
This is a repository copy of Expert Systems in Transport – Part 1: An Introduction to Expert
Systems..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2361/

Monograph:
Wheatley, M.D. (1984) Expert Systems in Transport – Part 1: An Introduction to Expert 
Systems. Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK. 

Working Paper 178

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


   

 
 

 
White Rose Research Online 

http://eprints.whiterose.ac.uk/
 

 

 
 

Institute of Transport Studies
University of Leeds 

 
 
This is an ITS Working Paper produced and published by the University of 
Leeds. ITS Working Papers are intended to provide information and encourage 
discussion on a topic in advance of formal publication. They represent only the 
views of the authors, and do not necessarily reflect the views or approval of the 
sponsors.  
 
 
White Rose Repository URL for this paper: 
http://eprints.whiterose.ac.uk/2361/

 
 

 
Published paper 
Wheatley, M.D. (1984) Expert Systems in Transport – Part 1: An Introduction to 
Expert Systems. Institute of Transport Studies, University of Leeds, Working 
Paper 178 
 

 
 
 

White Rose Consortium ePrints Repository 
eprints@whiterose.ac.uk 

 

http://www.its.leeds.ac.uk/
http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/


Working Paper 178 

July 1984 

EXPERT SYSTEMS I N  TRANSPORT 

Part 1: An in t roduct ion t o  expert systems 

M.D. Wheatley 

I T S  Working Papers are intended t o  provide informat ion and 
encourage discussion on a top ic  i n  advance o f  formal 
publication. They represent only the views o f  the authors and 
do not necessari ly r e f l e c t  the views or approval o f  sponsors. 

This work was sponsored by the University o f  Leeds. 
.-. .. 



WHEATLEY, M.D. (1984) Expert systems in transport. Part 1: An 
introduction to expert systems. Working Paper 178, Institute 
for Transport Studies, University of Leeds, Leeds. 

This report describes what expert systems are. It has been 
written to introduce the concepts involved, and to some extent 
the techniques, for those who have no previous acquaintance with 
such systems, but who are concerned with establishing quite what 
such systems might have to offer, and what is involved in 
developing them, in their field of application. Ways in which 
knowledge and uncertainty are represented in expert systems are 
described, and illustrated by reference to some existing expert 
systems. The report stems from a project designed to assess the 
potential for establishing expert systems in the transport field, 
and discusses the types of expert system package which might be 
useful in the remaining stages of the project. It includes a 
useful set of references and a g1ossary.A preliminary assessment 
of potential transport applications and the implications for the 
remainder of the project are described in a companion report, ITS 
Technical Note 145. 

KEYWORDS: EXPERT SYSTEMS; ARTIFICIAL INTELLIGENCE; RULE-BASED 
SYSTEMS; KNOWLEDGE; TRAFFIC; TRANSPORT; 
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EXPERT SYSTEMS IN TRANSPORT 

Part 1: An introduction to expert systems 

1. INTRODUCTION 

1.1 Project Background 

This project is an investigation into how expert systems, and 
associated computing techniques, can be applied to the field of 
transport. The project was conceived following the stimulus 
given by the Alvey Committee's report on Advanced Information 
Technology (Alvey, 19821, which (successfully) proposed that 
Government funds be put into the development of fundamental 
research into Intelligent Knowledge-Based Systems ( IKBS) ; and 
which also called for the exploitation of the technology already 
available in the artificial intelligence (AI) field. In the 
transport sector, it was particularly timely that ITS should take 
the initiative in this area: a Science and Engineering Research 
Council (SERC) Visiting Fellow, Dr M.R. Wigan (Australian Road 
Research Board), was identifying potential research areas in 
information technology and transport (Wigan, 1983, Kirby 1984), 
and paid special attention to work with rule-based systems. 
(Wigan 1984); and the Joint Committee of SERC and the Economic 
and Social Research Council (ESRC) had just set up a special 
programme to develop projects that applied information technology 
to transport. The project was funded as a 2-year University of 
Leeds research post, from November 1983. 

Already it can be seen that four terms (expert systems; IKBS; 
artificial intelligence; rule-based systems) have been 
(purposely) used to represent the type of computing system in 
which this project is interested, and it is symptomatic of the 
whole subject area that these terms are often used inter- 
changeably and without explanation, even though they have 
different shades of meaning. It is hoped that this report will 
clarify the terminology, and present the concepts and techniques 
involved in a clear and concise manner. 

1.2 Project Aims 

The aims of the project are not defined in terms of producing a 
stated end product, but in terms of developing a general 
understanding of expert systems within the Institute, and of 
demonstrating to transport professionals the power and 
flexibility of expert systems as a problem solving tool. In the 
course of this, it is intended to develop a demonstration expert 
system which will go some way to fulfilling both the above major 
aims, as well as providing the Institute with a new problem 
solving tool for general use. In the course of this, an 
assessment is being made of a range of potential transport- 
related problems which can be solved by the application of an 
expert system; the assessment prepared so far (February 1984) is 
presented in a separate report (ITS Technical Note 145). 



1.3 Project Status 

It is a characteristic of this subject that expertise in expert 
systems is not readily available, and people with a thorough 
knowledge of the subject and the ability to communicate it to 
others are rare indeed. The author not being one of these rare 
creatures, the initial part of the project has been almost 
completely concerned with overcoming the not inconsiderable 
difficulties involved in understanding what expert systems are 
and, to some extent, how they work. 

This report presents the results from this initial phase of the 
project. Much work has been done in trying to become familiar 
with expert systems, and to communicate this familiarity to 
Institute staff; it is thought that some success has been 
achieved in the latter by means of a series of colloquia held 
within the Institute, and it is hoped that the interest generated 
will continue to develop. This report and its companion 
Technical Note will help in identifying the potential that expert 
systems have in transport. 

The practical side of the work has not yet started; it was 
considered to be important, and indeed was part of the project 
aims, that familiarisation with techniques should have first 
priority. It is very tempting to say that proper familiarisation 
can only be brought about with 'hands-on' experience, but in the 
case of expert systems the availability of software and 
appropriate computing resources has been a limiting factor. 

However, the project is now ready to move into the construction 
of a demonstration expert system, using tools identified as most 
appropriate in this initial phase. 

1.4 Report Structure 

Chapter 1 states details of the project - its background, aims 
and status. 

Chapter 2 introduces the subjects of artificial intelligence and 
expert sytems, explaining their aims and outlining their pitfalls 
for the unwary novice researcher. 

Chapter 3 looks in more detail at the construction of expert 
systems. 

Chapter 4 examines a selection of current expert systems and 
expert system shells. 

A separate Technical Note contains a chapter on the relationship 
of expert systems to the field of transport generally, examining 
the pros and cons of possible application areas, and reviews the 
specific position of ITS with respect to expert systems in 
general, and the remainder of this project in particular. 

.. 
A glossary of technical terms is provided at Section 7. 



2. THE CONCEPTS BEHIND EXPERT SYSTEMS 

2.1 Computers i n  General 

The k ind o f  t h i ng  t o  which computer technology has t r a d i t i o n a l l y  
been applied i s  the carry ing out o f  repe t i t ious  physical  tasks, 
such as con t ro l l i ng  t oo l s  or solv ing numerical-based problems, 
such as s t a t i s t i c a l  tests. It has always been considered tha t  
computer technology would never be able t o  r i s e  from t h i s  
somewhat mundane l e v e l  t o  the l e v e l  o f  making decisions o r  
in te rp re t ing  information on the basis o f  weighing evidence and 
a r r i v i ng  a t  a conclusion. Th is  has always been something tha t  
only a human being can do, mainly f o r  the somewhat paradoxical 
reason tha t  human beings do not f u l l y  understand the processes 
they go through when evaluating information, and so could not 
attempt t o  program a computer t o  perform the same processes. 

Computers are able t o  do things quickly - some o f  the larger  
mainframe computers can carry out m i l l i ons  o f  ins t ruc t ions  per 
second - and so they are very usefu l  i n  doing repe t i t i ve ,  boring 
things, leaving human beings f ree t o  do the creative, i n t u i t i v e  
th ings tha t  computers cannot do. However, some computing 
sc ient is ts ,  together w i th  philosophers, psychologists and 
educationalists, are concerned w i th  t r y i n g  t o  give computers the 
power and a b i l i t y  t o  carry out these very tasks tha t  have so f a r  
been t o t a l l y  the perogative o f  human beings. How i s  t h i s  being 
done? The answer i s  simple, the explanations are not!  

There i s  a subject, branch o f  computing science, branch o f  
psychology, c a l l  i t  what you w i l l ,  known as ' A r t i f i c i a l  
In te l l igence (AI )  which, as i t ' s  name implies, i s  concerned w i th  
endowing machinery wi th  tha t  essent ia l ly  human qua l i t y  - 
intel l igence. (There i s  much l i t e r a t u r e  avai lable concerning the 
high-flown i n t r i c a c i e s  o f  implementing th is ,  but very l i t t l e  on 
the basics.) A branch o f  A 1  i s  the f i e l d  known as 'Expert 
Systems', which concentrates on bu i ld ing  computer systems which 
appear t o  have in te l l i gence  when used i n  very spec i f i c  
applications. 

For those wi th  some knowledge of computing, the development o f  
expert systems i s  an important and in te res t ing  step i n  the 
development o f  software techniques (i.e. the design o f  programs 
t o  t e l l  the computer what t o  do). For those w i th  no knowledge o f  
computing, then expert systems can represent a f r ighten ing step 
nearer Computers I n  Control. Let  us look a t  how expert systems 
developed, and t r y  t o  destroy t h i s  l a t t e r  fear i n  the process. 

2.2 A Step Back 

It w i l l  no doubt already have occured t o  you tha t  some strange 
ideas have been put forward i n  the above section, and not only 
that ,  but  that  they have been glossed over without explanation o r  
de f in i t ion .  Af ter  a l l ,  how can a machine be given in te l l igence? 
What i s  in te l l igence? Wouldn't an i n t e l l i g e n t  computer be a 
contradict ion i n  terms? f i e '  answer t o  a l l  these questions, and 



probably to all the others relating to intelligence is 'I do not 
know'. No psychologist will give a definition of 'intelligence', 
or even of 'thought'; so we have to proceed on the understanding 
that we all know what we mean by intelligence, but that we can't 
quite put it into words. The concept of an intelligent computer 
comes clearly to mind - you speak to it, it answers back (Eddie 
the Shipboard Computer in 'The Hitchhikers Guide to the Galaxy' 
[Adams, 19771 is my model - no doubt you can think of others! ). 

As this discussion progresses, a certain amount of 
anthropomorphism will inevitably creep in, let us state here and 
now that it-is just a convenient way of referring to the concepts 
involved. The whole argument relating to intelligence and 
computers has yet to be resolved, but it does not prevent us 
looking at expert systems in some detail, and A1 very briefly. 

2.2.1 Getting into the subject. One of the most fascinating 
aspects of expert systems as a subject is that it is extremely 
new. Techniques tend to be developed, and then the theoretical 
justification for developing them is (sometimes) expounded. 
Often, practical implementation outruns theory, and almost always 
outruns documentation. Documentation is, thus, very hard to come 
by, particularly so if one is looking for introductory texts; it 
can also be said that many researchers already well ensconced in 
expert systems (not that there are that many of them), never 
descend to the layman's level, and will have totally confused 
anyone not conversant with 'rule-based sytems', 'frame-based 
systems', 'knowledge representation', 'meta-knowledge', etc. 
within 2 minutes conversation. 

The great problem therefore, if one is trying to use or develop 
expert systems for a particular application, and if one does not 
really know a lot about them, is that of obtaining information 
about expert systems that actually makes sense. Fortunately, new 
articles and books are appearing all the time, as the circle of 
those wanting to know widens; some are listed in section 6.1. 
That by Feigenbaum and McCorduck (19841, is a good starting 
point; but one should be warned that some books, such as Naylor 
(1984) can oversimplify so much as to make it appear that one can 
do it all in BASIC! And that is certainly not the case for real 
applications ... 
We have already seen that A1 is concerned with trying to give 
machines intelligence, and that expert systems can be regarded as 
a sort of practical off-shoot from AI. It is interesting to look 
at how these subjects came into being, and the type of things 
they have achieved so far. Looking at some A1 systems, even if 
it is only reading the title of various articles, is actually 
very helpful in trying to understand what types of task the 
computer is being told to perform. 

The best way to explain.A.1 is to quote unashamedly from one of 
the leading researchers in the field, E.A. Feigenbaum: "The 



potential uses of computers by people to accomplish tasks can be 
'one-dimensionalised' into a spectrum representing the nature of 
the instruction that must be given the computer to do its job. 
Call it the WHAT-to-HOW spectrum. At one extreme of the 
spectrum, the user supplies his intelligence to instruct the 
machine with precision exactly HOW to do his job, step-by-step. 
Progress in Computer Science can be seen as steps away from the 
extreme 'HOW' point on the spectrum: the familiar panoply of 
assembly languages, subroutine libraries, compilers, extensible 
languages, etc. At the other extreme of the spectrum is the user 
with his real problem (WHAT he wishes the computer, as his 
instrument, to do for him). He aspires to communicate WHAT he 
wants done in a language that is comfortable to him (perhaps 
English); via communication modes that are convenient for him 
(including perhaps, speech or pictures) ; with some generality, 
some vagueness, imprecision, even error; without having to lay 
out in detail all necessary subgoals for adequate performance - 
with reasonable assurance that he is addressing an intelligent 
agent that is using knowledge of hls world to understand his 
intent, to fill in his vagueness, to make specific his 
abstractions, to correct his errors, to discover appropriate 
subgoals, and ultimately to translate WHAT he really wants done 
into processing steps that define HOW it shall be done by a real 
computer. The research activity aimed at creating computer 
programs that act as 'intelligent agents' near the WHAT end of 
the WHAT-to-HOW spectrum can be viewed as the long-range goal of 
A1 research". (Feigenbaum, 1974). 

