
This is a repository copy of Expert Systems in Transport – Part 1: An Introduction to Expert
Systems..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2361/

Monograph:
Wheatley, M.D. (1984) Expert Systems in Transport – Part 1: An Introduction to Expert
Systems. Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK.

Working Paper 178

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose Research Online

http://eprints.whiterose.ac.uk/

Institute of Transport Studies
University of Leeds

This is an ITS Working Paper produced and published by the University of
Leeds. ITS Working Papers are intended to provide information and encourage
discussion on a topic in advance of formal publication. They represent only the
views of the authors, and do not necessarily reflect the views or approval of the
sponsors.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/2361/

Published paper
Wheatley, M.D. (1984) Expert Systems in Transport – Part 1: An Introduction to
Expert Systems. Institute of Transport Studies, University of Leeds, Working
Paper 178

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

http://www.its.leeds.ac.uk/
http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/

Working Paper 178

July 1984

EXPERT SYSTEMS I N TRANSPORT

Part 1: An in t roduct ion t o expert systems

M.D. Wheatley

I T S Working Papers are intended t o provide informat ion and
encourage discussion on a top ic i n advance o f formal
publication. They represent only the views o f the authors and
do not necessari ly r e f l e c t the views or approval o f sponsors.

This work was sponsored by the University o f Leeds.
.-. ..

WHEATLEY, M.D. (1984) Expert systems in transport. Part 1: An
introduction to expert systems. Working Paper 178, Institute
for Transport Studies, University of Leeds, Leeds.

This report describes what expert systems are. It has been
written to introduce the concepts involved, and to some extent
the techniques, for those who have no previous acquaintance with
such systems, but who are concerned with establishing quite what
such systems might have to offer, and what is involved in
developing them, in their field of application. Ways in which
knowledge and uncertainty are represented in expert systems are
described, and illustrated by reference to some existing expert
systems. The report stems from a project designed to assess the
potential for establishing expert systems in the transport field,
and discusses the types of expert system package which might be
useful in the remaining stages of the project. It includes a
useful set of references and a g1ossary.A preliminary assessment
of potential transport applications and the implications for the
remainder of the project are described in a companion report, ITS
Technical Note 145.

KEYWORDS: EXPERT SYSTEMS; ARTIFICIAL INTELLIGENCE; RULE-BASED
SYSTEMS; KNOWLEDGE; TRAFFIC; TRANSPORT;

CONTENTS

1. Introduction

1.1 Project background
1.2 Project aims
1.3 Project status
1.4 Report structure

2. The concepts behind expert systems

2.1 Computers in general
2.2 A step back
2.3 A1

2.3.1 A1 systems
2.4 Exprt Systems

3. A closer look at expert systems

3.1 What doesn't make an expert system
3.2 what makes an expert system
3.3 Rules and how they work

3.3.1 Data-driven rule selection
3.3.2 Demand-(goal) driven rule selection

3.4 HOW a system knows its subject
3.4.1 What is knowledge engineering?
3.4.2 What is knowledge representation?

3.4.2.1 Logic and PROLOG
3.4.2.2 What is frame-based knowledge?

3.4.3 What is meta-knowledge?
3.5 HOW does a system cope with incomplete and

uncertain data?
3.5.1 What is Bayes Theorem?
3.5.2 How can uncertainty be represented?

3.6 HOW a system explains what it does

4. Some existing expert systems

4.1 DENDRAL
4.1.1 History
4.1.2 Purpose
4.1.3 Knowledge representation
4.1.4 Method of operation
4.1.5 Comments
4.1.6 Further details

4.2 WCIN
4.2.1 History
4.2.2 Purpose
4.2.3 Knowledge representation
4.2.4 Method of operation
4.2.5 Comments
4.2.6 Further details

4.3 PROSPECTOR
4.3.1 History
4.3.2 Purpose -. .
4.3.3 Knowledge representation
4.3.4 Method of operation
4.3.5 Comments
4.3.6 Further details

