 | 0.4690  0.4555
UrbanVLP 00214 00011 0.6875 | 0.7573 1.1847 0.8240 |1954.4800 9754879.86 0.7635 | 0.5811  0.5873
MVURE 0.0239  0.0011 0.5669 | 0.8121 1.0288 0.7933 | 2046.9664 1170171117 0.6933 | 0.5450  0.5446
HREP 0.0237  0.0012 0.5604 | 0.8860 1.5067 0.7677 | 2089.4557 13625186.03 0.6420 | 0.4299  0.4291
ReMVC 0.0260  0.0013 0.5217 | 1.3249 3.0701 0.5106 | 2242.8103 16310952.66 0.5725 | 0.4821  0.4718
UrbanMMCL  0.0212 0.0009 0.7417 0.6785 1.0212 0.8481 | 1931.64 0943831.52 0.7670 | 0.6058 0.5994
Improvement(%) 0.93  18.18 7.88 10.41 0.74  2.92 1.17 -1.94 0.46 | 4.25  2.06

Table 2: Performance comparison of different methods on pollutant emission prediction
(PEP) (CO, PMay35), population density estimation (PDE), and land use classification
(LUC). The best results are in boldface, and the second-best results are underlined. Im-

provement (%) shows the relative improvement of our method over the second-best baseline.

key findings.

(1) UrbanMMCL achieves superior performance across most
metrics, demonstrating the effectiveness of our dual contrastive
learning approach. Our framework outperforms the best baselines in 10
of 11 metrics, with an average R? improvement of 3.75% in regression tasks
and a 4. 25% improvement in the F1 score for classification compared to
the second best method (UrbanVLP). The only exception is the PDE MSE

metric, where our method shows a marginal difference of 1. 94%. This slight
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discrepancy stems from the long-tail distribution of population density data,
where extreme values disproportionately influence the squared error metric.
Our superior MAE and R? scores demonstrate robustness across the majority
of urban regions.

(2) Text-enhanced vision-language methods significantly out-
perform single-modality and POI-enhanced approaches. UrbanVLP
consistently outperforms both the vision-only ViT model and the POI-enhanced
PG-SimCLR across all tasks, with notable improvements in PM, 5 prediction
(R*: 0.8240 vs 0.4280 for PG-SimCLR). This confirms that rich textual de-
scriptions provide more contextually relevant information than structured
POI data alone. UrbanMMCL further advances this paradigm by effectively
integrating visual features with geographical coordinates and adaptive graph
relationships.

(3) Adaptive graph contrastive learning significantly outper-
forms static graph-based methods. Unlike existing graph-based meth-
ods (MVURE, HREP and ReMVC) that rely on predetermined region rela-
tionships, UrbanMMCL uses VGAE and adaptive random walks to automat-
ically learn and refine meaningful region connections. Our method achieves
a remarkable 30.8% R? improvement in CO prediction over MVURE, high-
lighting how our adaptive approach addresses the limitations of fixed graph
structures in complex urban environments.

(4) The synergy between multi-modal integration and multi-
view graph modeling creates generalizable urban representations.
The integration of RSI, SVI, geographical positions, and textual descriptions

through dual-stage contrastive learning allows UrbanMMCL to capture both
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Methods ‘ PEP(CO) ‘ PEP(PM; 5) ‘ PDE ‘ LuC

| MAE| MSE| R*? |MAE| MSE| R>1 | MAE] MSE | Rt | F11 Recall 1
RSI-CLIP 00313 00019 04573 | 14185 27707  0.5969 | 2615.4236 16563126.19 0.5844 | 0.4952  0.5114
SVI-CLIP 0.0288  0.0015 05435 | 1.1461  2.1668 0.6376 | 2404.1780 14664183.37 05596 | 0.4597  0.4394
w/o Text 0.0246  0.0013 0.6372 | 0.8683  1.4384  0.7751 | 1996.8511 10413018.36  0.6957 | 0.5550  0.5536
w/o MCL 0.0327  0.0018 04341 | 1.4808  3.6995 0.4824 | 3824.2488 1754243841 0.5194 | 0.4223  0.4445

