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Abstract

Urban region representation learning has emerged as a fundamental ap-

proach for diverse urban analytics tasks, where each neighborhood is en-

coded as a dense embedding vector for effective downstream applications.

However, existing approaches suffer from insufficient multi-modal alignment

and inadequate spatial relationship modeling, limiting their representation

quality and generalizability. To address these challenges, we propose Ur-

banMMCL, a novel self-supervised framework that integrates multi-modal

multi-view contrastive pre-training with unified fine-tuning for comprehen-

sive urban representation learning. UrbanMMCL employs a dual-stage archi-

tecture. First, cross-modal contrastive learning aligns diverse data modalities
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including remote sensing imagery, street view imagery, location encodings,

and Vision-Language Model (VLM)-generated textual descriptions. Second,

multi-view adaptive graph contrastive learning captures complex spatial re-

lationships across human mobility, functional similarity, and geographic dis-

tance perspectives. The framework then integrates the learned representa-

tions through a dedicated fusion mechanism for effective adaptation to down-

stream tasks. Comprehensive experiments demonstrate that UrbanMMCL

consistently outperforms state-of-the-art methods across pollutant emission

prediction, population density estimation, and land use classification with

minimal fine-tuning requirements, thereby advancing foundation model de-

velopment for diverse Geo-AI applications.
Keywords: Urban Region Representation Learning, Contrastive Learning,

Graph Learning, Multimodal Fusion, Urban Foundation Model

1. Introduction1

Urban region representation learning extracts compact features from het-2

erogeneous data to capture spatial, social, and economic characteristics es-3

sential for urban tasks like pollution prediction (He and Huang, 2025), so-4

cioeconomic estimation (Cao et al., 2025b), and land-use classification (Cao5

et al., 2025a). These applications provide valuable contributions to urban6

planning and environmental management in increasingly complex urban en-7

vironments driven by the rapid urbanization process.8

Conventional region representation learning approaches encounter sub-9

stantial difficulties in efficiently incorporating multi-source multi-modal data10

to generate unified representations (Zhang et al., 2025). Urban regions are in-11
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herently heterogeneous, characterized by diverse physical attributes, dynamic12

socioeconomic activities, and complex interregional interactions. Thus, ur-13

ban region representations require sophisticated modeling to capture this14

multidimensional nature (Wang et al., 2024, 2025).15

Fusing multi-perspective visual data has emerged as a promising approach16

to comprehensively reveal heterogeneous urban characteristics. Remote sens-17

ing images (RSIs) provide foundational macroscopic perspectives with exten-18

sive coverage (Bai et al., 2023; Zhou et al., 2021), capturing urban morphol-19

ogy and land use patterns (Bai et al., 2025), while street view images (SVIs)20

offer complementary micro-level details by documenting street environments21

and building facades (Zhao et al., 2025; Zhang et al., 2019, 2024b). Nev-22

ertheless, the fusion of multi-perspective visual data presents unique chal-23

lenges (Zou et al., 2025), as traditional approaches have treated these data24

independently or employed simplistic fusion mechanisms, failing to preserve25

complementary information (Gao et al., 2020).26

Despite detailed physical characteristics, visual data alone lack seman-27

tic depth for complete regional description. While existing representation28

learning approaches rely on Point-of-Interest (POI) data for textual seman-29

tics (Li et al., 2023a), POI data’s spatial sparsity and uneven distribution30

frequently result in inconsistent representation quality (Qin et al., 2025).31

Vision-Language Models (VLMs) offer promising alternatives by generat-32

ing comprehensive semantic descriptions from visual content (Huang et al.,33

2024), transforming RSIs and SVIs into rich textual annotations such as34

’high-density residential area’ and ’busy transportation hub with commercial35

activities’. However, current methodologies underutilise these descriptions,36
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treating them as rudimentary labels rather than leveraging their semantic37

intricacy for profound visual-textual alignment (Liu et al., 2024).38

The modeling inherent spatial relationships between urban regions is39

imperative for the effective representation learning. Urban regions exhibit40

multi-faceted spatial interdependencies characterised by geographical adja-41

cency, mobility patterns, and functional similarity (Wang et al., 2024). While42

recent multi-view frameworks incorporate these dependencies (Li et al., 2019;43

Wu et al., 2022), they typically process views independently or use simple44

aggregation strategies (Zhang et al., 2020; Chan and Ren, 2023), missing syn-45

ergistic information across relational perspectives. The utilization of graph46

contrastive learning in urban spatial modeling represents a potentially fruit-47

ful yet underexplored research avenue (Zhang et al., 2023d; Liu et al., 2025).48

To address these challenges, we propose UrbanMMCL, a Urban Multi-49

Modal and Multi-View dual Contrastive Learning framework that estab-50

lishes a self-supervised pre-training and fine-tuning paradigm for compre-51

hensive region representation learning. Pre-training Stage consists of two52

synergistic components: (1) multi-modal vision-language contrastive53

learning that aligns RSI, SVI, location encodings, and semantic textual54

descriptions through specialized encoders and multi-level contrastive objec-55

tives; (2) adaptive multi-view graph contrastive learning that models56

complex spatial relationships through dynamic graph structure optimization57

across multiple relational views. This stage learns generalizable urban repre-58

sentations from unlabeled multi-modal data without requiring task-specific59

annotations. Fine-tuning Stage integrates the pre-trained multi-modal60

and multi-view representations through dedicated fusion mechanisms, en-61
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abling effective knowledge transfer to diverse downstream urban analytics62

tasks including population estimation, pollutant emission monitoring, and63

land use classification with minimal labeled data requirements.64

Our key innovations are fourfold:65

1. A systematic dual-stage framework that simultaneously addresses multi-66

modal data and multi-view relationships, overcoming prior works’ single-67

focus limitation in urban representation learning.68

2. An comprehensive multi-modal alignment mechanism that unifies RSI-69

SVI-Location-Text data through triple contrastive learning, establish-70

ing deep semantic alignment while preserving semantic richness and71

spatial context.72

3. Adaptive multi-view spatial modeling that captures complex urban de-73

pendencies (proximity, mobility, demographic similarity) through dy-74

namic graph structure learning, enabling effective integration of multi-75

ple relational perspectives without requiring predefined graph topolo-76

gies.77

4. A domain-specific self-supervised pre-training paradigm with superior78

transferability across diverse urban analytics tasks, providing extensive79

analysis of how different modalities, fusion strategies, and training ap-80

proaches contribute to representation quality in resource-constrained81

deployment scenarios.82

Section 2 reviews related work on multimodal contrastive learning, graph83

contrastive learning, and urban representation learning. Section 3 details the84

UrbanMMCL framework. Section 4 presents experiments and evaluations.85

Section 5 analyzes model components, training paradigms, and limitations.86
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Section 6 concludes the study.87

2. Related works88

2.1. Multimodal contrastive learning89

Self-supervised learning (SSL) has emerged as a powerful paradigm that90

leverages unlabeled data to learn generalizable representations, eliminating91

the need for costly manual annotations. Among SSL approaches, contrastive92

learning stands out as a particularly effective technique that learns repre-93

sentations by maximizing similarity between positive pairs while minimiz-94

ing similarity with negative samples (Dai et al., 2025; Zhang et al., 2023c).95

Methods such as InstDis (Wu et al., 2018), SimCLR (Chen et al., 2020), and96

MoCo series (He et al., 2020; Chen et al., 2021) have proven to be effective97

in learning robust representations from unlabeled data.98

Multimodal contrastive learning extends this paradigm by integrating99

information from different data modalities to create unified representations100

that capture complementary cross-modal correspondences (Wang et al., 2025;101

Yong and Zhou, 2024). Vision-language contrastive learning represents a102

particularly promising approach, combining rich spatial information from103

imagery with semantic descriptions (Bao et al., 2022). CLIP (Radford et al.,104

2021b) demonstrates the power of joint image-text representations through105

contrastive training, enabling enhanced cross-modal understanding. Similar106

approaches such as ALIGN (Jia et al., 2021) have expanded to billion-level107

image-text pairs.108

In urban analytics, multimodal approaches are particularly crucial due109

to the inherently complex nature of urban environments, which generate di-110
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verse data types including RSIs, SVIs, POIs, and textual descriptions (Zhou111

et al., 2023b; Shen et al., 2023). Recent works have explored this direc-112

tion in geospatial domains (Weng et al., 2025). GeoCLIP (Cepeda et al.,113

2023) applies contrastive learning for image-based geolocalization, while Sat-114

CLIP (Klemmer et al., 2025) extends CLIP to RSIs, learning representations115

that bridge RSIs with natural language descriptions. UrbanCLIP (Huang116

et al., 2024; Yan et al., 2024) specifically targets urban region understanding117

by integrating satellite imagery or street-view images with textual descrip-118

tions, and other works (Liu et al., 2023) have explored vision-language mod-119

eling and knowledge-infused contrastive frameworks for enhanced geographic120

understanding.121

However, multimodal contrastive learning for urban region representation122

remains underexplored. Existing methods typically focus on single visual123

modalities with limited integration and lack effective adaptation of vision-124

language models for urban contexts. They treat geographical coordinates as125

auxiliary features rather than fundamental organizing principles for multi-126

modal alignment. These highlight the need for specialized frameworks tai-127

lored to urban representation requirements.128

2.2. Graph contrastive learning129

Graph Neural Networks (GNNs) have revolutionized urban analysis by130

modeling urban regions as graph-structured data (Khoshraftar and An, 2024;131

Cao et al., 2025c). However, most GNN models rely on supervised training132

requiring substantial labeled data (Ju et al., 2024), which may be unavailable133

in many urban scenarios. To address these limitations, self-supervised graph134

contrastive learning (GCL) has emerged as a promising alternative that can135
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learn meaningful representations without labeled supervision.136