Contents (continued)

Page -

4.4 Expert system shells
4.4.1 Micro-expert
4.4.2 Expert
4.4.3 AL/X
4.4.4 Expert-Ease
4.4.5 SAGE

5. Concluding comments

6. Readings and references

6.1 Easy expert system reading
6.2 Main references

7. Glossary

8. Appendix A: 'Conventional' programming

~l Programming techniques
A2 Structured programing
A3 Program development design strategies

A3.1 Top-down development
~3 .2 Bottom up development

A4 Testing software
A5 Data structuring

EXPERT SYSTEMS IN TRANSPORT

Part 1: An introduction to expert systems

1. INTRODUCTION

1.1 Project Background

This project is an investigation into how expert systems, and
associated computing techniques, can be applied to the field of
transport. The project was conceived following the stimulus
given by the Alvey Committee's report on Advanced Information
Technology (Alvey, 19821, which (successfully) proposed that
Government funds be put into the development of fundamental
research into Intelligent Knowledge-Based Systems (IKBS) ; and
which also called for the exploitation of the technology already
available in the artificial intelligence (AI) field. In the
transport sector, it was particularly timely that ITS should take
the initiative in this area: a Science and Engineering Research
Council (SERC) Visiting Fellow, Dr M.R. Wigan (Australian Road
Research Board), was identifying potential research areas in
information technology and transport (Wigan, 1983, Kirby 1984),
and paid special attention to work with rule-based systems.
(Wigan 1984); and the Joint Committee of SERC and the Economic
and Social Research Council (ESRC) had just set up a special
programme to develop projects that applied information technology
to transport. The project was funded as a 2-year University of
Leeds research post, from November 1983.

Already it can be seen that four terms (expert systems; IKBS;
artificial intelligence; rule-based systems) have been
(purposely) used to represent the type of computing system in
which this project is interested, and it is symptomatic of the
whole subject area that these terms are often used inter-
changeably and without explanation, even though they have
different shades of meaning. It is hoped that this report will
clarify the terminology, and present the concepts and techniques
involved in a clear and concise manner.

1.2 Project Aims

The aims of the project are not defined in terms of producing a
stated end product, but in terms of developing a general
understanding of expert systems within the Institute, and of
demonstrating to transport professionals the power and
flexibility of expert systems as a problem solving tool. In the
course of this, it is intended to develop a demonstration expert
system which will go some way to fulfilling both the above major
aims, as well as providing the Institute with a new problem
solving tool for general use. In the course of this, an
assessment is being made of a range of potential transport-
related problems which can be solved by the application of an
expert system; the assessment prepared so far (February 1984) is
presented in a separate report (ITS Technical Note 145).

1.3 Project Status

It is a characteristic of this subject that expertise in expert
systems is not readily available, and people with a thorough
knowledge of the subject and the ability to communicate it to
others are rare indeed. The author not being one of these rare
creatures, the initial part of the project has been almost
completely concerned with overcoming the not inconsiderable
difficulties involved in understanding what expert systems are
and, to some extent, how they work.

This report presents the results from this initial phase of the
project. Much work has been done in trying to become familiar
with expert systems, and to communicate this familiarity to
Institute staff; it is thought that some success has been
achieved in the latter by means of a series of colloquia held
within the Institute, and it is hoped that the interest generated
will continue to develop. This report and its companion
Technical Note will help in identifying the potential that expert
systems have in transport.

The practical side of the work has not yet started; it was
considered to be important, and indeed was part of the project
aims, that familiarisation with techniques should have first
priority. It is very tempting to say that proper familiarisation
can only be brought about with 'hands-on' experience, but in the
case of expert systems the availability of software and
appropriate computing resources has been a limiting factor.

However, the project is now ready to move into the construction
of a demonstration expert system, using tools identified as most
appropriate in this initial phase.

1.4 Report Structure

Chapter 1 states details of the project - its background, aims
and status.