UrbanMMCL‘ 0.0212  0.0009 0.7417‘ 0.6785 1.0212 0.8481‘ 1931.64 9943831.52 0.7670 0.6058 0.5994

Table 3: Ablation on multimodal components. The best results are highlighted in bold-

face.
M | PEP(CO) | PEP(PMa.5) | PDE | LUC
ethods
| MAE| MSE| R?t |MAE| MSE| R2? | MAE| MSE | Rt | F11 Recall 1
w/o G 0.2284  0.0011  0.5342 | 1.1219  1.9569  0.6983 | 2527.02 17422814.99  0.5768 | 0.3852  0.3952
w/o GOD 0.0202  0.0009 05910 | 1.2310 25737  0.6111 | 2620.2102 1888971273  0.5679 | 04702  0.5124
w/o GP) 0.0276  0.0014 03575 | 1.0027  1.8363  0.6967 | 2454.5840  17698496.25  0.4202 | 0.4450  0.4373
w/o VGAE 0.0263  0.0014 0.6020 | 1.0447  1.9016  0.6771 | 1935.23  13555443.7517 0.6531 | 04424  0.4428
w/o RW 0.0220  0.0010 0.6554 | 0.7185  1.2764  0.7947 | 1912.9005 1122529352  0.6808 | 0.4680  0.4851
w/o GCL 0.0335  0.0019 04104 | 1.8679  3.5980  0.5078 | 2095.8574  13879595.94  0.6071 | 0.3966  0.4123

UrbanMMCL‘ 0.0212  0.0009 0.7417‘ 0.6785 1.0212 0.8481 1931.64  9943831.52 0.7670 0.6058 0.5994

Table 4: Ablation on multi-view graph components. The best results are highlighted in
boldface.

fine-grained visual details and macro-scale spatial relationships. This com-
prehensive modeling creates generalizable features that maintain consistent
performance across both regression and classification tasks, from environ-

mental monitoring (CO, PMy5) to socioeconomic analysis (PDE, LUC).

4.8.3. Cross-city generality

To assess the generalization capability of UrbanMMCL, we conducted val-
idation studies in Beijing and Chengdu, two cities with contrasting develop-
mental and geographic profiles. Our evaluation adopts hierarchical transfer
learning leveraging UrbanMMCL’s modular design, where multimodal en-

coders trained on Shenzhen are directly transferred while graph components
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. | PEP(CO) | PEP(PM,;) | PDE | LUC
Cities Models
R? 1 R2t | R*t | F17%
PG-SimCLR 0.4929 0.4301 0.6109 0.4380
ReMVC 0.5488 0.5157 0.5433 | 0.4791
Beijing
UrbanMMCL 0.7032 0.7811 0.6317 0.5538
Improvement(%) | +28.15% +51.46% +3.40% | +15.59%
PG-SimCLR 0.5171 0.4540 0.5583 0.4581
ReMVC 0.5728 0.5384 0.5679 0.4904
Chengdu
UrbanMMCL 0.6912 0.7508 0.6420 0.5395
Improvement(%) | +20.67% +39.45% +13.04% | +10.01%

Table 5: Cross-city transfer learning performance comparison in Beijing and Chengdu.

are re-initialized for city-specific spatial relationships.

Table 5 demonstrates impressive cross-city performance. Both cities
achieve achieve strong performance with R? scores of 0.63-0.78 across regres-
sion tasks and competitive F1 scores of 0.54-0.55 for land use classification,
maintaining remarkably consistent results despite diverse urban contexts.
UrbanMMCL consistently outperforms baseline methods PG-SimCLR and
ReMVC by 10-51%, confirming robust generalization across diverse urban
environments.