GCL integrates both structural and attribute information by maximizing137

agreement between disparate versions of the same graph while contrasting138

with negative samples through the implementation of sophisticated architec-139

tures and augmentation strategies (Wu et al., 2023; Sun et al., 2020a). Two140

primary paradigms have emerged: global-local methods such as Deep Graph141

Infomax (DGI) (Veličković et al., 2018), MVGRL (Hassani and Khasahmadi,142

2020), and InfoGraph (Sun et al., 2020b) that contrast node-level with graph-143

level representations, and local-local approaches such as GRACE (Zhu et al.,144

2020), GraphCL (You et al., 2020) with its variants (You et al., 2021; Suresh145

et al., 2021), and GCA (Zhu et al., 2021) that maximize agreement between146

node embeddings across augmented graph views.147

Multi-view graph contrastive learning integrates multiple graph perspec-148

tives to capture diverse urban relationships (He et al., 2025). Urban appli-149

cations have constructed complementary views including POI co-occurrence150

networks (Huang et al., 2023; Zhang et al., 2023a), trajectory-based mobility151

graphs (Zhang et al., 2024a), and spatial adjacency graphs (Luo et al., 2022).152

However, contemporary multi-view GCL methods encounter critical limita-153

tions. Zhang et al. (Zhang et al., 2023d) propose a multi-view framework154

using triplet loss, but their node-level approach with static view construc-155

tion misses subgraph-level patterns that characterize urban functional areas.156

Their method relies on fixed topologies and simple augmentation strategies157

that cannot adapt to dynamic urban spatial relationships. This highlights the158

need for sophisticated multi-view GCL frameworks that integrate heteroge-159

neous urban data through adaptive augmentation strategies while preserving160
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semantic coherence of urban functional regions.161

2.3. Urban representation learning162

Urban region representation learning aims to generate low-dimensional163

embeddings that reflect urban regional attributes and interregional relation-164

ships while preserving spatial and semantic structures. A effective learning165

requires mining intrinsic correlations among heterogeneous data sources, in-166

cluding geographic topology, urban visual imagery and human mobility (Wang167

et al., 2026; Guan et al., 2024). This paradigm enables effective analysis168

across diverse urban applications from sociodemographic prediction to land169

use classification.170

Early methods primarily relied on single modalities such as POI features171

(Zhai et al., 2019; Sun et al., 2021), human mobility patterns (Zhou and172

Huang, 2018), or visual imagery (Li et al., 2023b). While achieving task-173

specific success, single-modal approaches fail to capture multi-dimensional174

urban characteristics (Zou et al., 2025). Recent advancements focus on multi-175

modal fusion, integrating spatial, visual and textual data for comprehensive176

regional characterization (Zou et al., 2025). Representative works include177

RegionEncoder (Jenkins et al., 2019) for joint encoding of POIs, mobility178

flows, and RSIs, and Urban2Vec (Wang et al., 2020) combining SVIs with179

POI descriptions. However, existing approaches predominantly rely on sim-180

ple concatenation and attention mechanisms, lacking sophisticated semantic181

alignment and hierarchical adaptive fusion strategies.182

The field has evolved from traditional techniques including matrix factor-183

ization (Belkin and Niyogi, 2001) and network embedding methods such as184

DeepWalk and Node2Vec (Perozzi et al., 2014; Grover and Leskovec, 2016)185
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to GNNs (Xu et al., 2022). Traditional approaches heavily depends on task-186

customized supervised paradigms (Gao et al., 2020) targeting specific objec-187

tives like poverty assessment (Jean et al., 2016; Yeh et al., 2020) and urban188

function classification (Cao et al., 2020). Recent advances embrace self-189

supervised learning (Chen et al., 2025), with notable approaches including190

ReCP (Li et al., 2024) and GraphST (Zhang et al., 2023b), and multiview191

graph learning such as MVURE (Zhang et al., 2020) and CGAP (Xu and192

Zhou, 2024). Notwithstanding the advances that have been made, the de-193

sign of self-supervised pre-training tasks for universal urban representation194

remains a critical challenge.195

3. Methodology196

3.1. Preliminaries197

We formalize the urban region representation problem through the fol-198

lowing key components.199

Definition 1. Urban Spatial Partitioning. Given a city divided into200

N non-overlapping grid regions R = {ri}Ni=1, each region ri is associated with201

multi-modal urban data.202

Definition 2. Remote Sensing Imagery. Remote sensing imagery203

IRS captures aerial views of the earth’s surface, providing insights into build-204

ing distributions and land use patterns. For each region ri, an orthorectified205

image patch IRS
i ∈ Rh×w is used, where h and w are the dimensions of the206

grid.207

Definition 3. Street View Imagery. Street view imagery ISV provides208

ground-level views of urban areas. For each region ri, multi-directional street209
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view images are collected as:210

ISV
i =

n∪
j=1

Iθi,j, (1)

where {si,j}nj=1 represents the uniformly distributed n sampling points along211

the road network within the region ri, and Iθi,j denotes the image captured212

at the point si,j. This collection approach ensures comprehensive coverage213

of urban streetscapes from multiple viewpoints.214

Definition 4. VLM-Enhanced Textual Description. Textual de-215

scriptions of a region ri include satellite-derived text T RS
i and street-view-216

derived text T SV
i . These descriptions are generated through advanced vi-217

sual language models (VLMs). They provide contextual insights into urban218

morphology, infrastructure, and functional attributes, complementing visual219

data.220

Definition 5. Multi-view Urban Graph. The urban system is mod-221

eled as a collection of multiple view graphs G = {G(k)}Kk=1, where each view222

G(k) = (V ,A(k)) shares the set of common nodes V = {vi}Ni=1 representing the223

regions of the urban grid, but has distinct adjacency matrices A(k) ∈ RN×N .224

Each view graph captures a specific type of urban relationship (e.g. POI-225

based functional similarity, mobility flow, or spatial proximity). This struc-226

ture enables comprehensive modeling of the urban system through comple-227

mentary perspectives while maintaining consistent regional representation228

across views.229

Definition 6. Urban Region Representation Learning. Given a230

set R of urban regions and K modal feature matrices X1,X2, . . . ,XK derived231

from multi-modal data sources (e.g. imagery I, textual descriptions T ), we232
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aim to learn a mapping function F : (ri,x
1
i ,x

2
i , . . . ,x

V
i ) → hi that transforms233

a region ri ∈ R, described by its feature vectors xk
i ∈ Xk (1 ≤ j ≤ K), into234

a d-dimensional representation hi ∈ Rd, where d is a small constant. The235

resulting region embeddings H = {h1,h2, . . . ,hN} should preserve essential236

urban characteristics across all modalities, enabling their effective application237

to a wide range of downstream tasks Y ∈ RN×K across N regions for K238

different socioeconomic and environmental attributes.239

3.2. Overview240

The proposed UrbanMMCL framework (Figure 1) enriches urban region241

representations through a dual-stage contrastive learning approach that es-242

tablishes a self-supervised pre-training paradigm for urban tasks.243

Stage 1: Multi-Modal Multi-View Contrastive Pre-training244

combines two complementary learning paradigms to establish comprehensive245

urban representations. The cross-modal contrastive learning leverages VLMs246

to generate semantic descriptions for both RSIs and SVIs, employing special-247

ized encoders (textual, visual, and location) with multiple contrastive objec-248

tives including RSI-text alignment, SVI-text alignment, and location-image249

correspondence. Simultaneously, the multi-view graph contrastive learning250

captures complex spatial dependencies through three distinct view graphs251

representing mobility patterns (Mob-view), functional similarities based on252

POI attributes (Fun-view), and spatial distance relationships (Dis-view). Us-253

ing adaptive graph encoders with independent processing pathways, this com-254

ponent dynamically learns optimized graph structures while capturing both255

intra-view dependencies and inter-view correlations for comprehensive spatial256

relationship modeling.257
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Figure 1: Overview of the UrbanMMCL framework. The framework operates in two

stages: (1) Pre-training Stage employs multi-modal contrastive learning (aligning RSI,

SVI, VLM-generated textual descriptions, and geographical coordinates) alongside multi-

view graph contrastive learning across heterogeneous graph views (mobility, functional,

and distance) using adaptive graph encoders; (2) Fine-tuning Stage integrates the pre-

trained multi-modal contrasts and multi-view graph contrasts through dedicated fusion

mechanisms, employing trainable predictors for efficient knowledge transfer to downstream

urban analytics tasks.