Chapter 2 introduces the subjects of artificial intelligence and
expert sytems, explaining their aims and outlining their pitfalls
for the unwary novice researcher.

Chapter 3 looks in more detail at the construction of expert
systems.

Chapter 4 examines a selection of current expert systems and
expert system shells.

A separate Technical Note contains a chapter on the relationship
of expert systems to the field of transport generally, examining
the pros and cons of possible application areas, and reviews the
specific position of ITS with respect to expert systems in
general, and the remainder of this project in particular.

..
A glossary of technical terms is provided at Section 7.

2. THE CONCEPTS BEHIND EXPERT SYSTEMS

2.1 Computers i n General

The k ind o f t h i ng t o which computer technology has t r a d i t i o n a l l y
been applied i s the carry ing out o f repe t i t ious physical tasks,
such as con t ro l l i ng t oo l s or solv ing numerical-based problems,
such as s t a t i s t i c a l tests. It has always been considered tha t
computer technology would never be able t o r i s e from t h i s
somewhat mundane l e v e l t o the l e v e l o f making decisions o r
in te rp re t ing information on the basis o f weighing evidence and
a r r i v i ng a t a conclusion. Th is has always been something tha t
only a human being can do, mainly f o r the somewhat paradoxical
reason tha t human beings do not f u l l y understand the processes
they go through when evaluating information, and so could not
attempt t o program a computer t o perform the same processes.

Computers are able t o do things quickly - some o f the larger
mainframe computers can carry out m i l l i ons o f ins t ruc t ions per
second - and so they are very usefu l i n doing repe t i t i ve , boring
things, leaving human beings f ree t o do the creative, i n t u i t i v e
th ings tha t computers cannot do. However, some computing
sc ient is ts , together w i th philosophers, psychologists and
educationalists, are concerned w i th t r y i n g t o give computers the
power and a b i l i t y t o carry out these very tasks tha t have so f a r
been t o t a l l y the perogative o f human beings. How i s t h i s being
done? The answer i s simple, the explanations are not!

There i s a subject, branch o f computing science, branch o f
psychology, c a l l i t what you w i l l , known as ' A r t i f i c i a l
In te l l igence (AI) which, as i t ' s name implies, i s concerned w i th
endowing machinery wi th tha t essent ia l ly human qua l i t y -
intel l igence. (There i s much l i t e r a t u r e avai lable concerning the
high-flown i n t r i c a c i e s o f implementing th is , but very l i t t l e on
the basics.) A branch o f A 1 i s the f i e l d known as 'Expert
Systems', which concentrates on bu i ld ing computer systems which
appear t o have in te l l i gence when used i n very spec i f i c
applications.

For those wi th some knowledge of computing, the development o f
expert systems i s an important and in te res t ing step i n the
development o f software techniques (i.e. the design o f programs
t o t e l l the computer what t o do). For those w i th no knowledge o f
computing, then expert systems can represent a f r ighten ing step
nearer Computers I n Control. Let us look a t how expert systems
developed, and t r y t o destroy t h i s l a t t e r fear i n the process.

2.2 A Step Back

It w i l l no doubt already have occured t o you tha t some strange
ideas have been put forward i n the above section, and not only
that , but that they have been glossed over without explanation o r
de f in i t ion . Af ter a l l , how can a machine be given in te l l igence?
What i s in te l l igence? Wouldn't an i n t e l l i g e n t computer be a
contradict ion i n terms? f i e ' answer t o a l l these questions, and

probably to all the others relating to intelligence is 'I do not
know'. No psychologist will give a definition of 'intelligence',
or even of 'thought'; so we have to proceed on the understanding
that we all know what we mean by intelligence, but that we can't
quite put it into words. The concept of an intelligent computer
comes clearly to mind - you speak to it, it answers back (Eddie
the Shipboard Computer in 'The Hitchhikers Guide to the Galaxy'
[Adams, 19771 is my model - no doubt you can think of others!).