4.8.4. Ablation studies

To validate our design principles, we conduct comprehensive ablation
studies addressing two key questions: (1) What are the essential multi-
modal components and integration strategies for effective urban represen-
tation learning? (2) What are the essential graph perspectives and learning

mechanisms for effective urban spatial relationship modeling?

39



742

743

744

745

746

747

748

749

750

751

752

753

754

755

757

758

759

760

761

762

763

764

765

766

Ablation on multimodal components. We design four variants to
test specific hypotheses: (1) RSI-CLIP and SVI-CLIP replace our domain-
specific encoders with general-purpose pre-trained CLIP model (ViT-B/32)
to assess the necessity of domain specialization; (2) w/o Text eliminates
textual enhancement to quantify semantic information contribution; (3) w/o
MCL removes cross-modal contrastive learning and initializes the encoders
with their original weights while preserving multimodal fusion to isolate the
impact of explicit cross-modal alignment.

Table 3 reveals three key findings that validate our design choices. First,
replacing specialized components with general CLIP causes substantial degra-
dation, demonstrating that urban scene understanding requires architectural
adaptations beyond general vision models. Second, removing text consis-
tently decreases performance by 14.1% across tasks, with environmental
monitoring particularly affected, showing that semantic descriptions cap-
ture abstract urban characteristics invisible to visual features alone. Third,
eliminating contrastive learning causes the most severe degradation, confirm-
ing that explicit cross-modal alignment is essential for coherent multimodal
representations. These results demonstrate that each component addresses
specific urban representation challenges, and their synergistic integration is
critical for optimal performance across diverse urban tasks.

Ablation on multi-view graph components. We design six variants
testing: (1) individual graph view contributions (w/0 G&/M/P)): (2) w/o0
VGAE: replacing the VGAE with standard GCN for graph encoding to as-
sess probabilistic graph structure learning; (3) w/o0 RW: eliminating random

walk-based subgraph generation and using full graphs to evaluate local struc-
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ture sampling effectiveness; and (4) w/o GCL: removing graph contrastive
learning while retaining basic graph encoders to isolate cross-view alignment
impact.

Table 4 reveals critical insights into urban spatial modeling. First, distance-
based graph removal causes the most severe degradation, particularly im-
pacting the CO prediction, while mobility-based graph and function-aware
graph removal results in 24.8% and 23.5% average decrease, demonstrat-
ing that geometric relationships serve as fundamental structural foundation
with all three perspectives capturing distinct spatial aspects. Second, re-
placing VGAE with standard GCN decreases performance by 17.9%, while
removing random walk sampling causes a 9.7% drop, demonstrating that
both probabilistic structure learning and local sampling contribute to effec-
tive spatial modeling. Third, eliminating graph contrastive learning results
in the largest performance decline with 35.2% average R? decrease, confirm-
ing that learning coherent multi-perspective representations requires explicit
alignment mechanisms. These results demonstrate that effective urban spa-
tial understanding requires integrated design of multiple graph perspectives,

adaptive structure learning, and cross-view contrastive alignment.

4.4. Analysis of learned representations

4.4.1. Representation visualizations

To validate that our model learns meaningful representations that ef-
fectively distinguish different urban area types, we examine learned region
representations through a t-SNE dimensionality reduction, which maps the
high-dimensional embeddings learned by UrbanMMCL into an interpretable

two-dimensional space. Figure 6 reveals three distinct clusters with high
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Figure 6: t-SNE visualization of region representations showing three distinct clusters
corresponding to different urbanization levels: natural vegetation areas (left), mixed-use

suburban regions (center), and high-density urban areas (right).

intra-cluster similarity. The clusters exhibit a progressive urbanization gra-
dient from left to right: areas dominated by natural vegetation, mixed-use
suburban regions, and high-density urban areas. This clustering pattern
validates our approach successfully captures subtle yet critical geographical
differences and maps regions with similar architectural layouts and land use
patterns into proximate embedding positions.