Stage 2: Unified Fine-tuning integrates the pre-trained multi-modal258

and multi-view representations through dedicated fusion mechanisms, en-259

abling efficient knowledge transfer to diverse downstream urban analytics260

tasks including population estimation, pollutant emission prediction (PM2.5,261

CO), and land use classification with minimal computational overhead and262

labeled data requirements. Details are provided in Sections 3.3, 3.4, and 3.5.263
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3.3. Multi-modal contrastive learning264

3.3.1. VLM knowledge distillation for text generation265

We employ BLIP-2, a state-of-the-art vision-language model, to perform266

knowledge distillation from large-scale pre-trained models, extracting rich267

semantic information from urban imagery. While advanced models like268

GPT-4V or Gemini possess extensive knowledge capabilities, their prohibitive269

costs make them impractical for our dataset of tens of thousands of images.270

BLIP-2 provides an efficient alternative through knowledge distillation via271

its lightweight Querying Transformer (Q-Former) architecture, which bridges272

a frozen image encoder and a frozen language model without requiring end-273

to-end fine-tuning, significantly reducing computational demands while dis-274

tilling comprehensive knowledge into high-quality textual descriptions. For275

each RSI or SVI, BLIP-2 processes the input with prompts to generate de-276

scriptive text that distills general knowledge into urban-specific semantic277

representations. Figure 2 illustrates these pairs of prompt descriptions.278

3.3.2. Vision-language-location feature encoders279

Using VLM-enhanced text generation, we create a dataset of visual-280

textual pairs (I, T ), where I represents RSIs IRS or SVIs ISV , and T in-281

cludes the corresponding textual descriptions T RS or T SV . We implement a282

factorized encoder architecture with dedicated visual, textual, and location283

encoders, enabling each to capture modality-specific characteristics while es-284

tablishing the foundation for multimodal alignment.285

Visual encoder. We deploy the Vision Transformer (ViT) architecture286

(Dosovitskiy et al., 2021) to process urban RSIs and SVIs. Recognizing287

that standard pre-trained models are optimized for general scenes rather288
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Figure 2: Examples of prompts and corresponding BLIP-2 generated descriptions for RSI

and SVI.

than urban environments, we fine-tune this encoder to better capture the289

unique structural patterns and spatial relationships characteristic of urban290

landscapes.291

Our encoding process begins by dividing each input image Ii into p non-292

overlapping patches. Each patch Pj is flattened and projected into a d-293

dimensional embedding space with positional encodings:294

zvis
j = Evis · Flatten(Pj) + pvis

j , j = 1, 2, . . . , p, (2)

where Ev ∈ R(h·w)×d is a learnable projection matrix and pv
j ∈ Rd is the295
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positional embedding.296

These patch embeddings {zvis
j }p

j=1
, prepended with a [CLS] token, are297

processed through L Transformer layers. Each layer applies multi-head self-298

attention (MSA) followed by a multi-layer perceptron (MLP):299

zvis′ = MSA(LN(zvis)) + zvis (3)

zvis′′ = MLP(LN(zvis′)) + zvis′ (4)

The self-attention mechanism allows each patch to attend to all others.300

Attention(Qvis,Kvis,Vvis) = softmax
(
Qvis(Kvis)⊤√

dk

)
Vvis (5)

where Qvis = Wvis
Q zvis, Kvis = Wvis

K zvis, Vvis = Wvis
V zvis are linear projec-301

tions.302

After processing through all transformer layers, we obtain the following:303

Xvis
i = ϕvis(Ii) = Transformer({zvis

j }pj=1), (6)

where Xvis
i = [xvisi

CLS,x
visi
1 ,xvisi

2 , · · · ,xvisi
p ] ∈ Rd×(p+1) contains embeddings304

for the [CLS] token and all image patches. We extract the [CLS] token305

embedding xvisi
CLS as the global image representation:306

vi := xvisi
CLS, vi ∈ Rd. (7)

The resulting vector vrs
i or vsv

i serves as our visual feature for subsequent307

cross-modal alignment.308

Textual encoder. Concurrently, we employ a transformer encoder ar-309

chitecture (Vaswani et al., 2017) to process textual descriptions generated by310

BLIP-2 for our urban imagery.311
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Given a text sequence Tj with tokens n, we tokenize it and map each token312

to an embedding vector using a learnable embedding matrix Et ∈ RV×d,313

where V is the vocabulary size and d is the embedding dimension. Positional314

embeddings are added to preserve sequential information:315

ztext
i = Etext[ti] + ptext

i , i = 1, 2, . . . , n. (8)

The sequence passes through L transformer layers:316

Xtext
j = ϕtext(Tj) = Transformer({ztext

i }ni=1), (9)

where Xtext
j = [h

textj
1 ,h

textj
2 , . . . ,h

textj
EOS ] ∈ Rd×(n+1). We extract the [EOS]317

token embedding as the global text representation:318

tj = h
textj
EOS , tj ∈ Rd. (10)

This global text embedding trs
j or tsv

j captures the semantic content of319

the entire description, enabling alignment with visual features in subsequent320

stages.321

Locational encoder. We integrate geospatial context by encoding the322

precise coordinates associated with each visual image. For RSIs, we encode323

the center coordinates, while for SVIs, we encode the exact sampling loca-324

tions. Inspired by GeoCLIP (Vivanco et al., 2023), our location encoder325

transforms geographic coordinates (lon, lat) into meaningful semantic rep-326

resentations, producing high-dimensional embeddings that capture spatial327

context.328

li = ϕl(lon, lat) (11)

These locational embeddings are also further associated with correspond-329

ing outputs derived from RSI (lrsi ) and SVI (lsvi ). They can capture crucial330
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geographic context that complements visual and textual features, enabling331

our model to understand location-specific urban patterns within a unified332

representation that preserves both semantic content and spatial relation-333

ships.334

3.3.3. Cross-modality alignment335

We implement a cross-modality alignment framework that integrates vi-336

sual, textual, and location features through specialized contrastive objectives.337

For each RSI, we aggregate features from all corresponding SVIs via average338

pooling, creating comprehensive representations that preserve both spatial339

correspondence and semantic coherence across diverse urban data modalities.340

Vision-language alignment. We establish bidirectional alignment be-341

tween visual and textual modalities through contrastive learning, optimizing342

the relationships between visual features and their corresponding textual343

features. The principle is that representations of the same region across344

modalities converge in semantic space while remaining distinct from other345

regions.346

For each visual-textual pair, we jointly optimize encoders by contrasting347

matched pairs against others within the batch through a dual-directional348

contrastive loss:349

Lvis-text
con = − 1

N

(
N∑
i=1

log
exp (sim(vi, ti)/τ)∑N
j=1 exp (sim(vi, tj)/τ)

+
N∑
i=1

log
exp (sim(ti,vi)/τ)∑N
j=1 exp (sim(ti,vj/τ)

)
,

(12)

where vi represents visual features (either vsv
i or vrs

i ), ti denotes the corre-350

sponding textual features tsv and trs, sim(·, ·) represents cosine similarity and351
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Figure 3: Cross-modal contrastive learning framework integrating visual, textual, and

location features through RSI-text, SVI-text, and location-image contrastive objectives.

τ is a temperature hyperparameter that controls the similarity distribution.352

The first term optimizes image-to-text retrieval, while the second addresses353

text-to-image retrieval, creating a unified semantic space for effective cross-354

modal understanding.355

Visual-location alignment. To incorporate spatial context, we align356
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visual characteristics vi with location features li using contrastive learning:357

Lvis-loc
con = − 1

N

(
N∑
i=1

log
exp (sim(vi, li)/τ)∑N
j=1 exp (sim(vi, lj)/τ)

+
N∑
i=1

log
exp (sim(li,vi)/τ)∑N
j=1 exp (sim(li,vj)/τ)

)
,

(13)

where li denotes the corresponding location features (either lsvi or lrsi ), and τ358

is the temperature hyperparameter. Bidirectional loss optimizes both loca-359

tion retrieval from visual features and visual content retrieval from coordi-360

nates, associating street-level features with precise locations while capturing361

broader spatial relationships in overhead views.362

Overall objective. The complete multi-modal contrastive learning loss363

integrates all cross-modal alignments:364

Lmmcl = Lrsi-text
con + Lrsi-loc

con + Lsvi-text
con + Lsvi-loc

con . (14)

This unified optimization creates a shared embedding space where visual,365

textual, and spatial information are semantically coherent and mutually re-366

inforcing.367

Fusion of multi-modal region features. To construct comprehen-368

sive region representations, we integrate features from multiple modalities.369

Given that each region’s RSI typically encompasses multiple SVIs, we first370

consolidate the SVI features using an averaging operation:371

v̄sv
i =

1

k

k∑
j=1

vsv
j , l̄

sv
i =

1

k

k∑
j=1

lsvj (15)

where k is the number of SVIs within the region i.372
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The final region feature representation is formed by concatenating RSI vi-373

sual features, RSI location features, aggregated SVI features, and aggregated374

SVI location features:375

Xi = [vrs
i ; l

rs
i ; v̄

sv
i ; l̄

sv
i ] (16)