As this discussion progresses, a certain amount of
anthropomorphism will inevitably creep in, let us state here and
now that it-is just a convenient way of referring to the concepts
involved. The whole argument relating to intelligence and
computers has yet to be resolved, but it does not prevent us
looking at expert systems in some detail, and A1 very briefly.

2.2.1 Getting into the subject. One of the most fascinating
aspects of expert systems as a subject is that it is extremely
new. Techniques tend to be developed, and then the theoretical
justification for developing them is (sometimes) expounded.
Often, practical implementation outruns theory, and almost always
outruns documentation. Documentation is, thus, very hard to come
by, particularly so if one is looking for introductory texts; it
can also be said that many researchers already well ensconced in
expert systems (not that there are that many of them), never
descend to the layman's level, and will have totally confused
anyone not conversant with 'rule-based sytems', 'frame-based
systems', 'knowledge representation', 'meta-knowledge', etc.
within 2 minutes conversation.

The great problem therefore, if one is trying to use or develop
expert systems for a particular application, and if one does not
really know a lot about them, is that of obtaining information
about expert systems that actually makes sense. Fortunately, new
articles and books are appearing all the time, as the circle of
those wanting to know widens; some are listed in section 6.1.
That by Feigenbaum and McCorduck (19841, is a good starting
point; but one should be warned that some books, such as Naylor
(1984) can oversimplify so much as to make it appear that one can
do it all in BASIC! And that is certainly not the case for real
applications ...
We have already seen that A1 is concerned with trying to give
machines intelligence, and that expert systems can be regarded as
a sort of practical off-shoot from AI. It is interesting to look
at how these subjects came into being, and the type of things
they have achieved so far. Looking at some A1 systems, even if
it is only reading the title of various articles, is actually
very helpful in trying to understand what types of task the
computer is being told to perform.

The best way to explain.A.1 is to quote unashamedly from one of
the leading researchers in the field, E.A. Feigenbaum: "The

potential uses of computers by people to accomplish tasks can be
'one-dimensionalised' into a spectrum representing the nature of
the instruction that must be given the computer to do its job.
Call it the WHAT-to-HOW spectrum. At one extreme of the
spectrum, the user supplies his intelligence to instruct the
machine with precision exactly HOW to do his job, step-by-step.
Progress in Computer Science can be seen as steps away from the
extreme 'HOW' point on the spectrum: the familiar panoply of
assembly languages, subroutine libraries, compilers, extensible
languages, etc. At the other extreme of the spectrum is the user
with his real problem (WHAT he wishes the computer, as his
instrument, to do for him). He aspires to communicate WHAT he
wants done in a language that is comfortable to him (perhaps
English); via communication modes that are convenient for him
(including perhaps, speech or pictures) ; with some generality,
some vagueness, imprecision, even error; without having to lay
out in detail all necessary subgoals for adequate performance -
with reasonable assurance that he is addressing an intelligent
agent that is using knowledge of hls world to understand his
intent, to fill in his vagueness, to make specific his
abstractions, to correct his errors, to discover appropriate
subgoals, and ultimately to translate WHAT he really wants done
into processing steps that define HOW it shall be done by a real
computer. The research activity aimed at creating computer
programs that act as 'intelligent agents' near the WHAT end of
the WHAT-to-HOW spectrum can be viewed as the long-range goal of
A1 research". (Feigenbaum, 1974).

It is said (personal communication) that A1 came into being via
robotics - researchers wanted to be able to give robots the
ability to learn from experience, and to be able to react to
things happening in the 'outside world' without necessarily
having been programmed. In other words, to be given a set of
rules describing proceedural behaviour given a specific set of
circumstances; a set of facts describing possible sets of
circumstances; and a mechanism for matching 'outside world'
circumstances to the set of facts and thus deciding the
appropriate behaviour by implementing the appropriate rule.
Implicit within this desire is the ability to infer new rules and
facts from the explicitly stated rules and facts, and thus to add
to the information available to the robot. The set of rules and
facts is known in the jargon as the 'knowledge base'; whilst the
mechanism for inferring new rules and facts (which would then be
added to the knowledge base), and matching observed facts to
internally held facts, is known as the 'inference engine'.