To validate the necessity and effectiveness of multi-view fusion over single-

view approaches, Figure 7 demonstrates our multi-view approach through
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Figure 7: Multi-view region representation analysis. (a) Spatial distribution of study
regions with anchor regions A, B, C. (b) UrbanMMCL embedding space showing integrated
clustering. (c) Single-view embeddings and quantitative metrics revealing individual graph

limitations.

comparative analysis of three anchor regions. Panel (c) reveals limitations

of single-view embeddings through individual embedding spaces and quan-

43



802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

titative relationship metrics (D, P, M values). The only distance-based em-
bedding places regions A-B closely while positioning A-C far apart despite
their strong functional similarity. The only POI-based embedding brings
functionally similar regions A-C together but inappropriately positions A-B
and B-C by neglecting spatial and mobility constraints. The only mobility-
based embedding clusters regions B-C closely due to strong movement con-
nections while under-representing A-B and A-C relationships. These po-
sitioning biases highlight the the limitations of single-view approaches in
capturing comprehensive urban relationships. In contrast, Panel (b) demon-
strates our UrbanMMCL embedding space where regions achieve balanced
clustering through consensus-based optimization integrating all perspectives.
This integrated approach produces robust representations that position re-
gions appropriately by balancing functional similarity, spatial proximity, and

mobility connectivity in a unified embedding space.

4.4.2. Geographic mapping of clustered representations

To validate that our UrbanMMCL framework captures meaningful urban
structures, we apply hierarchical clustering to the learned embeddings. Fig-
ure 8 presents clustering results for k k=2 to 6, with the dendrogram distances
indicating cluster distinctiveness. Clustering analysis demonstrates a clear
hierarchical organization of urban spaces. At k=2, a fundamental binary
partition emerges: built-up areas (pink) and natural areas (cyan), separat-
ing urban development zones from mountainous regions and water bodies.
As k increases to 3, the urban domain subdivides into high-density cores
(Futian, Luohu, Nanshan) and lower-density periphery (Longgang, Guang-

ming, Pingshan), while natural areas remain cohesive. Higher k values (4-6)
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Figure 8: Geographic mapping of clustered representations across different cluster numbers
(k=2 to k=6).The dendrogram (left) shows the hierarchical structure of learned embed-
dings, with dashed lines indicating cut heights for different k values. The satellite image
(top center) provides the geographic context of Shenzhen. The cluster maps (right) visu-

alize the spatial distribution of clusters for each k value.

demonstrate progressive refinement within urban areas while maintaining
stable natural clusters. This pattern indicates that our embeddings suc-
cessfully encode urban heterogeneity, as they capture development intensity
variations and functional zones while recognizing the homogeneity of natu-
ral landscapes. Such spatially coherent clustering demonstrates the practical

utility of our framework for automated urban region categorization.

4.4.83. Predictive performance analysis
To demonstrate the practical effectiveness of our method, we conduct
comprehensive case studies examining prediction performance in representa-

tive four urban regions. Our analysis includes: (1) regression analysis with
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characteristics for CO, PMs 5 emissions, and population density prediction,
and (2) classification analysis for land use.

Regression Analysis. We select four representative regions that pro-
vide an ideal testbed for evaluating multi-modal and multi-view necessity.
Critically, region pairs (A-B and C-D) exhibit similar visual appearances but
substantial differences in urban indicators, creating challenging discrimina-
tion scenarios.

Figure 9 presents regression results across three urban indicators. Our
complete UrbanMMCL framework consistently achieves the closest approx-
imations to ground truth. When individual modalities are removed, sys-
tematic degradation emerges. Eliminating RSI or SVI causes predictions to
converge toward averaged values, losing spatial discrimination. For exam-
ple, without RSI, CO predictions become nearly uniform (0.33-0.39), failing
to capture the actual variation (0.63-0.96). View-specific ablation reveals
distinct dependency patterns for different urban indicators. Environmental
indicators show greater sensitivity to structural patterns capturing physical
processes, while socio-economic indicators correlate more strongly with hu-
man behavior modeling and functional interactions. These heterogeneous
patterns validate our multi-view approach by demonstrating that different
urban processes operate through distinct channels, and no single structural
perspective adequately captures urban system complexity.