This unified embedding seamlessly combines aerial and ground-level vi-376

sual information with their corresponding geographic contexts, providing a377

holistic representation that serves as the initial node feature for subsequent378

region graph construction.379

3.4. Multi-view graph contrastive learning380

To enhance urban region representations with complex spatial relation-381

ships, we employ adaptive multi-view graph contrastive learning that cap-382

tures intricate interdependencies between urban regions. This component383

leverages heterogeneous graph views that represent spatial proximity, func-384

tional similarity, and mobility flows, using adaptive graph encoders with385

VGAEs and GCNs to dynamically learn optimized graph structures rather386

than relying on fixed topologies. The framework incorporates random walk-387

based subgraph sampling and employs inter-view contrastive learning to388

model spatial dependencies while preserving view-specific characteristics. This389

multi-view approach transcends single-view limitations by learning optimal390

graph representations that demonstrate enhanced robustness against noise391

and data sparsity in urban spatial interactions.392

3.4.1. Multi-view region graph construction393

We model geographic regions through a multi-view graph G = {G(k) =394

(V ,A(k))|k ∈ K}, where V represents region nodes, A(k) denotes the adja-395

21



cency matrix of the relationship type k, and K = {P,M,D} specifies rela-396

tionship type sets. Our multi-view representation integrates three comple-397

mentary urban relationships: human mobility flows between regions, POI398

category similarity reflecting functional characteristics, and geographical399

distance capturing spatial proximity. The adjacency matrix A(k) ∈ RN×N400

for each relationship type k ∈ K defines the pairwise connections between401

the regions, where A
(k)
ij quantifies the strength of the connection between the402

regions vi and vj under the corresponding relationship.403

Function-aware Region Graph G(P ) = (V ,A(P )): We characterize ur-404

ban functionality through POIs using a distribution matrix P ∈ RN×C , where405

C denotes POI categories (restaurants, hotels, hospitals, etc.). Each element406

pi,c counts places in the region ri belonging to the c-th POI category, with the407

functionality of each region encoded as a vector pi ∈ R1×C . The adjacency408

matrix A(P ) = [apij] ∈ RN×N encodes functional similarity through cosine409

similarity: apij = sim(pi,pj), allowing information flow between functionally410

similar areas regardless of geographical distance.411

Mobility-based Region Graph G(M) = (V ,A(M)): Human movement412

patterns are captured through trajectory records in format (rs, rd,msd), cap-413

turing source/destination regions and departure/arrival times. These trajec-414

tories are aggregated into an origin-destination flow matrix M = [mij] ∈415

RN×N , where mij measures trips from region ri to rj. The adjacency matrix416

A(M) = [amij ] ∈ RN×N is defined as amij =
log(1+mij)∑N

k=1 log(1+mik)
, using logarithmic417

normalization to balance flow variations in regions of different populated418

regions while preserving movement patterns.419

Distance-based Region Graph G(D) = (V ,A(D)): Spatial proximity420
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relationships are encoded in a distance matrix D ∈ RN×N based on Eu-421

clidean distances between the centroids of the region. The adjacency matrix422

A(D) = [adij] ∈ RN×N is calculated as adij = 1/dij, creating stronger connec-423

tions between the physically proximate regions. This structure facilitates the424

propagation of information between adjacent or nearby areas that typically425

share similar urban characteristics due to their spatial proximity.426

3.4.2. Variational graph auto-encoder427

We employ Variational Graph Auto-Encoder (VGAE) as the first com-428

ponent of our multi-view graph contrastive learning framework. VGAE’s429

probabilistic nature effectively models variability across all three views, while430

providing regularized latent representations that prevent overfitting and en-431

able meaningful interpolation between region embeddings.432

For each view-specific region graph G(k) with adjacency matrix A(k) and433

feature matrix X, VGAE employs graph convolutional networks (GCNs) to434

encode graph structure into latent space parameters, specifically the mean435

vector µ and the diagonal covariance vector σ. For notational simplicity, we436

omit the superscript (k):437

µ = GCNµ(A,X), σ = GCNσ(A,X). (17)

Latent representations are sampled using the reparameterization trick.438

For each node i, we have:439

zi = µi + σi ⊙ ϵi, ϵi ∼ N (0, I), (18)

where zi ∈ Rd is the embedding for node i, and ϵi is random noise. The440

complete embedding matrix Z = [z1; z2; . . . ; zN ] ∈ RN×d contains all node441

embeddings.442
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The decoder reconstructs the adjacency matrix from the latent node rep-443

resentations. For each pair of nodes (i, j), the edge probability is:444

Ãij = Softplus(z⊤i zj), (19)

where Softplus(·) is the activation function.445

The VGAE is trained by optimizing both reconstruction loss and KL-446

divergence. The reconstruction loss minimizes the difference between original447

and reconstructed adjacency matrices:448

Lrecon =
1

N2

N∑
i=1

N∑
j=1

(
Aij − Ãij

)2
. (20)

The KL divergence loss regularizes the latent space by minimizing diver-449

gence between the learned latent distribution q(zi|X,A) = N (µi, diag(σ2
i ))450

and a prior distribution p(zi) = N (0, I):451

LKL = −1

2

N∑
i=1

d∑
j=1

(
1 + log σ2

ij − µ2
ij − σ2

ij

)
, (21)

This process is applied independently to each view G(k), yielding respec-452

tive reconstructed adjacency matrices Ã(k). These view-specific embeddings453

capture different aspects of urban region relationships for subsequent multi-454

view contrastive learning.455

3.4.3. Random walk-based subgraph generation456

To efficiently handle complex urban graph structures and enhance ro-457

bustness against data skewness, we employ adaptive random walks on the458

reconstructed view-specific graphs G̃(P ), G̃(M), and G̃(D). For each node i in a459

given graph G̃, we perform a single random walk of fixed length L to capture460
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both local and global structural properties while ensuring equal contribution461

from each node.462

Starting from node i, the walker transitions from the current node vt to463

neighboring node vt+1 based on adaptive transition probabilities:464

P (vt+1|vt) =
Ãvt,vt+1∑

vk∈N (vt)
Ãvt,vk

, (22)

where N (vt) denotes neighbors of vt, and Ãvt,vt+1 is the learned edge weight.465

These adaptive allow transition probabilities to prioritize stronger connec-466

tions while reducing influence of weaker relationships.467

The walker continues for L steps, with probabilistic rather than deter-468

ministic sampling to introduce variability and enhance robustness. If a node469

lacks neighbors, the walk terminates early. Upon completion, the visited470

node sequence [v0, v1, . . . , vL] forms subgraph Ĝi, including all visited nodes471

and their interconnecting edges.472

This sampling strategy effectively addresses noisy edges by utilizing VGAE-473

learned weights to guide walks toward relevant connections. For each sub-474

graph, we learn node-level representations through:475

Hi = GCN(Ĝi,X[Vi]), (23)

where Hi ∈ R|Vi|×d contains learned node embeddings, and X[Vi] represents476

features restricted to the subgraph nodes.477

We then aggregate subgraph information into a single comprehensive vec-478

tor through readout operations:479

si = READOUT(Hi), (24)
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where si ∈ Rd encapsulates structural and semantic information of the neigh-480

borhood centered on node i.481

The process is repeated independently for each view, generating three sets482

of subgraph representations s
(k)
i , where k ∈ K = {P,M,D}, each capturing483

view-specific structural properties. Unlike rule-based methods, this approach484

adaptively captures region dependencies through learnable parameters, pro-485

viding enhanced resilience against data skewness and noise.486

3.4.4. Inter-view contrastive learning487

After generating view-specific subgraphs and their embeddings, we design488

a multi-view contrastive learning objective that maximizes mutual informa-489

tion between different view representations of the same node while minimiz-490

ing it between different nodes. This core intuition is that subgraphs centered491

around the same urban region should exhibit semantic similarities despite492

structural differences across views. This contrastive mechanism achieves au-493

tomatic feature selection through the InfoNCE loss structure, where the nu-494

merator enforces cross-view alignment while the denominator ensures inter-495

node discrimination. This design amplifies features that are consistently496

discriminative across multiple views while suppressing view-specific noise497

that fails to maintain cross-view consistency. Consequently, the model auto-498

matically prioritizes meaningful urban relationships while filtering out noisy499

connections, resulting in robust representations that capture fundamental500

regional patterns.501

For any pair of views (k1, k2), the contrastive loss is formulated as:502

Lk1,k2
con = − 1

N

N∑
i=1

log
exp(sim(s

(k1)
i , s

(k2)
i )/τ)∑N

j=1 exp(sim(s
(k1)
i , s

(k2)
j )/τ)

, (25)
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Figure 4: Architecture of the adaptive graph encoder framework. The top component

shows the Variational Graph Auto-Encoder (VGAE) that learns latent graph representa-

tions through an encoder-decoder structure with reparameterization, incorporating both

KL divergence and reconstruction losses for adaptive graph structure learning. The bot-

tom component illustrates the random walk-based subgraph generation process, where

random walks from each node create diverse subgraphs that are processed through GCNs

to generate enhanced node representations.

where s
(k1)
i and s

(k2)
i are the embeddings of node i in views k1 and k1, sim(·, ·)503

denotes cosine similarity, and τ is a temperature parameter.504

Overall objective. The complete multi-view graph contrastive learning505

loss combines view-specific graph reconstruction with cross-view alignment:506
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Lmvgcl =
∑
k∈K

(
L(k)

recon + L(k)
KL

)
+

∑
(k1,k2)∈K×K

Lk1,k2
con . (26)

where K ×K = {(P,M), (P,D), (M,D)} represents all view pairs.507

The first term maintains view-specific structural information through508

VGAE reconstruction and regularization losses, ensuring each view preserves509

its inherent graph properties. The second term enforces cross-view consis-510

tency by aligning representations across pairwise views.511

3.5. Urban Region Representation Task512

3.5.1. Pre-training stage513

Our framework employs a unified pre-training strategy that jointly op-514

timizes multi-modal contrastive learning and multi-view graph contrastive515

learning. This approach aligns heterogeneous data modalities into a coher-516

ent feature space while learning view-invariant representations across differ-517

ent urban graph perspectives. The complete pre-training objective combines518

both learning stages:519

Ltotal = αLmmcl + βLmvgcl, (27)

where α and β are hyperparameters to balance cross-modal alignment520

and inter-view consistency.521

This self-supervised framework generates complementary learning signals522

through modality fusion and view integration, producing robust representa-523

tions that are both semantically meaningful and structurally consistent. Af-524

ter pre-training, we obtain region embeddings Z∗ ∈ RN×d, providing a strong525

foundation for downstream urban analysis tasks.526
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3.5.2. Fine-tuning for downstream tasks527