It can be seen that Feigenbaum's statement above is not so far
removed from the roboticists' aims - a computer needs 'knowledge'
of a subject in order to be able to act intelligently when
applied to that subject; and it needs to know how to use that
knowledge in a specific situation.

So, with apologies for the anthropomorphism, A1 is trying to give
computers the ability to possess knowledge of a particular
subject, in such a way that fhat knowledge can be used and added

to in a flexible way by both the user and the computer itself.
Ideally implemented, it would make the computer 'transparent' to
the user, i.e. make the user unaware that he is using a computer.

Before confusing everyone too much, and without even considering
the philosophical arguments about whether such aims are possible
(they have to be - they have to some extent already been
achieved) - we shall move on from A1 aims to look specifically at
examples of A 1 systems. However, it is worth mentioning one very
common method of testing for 'machine intelligence' before so
doing: the Turing Test.

The Turing Test was invented, not surprisingly, by Alan Turing,
who was a mathematician greatly involved in computing matters in
the mid 1940's. He was very much before his time, and was
interested in, amongst other things, the concept of machine
intelligence (a biography of Alan Turning has recently been
written by Hodges, 1983). The test is as follows (see Fig. 1) .

Barriers

t

A

Human
Interrogator

Interface controlled

Sources, one of

i
P@ "

Figure 1. The Turing Test -

Human being 'A' is faced with a computer terminal, which he uses
to converse with two unknown sources 'B' and 'C'. ' A ' is told
that one of 'B' and 'C' is controlled by a machine, the other by
a human being whom 'A' has never met. An interface is controlled
by the experimenter, and is switched between 'B' and 'C'
unbeknown to 'A'. If 'A' cannot distinguish between '8' and 'C'
in the course of dialogues with signifiantly better than 50%
accuracy, and if this result continues to hold no matter what
people are involved in the experiment, then the machine is said
to simulate human intelligence.

2.3.1 A1 Systems. The following is a list of perhaps the more
surprising applications computers have been given by A1
researchers. It demontrates very well the type of task involved,
and the essentially human qualities that A1 systems have (they
are in no particular order):

Question Answering in a Story Understanding System (Lehnert,
1977)

Computer-based Medical Consultations (Shortliffe, 1976)
Understanding Natural Language (Winaggrad, 1972)
Using Common Sense (Reiger, 1975)
Solving Calculus Word Problems (Charniak, 1968)
Understanding Children's Stories (Charniak, 1972)
Understanding Physics Problems (Novak, 1976)
Analysing Mathematical Proofs (Bundy , 1975)
Understanding Newspaper Stories (DeJong, 1977)
Writing Stories (Meehan, 1977)
Interpreting and Understanding Cartoons (Adler, 1977)
Analysing and Synthesising Jazz (Ulrich, 1977)
Medieval History (King et al, 1977)
Managing Criminal Court Cases (Buchanan and Fennell, 1977)

2.4 Expert Systems

A branch of A1 is the area known as expert systems. It resulted
from a feeling by some researchers that the A1 aims, as expressed
above, were too grandiose and unreachable in the short term. As
a result, they started implementing systems which embodied tried
and tested A1 programming techniques. These systems could
display intelligence under a certain set of circumstances, i.e.
given enough facts and rules about a specific subject area, and
could be used in an advisory or consultative capacity by human
beings. These systems were used to try to perform the same tasks
as a human expert in a particular subject area, by encoding the
expert's way of solving a problem into a set of rules and facts
which were 'programmed' into the computer, and which could then
be accessed and/or manipulated by a human user in a 'free form'
way. (Those familiar with 'conventional' computer systems will
be aware that the responses a user gives a computer tend to have
to be of a certain kind; i.e. the computer will only recognise a
certain number of responses, and badly designed systems may well
'crash' if given an unexpected response. Expert systems, in
general, allow a much moye.flexible approach to user responses,
and endeavour to simulate 'natural' conversation.)