Land Use Classification Analysis. We examine prediction perfor-
mance across six primary land cover categories: tree cover, building, shrub-
land, cropland, traffic route, and grassland. The spatial distribution anal-

ysis(Figure 10 a-b) shows that UrbanMMCL predictions closely align with
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CcO
O A B C D

Ground Truth 0.73 0.96 0.63 0.92
UrbanMMCL 0.67 0.84 0.49 0.89
w/o RSI 0.33 0.37 0.36 0.39
w/o SVI 0.35 0.32 0.32 0.33
w/o G® 0.49 0.71 0.24 0.49
w/o GM 0.51 0.68 0.36 0.55
. w/og® 0.41 0.66 0.32 0.54 )
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“TGround Truth 584 1018 326 1069
UrbanMMCL 507 925 295 912
w/o RSI 832 759 799 747
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Figure 9: Case Study analysis comparing prediction performance across four representative
regions for three urban indicators. The left panel displays the spatial distribution and
corresponding SVI/RSI data, while the right panel presents compares ground truth with
UrbanMMCL predictions and ablation configurations.

ground truth patterns. Our framework successfully captures complex spatial
organization and maintains clear boundaries between natural areas and built
environments. The confusion matrix (Figure 10 c¢) reveals varying perfor-
mance across categories. Grassland achieves the highest accuracy at 85.3%,
followed by shrubland at 75.0%, building at 64.8%, and traffic routes at
59.7%. Tree cover and cropland show more challenging classification at 37.7%

and 36.4% respectively, likely due to seasonal variations and spectral simi-
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Figure 10: Land use classification analysis comparing UrbanMMCL predictions with
ground truth data. (a) Ground truth spatial distribution. (b) UrbanMMCL prediction
results. (¢) Confusion matrix quantifying classification accuracy for each land cover cate-

gory.

Our complete UrbanMMCL framework consistently achieves the closest
approximations to ground truth across all regions and indicators in both
regression and classification tasks. The multimodal data integration and
multi-view framework ensures that when visual similarities mask functional
differences, complementary perspectives provide the discriminative power

necessary for accurate urban dynamics prediction and land use classification.
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5. Discussions

5.1. Multi-modal contribution analysis

Understanding how disparate urban data modalities contribute to repre-
sentation learning provides insights into feature complementarity and infor-
mation hierarchies in multi-modal urban analysis. Our ablation experiments
reveal distinct roles for each modality in capturing different aspects of urban

complexity, with results presented in Figure 11.

[ w/oRSI [ w/oSVI [ w/oRSI-P [ w/oSVI-P [ UrbanMMCL

0.80 0.90 0.80 0.6.
0.73350-7417 0.8481 074110EH 0.605!
o701 ) 7] 0.831403441 T 0.7340°__ 05524 ]
0.5537 ]
0.60- 0.774 0.65= 0.53=
o . . o
0.40- 0.63- 0.50=14882 0.42
oaes j_57()ﬁﬂ 5796 04176 D.3679 () 3637
2355 D
0.20: | 0.50 0.3 0.30
o PM, 5 PDE LUC

Figure 11: Multi-modal ablation study showing the contribution of different modalities to

urban representation learning.

Fundamental Role of Remote Sensing Imagery. RSI emerges as
the most fundamental modality, with its removal causing severe performance
degradation across all tasks. This dominance stems from RSI’s ability to cap-
ture spatial patterns and urban morphological features at scale. For PEP,
substantial performance drops reveal that RSI encodes critical spatial depen-

dencies correlating with environmental phenomena. RSI’s high information
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density enables learning of rich spatial representations that serve as founda-
tional embeddings for other modalities.