We employ a task-specific fine-tuning approach to tailor our region em-528

beddings to various urban prediction tasks. In this process, all model pa-529

rameters are updated, and the generated embeddings Z∗ are used as input530

features for a lightweight MLP classifier or regressor: Yi = MLP (Z∗). This531

strategy capitalizes on the rich representations learned during pre-training to532

demonstrate how effectively our framework captures essential urban patterns533

across various applications.534

We evaluated our framework on three downstream tasks: pollutant emis-535

sion prediction (PEP), population density estimation (PDE), and land use536

classification (LUC). PEP involves predicting environmental pollutant levels,537

which tests the model’s ability to capture environmental and spatial factors538

that influence emissions. PDE is a regression task that estimates regional539

population density, assessing how well the embeddings capture demographic540

patterns. LUC is a multi-class classification task categorizing regions into541

specific land use types (residential, commercial, industrial, etc.), evaluating542

the model’s capacity to identify distinct urban functional patterns. This543

fine-tuning approach demonstrates efficient transfer of learned representa-544

tions to diverse urban applications spanning environmental, demographic,545

and land-use domains with minimal additional training.546

4. Experiments and analyses547

4.1. Study areas and datasets548

As illustrated in Figure 5, our research focuses on Shenzhen, a rapidly549

developing metropolitan city in China with distinct urban characteristics. he550
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study leverages diverse datasets for both pre-training and fine-tuning phases551

to conduct comprehensive experiments and analyses.552

The Pre-training Data. The pre-training phase utilizes multi-modal553

urban data including RSI, SVI, POI data, and human mobility data to learn554

comprehensive urban representations. RSI, sourced from the GaoFen-2 satel-555

lite via Tianditu, features 1.0 meter spatial resolution and three spectral556

bands (RGB). These images were segmented into 1 km × 1 km tiles to align557

with the grid-based analysis framework. Complementing this, 224,826 high-558

resolution panoramic SVIs of Shenzhen (4096 × 1036 pixels), obtained from559

Baidu Maps at approximately 15-meter intervals along the road network,560

provide comprehensive 360-degree ground-level visual coverage. POI data,561

sourced from AMap1, includes 1,064,085 points of interest categorized into562

23 primary classes such as Life Services, Corporate Entities and Mixed-use563

Commercial and Residential Areas. Furthermore, human mobility data from564

China Unicom2 consist of 34,960,199 hourly movement records, aggregated565

to daily origin-destination flows at a 1 km × 1 km resolution.566

The Fine-tuning Data. The fine-tuning phase employs task-specific567

datasets for downstream urban analysis applications. Population density568

data from WorldPop3 uses random forest-based dasymetric mapping to de-569

liver high-resolution estimates (30 arc seconds, approximately 1 km at the570

equator) of people per km², resampled to align with our grid structure.571

Pollutant emission data include key air pollutants—carbon monoxide (CO,572

1https://lbs.amap.com
2http://www.smartsteps.com/
3https://hub.worldpop.org
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mg/m³) and particulate matter (PM2.5, µg/m³)—sourced from the National573

Tibetan Plateau Scientific Data Center (Wei et al., 2023; Wei and Li, 2024),574

providing high-quality 1 km × 1 km resolution raster data. Land use clas-575

sification data are derived from SinoLC-1 (Li et al., 2022, 2023c), China’s576

first national-scale 1 meter resolution land cover map developed using deep577

learning techniques, with the Shenzhen portion specifically utilized for our578

analysis.579

Figure 5: Overview of the datasets used in this study.

4.2. Experiment setup580

4.2.1. Baselines581

To comprehensively evaluate our model, we compare with six recent base-582

lines in two categories: (1) Vision-based methods, including ViT, PG-583

SimCLR, and UrbanVLP, where the latter two employ contrastive learn-584

ing strategies. (2) Graph-based methods, including MVURE, HREP and585

ReMVC:586
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• ViT (Dosovitskiy et al., 2021). ViT adapts transformers to com-587

puter vision by partitioning images into fixed-size patches and demon-588

strates strong performance with sufficient pre-training data. In our589

experiments, we employ ViT-B as the baseline image encoder, con-590

catenating extracted features from different modalities for final em-591

beddings.592

• PG-SimCLR (Xi et al., 2022). A contrastive learning framework593

that adapts SimCLR(Chen et al., 2020) for urban region representa-594

tion using satellite imagery by incorporating geographic proximity con-595

straints and POI category distributions, allowing the model to learn596

representations that respect both spatial relationships and functional597

similarities.598

• UrbanVLP (Hao et al., 2025). A multi-granularity vision-language599

pretraining framework that combines RSI, SVI, and high-quality tex-600

tual descriptions to predict urban socioeconomic indicators through601

cross-modal alignment and automatic text calibration.602

• MVURE (Zhang et al., 2020). Leverages human mobility data and603

urban region attributes (POI and check-in data) to construct multi-604

view correlations through graph attention networks, enabling cross-605

view information sharing and adaptive fusion for comprehensive urban606

region embeddings. In our experiments, we did not use check-in data.607

• HREP (Zhou et al., 2023a). A relation-aware graph-based ap-608

proach using human mobility, POI information, and geographic neigh-609

bor data, combined with prompt learning to capture intra-region and610
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inter-region correlations for robust region embeddings.611

• ReMVC (Zhang et al., 2023a). Employs multi-view contrastive612

learning with POI data and human mobility records to extract robust613

region embeddings by capturing intra-view distinctions and cross-view614

correlations.615

4.2.2. Evaluation metrics616

To quantitatively evaluate the performance of our method, we employ617

standard metrics for regression and classification tasks (↓ indicates lower is618

better, and ↑ indicates higher is better):619

Metrics for Regression Tasks. For regression tasks, the goal is to pre-620

dict continuous variables. We assess model performance using three comple-621

mentary metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),622

and Coefficient of Determination (R2).623

Metrics for Classification Tasks. For classification tasks, our objec-624

tive is to evaluate the ability of the model to correctly classify samples into625

their respective categories. We employ two complementary metrics: F1 Score626

and Recall. These metrics provide a comprehensive assessment of the accu-627

racy and robustness of our method across different task types.628

4.2.3. Implementation details629

Pre-training Setup. We divide the dataset into 60% training, 20%630

validation and 20% testing sets. For image inputs, we apply data augmenta-631

tion techniques that include random cropping, flipping, and normalization,632

following the methodology described in Radford et al. (2021a). During the633

multi-modal contrastive learning stage, we generate textual descriptions for634
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each image using the BLIP-2 model, leveraging OPT-2.7b (a large language635

model with 2.7 billion parameters). Text descriptions are limited to 77 to-636

kens. For the visual encoder, we use ViT-B/32 with a hidden dimension of637

768 and an output dimension of 512. For the textual encoder, both the hid-638

den and output dimensions are 512. For the location encoder, we adopt the639

architecture and configuration settings proposed by Vivanco et al. (2023).640

For feature aggregation, SVI features within the same RSI coverage area are641

aggregated using average pooling. The aggregated SVI features are then642

added element-wise to the RSI features to form unified regional representa-643

tions. In the multi-view graph contrastive learning stage, we construct three644

graph structures based on population flow, POI similarity, and spatial dis-645

tance. VGAE is used to reconstruct these graphs. VGAE uses a one-layer646

GCN encoder with an output latent space size of 64, and LeakyReLU ac-647

tivation, and Adam optimizer with learning rate 1e-4. Next, random walks648

with walk length 20 are performed on the reconstructed graphs to generate649

subgraphs. Finally, GCNs with hidden layer size 128, output size 64, and650

LeakyReLU activation are applied for graph representation embedding. The651

temperature parameter τ for contrastive learning is 0.5. The Adam optimizer652

is used with a learning rate of 1e-6 and weight decay of 1e-4. The model is653

trained for 1000 epochs with early stopping based on validation loss.654

Fine-tuning Setup. During fine-tuning, we update both the pre-trained655

encoders and the task-specific components. For regression tasks, we use mean656

squared error loss, while for classification tasks, we use cross-entropy loss657

with accuracy as the evaluation metric. The training runs for 1000 epochs658

using the Adam optimizer, with learning rate 1e-6 and weight decay 1e-4.659
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Early stopping is applied based on validation loss to prevent overfitting. All660

experiments were performed on NVIDIA A6000 GPUs with 48GB memory.661

4.3. Model performance662

663

4.3.1. Hyperparameter sensitivity analysis664

To understand the interaction between multi-modal and multi-view graph665

contrastive learning, we conduct sensitivity analysis of hyperparameters α666

and β in our unified objective function Ltotal = αLmmcl + βLmvgcl with667

constraint α + β = 1. Table 1 shows the optimal configuration occurs at668

α = 0.5, β = 0.5 across all tasks, indicating that indicating equal weighting669

between multi-modal contrastive learning and spatial learning yields best670

performance.671

The results also reveal asymmetric degradation patterns. Pure graph672

learning (α = 0) causes dramatic performance drops, while pure multi-modal673

learning (α = 1.0) shows moderate decreases. This asymmetry indicates that674

multi-modal information provides fundamental semantic grounding, while675

spatial learning offers crucial structural guidance. The consistent optimal676

ratio (α : β = 1 : 1) across diverse urban tasks suggests that effective urban677

representation learning requires balanced integration of semantic richness678

and urban spatial structure, , rather than over-relying on either component679

alone.680

4.3.2. Comparison with baseline methods681

We conduct comprehensive comparisons with state-of-the-art methods.682

Table 2 presents the overall results, from which we can derive the following683
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α β
PEP(CO) PEP(PM2.5) PDE LUC

MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ F1 ↑ Recall ↑

1.0 0.0 0.0382 0.0018 0.4025 1.4009 3.2739 0.5019 4134.67 14969395.03 0.4817 0.4106 0.4235
0.8 0.2 0.0248 0.0012 0.6034 1.2431 2.1900 0.6756 3816.31 15647112.25 0.4841 0.4189 0.4673
0.6 0.4 0.0250 0.0012 0.5927 0.8591 1.4778 0.7654 3622.39 13598495.15 0.6556 0.4504 0.4957
0.5 0.5 0.0212 0.0009 0.7417 0.6785 1.0212 0.8481 1931.64 9943831.52 0.7670 0.6058 0.5994
0.4 0.6 0.0247 0.0012 0.6857 0.8140 1.3593 0.7895 3656.10 16647168.90 0.6777 0.4844 0.5229
0.2 0.8 0.0238 0.0011 0.6290 1.0394 1.7856 0.7234 3860.65 19548932.31 0.5648 0.4738 0.5068
0.0 1.0 0.0327 0.0018 0.4341 1.4808 3.6995 0.4824 3824.24 17542438.41 0.5194 0.4223 0.4445

Table 1: Hyperparameter sensitivity analysis for α and β. The best results are highlighted

in boldface.

Methods
PEP(CO) PEP(PM2.5) PDE LUC

MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ F1 ↑ Recall ↑

ViT 0.0252 0.0012 0.5569 1.0062 1.7733 0.7225 2086.0500 12767905.19 0.6654 0.5136 0.5235
PG-SimCLR 0.0358 0.0020 0.4158 1.4840 3.6337 0.4280 2194.7627 13386507.27 0.7116 0.4690 0.4555
UrbanVLP 0.0214 0.0011 0.6875 0.7573 1.1847 0.8240 1954.4890 9754879.86 0.7635 0.5811 0.5873
MVURE 0.0239 0.0011 0.5669 0.8121 1.0288 0.7933 2046.9664 11701711.17 0.6933 0.5450 0.5446
HREP 0.0237 0.0012 0.5604 0.8860 1.5067 0.7677 2089.4557 13625186.03 0.6429 0.4299 0.4291

ReMVC 0.0260 0.0013 0.5217 1.3249 3.0701 0.5106 2242.8103 16310952.66 0.5725 0.4821 0.4718

UrbanMMCL 0.0212 0.0009 0.7417 0.6785 1.0212 0.8481 1931.64 9943831.52 0.7670 0.6058 0.5994
Improvement(%) 0.93 18.18 7.88 10.41 0.74 2.92 1.17 -1.94 0.46 4.25 2.06

Table 2: Performance comparison of different methods on pollutant emission prediction

(PEP) (CO, PM2.5), population density estimation (PDE), and land use classification

(LUC). The best results are in boldface, and the second-best results are underlined. Im-

provement(%) shows the relative improvement of our method over the second-best baseline.

key findings.684

(1) UrbanMMCL achieves superior performance across most685

metrics, demonstrating the effectiveness of our dual contrastive686

learning approach. Our framework outperforms the best baselines in 10687

of 11 metrics, with an average R2 improvement of 3.75% in regression tasks688

and a 4. 25% improvement in the F1 score for classification compared to689

the second best method (UrbanVLP). The only exception is the PDE MSE690

metric, where our method shows a marginal difference of 1. 94%. This slight691
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discrepancy stems from the long-tail distribution of population density data,692

where extreme values disproportionately influence the squared error metric.693

Our superior MAE and R2 scores demonstrate robustness across the majority694

of urban regions.695

(2) Text-enhanced vision-language methods significantly out-696

perform single-modality and POI-enhanced approaches. UrbanVLP697

consistently outperforms both the vision-only ViT model and the POI-enhanced698

PG-SimCLR across all tasks, with notable improvements in PM2.5 prediction699

(R2: 0.8240 vs 0.4280 for PG-SimCLR). This confirms that rich textual de-700

scriptions provide more contextually relevant information than structured701

POI data alone. UrbanMMCL further advances this paradigm by effectively702

integrating visual features with geographical coordinates and adaptive graph703

relationships.704

(3) Adaptive graph contrastive learning significantly outper-705

forms static graph-based methods. Unlike existing graph-based meth-706

ods (MVURE, HREP and ReMVC) that rely on predetermined region rela-707

tionships, UrbanMMCL uses VGAE and adaptive random walks to automat-708

ically learn and refine meaningful region connections. Our method achieves709

a remarkable 30.8% R2 improvement in CO prediction over MVURE, high-710

lighting how our adaptive approach addresses the limitations of fixed graph711

structures in complex urban environments.712

(4) The synergy between multi-modal integration and multi-713

view graph modeling creates generalizable urban representations.714

The integration of RSI, SVI, geographical positions, and textual descriptions715

through dual-stage contrastive learning allows UrbanMMCL to capture both716
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Methods
PEP(CO) PEP(PM2.5) PDE LUC

MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ F1 ↑ Recall ↑

RSI-CLIP 0.0313 0.0019 0.4573 1.4185 2.7707 0.5969 2615.4236 16563126.19 0.5844 0.4952 0.5114
SVI-CLIP 0.0288 0.0015 0.5435 1.1461 2.1668 0.6376 2404.1780 14664183.37 0.5596 0.4597 0.4394
w/o Text 0.0246 0.0013 0.6372 0.8683 1.4384 0.7751 1996.8511 10413018.36 0.6957 0.5550 0.5536
w/o MCL 0.0327 0.0018 0.4341 1.4808 3.6995 0.4824 3824.2488 17542438.41 0.5194 0.4223 0.4445

UrbanMMCL 0.0212 0.0009 0.7417 0.6785 1.0212 0.8481 1931.64 9943831.52 0.7670 0.6058 0.5994

Table 3: Ablation on multimodal components. The best results are highlighted in bold-

face.

Methods
PEP(CO) PEP(PM2.5) PDE LUC

MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑ F1 ↑ Recall ↑

w/o G(P ) 0.2284 0.0011 0.5342 1.1219 1.9569 0.6983 2527.02 17422814.99 0.5768 0.3852 0.3952
w/o G(M) 0.0202 0.0009 0.5910 1.2310 2.5737 0.6111 2629.2102 18889712.73 0.5679 0.4702 0.5124
w/o G(D) 0.0276 0.0014 0.3575 1.0027 1.8363 0.6967 2454.5840 17698496.25 0.4292 0.4450 0.4373

w/o VGAE 0.0263 0.0014 0.6020 1.0447 1.9016 0.6771 1935.23 13555443.7517 0.6531 0.4424 0.4428
w/o RW 0.0220 0.0010 0.6554 0.7185 1.2764 0.7947 1912.9005 11225293.52 0.6808 0.4680 0.4851
w/o GCL 0.0335 0.0019 0.4104 1.8679 3.5980 0.5078 2095.8574 13879595.94 0.6071 0.3966 0.4123

UrbanMMCL 0.0212 0.0009 0.7417 0.6785 1.0212 0.8481 1931.64 9943831.52 0.7670 0.6058 0.5994

Table 4: Ablation on multi-view graph components. The best results are highlighted in

boldface.

fine-grained visual details and macro-scale spatial relationships. This com-717

prehensive modeling creates generalizable features that maintain consistent718

performance across both regression and classification tasks, from environ-719

mental monitoring (CO, PM2.5) to socioeconomic analysis (PDE, LUC).720

721

4.3.3. Cross-city generality722

To assess the generalization capability of UrbanMMCL, we conducted val-723

idation studies in Beijing and Chengdu, two cities with contrasting develop-724

mental and geographic profiles. Our evaluation adopts hierarchical transfer725

learning leveraging UrbanMMCL’s modular design, where multimodal en-726

coders trained on Shenzhen are directly transferred while graph components727
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Cities Models
PEP(CO) PEP(PM2.5) PDE LUC

R2 ↑ R2 ↑ R2 ↑ F1 ↑

Beijing

PG-SimCLR 0.4929 0.4301 0.6109 0.4380
ReMVC 0.5488 0.5157 0.5433 0.4791

UrbanMMCL 0.7032 0.7811 0.6317 0.5538
Improvement(%) +28.15% +51.46% +3.40% +15.59%

Chengdu

PG-SimCLR 0.5171 0.4540 0.5583 0.4581
ReMVC 0.5728 0.5384 0.5679 0.4904

UrbanMMCL 0.6912 0.7508 0.6420 0.5395
Improvement(%) +20.67% +39.45% +13.04% +10.01%

Table 5: Cross-city transfer learning performance comparison in Beijing and Chengdu.