To clarify what expert systems are, the following statements are
offered as a summary.

An expert system is a computer program which incorporates
information about a particular subject area, and the ways in
which that information can be used. The result is that a user
can use the system in such a way that it appears to have
knowledge of that subject area, and can act as an advisor, or
consultant or expert in that subject. The important thing about
an expert system, and this is something not so far explicitly
stated, is that by exhibiting intelligence, it can appear to be
making judgemental or evaluative decisions of a type not
traditionally associated with computer applications. There is an
entire discipline devoted to obtaining information from human
experts and encoding it for incorporation into an expert system
(known as 'Knowledge Engineering'), and it is the methods by
which this information is held and accessed within the computer,
together with the programming approach adopted, that makes expert
systems the powerful tools they have become.

A more formal definition of expert systems, approved by the
British Computer Society's committee of the specialist group on
expert systems, is as follows:

'An expert system is regarded as the embodiment within a
computer of a knowledge-based component from an expert skill
in such a form that the system can offer INTELLIGENT ADVICE
or take an INTELLIGENT DECISION about a processing function.
A desirable additional characteristic, which many would
consider fundamental, is the capability of the system, on
demand, to JUSTIFY ITS OWN LINE OF REASONING in a manner
directly intelligible to the enquirer. The style adopted to
attain these characteristics is RULE-BASED PROGRAMMING.'

Does that make everything crystal clear?!

The next chapter is devoted to an examination of how expert
systems work.

3. A CLOSER LOOK AT EXPERT SYSTEMS

3.1 What Doesn't Make an Expert System

I n a discussion o f expert systems i t may seem inappropriate t o
take a b r i e f look a t 'conventional' systems; however, i t i s
important t ha t the d i s t i n c t i o n i s made between expert and
'conventional' systems, pa r t i cu la r l y when dealing w i th the design
o f a new system, which w i l l be the case i n I T S .

I t should by now be apparent tha t the philosophy underlying
expert systems concentrates upon performance i.e. the system i s
b u i l t t o provide easy, f l e x i b l e and natura l access t o a body o f
information, or knowledge, which makes up a f a i r l y small subject
area. I n order t o do th is , a s t y l e o f programming i s adopted
(so-called 'Rule-based'), which i s d i f f e ren t not only i n s t y l e
and construction, but also i n e f fect .

A small digression i s appropriate here. I do not intend t o
review the whole t op i c o f conventional programming techniques i n
t h i s report. I could not hope t o cover enough ground i n the time
avai lable e i ther t o give someone w i th no p r i o r knowledge a
working understanding o f programming techniques, or t o give
someone wi th programming experience, but no formal technique
t ra in ing, a s im i la r working understanding. There are numerous
tex ts avai lable on structured programming (which i s , i n e f fec t ,
good conventional programming), but the best are perhaps Welsh
and Elder, 1982, Page and Wilson, 1982, Knuth, 1973 and Dahl e t
a1 1972. However, i t i s important t o understand the main
dif ferences i n ove ra l l s t ructure between expert and conventional
systems, and a small discussion o f conventional programming
techniques i s presented as Appendix A.

The main conceptual d i f ference tends t o be one o f control. I n a
conventional system, the user i s very much under the con t ro l o f
the program, i .e. i t prompts him fo r more information a t ce r ta in
times, t e l l s him things a t cer ta in times, and, general ly
speaking, w i l l not al low him t o re-trace h i s steps through the
program asking f o r fu r ther information. An expert system, again
generally speaking, i s , i n one sense, under more user control , as
the user can request information from the system a t any time, and
does not have t o wai t t o be prompted; i n another sense, however,
the system i s very much i n con t ro l i n terms o f 'knowing' which
course t o pursue. Unlike a conventional system, which tends t o

be a sequential branching program o f the form shown i n Figure 2,
an expert system tends t o be o f the form shown i n Figure 3 - not
nearly so determinist ic.