Complementary Value of Street-View Imagery. SVI contributes
fine-grained environmental features through local context augmentation. Per-
formance improvements from SVI inclusion demonstrate its role in capturing
micro-environmental variations invisible in overhead imagery. SVI functions
as local environmental validators that refine broad spatial patterns captured
by RSI, particularly evident in LUC where ground-level visual cues help dis-
tinguish functionally similar areas.

Spatial Context Enhancement Through Positional Encoding.
Geographical coordinates provide modest but consistent contributions as
spatial relationship encoders. The relatively small impact when removing
positional encoding suggests that visual features carry majority predictive
information, while coordinates primarily enhance spatial coherence and topo-

logical consistency in learned representations.

[ Concat [ MLP [ Addition(Ours)

0.80: 0.90: 0.80: 0.6
0.7670
0.7417 0.8481 0.6058
08222
0.6980
06523 6340 0.7869 0.6736
0.60- 0.77 0.65- 0.534
0.5013
o ) ) — 0.4715
~ o~ o~ )
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Figure 12: Performance comparison of different multi-modal fusion strategies.
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Implications for Urban Representation Learning. These findings
establish fundamental principles for effective urban Al systems. Perfor-
mance differentials when removing individual modalities demonstrate that
each modality contributes unique, irreplaceable information, establishing a
clear modality hierarchy where RSI provides foundational spatial structure,
SVI adds critical environmental detail, and positional encoding serves as
spatial regularization (Figure 11). More critically, the superior performance
of specialized encoders over generic CLIP-based alternatives (Table 3) and
the critical role of multi-view contrastive learning (Table 4) demonstrate
that urban environments require domain-specific architectures and multi-
perspective integration rather than universal approaches. This advocates for
specialized multi-modal urban Al systems that embrace complexity through

tailored encoders and multi-perspective integration.

5.2. Multi-modal feature fusion strategy analysis

Multi-modal feature fusion significantly impacts the model’s ability to
leverage complementary information from heterogeneous urban data sources.
The choice of fusion strategy is therefore crucial for maximizing the benefits
of multi-modal urban data integration. We compared three fusion strate-
gies: (1) concatenation of visual and location features from RSI and aggre-
gated SVIs; and (2) MLP-based fusion with multi-layer perceptrons; and (3)
element-wise addition. As shown in Figure 12, our addition method consis-
tently achieves superior performance across all metrics despite its simplicity.

The superior performance of element-wise addition can be attributed
to its ability to preserve original feature distributions while enabling direct

correspondence between spatially aligned features from different modalities.
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Unlike concatenation, which introduces feature redundancy and increased
dimensionality, or MLP fusion, which adds parameters and optimization
complexity, addition fusion maintains the semantic integrity of individual
modalities while creating meaningful cross-modal interactions. This vali-
dates our design choice and demonstrates that simpler fusion strategies can

be more effective.

5.8. Training paradigms and efficiency analysis

To comprehensively evaluate our model’s representation capabilities and
training efficiency, we examine two additional training paradigms that rep-
resent different approaches to leveraging pre-trained knowledge for urban
downstream tasks. Pretrain-finetune first optimizes the encoder on a large-
scale, task-agnostic urban data to learn general representations, followed by
fine-tuning on downstream tasks; Linear probing freezes the pretrained
encoder and trains only a linear head, providing an efficient assessment of
representation quality with minimal computational resources; End-to-end
training initializes with pre-trained weights but allows unrestricted param-
eter updates throughout the entire architecture.

Figure 13 presents comparative analysis of three training paradigms across
prediction accuracy, runtime per epoch, and epochs to convergence. The
bars represent average performance while scattered points show individual
task values for CO, PM, 5, PDE, and LUC tasks. The results reveals criti-
cal insights into the performance-efficiency trade-offs inherent in each train-
ing approach. Pretrain-finetune emerges as the optimal strategy, achieving

the highest average accuracy (0.7409) with computational efficiency (16.7
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Figure 13: Comparative analysis of three training paradigms across prediction accuracy,
runtime per epoch, and epochs to convergence across urban tasks. Bars represent average
performance across all urban tasks, while scattered points show individual task perfor-
mance (circles: CO prediction, triangles: PMy 5 prediction, squares: Population Density