It is said (personal communication) that A1 came into being via 
robotics - researchers wanted to be able to give robots the 
ability to learn from experience, and to be able to react to 
things happening in the 'outside world' without necessarily 
having been programmed. In other words, to be given a set of 
rules describing proceedural behaviour given a specific set of 
circumstances; a set of facts describing possible sets of 
circumstances; and a mechanism for matching 'outside world' 
circumstances to the set of facts and thus deciding the 
appropriate behaviour by implementing the appropriate rule. 
Implicit within this desire is the ability to infer new rules and 
facts from the explicitly stated rules and facts, and thus to add 
to the information available to the robot. The set of rules and 
facts is known in the jargon as the 'knowledge base'; whilst the 
mechanism for inferring new rules and facts (which would then be 
added to the knowledge base), and matching observed facts to 
internally held facts, is known as the 'inference engine'. 

It can be seen that Feigenbaum's statement above is not so far 
removed from the roboticists' aims - a computer needs 'knowledge' 
of a subject in order to be able to act intelligently when 
applied to that subject; and it needs to know how to use that 
knowledge in a specific situation. 

So, with apologies for the anthropomorphism, A1 is trying to give 
computers the ability to possess knowledge of a particular 
subject, in such a way that fhat knowledge can be used and added 



to in a flexible way by both the user and the computer itself. 
Ideally implemented, it would make the computer 'transparent' to 
the user, i.e. make the user unaware that he is using a computer. 

Before confusing everyone too much, and without even considering 
the philosophical arguments about whether such aims are possible 
(they have to be - they have to some extent already been 
achieved) - we shall move on from A1 aims to look specifically at 
examples of A 1  systems. However, it is worth mentioning one very 
common method of testing for 'machine intelligence' before so 
doing: the Turing Test. 

The Turing Test was invented, not surprisingly, by Alan Turing, 
who was a mathematician greatly involved in computing matters in 
the mid 1940's. He was very much before his time, and was 
interested in, amongst other things, the concept of machine 
intelligence (a biography of Alan Turning has recently been 
written by Hodges, 1983). The test is as follows (see Fig. 1) .  

Barriers 

t 

A 

Human 
Interrogator 

Interface controlled 

Sources, one of 

i 
P@ " 

Figure 1. The Turing Test - 



Human being 'A' is faced with a computer terminal, which he uses 
to converse with two unknown sources 'B' and 'C'. ' A '  is told 
that one of 'B' and 'C' is controlled by a machine, the other by 
a human being whom 'A' has never met. An interface is controlled 
by the experimenter, and is switched between 'B' and 'C' 
unbeknown to 'A'. If 'A' cannot distinguish between '8' and 'C' 
in the course of dialogues with signifiantly better than 50% 
accuracy, and if this result continues to hold no matter what 
people are involved in the experiment, then the machine is said 
to simulate human intelligence. 

2.3.1 A1 Systems. The following is a list of perhaps the more 
surprising applications computers have been given by A1 
researchers. It demontrates very well the type of task involved, 
and the essentially human qualities that A1 systems have (they 
are in no particular order): 

Question Answering in a Story Understanding System (Lehnert, 
1977) 

Computer-based Medical Consultations (Shortliffe, 1976) 
Understanding Natural Language (Winaggrad, 1972) 
Using Common Sense (Reiger, 1975) 
Solving Calculus Word Problems (Charniak, 1968) 
Understanding Children's Stories (Charniak, 1972) 
Understanding Physics Problems (Novak, 1976) 
Analysing Mathematical Proofs (Bundy , 1975) 
Understanding Newspaper Stories (DeJong, 1977) 
Writing Stories (Meehan, 1977) 
Interpreting and Understanding Cartoons (Adler, 1977) 
Analysing and Synthesising Jazz (Ulrich, 1977) 
Medieval History (King et al, 1977) 
Managing Criminal Court Cases (Buchanan and Fennell, 1977) 

2.4 Expert Systems 

A branch of A1 is the area known as expert systems. It resulted 
from a feeling by some researchers that the A1 aims, as expressed 
above, were too grandiose and unreachable in the short term. As 
a result, they started implementing systems which embodied tried 
and tested A1 programming techniques. These systems could 
display intelligence under a certain set of circumstances, i.e. 
given enough facts and rules about a specific subject area, and 
could be used in an advisory or consultative capacity by human 
beings. These systems were used to try to perform the same tasks 
as a human expert in a particular subject area, by encoding the 
expert's way of solving a problem into a set of rules and facts 
which were 'programmed' into the computer, and which could then 
be accessed and/or manipulated by a human user in a 'free form' 
way. (Those familiar with 'conventional' computer systems will 
be aware that the responses a user gives a computer tend to have 
to be of a certain kind; i.e. the computer will only recognise a 
certain number of responses, and badly designed systems may well 
'crash' if given an unexpected response. Expert systems, in 
general, allow a much moye.flexible approach to user responses, 
and endeavour to simulate 'natural' conversation.) 



To clarify what expert systems are, the following statements are 
offered as a summary. 

An expert system is a computer program which incorporates 
information about a particular subject area, and the ways in 
which that information can be used. The result is that a user 
can use the system in such a way that it appears to have 
knowledge of that subject area, and can act as an advisor, or 
consultant or expert in that subject. The important thing about 
an expert system, and this is something not so far explicitly 
stated, is that by exhibiting intelligence, it can appear to be 
making judgemental or evaluative decisions of a type not 
traditionally associated with computer applications. There is an 
entire discipline devoted to obtaining information from human 
experts and encoding it for incorporation into an expert system 
(known as 'Knowledge Engineering'), and it is the methods by 
which this information is held and accessed within the computer, 
together with the programming approach adopted, that makes expert 
systems the powerful tools they have become. 

A more formal definition of expert systems, approved by the 
British Computer Society's committee of the specialist group on 
expert systems, is as follows: 

'An expert system is regarded as the embodiment within a 
computer of a knowledge-based component from an expert skill 
in such a form that the system can offer INTELLIGENT ADVICE 
or take an INTELLIGENT DECISION about a processing function. 
A desirable additional characteristic, which many would 
consider fundamental, is the capability of the system, on 
demand, to JUSTIFY ITS OWN LINE OF REASONING in a manner 
directly intelligible to the enquirer. The style adopted to 
attain these characteristics is RULE-BASED PROGRAMMING.' 

Does that make everything crystal clear?! 

The next chapter is devoted to an examination of how expert 
systems work. 



3. A CLOSER LOOK AT EXPERT SYSTEMS 

3.1 What Doesn't Make an Expert System 

I n  a discussion o f  expert systems i t  may seem inappropriate t o  
take a b r i e f  look a t  'conventional' systems; however, i t  i s  
important t ha t  the d i s t i n c t i o n  i s  made between expert and 
'conventional' systems, pa r t i cu la r l y  when dealing w i th  the design 
o f  a new system, which w i l l  be the case i n  I T S .  

I t  should by now be apparent tha t  the philosophy underlying 
expert systems concentrates upon performance i.e. the system i s  
b u i l t  t o  provide easy, f l e x i b l e  and natura l  access t o  a body o f  
information, or knowledge, which makes up a f a i r l y  small subject 
area. I n  order t o  do th is ,  a s t y l e  o f  programming i s  adopted 
(so-called 'Rule-based'), which i s  d i f f e ren t  not  only i n  s t y l e  
and construction, but also i n  e f fect .  

A small digression i s  appropriate here. I do not intend t o  
review the whole t op i c  o f  conventional programming techniques i n  
t h i s  report. I could not hope t o  cover enough ground i n  the time 
avai lable e i ther  t o  give someone w i th  no p r i o r  knowledge a 
working understanding o f  programming techniques, or t o  give 
someone wi th  programming experience, but  no formal technique 
t ra in ing,  a s im i la r  working understanding. There are numerous 
tex ts  avai lable on structured programming (which i s ,  i n  e f fec t ,  
good conventional programming), but the best are perhaps Welsh 
and Elder, 1982, Page and Wilson, 1982, Knuth, 1973 and Dahl e t  
a1 1972. However, i t  i s  important t o  understand the main 
dif ferences i n  ove ra l l  s t ructure between expert and conventional 
systems, and a small discussion o f  conventional programming 
techniques i s  presented as Appendix A. 

The main conceptual d i f ference tends t o  be one o f  control.  I n  a 
conventional system, the user i s  very much under the con t ro l  o f  
the program, i .e. i t  prompts him fo r  more information a t  ce r ta in  
times, t e l l s  him things a t  cer ta in  times, and, general ly 
speaking, w i l l  not al low him t o  re-trace h i s  steps through the 
program asking f o r  fu r ther  information. An expert system, again 
generally speaking, i s ,  i n  one sense, under more user control ,  as 
the user can request information from the system a t  any time, and 
does not have t o  wai t  t o  be prompted; i n  another sense, however, 
the system i s  very much i n  con t ro l  i n  terms o f  'knowing' which 
course t o  pursue. Unlike a conventional system, which tends t o  

be a sequential branching program o f  the form shown i n  Figure 2, 
an expert system tends t o  be o f  the form shown i n  Figure 3 - not 
nearly so determinist ic.  

The structure o f  expert systems i s  discussed i n  the remainder o f  
t h i s  chapter, but i t  can be seen from comparing Figures 2 and 3 
tha t  there i s  a great di f ference s t ruc tu ra l l y  between the two 
types o f  system. 

. 
The main po in t  t o  make here i s  tha t  an expert system i s  not  j u s t  
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Figure 2 'Conventional' program structure Example 

Explanation. This is a diagrammatic representation of a 
simple, sequential branching program of the type familiar to 
anyone who has had dealings with computer programming. The 
main point is that the flow of control is progressively 
'down' through the structure, with user messages and input 
being set at particular points in the program. The whole 
program is strictly deterministic and, if well programmed, 
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Models 

Rules 

Evidence 

t = .flow of information 

Figure 3 Expert System Structure Example ('PROSPECTOR' style) 

Explanation. This illustrates a 'PROSPECTOR'-type expert 
system structure (see Ch. 4 below for a discussion of 
'PROSPECTOR'). It is a network which relates a set of 
possible evidence to a set of possible models ('models' in 
this case can be thought of as prototypical situations). 
Each box represents an hypothesis and the links indicate 
where the conclusion of one hypothesis forms the input to 
another, higher, hypothesis. The flow of ipformation is 
from evidence to model hypotheses. The set of model 
hypotheses represent the set of 'goals' that the system is 
attempting to prove. 

The evidence hypotheses represent input information, which 
can be subjective user judgements or sensor measurements or 
whatever. The network of links between hypotheses 
represents the rules which, in turn, represent intermediate 
stages of reasoning. 

The system works in the following way: a model is first 
chosen, either by the user or automatically by the system, 
and evidence is evaluated by backtracking from the model 
hypothesis to the evidence. Whenever an evidence hypothesis 
is encountered, input is requested from the user, or 
sensors,*or whatever. Further models may be evaluated aJter 
the $first, and, ideally, P"one-model should emerge'as the 
solution to the problem. 



a well-designed interactive program; there is a lot more to it 
than that. A fatal mistake, which people trying to join the 
expert systems bandwagon tend to make, is to design a user- 
interface for a previously tried and tested non-interactive 
program, and call it an expert system! A second mistake, which 
tends to come in the design stage, is to find an application 
which requires a computer program, but which is actually a 
numerical- or algorithm-solvable problem not requiring the 
'intelligent knowledge' of an expert system. Kowalski's 
statement quoted in the proceeding section highlights these 
problems of terminology, and the deeper one goes into the 
programming and internal structure of expert systems, the more 
difficult distinctions are to make. 

We shall remain, mostly, at the higher, conceptual, level of the 
arguments. 

3.2  What makes an Expert System 

It can well be argued that an expert system is really only a 
computer program that, when run, makes people say 'I didn't know 
a computer could to things like that!'. Or, to put it another 
way, a computer program which does something that you'd have 
thought would have needed a human expert to do. If this can be 
borne in mind, then we shall make headway. 

So, if we are looking at a computer program that does what a 
human expert does, then what attributes does it need? 

Well, firstly it obviously needs to know something about a 
subject; we know that that can be done easily enough - a few 
facts in a database, or perhaps in the form of PROLOG statements 
(PROLOG is a programming language we'll come to later - if it 
means nothing to you, don't worry, but go and read Clocksin and 
Mellish, 1981 ). So that is alright. 

Next, it needs to be able to use the facts it has available to 
it, it needs to be able to deduce, or infer, further facts from 
those it has available. We know that this can be done - a set of 
rules about what action to take if a certain circumstance, or 
fact, is found to be true is all that is needed. Again, this 
could be in the form of PROLOG statements, or perhaps just 
conventional IF statements of the kind: 

IF condition THEN action. 

So that is alright. 

Next, it needs to be able to apply the rules to the facts. How 
does it know when to apply rules? Well, a human expert works in 
terms of answering questions, or interpreting information; in 
other words, he responds to a stimulus of some kind. So, our 
sytem has to have a way of recognising the appropriate stimulii 
and taking the appropriate action. This is more tricky, as it 
has to have an 'interface' designed which will accept stimuli in 



the form of questions, or even further information, from a human 
user (or possibly from a data source such as a traffic counter). 
The 'user-interface', however, is a common aspect to conventional 
systems, so we know that that can be done, so that is alright. 