The structure o f expert systems i s discussed i n the remainder o f
t h i s chapter, but i t can be seen from comparing Figures 2 and 3
tha t there i s a great di f ference s t ruc tu ra l l y between the two
types o f system.

.
The main po in t t o make here i s tha t an expert system i s not j u s t

START

MESSAGE

7

PRINT BEJSWER

STOP STQP

Figure 2 'Conventional' program structure Example

Explanation. This is a diagrammatic representation of a
simple, sequential branching program of the type familiar to
anyone who has had dealings with computer programming. The
main point is that the flow of control is progressively
'down' through the structure, with user messages and input
being set at particular points in the program. The whole
program is strictly deterministic and, if well programmed,

3 easy to follow. i

ai b
I P

Models

Rules

Evidence

t = .flow of information

Figure 3 Expert System Structure Example ('PROSPECTOR' style)

Explanation. This illustrates a 'PROSPECTOR'-type expert
system structure (see Ch. 4 below for a discussion of
'PROSPECTOR'). It is a network which relates a set of
possible evidence to a set of possible models ('models' in
this case can be thought of as prototypical situations).
Each box represents an hypothesis and the links indicate
where the conclusion of one hypothesis forms the input to
another, higher, hypothesis. The flow of ipformation is
from evidence to model hypotheses. The set of model
hypotheses represent the set of 'goals' that the system is
attempting to prove.

The evidence hypotheses represent input information, which
can be subjective user judgements or sensor measurements or
whatever. The network of links between hypotheses
represents the rules which, in turn, represent intermediate
stages of reasoning.

The system works in the following way: a model is first
chosen, either by the user or automatically by the system,
and evidence is evaluated by backtracking from the model
hypothesis to the evidence. Whenever an evidence hypothesis
is encountered, input is requested from the user, or
sensors,*or whatever. Further models may be evaluated aJter
the $first, and, ideally, P"one-model should emerge'as the
solution to the problem.

a well-designed interactive program; there is a lot more to it
than that. A fatal mistake, which people trying to join the
expert systems bandwagon tend to make, is to design a user-
interface for a previously tried and tested non-interactive
program, and call it an expert system! A second mistake, which
tends to come in the design stage, is to find an application
which requires a computer program, but which is actually a
numerical- or algorithm-solvable problem not requiring the
'intelligent knowledge' of an expert system. Kowalski's
statement quoted in the proceeding section highlights these
problems of terminology, and the deeper one goes into the
programming and internal structure of expert systems, the more
difficult distinctions are to make.

We shall remain, mostly, at the higher, conceptual, level of the
arguments.

3.2 What makes an Expert System

It can well be argued that an expert system is really only a
computer program that, when run, makes people say 'I didn't know
a computer could to things like that!'. Or, to put it another
way, a computer program which does something that you'd have
thought would have needed a human expert to do. If this can be
borne in mind, then we shall make headway.

So, if we are looking at a computer program that does what a
human expert does, then what attributes does it need?

Well, firstly it obviously needs to know something about a
subject; we know that that can be done easily enough - a few
facts in a database, or perhaps in the form of PROLOG statements
(PROLOG is a programming language we'll come to later - if it
means nothing to you, don't worry, but go and read Clocksin and
Mellish, 1981). So that is alright.

Next, it needs to be able to use the facts it has available to
it, it needs to be able to deduce, or infer, further facts from
those it has available. We know that this can be done - a set of
rules about what action to take if a certain circumstance, or
fact, is found to be true is all that is needed. Again, this
could be in the form of PROLOG statements, or perhaps just
conventional IF statements of the kind:

IF condition THEN action.

So that is alright.