are re-initialized for city-specific spatial relationships.728

Table 5 demonstrates impressive cross-city performance. Both cities729

achieve achieve strong performance with R2 scores of 0.63-0.78 across regres-730

sion tasks and competitive F1 scores of 0.54-0.55 for land use classification,731

maintaining remarkably consistent results despite diverse urban contexts.732

UrbanMMCL consistently outperforms baseline methods PG-SimCLR and733

ReMVC by 10-51%, confirming robust generalization across diverse urban734

environments.735

4.3.4. Ablation studies736

To validate our design principles, we conduct comprehensive ablation737

studies addressing two key questions: (1) What are the essential multi-738

modal components and integration strategies for effective urban represen-739

tation learning? (2) What are the essential graph perspectives and learning740

mechanisms for effective urban spatial relationship modeling?741
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Ablation on multimodal components. We design four variants to742

test specific hypotheses: (1) RSI-CLIP and SVI-CLIP replace our domain-743

specific encoders with general-purpose pre-trained CLIP model (ViT-B/32)744

to assess the necessity of domain specialization; (2) w/o Text eliminates745

textual enhancement to quantify semantic information contribution; (3) w/o746

MCL removes cross-modal contrastive learning and initializes the encoders747

with their original weights while preserving multimodal fusion to isolate the748

impact of explicit cross-modal alignment.749

Table 3 reveals three key findings that validate our design choices. First,750

replacing specialized components with general CLIP causes substantial degra-751

dation, demonstrating that urban scene understanding requires architectural752

adaptations beyond general vision models. Second, removing text consis-753

tently decreases performance by 14.1% across tasks, with environmental754

monitoring particularly affected, showing that semantic descriptions cap-755

ture abstract urban characteristics invisible to visual features alone. Third,756

eliminating contrastive learning causes the most severe degradation, confirm-757

ing that explicit cross-modal alignment is essential for coherent multimodal758

representations. These results demonstrate that each component addresses759

specific urban representation challenges, and their synergistic integration is760

critical for optimal performance across diverse urban tasks.761

Ablation on multi-view graph components. We design six variants762

testing: (1) individual graph view contributions (w/o G(P/M/D)); (2) w/o763

VGAE: replacing the VGAE with standard GCN for graph encoding to as-764

sess probabilistic graph structure learning; (3) w/o RW: eliminating random765

walk-based subgraph generation and using full graphs to evaluate local struc-766
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ture sampling effectiveness; and (4) w/o GCL: removing graph contrastive767

learning while retaining basic graph encoders to isolate cross-view alignment768

impact.769

Table 4 reveals critical insights into urban spatial modeling. First, distance-770

based graph removal causes the most severe degradation, particularly im-771

pacting the CO prediction, while mobility-based graph and function-aware772

graph removal results in 24.8% and 23.5% average decrease, demonstrat-773

ing that geometric relationships serve as fundamental structural foundation774

with all three perspectives capturing distinct spatial aspects. Second, re-775

placing VGAE with standard GCN decreases performance by 17.9%, while776

removing random walk sampling causes a 9.7% drop, demonstrating that777

both probabilistic structure learning and local sampling contribute to effec-778

tive spatial modeling. Third, eliminating graph contrastive learning results779

in the largest performance decline with 35.2% average R2 decrease, confirm-780

ing that learning coherent multi-perspective representations requires explicit781

alignment mechanisms. These results demonstrate that effective urban spa-782

tial understanding requires integrated design of multiple graph perspectives,783

adaptive structure learning, and cross-view contrastive alignment.784

4.4. Analysis of learned representations785

4.4.1. Representation visualizations786

To validate that our model learns meaningful representations that ef-787

fectively distinguish different urban area types, we examine learned region788

representations through a t-SNE dimensionality reduction, which maps the789

high-dimensional embeddings learned by UrbanMMCL into an interpretable790

two-dimensional space. Figure 6 reveals three distinct clusters with high791
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Figure 6: t-SNE visualization of region representations showing three distinct clusters

corresponding to different urbanization levels: natural vegetation areas (left), mixed-use

suburban regions (center), and high-density urban areas (right).

intra-cluster similarity. The clusters exhibit a progressive urbanization gra-792

dient from left to right: areas dominated by natural vegetation, mixed-use793

suburban regions, and high-density urban areas. This clustering pattern794

validates our approach successfully captures subtle yet critical geographical795

differences and maps regions with similar architectural layouts and land use796

patterns into proximate embedding positions.797

To validate the necessity and effectiveness of multi-view fusion over single-798

view approaches, Figure 7 demonstrates our multi-view approach through799
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Figure 7: Multi-view region representation analysis. (a) Spatial distribution of study

regions with anchor regions A, B, C. (b) UrbanMMCL embedding space showing integrated

clustering. (c) Single-view embeddings and quantitative metrics revealing individual graph

limitations.

comparative analysis of three anchor regions. Panel (c) reveals limitations800

of single-view embeddings through individual embedding spaces and quan-801
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titative relationship metrics (D, P, M values). The only distance-based em-802

bedding places regions A-B closely while positioning A-C far apart despite803

their strong functional similarity. The only POI-based embedding brings804

functionally similar regions A-C together but inappropriately positions A-B805

and B-C by neglecting spatial and mobility constraints. The only mobility-806

based embedding clusters regions B-C closely due to strong movement con-807

nections while under-representing A-B and A-C relationships. These po-808

sitioning biases highlight the the limitations of single-view approaches in809

capturing comprehensive urban relationships. In contrast, Panel (b) demon-810

strates our UrbanMMCL embedding space where regions achieve balanced811

clustering through consensus-based optimization integrating all perspectives.812

This integrated approach produces robust representations that position re-813

gions appropriately by balancing functional similarity, spatial proximity, and814

mobility connectivity in a unified embedding space.815

4.4.2. Geographic mapping of clustered representations816

To validate that our UrbanMMCL framework captures meaningful urban817

structures, we apply hierarchical clustering to the learned embeddings. Fig-818

ure 8 presents clustering results for k k=2 to 6, with the dendrogram distances819

indicating cluster distinctiveness. Clustering analysis demonstrates a clear820

hierarchical organization of urban spaces. At k=2, a fundamental binary821

partition emerges: built-up areas (pink) and natural areas (cyan), separat-822

ing urban development zones from mountainous regions and water bodies.823

As k increases to 3, the urban domain subdivides into high-density cores824

(Futian, Luohu, Nanshan) and lower-density periphery (Longgang, Guang-825

ming, Pingshan), while natural areas remain cohesive. Higher k values (4-6)826
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Figure 8: Geographic mapping of clustered representations across different cluster numbers

(k=2 to k=6).The dendrogram (left) shows the hierarchical structure of learned embed-

dings, with dashed lines indicating cut heights for different k values. The satellite image

(top center) provides the geographic context of Shenzhen. The cluster maps (right) visu-

alize the spatial distribution of clusters for each k value.

demonstrate progressive refinement within urban areas while maintaining827

stable natural clusters. This pattern indicates that our embeddings suc-828

cessfully encode urban heterogeneity, as they capture development intensity829

variations and functional zones while recognizing the homogeneity of natu-830

ral landscapes. Such spatially coherent clustering demonstrates the practical831

utility of our framework for automated urban region categorization.832

4.4.3. Predictive performance analysis833

To demonstrate the practical effectiveness of our method, we conduct834

comprehensive case studies examining prediction performance in representa-835

tive four urban regions. Our analysis includes: (1) regression analysis with836
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characteristics for CO, PM2.5 emissions, and population density prediction,837

and (2) classification analysis for land use.838

Regression Analysis. We select four representative regions that pro-839

vide an ideal testbed for evaluating multi-modal and multi-view necessity.840

Critically, region pairs (A-B and C-D) exhibit similar visual appearances but841

substantial differences in urban indicators, creating challenging discrimina-842

tion scenarios.843

Figure 9 presents regression results across three urban indicators. Our844

complete UrbanMMCL framework consistently achieves the closest approx-845

imations to ground truth. When individual modalities are removed, sys-846

tematic degradation emerges. Eliminating RSI or SVI causes predictions to847

converge toward averaged values, losing spatial discrimination. For exam-848

ple, without RSI, CO predictions become nearly uniform (0.33-0.39), failing849

to capture the actual variation (0.63-0.96). View-specific ablation reveals850

distinct dependency patterns for different urban indicators. Environmental851

indicators show greater sensitivity to structural patterns capturing physical852

processes, while socio-economic indicators correlate more strongly with hu-853

man behavior modeling and functional interactions. These heterogeneous854

patterns validate our multi-view approach by demonstrating that different855

urban processes operate through distinct channels, and no single structural856

perspective adequately captures urban system complexity.857

Land Use Classification Analysis. We examine prediction perfor-858

mance across six primary land cover categories: tree cover, building, shrub-859

land, cropland, traffic route, and grassland. The spatial distribution anal-860

ysis(Figure 10 a-b) shows that UrbanMMCL predictions closely align with861
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Figure 9: Case Study analysis comparing prediction performance across four representative

regions for three urban indicators. The left panel displays the spatial distribution and

corresponding SVI/RSI data, while the right panel presents compares ground truth with

UrbanMMCL predictions and ablation configurations.

ground truth patterns. Our framework successfully captures complex spatial862

organization and maintains clear boundaries between natural areas and built863

environments. The confusion matrix (Figure 10 c) reveals varying perfor-864

mance across categories. Grassland achieves the highest accuracy at 85.3%,865

followed by shrubland at 75.0%, building at 64.8%, and traffic routes at866

59.7%. Tree cover and cropland show more challenging classification at 37.7%867

and 36.4% respectively, likely due to seasonal variations and spectral simi-868
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larity with other vegetation types.869

Figure 10: Land use classification analysis comparing UrbanMMCL predictions with

ground truth data. (a) Ground truth spatial distribution. (b) UrbanMMCL prediction

results. (c) Confusion matrix quantifying classification accuracy for each land cover cate-

gory.