A human expert can explain how he reached a decision, and should 
be able to do so in a way easily understood by the enquirer 
(although this latter rule is often broken! ) . Generating 
explanations is difficult. It has been done in America, but it 
is recognised as one of the areas in which further work is needed 
(Kidd and Cooper, 1983). So that is sort of alright - it can be 
done, but it-needs more work. 

The other main thing a human expert can do is to weigh up 
available evidence, and come to a conclusion even if some 
evidence is missing. This is difficult to put into our system as 
no-one knows how human beings cope with uncertainty, and how they 
evaluate partial evidence. Various methods of representing an 
unknown quantity (both in terms of human processes and evidence!) 
have been put forward - notably Bayesian Propagation Formalism 
(Duda et al, 1976); fuzzy logic (Baldwin, 1981); and fuzzy set 
theory (Zadeh, 1965). All have been incorporated either singly 
or in concert in expert system designs, so we know that we can at 
least represent uncertainty, but we are not sure how good that 
representation is. Evaluations of systems using these 
uncertainty methods suggest that they can be used satisfactorily 
(Adams, 1976), but we are still awaiting the definitive method of 
representing uncertainty. 

It should by now be becoming apparent that we are trying to give 
the computer as many of the facets of a human expert as we can. 
In order to do this, we need to know how a human expert interacts 
with both the enquirer and the information he is working on. 
This is an extremely difficult task, as we would have to have a 
complete understanding of thought processes in order to endow the 
computer with the ability to perform exactly as the expert. As 
stated above, A1 is to some extent concerned with building models 
of thought processes, but the processes themselves are not as yet 
understood. Expert systems, therefore, tend to try to imitate 
rather than replicate these processes. 

To summarise the requirements for an expert system: 

- facts, from which the system can work to infer some higher 
level information (the database) ; 

- rules, which the system uses to work on the facts. The 
rules are, in effect, the heuristics the human expert uses 
when solving a problem (the knowledge source); 

- (the database and knowledge source together make the 
'knowledge base' ) ; 

- a method for applying rules to facts, i.e. for selecting a 
rule under a certain set of circumstances (the inference 
engine) ; 

- a method of communicating with potential enquirers in as 
natural a way as possible (the user interface); 



- a means of explaining how a particular conclusion has been 
reached, or why a particular line of inquiry was pursued 
(the explanation facility) ; 

- a means of representing human uncertainty or incomplete 
evidence (probability and possibility). 

The above requirements are for a 'typical' expert system. Many 
systems are termed expert by their designers without meeting all, 
or even any, of these requirements. In fact, there is some 
argument over just when an expert system is an expert system, 
particularly when a programming language such as PROLOG is used 
to build the system. As an example of this confusion, and as an 
introduction to the next section, let us look at a statement made 
in the 1983 Expert Systems conference in Cambridge ... 

I . . .  there is a close association between expert systems and 
rule-based systems. Practically every expert system of 
significant complexity has been implemented as a rule-based 
system; and conversely, in North America until recently, 
expert systems have been virtually the sole application of 
rule-based languages. In Europe, however, PROLOG has long 
been used as a rule-based language for a great variety of 
applications, such as databases, natural language 
processing, computer aided design, compiler writing and 
rapid prototyping. Many of these applications (rightly or 
wrongly) would be classified as expert systems had they been 
implemented in North Americat. (Kowalski, 1983) 

Just when you thought it was becoming slightly clearer as well! 

3.3 Rules and How They Work 

For the moment, let us concentrate on rules, what they are and 
how they work. Much has been made of rule-based programming and 
rule-based systems, but we haven't, as yet, looked at what they 
do. 

As stated above, an expert system has to be able to infer some 
information from a set of facts in a database. In order to do 
this, it has to have some 'procedural knowledge', i.e. 
instructions to tell it what to do in a certain set of 
circumstances - these are rules (also termed 'production rules', 
(Davis and King, 1976)). 

The rules represent the knowledge of the human expert, which has 
been found to be a collection of heuristics rather than an 
algorithm; i.e. the expert's knowledqe tends to consist of 'rules 
of thumb' developed by experience, and, as such, is difficult, if 
not impossible, to represent by a sequential algorithm. (See 
Sloman, 1979 for a discussion of the nature of knowledge. ) 

So, to describe a subject area, we would have a collection of 
facts ( 'declarative knowledge' - describing things), together 
with a collection of rules ('procedural knowledge' - describing 



actions). The interactions of facts and rules (as performed by 
the 'inference engine') in effect gives us our expert system 
basis. 

The relationships between the inference engine, the database 
(i.e. the set of facts) and the knowledge source (the set of 
rules) is as shown in Figure 4 for a 'typical' expert system. 

The way in which the system works is, generally, as follows: 

The inference engine (i.e. the mechanism for applying rules to 
facts) has to select an applicable rule from the knowledge source 
(i.e. the set of rules), and apply it, subsequently updating the 
database (i.e. the set of facts). This repeats until the 
solution is reached. It is, in essence, a very simple process - 
pick a rule according to some criterion, apply it, changing one 
or more of the facts if necessary, pick the next rule, etc. etc. 
until the answer, or rather to use the jargon, an assessment, 
appears. 

However, the system has to know how to select a rule, and, which 
particular rule to select. There are two main methods of rule 
selection: Data-driven and demand-(goal) driven; they are often 
used together in expert system implementations. 

Rules tend to be of the form: 

IF condition THEN action 

although implementations of rules in different programming 
languages can make them virtually unrecognisable. However, think 
of rules as having the above form. 

3.3.1 Data-Driven Rule Selection 

Data-driven rule selection methods work as follows: 

- the condition part of each rule is hecked against the facts 
in the database to see if the condition is met. - a rule is selected whose condition is satisfied. - the action part of the rule is carried out. - the facts in the database are updated by the action part of 
the rule (if appropriate). - repeat. 

If more than one rule's conditions are met in the database, then 
a rule will be selected either by physical position in the rule 
set (i.e. first encountered, first used); or by a series of 
weightings of importance as imposed by the human expert when 
divulging his knowledge, and encoded as part of the rule 
structure. 
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The data-driven method is, therefore: 

Put initial facts into database 
Repeat 

Test condition of each rule against database 
Select rule 'R' from the set of possible rules 
Apply rule 'R', updating database 

Until database satisfies goal condition 

An example of an application requiring a data-driven rule 
selection method might be a real time monitoring and control 
system for urban traffic. For example, traffic sensors would 
send information into the database, which would be continually 
monitored by the application of rules, representing the processes 
a human system manager would undergo in examining the system 
state. A 'goal state' for the system would exist, representing 
optimal system use perhaps, and rules would be applied as a 
result of data coming into the database and taking the system 
away from its goal state. Rule actions might well be controlling 
traffic light times etc. Thus we have a system which operates as 
a result of the data available to it. 

3.3 .2  Demand-(Goal) Driven Rule Selection 

This approach means that rules are 'chained' together, the action 
parts of subsequent rules providing information about the 
condition part of preceeding rules. In our urban traffic network 
management system example, this approach would be adopted if the 
expert system had knowledge of, say, bus schedules available to 
it: suppose that a no. 26 bus were due at a certain point in the 
network at a certain time, according to the schedules; and that 
the data being passed to the system by the traffic sensors 
included a 'bus identifier' of some kind. A demand- or goal- 
driven rule selection method would examine the incoming data for 
evidence of the expected bus. System performance could, perhaps, 
then be assessed on the earliness or lateness of the bus, and 
appropriate actions taken. The system is taking action to 
achieve a certain goal. 

3 .4  How a system knows its subject -- -- 
The methods of selecting rules (or 'firing' rules to use the 
jargon) do not, obviously, account for intelligent behaviour, 
they are purely methods of applying expert knowledge to a 
particular problem. In fact, expert systems depend entirely upon 
the knowledge they possess for their intelligent performance. 
Their power comes from the knowledge base (i.e. the combination 
of facts and rules), not from the inference engine (i.e. the way 
rules are applied to facts). Feigenbaum (1979) discusses this in 
some depth. The dependence upon knowledge gives rise to expert 
systems' alternative name - Intelligent Knowledge-Based Systems 
(IKBS). These names seem to be used completely inter-changeably, 
so we will note the alternative and pass on. (It is, however, 
worth noting that in some. circles at least, an IKBS is only an 
expert system if it can fulfil a human expert's role; whilst in 



others the terms are completely inter-changeable) 

How does an expert system get its knowledge? and how is that 
knowledge represented and used? Well, we have already seen that 
rules are extremely important, as are facts. Facts will be 
looked at later, as there are many ways of representing them; let 
us look first at how the knowledge is initially obtained from the 
human expert. 

3.4.1 What is Knowledge Engineering? 

Given that the power of an expert system depends upon the quality 
of the knowledge it possesses, then it is obviously very 
important that the knowledge to be used in establishing an expert 
system is as accurate and well defined as possible. This task of 
obtaining knowledge from human experts falls to the 'knowledge 
engineer'. 

Knowledge engineering is the term applied to the process of 
turning the essentially heuristic human expert's knowledge into a 
set of rules and facts for inclusion in the expert system. There 
are a number of techniques for eliciting human experts' 
knowledge, all of them seemingly under continual refinement. 
They range from the simple, manual method of sitting down and 
talking with the expert, discussing case studies and working 
through examples, through to an expert system which infers rules 
from examples input to it. The former approach is 'explicit' 
knowledge acquisition, i.e. the expert tries to explain his 
thought processes, whilst the latter approach is 'implicit' 
knowledge acquisition, i.e. a computer program extracts the 
salient features from a series of examples. 

Knowledge engineering is a subject obviously closely connected 
with expert systems, but it is also a large subject on its own 
account. It has been used to describe the process of building 
expert systems (Feigenbaum, 1979), i.e. not only eliciting the 
knowledge, but also designing the data structures and programming 
requirements for representing the knowledge in the expert system. 
It has also been used to describe the process of eliciting expert 
knowledge only (Cox, 1984). In a sense, this conflict of 
terminology is irrelevant, the essential element is that of 
acquiring the experts' knowledge in a form that can then be input 
to the expert system mechanisms. 

There are a number of articles relevant to knowledge engineering 
in both its senses, and it is recommended that any serious 
potential expert system designer at least read Waterman, 1979; 
Quinlan, 1979; and the section on Knowledge Acquisition in the 
Proceedings of the Expert Systems Conference, Cambridge 
University, 1983. 

3.4.2 What is Knowledge Representation? 

The method of representing.know1edge within an expert system is 
probably the most argued area in expert systems. We have already 



looked at rules and how they work, and systems which rely 
entirely upon rules, or at least which have a major part of their 
knowledge represented as rules, are known as 'Rule-based 
Systems'. Rules are adequate for expert systems which are highly 
specific and apply to limited subject areas (Cox, 1984); but, 
when the area is broader, then rule-based representation tends to 
become unsatisfactory, largely because a lack of 'common sense' 
tends to become apparant. This is because the set of rules 
becomes so large that it looses its coherence, and side-effects 
can emerge that were not anticipated. This problem can to some 
extent be overcome by adding what is termed 'meta-knowledge' to 
the expert system (see 3.4.3 below), but it is often more 
appropriate to adopt a different form of knowledge 
representation. 

It is at this stage that things become a little complicated! 
There are a number of alternative approaches to representing 
knowledge, but they seem to resolve themselves into one of two 
distinct camps. Logic, and its manipulation, termed 'first order 
predicate calculus', is one (as advocated by McCarthy and 
followers, see McCarthy, 1979); whilst frame-based representation 
is the other (as advocated by Minsky and followers, see Minsky, 
1975). If you want to read about some of the ways proposed for 
representing knowledge, then look through the Knowledge 
Representation sections of the proceedings of International 
Conferences on Artificial Intelligence. A good general state-of- 
the-art discussion is available in IEEE Computer, 1983. 

Let us look briefly at the two main protagonists. 

3.4.2.1 Logic and PROLOG 

Logic and first-order predicate calculus are somewhat difficult 
concepts to come to terms with, and there is little indication in 
the expert systems literature of any easy introductory text, 
Crossley et al, 1972 is a good mathematical text for those who 
are interested. However, the definitive PROLOG text (Clocksin 
and Mellish, 1981) contains much that is relevant to knowledge 
representation in logic, and the following discussion relies 
heavily upon that text. Examples are given in PROLOG form. 
PROLOG is a computer programming language that is used for 
solving problems involving objects, and the relationships between 
objects; it is, in effect, a step towards the goal of programming 
in pure logic. 

A simple example of a fact expressed in logic would be: (in 
PROLOG form) 

run-on (trains, rails) (1) 

i.e. 'trains run on rails' 

this example shows two important things: firstly, we have 
defined a relationship 'run-on', and secondly we have defined two 
objects 'trains' and 'rails'. These are referred to respectively 



as a predicate and arguments. Thus we have a predicate 'run-on' 
with two arguments 'trains' and 'rails'. The selection of names 
for both the predicate and its arguments is totally arbitrary - 
we might just as well have said: 

a (b, c) (2)  
which could have meant the same as ( I ) ,  but we would have to 
remember what a, b and c respectively stood for. In effect, we 
have now defined a fact, i.e. that trains run on rails. 

The number of arguments a predicate takes does not seem to be 
limited, although any given PROLOG implementation will obviously 
have a maximum number. We could, thus, define further facts: 

drive-on (cars, lorries, buses, roads) ( 3 )  

i.e. 'cars and lorries and buses drive on roads'. 

operate (PTE, buses) 

i.e. 'PTE operates buses'. 

operate (BR, trains) ( 5 )  

i.e. 'BR operates trains'. 

operate (private-people, cars) 

i.e. 'private-people operate cars'. 

etc. etc. 