Estimation, diamonds: Land Use Classification).

s/epoch, 184 epochs). This paradigm preserves Ispatial reasoning capabil-
ities through selective parameter adaptation, making it ideal for resource-
constrained urban monitoring applications. Linear probing shows the fastest
per-epoch computation (11.3s) but suffers from limited representation adapt-
ability. The frozen encoder prevents overfitting but results in systematic ac-
curacy degradation, particularly in complex regression tasks. Despite faster
iterations, it requires nearly twice as many epochs to converge (348 vs 184),
offsetting its computational advantage. End-to-end training incurs prohibitive
costs (18.9s/epoch, 857 epochs to converge) while achieving only marginal im-
provements over linear probing and falling 2.53% short of pretrain-finetune,

making it viable only with abundant resources. Overall, the results validate
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pretrain-finetune as the optimal training paradigm, effectively balancing pre-
dictive performance with computational efficiency:.

5.4. Limitations and future directions

While UrbanMMCL demonstrates significant advances in urban repre-
sentation learning, several limitations warrant acknowledgment and present
opportunities for future research.

First, our framework’s reliance on high-quality textual descriptions gen-
erated by BLIP-2 introduces a potential bottleneck, as variations in text
generation quality across different urban scenes could lead to inconsistent
performance, particularly in challenging scenarios where visual content is
ambiguous or degraded. Future work should explore more robust text gen-
eration methods or develop alternative approaches to incorporate semantic
information less dependent on generative model.

Second, the static nature of our graph construction methods may not
fully capture dynamic temporal patterns inherent in urban systems, such as
daily traffic patterns or seasonal environmental changes. Additionally, the
choice of graph construction criteria may not be optimal for all urban tasks.
Future directions should explore temporal modeling capabilities, dynamic
graph learning approaches, and task-adaptive graph construction strategies.

Finally, while our framework demonstrates cross-city transferability from
Shenzhen to Beijing and Chengdu, complete zero-shot generalization remains
limited. The graph structure components require re-initialization and adap-
tation for city-specific spatial relationships, indicating that spatial modeling
still needs localized fine-tuning. Future research should investigate develop-

ing fully generalizable urban foundation models that can achieve complete

o4



oo zero-shot inference without requiring any component re-training, potentially
o1 through learning universal spatial relationship patterns or developing city-
sz agnostic graph construction strategies that can adapt automatically to new

93 urban environments.

94 6. Conclusions

905 This paper presents UrbanMMCL, a novel self-supervised dual-stage con-
ws trastive learning framework that advances urban representation learning through
o7 innovative integration of multi-modal fusion and adaptive graph learning.
ws Our approach establishes a comprehensive pre-training paradigm that learns
wo generalizable urban representations without requiring task-specific labels, ad-
w0 dressing the critical challenge of limited annotated data in urban analysis.
1001 Comprehensive experimental validation demonstrates that UrbanMMCL
w02 consistently outperforms state-of-the-art methods across environmental mon-
w03 itoring, population estimation, and land use classification tasks. Cross-city
ws  transfer experiments further validate the generalizability of our learned rep-
wos resentations across different urban environments. The framework’s success
ws  stems from its principled integration of RSI, SVI, textual descriptions, and
wor  geographical coordinates through contrastive learning, while adaptive graph
wos learning captures dynamic inter-regional relationships that static approaches
000 cannot model.

1010 UrbanMMCL represents a significant advancement toward urban founda-
o1 tion models by demonstrating how multi-modal pre-training can learn trans-
w2 ferable urban knowledge that generalizes across different tasks and cities.

w3 This work bridges the gap between domain-specific urban analysis tools and
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the broader vision of unified urban Al systems, laying the groundwork for
more comprehensive urban foundation models that can support evidence-
based urban planning, sustainable development, and smart city initiatives at

unprecedented scale and sophistication.
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