Our complete UrbanMMCL framework consistently achieves the closest870

approximations to ground truth across all regions and indicators in both871

regression and classification tasks. The multimodal data integration and872

multi-view framework ensures that when visual similarities mask functional873

differences, complementary perspectives provide the discriminative power874

necessary for accurate urban dynamics prediction and land use classification.875
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5. Discussions876

5.1. Multi-modal contribution analysis877

Understanding how disparate urban data modalities contribute to repre-878

sentation learning provides insights into feature complementarity and infor-879

mation hierarchies in multi-modal urban analysis. Our ablation experiments880

reveal distinct roles for each modality in capturing different aspects of urban881

complexity, with results presented in Figure 11.882

Figure 11: Multi-modal ablation study showing the contribution of different modalities to

urban representation learning.

Fundamental Role of Remote Sensing Imagery. RSI emerges as883

the most fundamental modality, with its removal causing severe performance884

degradation across all tasks. This dominance stems from RSI’s ability to cap-885

ture spatial patterns and urban morphological features at scale. For PEP,886

substantial performance drops reveal that RSI encodes critical spatial depen-887

dencies correlating with environmental phenomena. RSI’s high information888
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density enables learning of rich spatial representations that serve as founda-889

tional embeddings for other modalities.890

Complementary Value of Street-View Imagery. SVI contributes891

fine-grained environmental features through local context augmentation. Per-892

formance improvements from SVI inclusion demonstrate its role in capturing893

micro-environmental variations invisible in overhead imagery. SVI functions894

as local environmental validators that refine broad spatial patterns captured895

by RSI, particularly evident in LUC where ground-level visual cues help dis-896

tinguish functionally similar areas.897

Spatial Context Enhancement Through Positional Encoding.898

Geographical coordinates provide modest but consistent contributions as899

spatial relationship encoders. The relatively small impact when removing900

positional encoding suggests that visual features carry majority predictive901

information, while coordinates primarily enhance spatial coherence and topo-902

logical consistency in learned representations.903

Figure 12: Performance comparison of different multi-modal fusion strategies.
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Implications for Urban Representation Learning. These findings904

establish fundamental principles for effective urban AI systems. Perfor-905

mance differentials when removing individual modalities demonstrate that906

each modality contributes unique, irreplaceable information, establishing a907

clear modality hierarchy where RSI provides foundational spatial structure,908

SVI adds critical environmental detail, and positional encoding serves as909

spatial regularization (Figure 11). More critically, the superior performance910

of specialized encoders over generic CLIP-based alternatives (Table 3) and911

the critical role of multi-view contrastive learning (Table 4) demonstrate912

that urban environments require domain-specific architectures and multi-913

perspective integration rather than universal approaches. This advocates for914

specialized multi-modal urban AI systems that embrace complexity through915

tailored encoders and multi-perspective integration.916

5.2. Multi-modal feature fusion strategy analysis917

Multi-modal feature fusion significantly impacts the model’s ability to918

leverage complementary information from heterogeneous urban data sources.919

The choice of fusion strategy is therefore crucial for maximizing the benefits920

of multi-modal urban data integration. We compared three fusion strate-921

gies: (1) concatenation of visual and location features from RSI and aggre-922

gated SVIs; and (2) MLP-based fusion with multi-layer perceptrons; and (3)923

element-wise addition. As shown in Figure 12, our addition method consis-924

tently achieves superior performance across all metrics despite its simplicity.925

The superior performance of element-wise addition can be attributed926

to its ability to preserve original feature distributions while enabling direct927

correspondence between spatially aligned features from different modalities.928
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Unlike concatenation, which introduces feature redundancy and increased929

dimensionality, or MLP fusion, which adds parameters and optimization930

complexity, addition fusion maintains the semantic integrity of individual931

modalities while creating meaningful cross-modal interactions. This vali-932

dates our design choice and demonstrates that simpler fusion strategies can933

be more effective.934

935

5.3. Training paradigms and efficiency analysis936

To comprehensively evaluate our model’s representation capabilities and937

training efficiency, we examine two additional training paradigms that rep-938

resent different approaches to leveraging pre-trained knowledge for urban939

downstream tasks. Pretrain-finetune first optimizes the encoder on a large-940

scale, task-agnostic urban data to learn general representations, followed by941

fine-tuning on downstream tasks; Linear probing freezes the pretrained942

encoder and trains only a linear head, providing an efficient assessment of943

representation quality with minimal computational resources; End-to-end944

training initializes with pre-trained weights but allows unrestricted param-945

eter updates throughout the entire architecture.946

Figure 13 presents comparative analysis of three training paradigms across947

prediction accuracy, runtime per epoch, and epochs to convergence. The948

bars represent average performance while scattered points show individual949

task values for CO, PM2.5, PDE, and LUC tasks. The results reveals criti-950

cal insights into the performance-efficiency trade-offs inherent in each train-951

ing approach. Pretrain-finetune emerges as the optimal strategy, achieving952

the highest average accuracy (0.7409) with computational efficiency (16.7953
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Figure 13: Comparative analysis of three training paradigms across prediction accuracy,

runtime per epoch, and epochs to convergence across urban tasks. Bars represent average

performance across all urban tasks, while scattered points show individual task perfor-

mance (circles: CO prediction, triangles: PM2.5 prediction, squares: Population Density

Estimation, diamonds: Land Use Classification).

s/epoch, 184 epochs). This paradigm preserves lspatial reasoning capabil-954

ities through selective parameter adaptation, making it ideal for resource-955

constrained urban monitoring applications. Linear probing shows the fastest956

per-epoch computation (11.3s) but suffers from limited representation adapt-957

ability. The frozen encoder prevents overfitting but results in systematic ac-958

curacy degradation, particularly in complex regression tasks. Despite faster959

iterations, it requires nearly twice as many epochs to converge (348 vs 184),960

offsetting its computational advantage. End-to-end training incurs prohibitive961

costs (18.9s/epoch, 857 epochs to converge) while achieving only marginal im-962

provements over linear probing and falling 2.53% short of pretrain-finetune,963

making it viable only with abundant resources. Overall, the results validate964
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pretrain-finetune as the optimal training paradigm, effectively balancing pre-965

dictive performance with computational efficiency.966

5.4. Limitations and future directions967

While UrbanMMCL demonstrates significant advances in urban repre-968

sentation learning, several limitations warrant acknowledgment and present969

opportunities for future research.970

First, our framework’s reliance on high-quality textual descriptions gen-971

erated by BLIP-2 introduces a potential bottleneck, as variations in text972

generation quality across different urban scenes could lead to inconsistent973

performance, particularly in challenging scenarios where visual content is974

ambiguous or degraded. Future work should explore more robust text gen-975

eration methods or develop alternative approaches to incorporate semantic976

information less dependent on generative model.977

Second, the static nature of our graph construction methods may not978

fully capture dynamic temporal patterns inherent in urban systems, such as979

daily traffic patterns or seasonal environmental changes. Additionally, the980

choice of graph construction criteria may not be optimal for all urban tasks.981

Future directions should explore temporal modeling capabilities, dynamic982

graph learning approaches, and task-adaptive graph construction strategies.983

Finally, while our framework demonstrates cross-city transferability from984

Shenzhen to Beijing and Chengdu, complete zero-shot generalization remains985

limited. The graph structure components require re-initialization and adap-986

tation for city-specific spatial relationships, indicating that spatial modeling987

still needs localized fine-tuning. Future research should investigate develop-988

ing fully generalizable urban foundation models that can achieve complete989
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zero-shot inference without requiring any component re-training, potentially990

through learning universal spatial relationship patterns or developing city-991

agnostic graph construction strategies that can adapt automatically to new992

urban environments.993

6. Conclusions994

This paper presents UrbanMMCL, a novel self-supervised dual-stage con-995

trastive learning framework that advances urban representation learning through996

innovative integration of multi-modal fusion and adaptive graph learning.997

Our approach establishes a comprehensive pre-training paradigm that learns998

generalizable urban representations without requiring task-specific labels, ad-999

dressing the critical challenge of limited annotated data in urban analysis.1000

Comprehensive experimental validation demonstrates that UrbanMMCL1001

consistently outperforms state-of-the-art methods across environmental mon-1002

itoring, population estimation, and land use classification tasks. Cross-city1003

transfer experiments further validate the generalizability of our learned rep-1004

resentations across different urban environments. The framework’s success1005

stems from its principled integration of RSI, SVI, textual descriptions, and1006

geographical coordinates through contrastive learning, while adaptive graph1007

learning captures dynamic inter-regional relationships that static approaches1008

cannot model.1009

UrbanMMCL represents a significant advancement toward urban founda-1010

tion models by demonstrating how multi-modal pre-training can learn trans-1011

ferable urban knowledge that generalizes across different tasks and cities.1012

This work bridges the gap between domain-specific urban analysis tools and1013
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the broader vision of unified urban AI systems, laying the groundwork for1014

more comprehensive urban foundation models that can support evidence-1015

based urban planning, sustainable development, and smart city initiatives at1016

unprecedented scale and sophistication.1017
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