So, we could now put all these facts into a database, and then 
ask questions about them. The database would look like this: 

run-on (trains, rails) 
drive-on (cars, lorries, buses, roads) 
operate (PTE, buses) 
operate (BR, trains) 
operate (private-people, cars) 

We could now query this database. PROLOG accepts questions in 
the same form as facts, preceeded by two special symbols the 
question-mark (?) and the hyphen (-1. Thus: 

? - run-on (cars, rails) (7) 

i.e. 'do cars run on rails?' 

The system would reply: 'No' 

but 

? - operate (BR, trains) would produce the answer 'Yes'. 



If we asked 

? - likes (HRK, PROLOG) (8) 

the answer would be 'no', because the system can find no 
reference in the database to any of 'likes', 'HRK' or 'PROLOG'. 
So, 'no' in effect means 'not as far as I know'. This obviously 
has implications for mis-spellings etc. 

All this is very well, but slightly limiting. How could we ask 
the system what, for example, BR operates, or what drive on 
roads. Well, like most programming languages, we use variables. 
Thus: 

? - operate (BR, X) (9 )  

will produce the answer 

X = trains. 

Similarly the query: 

? - drive-on (X, roads) 

will produce the answers 

X = cars 
X = lorries 
X :: buses 

Logic, and its implementation in PROLOG, allows some very 
flexible and powerful constructs. Me can, for example, ask more 
complicated questions, such as: 

? - operate (BR, XI, run-on (X, rails) (11) 

i.e. 'What does BR operate that runs on rails?' 

We can also construct rules (hence 'rule-based' programming 
language) which, in this case, is a sort of generalisation of a 
list of facts. For example, we could have a database consisting 
of facts concerning what BR do; say, operate different classes of 
locomotives, rolling stock, maintenance teams, management teams, 
etc. etc. looking something like: 

run-on (class 37, rails) 
run-on (freightliner-wagon, rails) 
work-in (management-team, headquarters) 
etc. etc. 

We could define a rule to produce listing of all BR mobile 
equipment, thus: 

mobile (BR, X):- run-on (X, rails) 

(the :- reads as 'if'). .- 



Hopefully, this somewhat basic discussion will give an indication 
of the power of both logic and PROLOG. Interested readers are 
referred to Clocksin and Mellish, 1981 for a far more detailed 
examination of PROLOG. The use of logic to represent knowledge 
boils down to defining objects and the relationships between 
them, and then manipulating those relationships. 

A small justification for treating logic and PROLOG together in 
such a cavalier fashion is required. ITS, whilst most probably 
using PROLOG for devising rule-based systems defining logical 
relationships, is most unlikely to want to build complete expert 
systems from scratch using pure logic as a knowledge 
representation medium. Thus, we have tried to kill two birds 
with one stone - introducing both logic and PROLOG. 

3.4 .2 .2  What is Frame-Based Knowledge? 

A frame-based knowledge representation medium can be described as 
follows: 

A class of objects or events or scenes is initially described by 
a prototype (somewhat similar to the SIMULA class concept for 
those familiar with such things). The prototype is considered as 
a stereotype description of members of the class. For example: 

Suppose we wish to describe a prototype of the Light Commercial 
Vehicle as specified in TAM, 1981: 

PROTOTYPE : Light-Commercial 
UNLADEN-WEIGHT : i 3  Ton 

REAR-WHEELS : Twin (1 )  
PLATE : None 

Thus, the prototype has 'slots', which are the characteristics of 
all members of the prototype class, and which in the above 
example are 'UNLADEN-WEIGHTS', REAR-WHEELS', and 'PLATE' (i.e. 
presence of rear reflective plate). The values expressed in the 
prototype slots can act as default values for specific members of 
the prototype class. The specific members of the class are known 
as instances of the class, or 'instantiations'. Thus, to 
represent the fact that a Ford Transit is a light commercial 
vehicle (if it has twin rear wheels and is i 30 cwt ! ) , we would 
write: 

FORD TRANSIT 
INSTANCE OF : Light-Commercial (2) 

If the system were then asked about Ford Transits, it would say 
that Ford Transits had an unladen weight i3 tons, had twin rear 
wheels and no reflective rear plate; i.e. the information would 
come from the values put in the prototype slots. 

An important characteristic of frame-based knowledge 
representation is that of-,'property inheritance'. This is where 
instances of prototypes possess all the characteristics of the 



parent prototype. For example, we could change (1) above to 
include the fact that light commercial vehicles are instances of 
road-going vehicles, and therefore possess all the 
characteristics of road-going vehicles such as, say, steering 
mechanisms, motive power, fuel storage or whatever. Suppose we 
had specified a prototype 'ROAD-GOING-VEHICLE' with all the 
appropriate attributes, and wanted the prototype 'light- 
commercial' to possess all these attributes as well as the 
further ones we are going to specify, we would write: 

PROTOTYPE : Light-Commercial 
INSTANCE OF : Road-Going-Vehicle 

UNLADEN-WEIGHT : i 3  ton (3)  
REAR-WHEELS : Twin 

PLATE : None 

The system would now know that light commercial vehicles, as well 
as having the above explicit chracteristics, would also have all 
characteristics of road-going vehicles, as specified in the Road- 
Going-Vehicle prototype. 

Suppose we now want to make a deduction from the information the 
system has. For example, suppose we wanted to represent 'George 
drove a Transit', and 'Norman drove whatever George drove'. This 
could be represented as follows: 

Declare a prototype 

PROTOTYPE : Driving 
DRIVER 
VEHICLE : 

(note the attributes of 'Driving' are empty, therefore no default 
values are available) 

and two instances 

Dl 
INSTANCE OF : Driving 
DRIVER : George 
VEHICLE : Ford Transit 

D2 
INSTANCE OF : Driving 
DRIVER : Norman 
VEHICLE : Vehicle (Dl) 

Thus, the system could easily give us the answer to the question 

'What vehicle did Norman drive?' 

As in logic-based knowledge representation, we can construct 
rules to act as generalisations or to carry out actions. For 
example, we could build a-prototype rule, thus: 



PROTOTYPE : Rule 
I F  : 

THEN : 

and an instance o f  a ru le ,  say 

' I f  x i s  a t ransport  consultant i n  f i r m  y, and z i s  a 
founder partner o f  f i r m  y, then z i s  the boss o f  x.' 

(We use ru les i n  t h i s  representation t o  s t ructure knowledge tha t  
i s  not eas i ly  structured by prototypes and t h e i r  a t t r ibutes.  
Data s t ruc tu r ing  aims t o  re-create na tu ra l l y  occurring 
relat ionships between data objects. See Tenenbaum and 
Augenstein, 1981 . ) 

R1 
INSTANCE OF : Rule 

I F  : ( x  works i n  y) AN0 (8) 
( z  partner of y) 

THEN : z boss o f  x 

We can incorporate ru les  i n t o  t h i s  frame-based representation i n  
such a way tha t  i f  a s l o t  value i n  an instance i s  unknown, then 
the defaul t  value i n  the prototype can be a c a l l  t o  a r u l e  t o  
i n f e r  the required value. For example: 

prototypes: 

PROTOTYPE : Consultant 
NAME : 

WORKS I N  : 
BOSS : i R l i  

PROTOTYPE : Partner 
NAME : 
FIRM : 

and instances: 

B1 
INSTANCE OF : Consultant (1'1) 
NAME : E.J. Thribb 
WORKS IN  : Fagin and Partners 
BOSS 

82 
INSTANCE OF : Partner (12) 
NAME : W. Shylock 
FIRM : Fagin and Partners 

These declarations would mean tha t  the question 'who i s  E.J. 
Thribb's boss?' would produce the fol lowing actions: 

The 'Boss' s l o t  of (11) js, unknown, so the defau l t  vaue i n  (9) i s  
implemented. This i s  a c a l l  t o  r u l e  R1 (B), which then i n f e r s  



that E.J. Thribb's boss is, in fact, W. Shylock. 

There are more complicated constructs of knowledge using this 
type of representation, but the basic principles remain much the 
same. See Minsky, 1975 and Nilsson, 1982 for more detailed 
discussions. 

3.4.3 What is Meta-Knowledge? 

Meta-Knowledge is the term applied to the knowledge that a system 
has of its own knowledge. Or, to put it another way, the rules 
that the system has for asking questions, or activating other 
rules, etc. For example, a meta-knowledge rule would be of the 
form: 

IF (no. wheels known) AND 
(no. axles known) AND 
(unladen weight is required) 

THEN (ask question 'n'). 

Meta-Knowledge is one method of giving large, rule-based systems 
in particular, some degree of 'common-sense'. Another method is 
by weighting or 'blocking' particular rules. This is dealt with 
next, and comes under the concept of 'uncertainty'. 

3.5 How does a system cope with incomplete and uncertain data? 

An important feature of an expert system is its ability to handle 
uncertainty. Human experts tend to be able to arrive at 
conclusions after consideration of incomplete evidence, and may 
often say things like 'its probably factor x that causes the 
problem', or more precisely 'there's a 75% chance that factor x 
causes the problem'. Expert systems do the same. We can design 
our expert system so that if a piece, or pieces, of evidence are 
missing, the system will still arrive at a valid conclusion, 
assigning probability to its conclusion. 

As stated briefly above, the way in which human beings handle 
incomplete evidence and uncertainty is, as yet, not totally 
understood, and so we cannot build an exact model of the human 
processes into our expert system. There are, however, several 
theories which address this problem of uncertainty (termed 
'possibility' in the jargon), and these are all summarised by 
Quinlan, 1983. It is argued that all the current forms of so- 
called possibility theory do not, in fact, work (Cox, 1984), and 
that the development of a workable theory is the task of the 
psychologists rather than the computer scientists. The attitude 
amongst expert system researchers is one of 'we have something 
that seems to work alright, but it is by no means perfect. We'll 
stick with it until something better turns up'. The technique 
that is currently used by most (but by no means all) expert 
systems is Bayes Theorem, or some derivative thereof. We shall 
look in some detail at how this is used. 



3.5.1 What is Bayes Theorem? 

It has been argued that 'PROSPECTOR' handles probabilities and 
conclusions in a way that is the best worked out of any expert 
system (Naylor, 1984). It uses Bayes Theorem to assess the 
effect of a large amount of cumulative evidence on the validity 
of an hypothesis, and it works like this: 

Bayes' formula is applied to prior probabilities to assess the 
posterior probabilities of an event occurring. An event might be 
something like the hypothesis that a particular road junction has 
reached its capacity and needs to be redesigned. Each hypothesis 
in the system, there can be quite a few, starts off with a prior 
probability of being true - P(H). Thus, we might give the above 
example of junction capacity the prior probability 0.5; i.e. 

Now, supposing that there is a huge tailback of traffic at our 
junction throughout each peak period, the probability P(H) 
changes to P(H : E), i.e. the probability of the hypothesis given 
the new evidence. So, the system assigns the value of P(H : E) 
to P(H), nd we can now go on to look at the next piece of 
evidence and input that to the system. The problem is how we 
calculate P(H : E). 

The answer is: 

where 

LS = P(E : H)/P(E : not H) 

which can be roughly explained as follows: 

LS is the ratio of the probability of getting a particular piece 
of evidence if the hypothesis were true, divided by the 
probability of getting that same bit of evidence if the 
hypothesis were not true. (Any statisticians will by now have 
recognised LS as 'the likelihood ratio' ) . 
Using the saturated junction example above, we can now see how 
evidence, or the lack of it, updates prior probability. P(H) was 
initialised at 0.5; supposing that long tailbacks have a 
probability of 0.8 if the hypothesis is true, and 0.1 if it is 
not true. Thus, LS now takes the value 8, because ( 3 )  says 

LS = P(E : H)/P(E : not H) 

i.e. LS = 0.8/0.1 = 8 (4) 



so, subs t i tu t ing  i n t o  (2), we get 

Then, subs t i tu t ing  P(H) = 0.5 i n t o  (5), we get 

so, P(H) i s  given the value P(H : E), and i t  i s  beginning t o  look 
as i f  we need a new junction! Further evidence would then be 
treated i n  the same way, updating P(H). However, we have not 
considered the f a c t  tha t  the evidence we obtain suggests tha t  the 
hypothesis i s  not t rue  - so f a r  we have only looked a t  the 
'pos i t i ve '  e f fec ts  o f  evidence. We might, f o r  example, f i n d  t ha t  
there are never any queues longer than two vehicles a t  our 
junction, suggesting t ha t  f a r  from redesigning it, we should 
perhaps look a t  adopting t ha t  design f o r  a l l  future junctions! 
How do we put t h i s  i n t o  our expert system? Well, the 
calculat ions are the same, but  we are looking a t  not-E, rather 
than E, t o  show t h a t  the evidence i s  lacking. We then calculate 
the l i ke l i hood  r a t i o  and update P(H) as before. However, we do 
need t o  have a d i f f e r e n t  se t  o f  p robab i l i t i es ,  as the previous 
set was based on the presence o f  evidence, whereas t h i s  i s  now 
concerned wi th  the e f f ec t  o f  a lack o f  evidence. Thus, we take: 

LN = P(not E : H)/P(not E : not H) (7) 

which i s  the l i ke l i hood  r a t i o  associated w i th  the lack o f  a 
cer ta in  piece o f  evidence. We now calculate P(H) = P(H : not E) 
as above, but use LN, not LS. 

To rever t  t o  our junct ion example, suppose tha t  we have found no 
evidence o f  peak per iod t r a f f i c  t ra i lbacks,  then we might assign 
the p robab i l i t y  t ha t  no t r a f f i c  jams occur given tha t  the 
junct ion has reached i t s  capacity as, say, 0.2, and the 
p robab i l i t y  tha t  no t r a f f i c  jams occur given tha t  the junct ion 
has not reached capacity as 0.9. This gives: 

So, subs t i tu t ing  LN fo r  LS, and s t i l l  assuming P(H) i n i t i a l l y  as 
0.5 we would get 

P(H : not E) = 0.2 P(H)/( l  - P(H) + 0.2 P(H))  
= 0.1/(0.5 + 0.1) 
= 0.1/0.6 
= 0.1666 

which indicates t ha t  the lack o f  t r a f f i c  jams a t  our junct ion 
suggests tha t  we do not  need t o  redesign it. 



The above example shows how the presence or lack of evidence can 
be accounted for in an expert system, and the use of the LS and 
LN factors prevent the system from asking irrelevant questions; 
i.e. if you were asked by the system about the presence of 
traffic jams, and you answered that there was such evidence, the 
system would then not be so stupid as to ask you if it were true 
that there were no traffic jams. The LS and LN values (sometimes 
helpfully described as Logical Sufficiency and Logical Necessiiy) 
effectively put together the results of the two questions, 
without actually asking both. 

This is still not quite the end of the story, however, because we 
need to be able to input our evidence in a way that reflects our 
certainty about its validity. For example, we would recognise no 
traffic jam, just as we would recognise a 3 mile tailback, but 
what about a 100 metre queue? or a 4 vehicle queue? (For the sake 
of example let us pretend we know nothing about transport, and 
are novice surveyors collecting evidence in a survey.) How do we 
input a "well, there was a bit of a queue, but not really a 
traffic jam" statement? For this, indicators of certainty can be 
used, as described in the next section. 

3.5.2 How can uncertainty be represented? 

Many expert systems query the user for evidence in the form "How 
certain are you that ...", and allow answers on a scale -5 to +5, 
representing complete uncertainty and complete certainty 
respectively. 0 represents 'don't know'. Some systems treat 0 
as a special case representing ambivalence rather than 'don't 
know, and have a distinct 'don't know' symbol; they also allow 
'Yes' and 'No' as completely certain and completely uncertain 
respectively. 

A point to mention here is that experience within ITS has shown 
that the "how certain are you that ..." phraseology can be 
misleading. For example, "how certain are you that there is a 
traffic jam" could be interpreted as meaning either "is there a 
traffic jam, and if so how big or small on a scale -5 to 5", or 
"do you think that what you saw constitutes a traffic jam, on a 
scale -5 to 5". The latter interpretation tends to be the one 
meant by the system. 

We have seen in the previous section how LS and LN are used to 
weight evidence; we now need to see how our so-called input 
certainty values are applied to these factors. The relationship 
between LS, LN and the input certainty is shown in Figure 5 and 
works as follows: 

The 'odds' form of Bayes Theorem is used, whereby 

odds = probability/(l - probability) (1) 
probability = odds/(l + odds) 

Thus, instead of probabifities as in the above section, odds are 
used, as derived from ( 1 ) .  The principle is the same but odds 



factor 

input certainty 

, igure 5 Multiplication Factors for Bayes Rule 



seem t o  be easier t o  work wi th .  I f  t h e  i n p u t  c e r t a i n t y  is 0 ,  
t hen  t h e  mu l t i p l y i ng  f a c t o r  is 1 and t h e  hypo thes is  p r i o r  odds do 
no t  change. I f  t h e  i n p u t  c e r t a i n t y  is  less t han  0 ,  t hen  t h e  
mu l t i p l y i ng  f a c t o r  is less t han  1,  and t h e  hypo thes is  odds a r e  
decreased;  and i f  t h e  i n p u t  c e r t a i n t y  is g r e a t e r  t h a n  0 t hen  t h e  
hypo thes is  odds a r e  inc reased .  The s e t t i n g  o f  va l ues  f o r  LS and 
LN g i v e s  g r e a t  f l e x i b i l i t y  i n  c a l i b r a t i n g  systems, and a l l ows  t h e  
e x p e r t  t o  pu t  we ights  on t h e  importance o f  v a r i o u s  b i t s  o f  
evidence.  

One o t h e r  way i n  which u n c e r t a i n t y  i n  t h e  va lue  o f  a n  a t t r i b u t e  
may be  rep resen ted  is th rough t h e  use  o f  fuzzy sets - a concept  
due t o  Zadeh (1965). Th is  is no t  exp lo red  f u r t h e r  h e r e  however. 

3.6 How a system e x p l a i n s  what it does. 

In  o rder  t o  communicate s o l u t i o n s  t o  problems e f f e c t i v e l y ,  an  
e x p e r t  system must be a b l e  t o  o f f e r  exp lana t i ons  o f  what it is 
doing. Exp lana t ions  a r e  necessary  n o t  on ly  when a s o l u t i o n  h a s  
been reached, i .e. how t h a t  s o l u t i o n  was reached;  bu t  a l s o  when 
t h e  system r e q u e s t s  a p i ece  o f  ev idence from t h e  use r ,  i .e.  i n  
unders tand ing why t h a t  p i ece  o f  ev idance is needed. The 
convent iona l  way o f  i n c l ud i ng  exp lana to ry  comments i n  programs is 
t h e  so -ca l led  'canned t e x t '  method. Th is  is where a comment is 
p r i n t e d  when t h e  program reaches  a c e r t a i n  p o i n t  i n  its 
opera t ion .  We shou ld  by now, however, be aware t h a t  a n  e x p e r t  
system program does no t  fo l l ow a s e q u e n t i a l  cou rse  o f  ope ra t i on ,  
and s o  'canned t e x t '  would n o t  on ly  be d i f f i c u l t  t o  implement, it 
would a l s o  no t  g i v e  much f l e x i b i l i t y .  

I t  is a t  t h i s  s t a g e  t h a t  we begin  t o  d e a l  w i th  i s s u e s  no t  o f  s o l e  
concern t o  e x p e r t  systems. The whole a r e a  o f  e f f e c t i v e  and 
meaningful d ia logue  between computer systems and t h e i r  u s e r s  is 
t h e  a r e a  known a s  'Man Machine I n t e r f a c i n g '  (MMI). MMI is 
ano ther  o f  t h e  concerns i d e n t i f i e d  by t h e  Alvey Report a s  be ing  
i n  need o f  f u r t h e r  work, and a g r e a t  d e a l  is c u r r e n t l y  happening 
i n  t h a t  a rea .  See Kidd and Cooper, 1983, f o r  an i n t e r e s t i n g  
d i scuss i on  o f  MMI f o r  an  e x p e r t  system. 

So, an expe r t  system needs a method o f  communicating t o  its u s e r s  
i n  a way t h a t  is f a m i l i a r  t o  them, and t h e  most common method o f  
s o  doing at  t h e  moment is t o  use  t h e  phraseology o f  t h e  r u l e s  and 
f a c t s  a l r eady  i n  t h e  knowledge base.  Th is  presupposes t h a t  t h e  
use r  is  f a m i l i a r  w i th  t h e  s u b j e c t  a r e a  o f  t h e  expe r t  system, and 
t h u s  is f a m i l i a r  w i th  t h e  t e c h n i c a l  terms and jargon o f  t h e  
s u b j e c t .  The system is no t  be ing p a r t i c u l a r l y  c l e v e r  i n  
r e g u r g i t a t i n g  exp lana t i ons  i n  t h i s  way - it is r e a l l y  on ly  a 
s l i g h t  s t e p  ahead o f  'canned t e x t ' .  A l l  t h a t  happens when a 
system is  asked 'why' it wants f u r t h e r  i n fo rmat ion ,  o r  'how' it 
reached a p a r t i c u l a r  conc lus ion  is  t h a t  it retraces its s t e p s  
through t h e  r u l e s  it has  implemented s o  f a r .  

Returning t o  ou r  example o f  v e h i c l e  c l a s s i f i c a t i o n s  s p e c i f i e d  i n  
TAM, suppose we have a sys tem which is used t o  i d e n t i f y  v e h i c l e  
t ypes ,  and it a s k s  u s  



'How certain are you that the vehicle had twin rear wheels?' 

and we answer 

'Why?' 

the system would reply something like 

'Twin rear wheels are a feature of light commercial 
vehicles, and so we need to establish whether the vehicle 
had twin rear wheels' 

- 

which would come from the rule implemented when asking the 
question. 

The explanation facility of expert systems is still in its 
infancy, and is mentioned here as a desirable feature of expert 
systems. The whole area of MMI is as large as expert systems, 
and the interested reader must follow up such texts as 
Shortliffe, 1976; Swartout, 1983; and Fox et al, 1983 for 
discussions of explanatory facilities. 



4. SOME EXISTING EXPERT SYSTEMS 

This chapter l i s t s  a number o f  expert systems tha t  have been 
developed i n  various f ie lds ,  and gives some de ta i l s  o f  three o f  
the larger  and more well-known expert systems tha t  have been 
developed and implemented. It then reviews some o f  those systems 
tha t  have been designed t o  enable other expert systems t o  be 
generated. This i s  by no means a comprehensive survey, the 
purpose being t o  ind icate the range o f  ex is t ing  expert system 
applications. For a good acount o f  contemporary expert system 
applications, see Bramer, 1981. 

The fol lowing l i s t  o f  expert systems i n  various subjects i s  based 
on tha t  i n  Naylor, 1983. Those described i n  some d e t a i l  l a t e r  are 
asterisked (*) . 
Medical Diagnosis 

Engineering Diagnostics 

C i r cu i t  Analysis 
Genetics 
Mechanics 
Programming 
Configuring Computers 
Machine Acoustics 
Medical Measurements 
Electronics Tui t ion 
Medical Tu i t ion 

Knowledge Acquis i t ion 

Bui ld ing Expert Systems 

MYCIN* 
PUFF 
P I P  
CASNET 
INTERN151 

SACON 
PROSPECTOR* 
DENDRAL* 
SECHS 
SYNCHEM 

EL 
MDLGEN 
MECHO 
PECOS 
R1 
SU/X 
VM 
SOPHIE 
GUIDON 

TEIRESIAS 
EMYCIN* 
EXPERT 
KAS 

ROSIE 
AGE 
HEARSAY I11 
AL/X* 
SAGE* 
EXPERT-EASE* 
MICRO-EXPERT* 

The systems categorised as 'Bu i ld ing Expert Systems' and, t o  some 
extent, those also categorised as 'Knowledge Acquis i t ion' ,  are 
ca l led  'Expert System Shel ls ' .  These are reviewed i n  sect ion 4.4. 
But we f i r s t  describe DENDRAL, MYCIN and PROSPECTOR. 



4.1 DENDRAL 

4.1.1 History. Initiated in 1965 as part of the Stanford 
Heuristic Programming Project, in conjunction with the Stanford 
Mass Spectrometry Laboratory. 

4.1.2 Purpose. 'To enumerate plausible structures (atom-bond 
graphs) for organic molecules, given two kinds of information: 
analytic instrument data from a mass spectrometer and a nuclear 
magnetic resonance spectrometer; and user-supplied constraints on 
the answers, derived from any other source of knowledge 
(instrumental or contextual) available to the user'. 
(Feigenbaum, 1979) 

4.1.3 Knowledge Representation. Chemical structures represented 
as node-link graphs; theory of mass spectrometry represented by 
rules. 

4.1.4 Method of Operation. A 3-stage heuristic search - 'plan- 
generate-test'. 'Generate' is a process for generating plausible 
structures, under the constraints imposed by the 'plan' process 
or the user. 'Test' refines the plausible set of structures, 
discarding the less appropriate and ranking the remainder for 
user examination. 'Plan1 produces direct inferences about likely 
substructures from patterns in the data indicative of the 
presence of a substructure. 

4.1.5 Comments. Arguably the first major expert system 
development; currently in every day use by Stanford chemists, it 
is claimed to out-perform humans in pure structure elucidation 
under constraints, and to match human expert performnces in 
structure elucidation with instrument data. DENDRAL was an 
indicator of the shift in A1 towards knowledge-based systems, and 
has shown the importance of rule-based knowledge representation. 

4.1.6 Further Details 

Feigenbaum, Buchanan and Lederberg, 1971 
Feigenbaum, 1979 
Buchanan, Duffield and Robertson, 1971. 

4.2 MYCIN - 
4.2.1 History. Originally the PhD thesis of E. Shortliffe 
(Shortliffe, 1976), MYCIN has generated an enormous amount of 
associated work. Many cof the problems encountered (and/or 
overcome) by MYCIN have been examined by other researchers. The 
project was carried out in collaboration with the Infectious 
Diseases group at the Stanford Medical School. 

4.2.2 Purpose. The diagnosis of blood and meningitis infections, 
and the recommendation of drug treatment. 

4.2.3 Knowledge Represent.t.ion. Rules of the form: 
IF ... THEN ... with certainty P. 



4.2.4 Method of Operation. 'Generation-and-test', similar to 
DENDRAL, but, where DENDRAL uses heuristic search without 
feedback, MYCIN establishes a line-of-reasoning by backchaining 
rules. A number of 'somewhat-true' lines-of-reasoning may be 
established because each rule supplied by an expert has a degree 
of certainty associated with it (on a scale of 1 to lo), 
indicating how confident the expert is of the validity of the 
rule. MYCIN employs an ad-hoc, but surprisingly workable method 
of cumulating certainty, and thus is able to handle uncertainty 
and inexact reasoning. An important point about MYCIN is that 
its user-interface language is a sort of Doctor-ese English, and 
so the system appears to be very friendly and understanding; its 
explanations, as well as its queries, use this language. 

4.2.5 Comments. MYCIN is a highly regarded system, not least 
because its design strategy is very simple. It has led to a 
number of associated or related system developments, not the 
least of which are TEIRESIAS, which is a knowledge acquisition 
sytem, and EMYCIN, which is the shell of MYCIN (i.e. all the 
elements of MYCIN but without the domain specific knowledge; so 
the user can input his own domain knowledge whilst still being 
able to use MYCIN's explanatory, inferential and inexact 
reasoning facilities). 

4.2.6 Further Details. 

Shortliffe, 1976 
Davis, Buchanan and Shortliffe, 1977 
Shortliffe and Buchanan, 1975. 

4.3 PROSPECTOR 

4.3.1 History. Developed at SRI International, California, the 
final report being published in 1978 (Duda et al, 1978). 

4.3.2 Purpose. A consultant system to aid geologists in 
assessing how favourable an explanation site or region might be 
for occurrences of ore deposits of various types. 

4.3.3 Knowledge Representation. Inference network of relations 
between field evidence and geological hypotheses (see Figure 3 ) .  
Three kinds of relations are used: 

i) Logical relations, using standard Boolean logic connectives 
- AND, OR and NOT. 

ii) Plausible relations, using methods derived from Bayesian 
probability (see Section 3. above), of the form: 

IF . . . THEN (to degree LS, LN) . . . 
iii) Contextual relations, used to express any preconditions for 

using assertions in the reasoning process e.g. there is no 
point, for example, looking for granite associated minerals 
if no granite is present in the area. 



4.3.4 Method of Operation. As explained in Figure 3 earlier, a 
'model' is selected either by the user or automatically (a 
'model' in this case refers to 'a body of knowledge about a 
particular domain of expertise that is encoded into the system 
and on which the system can act1 (Duda et al, 1979), so we are 
talking about information about each class of ore deposit). The 
system then backtracks from the model to the evidence, asking for 
user information, or perhaps sensor information, when an evidence 
hypothesis is met. The flow of information is from evidence to 
model, and so the model is evaluated as a result of evidence 
obtained from the user or sensors. Further models may be 
evaluated after the first, and so the most likely model can be 
established from the available evidence. 

4.3.5 Comments. PROSPECTOR is apparently in commercial use, its 
consultation rates being something of the order of $10 per 
session at commercial computer rates (Ouda et al, 1979). The use 
of an inference network for representing knowledge hs been 
claimed to aid geologists in their thinking; organising and 
quantifying expertise for input into a PROSPECTOR model sharpens 
thinking! (Duda et al, 1979). It is further thought that 
PROSPECTOR has a potential value as an educational tool. 

4.3.6 Further Details 

Ouda et al, 1976 
Ouda et al, 1978 
Duda et al, 1979. 

4.4 Expert System Shells 

An expert system shell is a system which has all the methods of 
inferencing, inexact reasoning, explanation, communicating etc. 
already established, but which has no domain specific knowledge. 
To some extent it is comparable to a 'package', such as say, SPSS 
or SAS, which only needs information from the user in order to 
work, all the calculating methods and statistical tests are 
already programmed, it just needs something to work on. Expert 
system shells, similarly, need something to work, on, and, 
depending upon the particular system, this will most often be 
domain knowledge in the form of rules. 

An expert system shell is undoubtedly going to be the most 
appropriate means of developing an expert system in ITS, for 
reasons discussed in Chapter 5 below but it is difficult to 
review objectively those currently available, or shortly to 
become available, to ITS. The reason for this is simply a lack 
of 'hands-on' experience. We have operated 'Micro-Expert' in its 
demonstrator form, and, although being impressed by its power, 
were unimpressed by its user-interface (very unfriendly) and its 
lack of scope for 'serious' applications - not the least of which 
is its limited memory availability on a 64k Apple 11. These two 
limitations are serious indeed when developing what will 
hopefully be a 'showpiece' transport expert system. User 
friendliness is particularly important as we are not only trying 



to convert 'stick-in-the-mud' FORTRAN programmers, but also those 
practitioners with little or no computing knowledge. 

'Expert-Ease' supposedly scores on its distinctly friendly user- 
interface, and emerges well, generally speaking, from reviews 
(e.g. SOFT magazine, 1984). It uses Quinlan's algorithm for 
discovering rules by induction (Quinlan, 1979) for obtaining its 
knowledge. In other words, rules are induced by the system from 
a number of examples input to it, and these rules can then be 
used to solve problems in the same subject area. ITS currently 
has a bid to obtain 'expert-base' for use on a Sirius micro, for 
the purpose of evaluation for building transport expert systems. 

'SAGE' is a much larger scale system than either of the above, 
and is well recommended by those in the know. A version is 
currently mounted on Leeds University's SYSTIME computer, and is 
maintained by the Computer Based Learning Unit at the University. 
It is rumoured that there may be a micro-version under 
development. 

Expert system shells are becoming increasingly common as media 
for developing expert systems, and it is worth looking briefly at 
some details and applications of expert system shells, 
particularly if bearing possible transport applications in mind. 

4.4.1 Micro-Expert 

Micro-expert is produced by ISIS Sytems Ltd., 11 Oakdene Road, 
Redhill, Surrey (0737 71327/8). It runs under the UCSO - p 
system, and is really too limited for any serious use. However, 
it is undoubtedly a good way of becoming familiar not only with 
some of the operating characteristics of expert systems, but also 
with the terminology and some of the concepts involved. The 
manual, when used in conjunction with even the demonstrator 
system makes a reasonable expert system 'primer'. It is rumoured 
that a new and 'larger' version of Micro-Expert is currently 
under development. There has been no reference in the literature 
to any applications using Micro-Expert, but it is most probable 
that it is used by many people to come to terms with expert 
systems before they move to develop 'serious' applications on 
more powerful expert system shells. 

4.4.2 Expert 

'Expert' was developed by the Admiralty Surface Weapons 
Establishment (ASWE), part of the Ministry of Defence (MOD). It 
is strongly based on 'PROSPECTOR' for its construction, and, from 
comments in the manual, appears to have been developed so that 
ASWE, and other MOD establishments, could evaluate the worth of 
expert systems. It is apparently up and running at Leeds 
University, again under the auspices of the Computer Based 
Learning Unit, who are evaluating it themselves. It is thought 
to be a 'reasonable' system, although it is known to have been 
modified by Ferranti and CBL are awaiting the arrival of the 
updated system. It is not known whether any serious applications 



have been undertaken using this system. MOD tend not to 
publicise their new systems! 

4.4.3 AL/X 
AL/X was developed at Edinburgh University, and is marketed by 
Intelligent Terminals Ltd. It is a shell, again based on 
'PROSPECTOR', and copies of the manual (Paterson, 1981) seem to 
be hard to find! The only application come across was that 
reported by Kidd and Cooper, 1983, which was primarily concerned 
with Man-Machine Interface issues arising from the system. It 
would be worth investigating AL/X further. 

4.4.4 Expert-Ease 

'Expert-Ease' is marketed by Expert Software International, 4 
Canongate Venture, 5 New Street, Royal Mile, Edinburgh (031 556 
3266). It differs from the majority of other systems in that, as 
stated above, it induces rules from examples. In other words, 
the user 'teaches' the system rather than programs it with pre- 
defined rules. It is a 'spread-sheet' system, and is very user 
friendly. It is the user friendliness that makes Expert-Ease 
score over other systems, even though it appears to be not as 
powerful or technically advanced as, say, SAGE. Reviews have 
generally been favourable, although one particular review 
compared it unfavourably with a BBC Micro BASIC system called 
'HULK', which costs approximately 60 times less! (£25 as opposed 
to c £1500). ITS will soon be able to make its own evaluation, 
as 'HULK' is already here, but not working, whilst 'Expert-Ease' 
is hopefully on its way. Applications apparently include 
classifying lymphatic caucers; identifying chemicals as potential 
herbicides, and predicting the Dow-Jones index. 

4.4.5 SAGE - 

'SAGE' is produced by SPL International, Cambridge, UK. It is a 
larger system than any of the above, and it is not reported that 
there are any 'micro' implementations, with the possible 
exception of an ICL PERQ implementation which is, as yet, not 
commercially available. The SAGE user manual (SPL, 1982) is very 
comprehensive, and deals with both the structure and the uses of 
SAGE in some detail. Leeds University's CBL Unit are, again, 
evaluating SAGE, and a copy of their report would be well worth 
obtaining. ITS has been advised by CBL that SAGE will probably 
be the most appropriate shell for developing a transport expert 
system. 

A particularly interesting application of SAGE is that of ICL's 
Knowledge Engineering Group. This application, known as DRAGON, 
was the building of a computer sizing consultant system. There 
are obvious parallels with transport - network sizing and 
evaluation, assigning flows to branches of the network, cost- 
effectiveness, etc. etc. It is recommended that the report of 
the DRAGON system be-.read, and consideration given to 
establishing a similar transport project. See Keen, 1983 for 



further details. 

A further interesting point about SAGE, raised by Keen's report, 
is that 'conventionally' programmed models or calculations or 
whatever can be 'plugged into' SAGE, the results being used by 
the Expert System - a SATURN interpreter? (Note for those not in 
ITS: SATURN stands for a program developed in ITS, and now widely 
used in practice, for the 'Simulation and Assignment of Traffic 
to Urban Road Networks'. ) 

SAGE is definitely worth further investigation. 

5. CONCLUDING COMMENTS 

The wide variety of applications and implementations described in 
Section 4 shows how prevalent expert system thinking is becoming. 
If we were to widen the constraints on definition to include 
Decision Support Systems, Data-base management systems, Advisory 
Systems etc. etc. as is done by some people trying to join the 
'expert systems bandwagon' then the lists would be much longer. 
The difficulties in classifying systems as 'expert' only heighten 
the definition problems, they do not detract from the value of 
the techniques. 

It is recommended that close liaison be maintained with people 
using, developing and/or evauating expert systems, as this seems 
to be the most promising means of obtaining information of direct 
relevance to ITS as it develops into this field. 

For suggestions as to possible transport applications to develop, 
see the companion report, ITS Technical Note 145. 



6. READINGS AND REFERENCES 

6.1 Easy Expert System Reading 

FEIGENBAUM and McCORDUCK (1984) 
MICHIE (1979) 
NAYLOR (1983) 
COX (1984) 
ADDIS (1984) 
BRAMER (1981 ) 

Full bibliographic references are given in section 6.2. 

6.2 Main references 

Adams, D. 'The Hitch-Hikers Guide to the Galaxy', Penguin, 1977. 

Adams, J.B. 'A probability model of medical reasoning and the 
MYCIN model'. Mathematical Biosciences, Vol. 32, pp. 177- 
186, 1976. 

Addis, T.R. 'Expert Systems: An Evolution in Information 
Retrieval', in Information Technology: Research and 
Development. C.J. van Rijsbergen (ed.) Vol. 1 ,  no. 4, 1984. 

Adler, M.R. 'Computer Interpretation of PEANUTS Cartoons'. 
Proceedings, 5th IJCAI, 1977. 

Alvey Committee, 'A Programme for Advanced Information 
Technology'. Dept. Industry, HMSO, 1982. 

Baldwin, J.F. 'A Theory of Fuzzy Logic' in 'Fuzzy Reasoning and 
its Applications' (Ed. Mandani, E. and Gaines, 8.1, Academic 
Press, 1981. 

Baldwin, J.F., 'F.R.I.L. - An Inference Language based on Fuzzy 
Logic.' Proceedings of Expert Systems Conference, Cambridge 
University, 1983. 

Bramer, M.A. 'A Survey and Critical Review of Expert Systems 
Research' in 'Information Technologoy for the Eighties', 
Parslow, R.D. (Ed.), Heyden, 1981. 

Buchanan, B.G., A.M. Duffield and A.V. Robertson, 'An Application 
of Artificial Intelligence to the Interpretation of Mass 
Spectra' in 'Mass Spectrometry Techniques and Applications', 
Milne, G.W.A. (Ed.), Wiley, 1971. 

Buchanan, J.R. and R.D. Fennell, 'An Intelligent Information 
System for Criminal Case Management in the Federal Courts', 
Proceedings 5th IJCAI, 1977. 

Bundy, A., 'Analysing Mathematical Proofs (or reading between the 
lines)', Dept. of A1 Research Report 2, Edinburgh 
University, 1975. . 



Charniak, E., 'CARDS, A Program Which Solves Calculus Word 
Problems', MIT Report MAC-TR-51, 1968. 

Charniak, E., 'Toward a Model of Children's Story 
Comprehension', MIT A1 Lab. Report AI-TR-266, 1972. 

Clocksin, W.F. and C.S. Mellish, 'Programming in PROLOG', 
Springer-Verlag, Berlin, 1981. 

Cox, I.J., 'Expert Systems', Electronics and Power, Vol. 30, no. 
3, March 1984. 

Crossley, J.N., et al, 'What is Mathematical Logic?', Oxford 
University Press, 1972. 

Dahl, O.J., E.W. Dijkstra and C.A.R. Hoare, 'Structural 
Programming', Automatic Programming Information Centre, 
Studies in data processing 8. 

Davies, R. and King, J., 'An Overview of Production Systems', in 
Machine Intelligence 8, pp 300-332, 1976. 

Davies, R, B.G. Buchanan and E.H. Shortliffe, 'Production Rules 
as a Representation for a Knowledge-Based Consultation 
Program', Artificial Intelligence 8, Feb. 1977. 

DeJong, G., 'Skimming Newspaper Stories by Computer', Proceedings 
of 5th IJCAI, 1977. 

Duda, R.O., P.E. Hart and N.J. Nilsson, 'Subjective Bayesian 
Methods for Rule-based Inference Systems', Proc. National 
Computer Conference, pp. 1075-1082, 1976. 

Duda, R.O., et al, 'Development of the Prospector System for 
Mineral Exploration', SRI International, Menlo Park, 
California, Oct. 1978. 

Duda, R.O., J. Gasching and P. Hart, 'Model Design in the 
Prospector Consultant System', in 'Expert Systems in the 
Micro-Electronic Age', Michie, D. (Ed. ) , Edinburgh 
University Press, 1979. 

Feigenbaum, E.A., B.G. Buchanan and J. Lederberg, 'On Generality 
and Problem Solving: a Case Study Using the DENDRAL 
Program', Machine Intelligence 6 ,  Edinburgh University 
Press, 1971. 

Feigenbaum, E.A., 'Artificial Intelligence Research: What is it? 
What has it achieved? Where is it going?', Symposium on 
Artificial Intelligence, Canberra, Australia, 1974. 

Feigenbaum, E.A., 'Themes and Case Studies of Knowledge 
Engineering', in 'Expert Systems in the Micro Electronic 
Age' , D. Michie (Ed .Z,. Edinburgh University Press, 1979. 



Feigenbaum, E.A. and P. McCorduck, 'The Fifth Generation. 
Artificial intelligence and Japan's computer challenge to 
the world1. Pan Books, London, 1984. 

Fox, J., et al, 'Decision Technology and Man-Machine Interaction, 
the PROPS Package', Proceedings of Expert Systems 
Conference, Cambridge University, 1983. 

Hodges, A., 'Turing', 1984. 

Keen, M.J.R., 'An Expert System For Computer Performance 
Prediction', Proceedings of Expert Systems Conference, 
Cambridge University, 1983. 

Kidd, A.L. and M.B. Cooper, 'Man-Machine Interface for an Expert 
System', in Proceedings of Expert Systems Conference, 
Cambridge University, 1983. 

King, M., et al, 'Ghosts in the Machine: an A1 Treatment of 
Medieval History', Proceedings 5th IJCAI, 1977. 

Kirby, H.R., 'Telecommunications information technology and 
transport'. Technical Note 134, Institute for Transport 
Studies, University of Leeds, 1984. 

Knuth, D.E., 'The Art of Computer Programming', Vol. 1 
Fundamental Algorithms, Addison Wesley, 1973. 

Kowalski, R., 'Logic for Expert Systems', Invited Talk, 
Proceedings of Expert Sytems Conference, Cambridge 
University, 1983. 

Lehnert, W., 'Question Answering in a Story Understanding 
System', Cognitive Science, Vol. 1 ,  No. 1, pp. 47-73, 1977. 

McCarthy, J., 'First-order Theories of Individual Concepts and 
Propositions' in Expert Systems in the Micro-Electronic Age, 
D. Michie (Ed.), Edinburgh University Press, 1979. 

Meehan, J.R., 'TALE-SPIN, An Interactive Program that Writes 
Stories', Proceedings of 5th IJCAI, 1977. 

Mendelson, E., 'Introduction to Mathematical Logic', Van Nostrand 
Reinhold, 1964. 

Michie, D. (Ed.), 'Expert Systems in the Micro-Electronic Age', 
Edinburgh Univeristy Press, 1979. 

Michie, D., 'The Civilised World of Expert Systems Has Got Steam 
Fever', Datalink 9 ,  1983. 

Minsky, M, A Framework for Representing Knowledge' in 'The 
Psychology of Computer Vision', Winston, P.H. (Ed.) McGraw- 
Hill, 1975. -. . 



Naylor, C., 'Build Your Own Expert System', Sigma Technical 
Press, 1983. 

Nilsson, N., 'Principles of Artificial Intelligence', Springer- 
Verlag, 1982. 

Novak, G.S., 'Computer Understanding of Physics Problems Stated 
in Natural Language', Technical Report NL-30, Computer 
Science Dept., The University of Texas at Austin, 1976. 

Page, E.S., and L.B. Wilson, 'Information Representation and 
Manipulation Using PASCAL', Cambridge University Press, 1982. 

Paterson, A., 'AL/X User Manual', Intelligent Terminals Ltd., 
Oxford, 1981. 

Quinlan, J.R., 'Discovering Roles by Induction From Large 
Collections of Examples', in 'Expert Systems in the Micro- 
Electronic Age', D. Michie (Ed. ), Edinburgh Univeristy 
Press, 1979. 

Quinlan, J.R., 'Inferno: a cautious approach to uncertain 
inference', Computer Journal, No. 26, 1983. 

Rieger, C., 'The Common Sense Algorithm as a Basis for Computer 
Models of Human Memory, Inference, Belief and Contextual 
Language Comprehension', Proceedings TINLAP Workshop, MIT, 
1975. 

Shortliffe, E.H. and B.G. Buchanan, 'A Model of Inexact Reasoning 
in Medicine', Mathematical Biosciences 23, 1975. 

Shortliffe, E.H, 'Computer-based Medical Consultations: MYCIN', 
American Elsevier, New York, 1976. 

Sloman, A., 'Epistemology and Artificial Intelligence' in 'Expert 
Systems in the Micro-Electronic Age, Michie, D. (Ed.), 
Edinburgh University Press, 1979. 

SOFT magazine, 'Your Specialist Subject?', Feb/March 1984. 

Special Issue on Knowledge Representation', IEEE Computer, 1983. 

SPL 'SAGE User Manual', Systems Programming Ltd., SAG03, 1982. 

Swartout, W.R., tXPLAIN: A System for Creating and Explaining 
Expert Consulting Programs', Artificial Intelligence 21 (3), 
1983. 

Tenenubaum and Augenstein, 'Data Structures Using Pascal', 
Prentice Hall, 1981 . 

Traffic Appraisal Manual (TAM), London, Dept. Transport, 1981. 
-. . 



Ulrich, J.W., 'The Analysis and Synthesis of JAZZ by Computer', 
Proceedings 5th IJCAI, 1977. 

Welsh, J.R. and J. Elder, 'Introduction to PASCAL', Prentice Hall 
1982. 

Wigan, M.R., 'Information technology and transport: what research 
needs to be started now?' Working -2 Paper 172 - Inst. Transp. s, Univ. Leeds, Leeds, 1983a. 

Wigan, M.R. 'Expert systems and Prolog course'. Extracts from a 
report to the Australian Road Research Board. Technical 
Note 133, Inst. Transp. Stud., Univ. Leeds, Leeds, 1984. --- 

Winograd, T., 'Understanding Natural Language', Academic Pres, 
New York, 1972. 

Zadeh, L., 'Fuzzy Sets', Information and Control 8, 1965. 



7. GLOSSARY 

Artificial Intelligence (AI): the study of the construction of 
intelligent artifacts, and the development of principles, methods 
and techniques useful in such construction. Also seen as a means 
of seeking explicit and valid information processing models of 
human thought. 

Back Tracking: Another term for Backward Chaining. 

Backward Chaining: The common term for Back Tracking and the 
Goal-Driven Rule Selection Strategy. Involves the system first 
considering hypothesis H, discovering it needs to know evidence 
E3 to establish H, discovering it needs to know E2 to know E3, 
and El to know EZ, so it requests data on El, after which it 
proceeds forward to H. 

- - - -  chaining 

- - - - - - - flow of information 

Bayesl Theorem A method of dealing with uncertainty and 
incomplete evidence. 

The probability of the hypothesis being true given the evidence. 

Certainty: A means of accepting user input, usually on a scale 
of -5 to +5, meaning completely uncertain and completely certain 
respectively. 0 usually means 'do not know', but can be treated 
differently by some systems. Questions are asked of the user in 
the form: 

"How certain are you that ....." 
Certainty Factor: A value associated with a rule, showing how 
much confidence the expert who supplied the rule has in its 
validity. Usually on a scale from 1 to 10. Particularly 
associated with the MYCIN system. Rules with certainty factors 
are of the form: 

IF ... THEN ... with certainty P. 

Database: The area of memory in which all the program's 
variables are contained. Initially, it represents the initial 
data or facts from which the expert system is to infer some 
higher-level information.-. . 



Data-driven Rule Selection Strategy: Another term for Forward 
Chaining. 

Domain Area: The subject area of an expert system. For example, 
the domain area of MYCIN is blood and meningitis infections and 
associated drug treatment. A limited domain expert system, 
therefore, would be only working in a very small subject area. 

Expert System: The formal definition from the British Computer 
Society's committee of the specialist group on expert systems is: 

"...the- embodiment within a computer of a knowledge-based 
component from an expert skill in such a form that the 
system can offer Intelliegent Advice or take an Intelligent 
Decision about a orocessino function. A desirable . - 
additional characteristic, which many would consider 
fundamental, is the capability of the system, on demand, to 
justify its own line of reasoning in - a  manner direclty 
intelligible to the enquirer. The style adopted to attain 
these characteristics is rule-based programming." 

Explanation facility: the means whereby a line-of-reasoning, or 
a conclusion, is explained to the user. Usually it involves re- 
tracing the Bteps the system has taken so far, "sing the text of 
the rules fired as explanatory text. 

Forward Chaining: The common term for a Data-Driven Rule 
Selection Strategy. It simply means that the system is given 
evidence, after which it can deduce the validity of an 
hypothesis. i.e. 

For example, the system is given El, after which it is given €2, 
then €3, after which it can deduce H. 

Frame-Based Knowledge Representation: A method of representing 
information and the relationships between the bits of 
information. A class of objects or events or scenes is initially 
described by a prototype, which has attributes; an example of a 
class is an 'instantiation', and can take the values of the 
prototype's attributes (known as 'Property Inheritance'), as well 
as having its own attributes. Essentially a data-structuring 
approach to representing knowledge. 

Fuzzy Logic: Another method of dealing with uncertainty and 
imcoplete evidence; in conjunction with fuzzy set theory it is 
used to attempt to resolve ill-defined concepts. The example 
given in a paper on the subject is 'a bush, for example, cannot 
be precisely defined. Our ability to decide if a given object is 



a bush or a tree is not the result of a lack of information but a 
lack of definition' (Baldwin, 1983). Fuzzy logic and set theory 
attempt to resolve such problems. 

Fuzzy Set Theory: See above. 

Goal: A terminating condition for an expert system insofar as it - 
tries to attain goals, which involve proving and/or disproving 
hypotheses. A goal state is the set of values in the database 
that the system is trying to obtain. 

Goal-Driven Rule Selection Strategy: Another term for Backward 
Chaining. 

Inference Engine: The mechanism by which inferences are made, 
rules fired and deductions made. The old philosophical term for 
a computer. 

Inference Network: The collection of rules, models and evidence 
hypotheses that together make up the inter-relationships enabling 
the system to progress through its stages of reasoning. 

Instantiation: An instance of a class in a frame-based knowledge 
representation; or more generally, the assignment of a particular 
value to a variable in a program. 

Intelligent Knowledge-Based System (IKBS): A system which uses 
knowledge, either frame-based, logic-based or rule-based, or any 
combination, to exhibit 'intelligence'. 'Intelligence' has yet 
to be defined by psychologists, but it is taken here to mean that 
the system appears to understand the particular domain area. Can 
be used as an alternative name for an expert system, but does not 
necessarily exhibit expert performance. 

Knowledge Acquisition: The process of eliciting a human expert's 
knowledge. The term 'knowlege engineering' is sometimes applied 
to this task; although it most often refers to the whole task of 
eliciting the information, and then coding it into the 
appropriate knowledge representation form. Knowledge acquisition 
can be done by humans in conversation with an expert; 
interactively by computer, such as the TEIRESIAS program; or 
automatically by computer using induction from examples. 

Knowled e Base: This is the complete set of facts (declarative 
b n d  rules (procedural knowledge) which together 
constitute the computerised version of the human expert's 
knowledge. i.e. the knowledge source and the database. 

Knowledge Engineering: Used to mean either the knowledge 
acquisition task, or the complete field of building an expert 
system. 

Knowledge Representation: The methods by which a human expert's 
knowledae is represented within the computer. There are many 
differeGt types 'o f  knowledge representation, but they can 
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gene ra l l y  be c l a s s i f i e d  i n t o  e i t h e r  logic-based o r  frame-based. 

Knowledge Source: The c o l l e c t i v e  term app l i ed  t o  t h e  p a r t  o f  t h e  
system which c o n t a i n s  t h e  necessary  in fo rmat ion  t o  s o l v e  a 
p s r t i c u l a r  problem, i .e t h e  r u l e s  f o r  i n t e r p r e t i n g  t h e  f a c t s .  

Logic-Based Knowledge Representa t ion:  A method o f  r e p r e s e n t i n g  
o b j e c t s  and t h ? i r  a s s o c i a t i o n s .  F i r s t  o rde r  l o g i c  is used, 
i nco rpo ra t i ng  set t heory ,  as an  a l t e r n a t i v e  t o  frame-based 
knowledge r e p r e s e n t a t i o n  methods. P red i ca te  Ca lcu lus  is used t o  
manipulate t h e  o b j e c t s  and t h e i r  a s s o c i a t i o n s .  

Mao-Machine I n t e r f a c e  (MMI): The wsy i n  which t h e  use r  and 
computer communicate. M ~ J C ~  r esea rch  is c u r r e n t l y  be ing  c a r r i e d  
o u t  i n t o  des ign ing  MMIs which a r e  a s  n a t u r a l  a s  p x s i b l e .  

Meta-Knowledge: The knowledge t h a t  t h e  system h a s  o f  i t s e l f ,  
i .e. a s e t  o f  r u l e s  t e l l i n g  t h e  system which ev idence t o  a c q u i r e  
nex t  g iven t h e  ev idence  i t  a l r eady  has.  

Model: A body o f  knowledge about  a p a r t i c u l a r  domain o f  -- 
e x p e r t i s e  t h a t  is en-oded i n t o  t h e  system and on which t h e  system 
can a - t .  Refers t o  a ' p r o t o t y p i c a l '  s i t u a t i o n  - a ' bes t -  
p o s s i b l e '  s i t u a t i o n .  

Na tu ra l  Language: F a m i l i a r  language t o  humans. Mi41 work t e n d s  
t o  concen t ra te  0-1 des ign ing  n a t u r a l  language i n t e r f a c e s  which 
wauld enab le  u s e r s  t o  communicate w i th  t h e  computer i n ,  say ,  
Eng l i sh  o r  French,  i n s t e a d  o f  'computer-ese'.  

P a t t e r n  Matchinq: Se l f -exp lana to ry .  Used i n  PROLOG f o r  answer ing 
que r i es .  When a ques t i on  is asked o f  PROLOG it s e a r c h e s  through 
t ~ i e  database look ing  f o r  f a c t s  t h a t  match t h e  s i t u a t i o n  p a r t  o f  
t h e  r u l e  used as t h e  ques t i on ,  o r  t h e  f a c t  p a ~ t  o f  t h e  q t ~ e s t i o n .  
For example, suppose a da tabase  c o n s i s t s  o f  t h e  f a c t s :  

d r i v e  ( c a r s ,  peop le)  
walk-on ( p a t h s ,  peop le)  
f l y - in  ( p l anes ,  peop le)  

we cou ld  ask 

- f l y - in  ( pa ths ,  peop le)  

and PROLOG wot~ld t r y  t o  match t h e  p a t t e r n  o f  t h e  ques t i on  a g a i n s t  
t h e  f a c t s  i n  t h e  da tabase ,  r e p l y i n g  'no ' .  

P red i ca te  Calcu lus :  A form o f  l o g i c  used t o  r e p r e s e n t  o b j e c t s  
and a s s o c i a t i o n s ,  and t h e  means o f  changing t h e  i n t e r -  
r e l a t i o n s h i p s .  Ob jec ts  are r ep resen ted  by 'terms' which can be 
e i t h e r  ' cons tan t  symbols ' ,  ' v a r i a b l e  symbols'  o r  'compound terms' 
( t h e  l a t t e r  be ing a t ype  o f  s t r u c t u r e ) .  See Mendelson, 1964 f o r  
a d e t a i l e d  t r ea tmen t .  



Product ion  Rules: Ru les  o f  t h e  form: 

IF  c o n d i t i o n s  THEN a c t i o n s  

o f t e n  used t o  encode human e x p e r t s '  h e u r i s t i c  e x p e r t i s e .  

PROLOG: A programming language which is e s s e n t i a l l y  ru le-based.  
Known a s  a 'very  h i g h  l e v e l  language'  o r  a ' f u n c t i o n a l  l anguage ' ;  
' conven t iona l '  languages such as PASCAL, ALGOL etc a r e  ' h i g h  
level languages '  o r  ' i m p e ~ a t i v e  la?guages l  ( t h e  la t ter  owing t o  
t h e i r  r e l i a n c e  on s t a t e m e n t s ) .  See Clocks in  and M e l l i s h ,  1981 
f o r  t h e  d e f i n i t i v e  t e x t  on PROLOG. 

Rules: can be though t  o f  a s  a series o f  IF... THEN... 
s ta tements .  See Produc t ion  Rules.  

Rule-Based System: A system which relies upon a c o l l e c t i o n  o f  
r u l e s  f o r  its o p e r a t i o n s .  Unl ike I<BS i? t h a t  a l though  t h e  r u l e s  
o f t e n  r e p r s s e n t  knowledge, t h e y  a r e  t h e  on ly  t y p e  o" knowledge 
r e p r e s e n t a t i o n  i n  t h e  system. 

Rule-Fir ing: The term f o r  a c t i v a t i n g  a r u l e .  



APPENDIX A: 'CONVENTIONAL' PROGRAMMING 

Al. Programming Techniques 

Wr i t ing  computer programs is an  ar t - form (Knuth 1373) hawever, 
t h r e  a r e  a number o f  techn iques  t h a t  can be app l i ed  when w r i t i n g  
a program t h a t  can a s s i s t  i n  making programs c o r r e c t  and 
comprehensible. An i n t e r e s t i n g  s t a r t i n g  p o i n t  is a set o f  
f i g u r e s  produced by IBM i n  t h e  l a t e  s e v e n t i e s  (Source unkmwn). 
These f i g u r e s  show t h e  amount o f  time each s t a g e  i n  t h e  s a f t w a r e  
development c y c l e  t a k e s ,  and h i g h l i g h t s  two very impor tant  
points: -  f i r s t l y ,  t h e  steps %involved i n  w r i t i n g  so f tware ;  and 
secondly t h e  i n o r d i n a t e  amount o f  time i i v o l v e d  i n  ma in ta in ing  
sof tware.  

Software Development Cycle 7; T i m e  

What is  Required 
S p e c i f i c a t i o n  o f  System 
Duaign o f  Program 
Write Program Code 
Test  Program Code 
Complete System Tes t ing  
M3intain System 

The po in t  t h a t  must be  taken  from t h e s e  f i g u r e s  is t h a t  programs 
should  be easy t o  r e a d  - t h e  e a s i e r  a program is t o  r ead ,  t hen  
t h e  less time is s p e n t  by people  t r y i n g  t o  unders tand what t h e  
program a c t u a l l y  does ( a s  opposed t o  what t h e  d~ icumentat ion s a y s  
i t  does) ,  a i d  hence t h e  less time is spen t  i n  unnecessary ,  and 
c a s t l y ,  r e p e t i t i v e  work. 

The remainder of t h i s  s e c t i o n  l ooks  a t  some techn iques  f o r  
w r i t i n g  'good' programs, bu t  as a gene ra l  r u l e  a lways boar i n  
mind t h e  fo l lo id ing good programming p rac t i ces :  

- Use a s t r u c t u r e d  h igh- leve l  language (e.g PASCAL. 
FORTRAN is uns t ru - t u red ,  o t ~ t d a t e d  and e r r o r  prone,  
BASIC i s  n o t  cons ide red  t o  be a programming language! ). 

- Use i d e n t i f i e r  names t h a t  mean something (e.g. c a l l  t h e  
v a r i a b l e  f o r  ' t h e  nex t  c a r  i n  t h e  queue' next-car- in-q, 
no t  "nq") . 

- Use s p a r i n g  comments (your  code i n  PASCAL f o r  example, 
shou ld  be c l e a r ) .  

- Use small p-ocedures ( t h e r e  is hard ly  ever  any need t o  
have p rocedures /subrou t ines  l a r g e r  than  c 20 l i n e s ) .  

- Spec i f y  your procedures i n  Engl ish  ( i . e .  t h e  main 
a c t i o n ( s ) ,  pa ramete rs  i n  and ou t ) .  



- Use simple algorithms (do not write tortuous algorithms 
fur the sake of it. Your might gain as much as 2a 
instructions - which on the Amdahl mig4t save 20 
miliseconds CPU time - but  yo,^ may well spend 2 hours 
trying to understand how the algorithm works when you 
come back to it in 6 months time). 

- Document everything. 

- Review your program design whzn you have finished - 
you may not be able to change this program, but you 
will almost certainly have learnt something of use to 
your next program. 

AZ. Structured Programming 

Tiis is often (incorrectly) called 'GOTO-less programming'; 
however, there is only one reason for using a GOT0 statement, and 
that is to pick u? a catastrophic error which requires a program 
stop. For example: 

IF Catastrophic - Error THEN GOT0 Emergency - Stop 

In all other cases where a GOT0 would be used, then use the 
language constructs provided; if, as in the case of FORTRAN or 
BASIC, there are few construzts provided, then build some ot~t of 
the language primitives. Always take full advamtage of the 
facilities a language offers. 

There are t w ~  main reasons for avoiding using the GOTO: firstly 
it complicates the compiler; and secondly it tends to complicate 
programs - the readsr has to understand a larger portion of the 
program than otherwise. 

In summary, follow a sequential course through the program, use 
procedures/subroutines/functions to solve distinct problems, do 
not 'dot around' the code, use the language constructs provided. 

A3. Program Development Design Strategies 

Structured programming conjeztures that confidence in the correct 
behaviour of a program is m x t  easily attained by a :++zll- 
organised program development process, in which each step 
requires only a relatively simple justification. There are two 
such design strategies: the top-down approach and the bottom-up 
approach. 

A3.1 Top-Down Development 

The top-down approach embodies the following steps: 

- Develop a program in a number of smsll design steps, 
starting from the program specification and ultimately 
finishing with.an.imp1ementation. 



- Ma:a each s t e p  dec ide  very l i t t l e  about  t h e  dsvelopment 
o f  t h e  program. 

- Delay eve ry  des ign  dec i s i on  f o r  as long  a.s poss i b l e .  

- I f  each s t e p  forms a number of sub-problems, t hen  
des ign  them top-down a s  wa l l .  

- Use procedures  and f u n c t i o n s  t o  h i de  'problems' ,  i.e. a 
p roceds~re  o r  a  f unc t i on  shou ld  s o l v e  a t  most one 
s p e c i f i c  problem. 

Unless o l e  is working i n  assembler  on a  comple te ly  'empty' 
computer, t hen  a number o f  r o u t i n e s  w i l l  e x i s t  a l ready .  Make use  
o' t hose  t o  b u i l d  s l i g h t l y  h igher  l e v e l  r o u t i n e s  and i n  t u r n  use  
t h e s e  t o  b u i l d  even h igher  l e v e l  r ou t i nes .  For example, use  a 
l ang .~age  de f i ned  f unc t i on ,  such a s  '*' (mu l t i p l y ) ,  t o  b u i l d  
( t o  t h e  povrer o f ) .  

A s  a gene ra l  r u l e ,  une top-down f o r  program dss ign ,  and bot ton-  
up f o r  program coding.  

A4. Tes t ing  Sor tware 

Tes t ing  can o n l y  show t h e  p resence  o f  b ~ g s ,  i t  can  never  show 
t h a t  no more bugs remain, even a f t e r  t e s t i n g  bugs may still 
e x i s t .  So, what is a ' c o r r e c t '  program. T%e fo l low ing  criteria 
t oge the r  d s f i n e  a c o r r e c t  program. 

1) A program t h a t  c o n t a i n s  nn syn tax  e r r o r s .  
2 )  A program t h a t  c o n b a i n s n o  compi la t ion o r  execu t ion  e r r o r s .  
3)  There e x i s t s  test d a t a  f o r  which t h e  program g i v e s  c o r r e c t  

answers. 
4 )  For t y p i c a l  sets o f  test  d a t a  t h e  program g i v e s  c o r r e c t  

answers. 
5) For d i f f i c u l t  sets o f  t e s t  d a t a  t h e  program g i v e s  c o r r e c t  

answers. 
6 )  For a l l  p o s s i b l e  sets o f  d a t a  which a r e  v a l i d  f o r  t h e  

problem s p e c i f i c a t i o n ,  t h e  program g i ves  c o r r e c t  answers. 
7) For a l l  p o s s i b l e  sets o f  v a l i d  test  d a t a  and a l l  l i k e l y  

cond i t i ons  o f  ' e r roneous  i n p u t  t h e  program g i v e s  c o r r e c t  
answers. 

8)  For a l l  p o s s i b l e  i n p u t  t h e  program g i ves  c o r r e c t  ou tpu t .  

When choosing test d a t a ,  t r y  t o  fo l l ow t h e s e  gu ide l i nes :  

i )  use  s imp le  cases 
i i )  use  extreme c a s e s ,  i.e. test t h e  'edges '  o f  v a l i d  

ranges 
i i i )  use  s p e c i a l  v a l u e s  
i v  ) make s u r e  a l l  p o s s i b l e  branches o f  f low are fo l lowed 
v remember t o  write. down what you expect  t h s  r e s u l t s  t o  

be. 



A5. - Data S t r u c t u r i n q  

V i r t u a l l y  a l l  h igh- leve l  programming languages p rov ide  data 
s t r u c t u r i n g  c a p a b i l i t i e s ,  rang ing  i n  coap lex i t y  from t h e  s imp le  
' n '  d imensional  a r r a y  i n  FORTRAN, through t h e  p o i n t e r  and reco rd  
cons t ruc t i on  of PASCAL, t o  t h e  a b s t r a c t  d a t a  t ype  c a p a b i l i t i e s  
o f  languages such  a s  CLU. I f  is impor tant  when des ign ing  a  
program t h a t  o r g a n i s a t i o n  o f  d a t a  is  taken i n t o  account ,  and 
t h a t ,  wherever p o s s i b l e ,  c o r r e c t  s t r u c t u r e s  are employed. M ~ c h  
s t o r a g e  space  can be wasted by, f o r  example, programming s t a c k s  
and queues as a r r a y s  r a t h e r  t h a n  l i n ked  lists. I n  t r a n s p o r t ,  
probably t h e  g r e a t e s t  o f f ends r  is  t h e  0-D matr ix ,  p a r t i c u l a r l y  
when sparse .  A g lance  through Tenenbaum and Augenstein,  1981 
w i l l  show how e f f i c i e n t l y  t h i s  can be  done! Twre is n o t  r e a l l y  
space  he re  t o  d i s c u s s  d a t a  s t r u c t u r i n g  i n  any depth ,  s u f f i c e  it 
t o  say  t h a t  t h i s  is an  e s s e n t i a l  p a r t  o f  program des ign ,  and 
shou ld  a lways be one o f  t h e  major d s c i s i o n s  when das ign ing  a 
program. I f  a language is l a ck i ng  i n  d s t a  s t r u - t u r i n g  
c a p a b i l i t i e s ,  t hen  cons ide r  us ing  a  d i f f e r e n t  language. 
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