Next, it needs to be able to apply the rules to the facts. How
does it know when to apply rules? Well, a human expert works in
terms of answering questions, or interpreting information; in
other words, he responds to a stimulus of some kind. So, our
sytem has to have a way of recognising the appropriate stimulii
and taking the appropriate action. This is more tricky, as it
has to have an 'interface' designed which will accept stimuli in

the form of questions, or even further information, from a human
user (or possibly from a data source such as a traffic counter).
The 'user-interface', however, is a common aspect to conventional
systems, so we know that that can be done, so that is alright.

A human expert can explain how he reached a decision, and should
be able to do so in a way easily understood by the enquirer
(although this latter rule is often broken!) . Generating
explanations is difficult. It has been done in America, but it
is recognised as one of the areas in which further work is needed
(Kidd and Cooper, 1983). So that is sort of alright - it can be
done, but it-needs more work.

The other main thing a human expert can do is to weigh up
available evidence, and come to a conclusion even if some
evidence is missing. This is difficult to put into our system as
no-one knows how human beings cope with uncertainty, and how they
evaluate partial evidence. Various methods of representing an
unknown quantity (both in terms of human processes and evidence!)
have been put forward - notably Bayesian Propagation Formalism
(Duda et al, 1976); fuzzy logic (Baldwin, 1981); and fuzzy set
theory (Zadeh, 1965). All have been incorporated either singly
or in concert in expert system designs, so we know that we can at
least represent uncertainty, but we are not sure how good that
representation is. Evaluations of systems using these
uncertainty methods suggest that they can be used satisfactorily
(Adams, 1976), but we are still awaiting the definitive method of
representing uncertainty.

It should by now be becoming apparent that we are trying to give
the computer as many of the facets of a human expert as we can.
In order to do this, we need to know how a human expert interacts
with both the enquirer and the information he is working on.
This is an extremely difficult task, as we would have to have a
complete understanding of thought processes in order to endow the
computer with the ability to perform exactly as the expert. As
stated above, A1 is to some extent concerned with building models
of thought processes, but the processes themselves are not as yet
understood. Expert systems, therefore, tend to try to imitate
rather than replicate these processes.

To summarise the requirements for an expert system:

- facts, from which the system can work to infer some higher
level information (the database) ;

- rules, which the system uses to work on the facts. The
rules are, in effect, the heuristics the human expert uses
when solving a problem (the knowledge source);

- (the database and knowledge source together make the
'knowledge base') ;

- a method for applying rules to facts, i.e. for selecting a
rule under a certain set of circumstances (the inference
engine) ;

- a method of communicating with potential enquirers in as
natural a way as possible (the user interface);

- a means of explaining how a particular conclusion has been
reached, or why a particular line of inquiry was pursued
(the explanation facility) ;

- a means of representing human uncertainty or incomplete
evidence (probability and possibility).

The above requirements are for a 'typical' expert system. Many
systems are termed expert by their designers without meeting all,
or even any, of these requirements. In fact, there is some
argument over just when an expert system is an expert system,
particularly when a programming language such as PROLOG is used
to build the system. As an example of this confusion, and as an
introduction to the next section, let us look at a statement made
in the 1983 Expert Systems conference in Cambridge ...

I . . . there is a close association between expert systems and
rule-based systems. Practically every expert system of
significant complexity has been implemented as a rule-based
system; and conversely, in North America until recently,
expert systems have been virtually the sole application of
rule-based languages. In Europe, however, PROLOG has long
been used as a rule-based language for a great variety of
applications, such as databases, natural language
processing, computer aided design, compiler writing and
rapid prototyping. Many of these applications (rightly or
wrongly) would be classified as expert systems had they been
implemented in North Americat. (Kowalski, 1983)

Just when you thought it was becoming slightly clearer as well!

3.3 Rules and How They Work

For the moment, let us concentrate on rules, what they are and
how they work. Much has been made of rule-based programming and
rule-based systems, but we haven't, as yet, looked at what they
do.

As stated above, an expert system has to be able to infer some
information from a set of facts in a database. In order to do
this, it has to have some 'procedural knowledge', i.e.
instructions to tell it what to do in a certain set of
circumstances - these are rules (also termed 'production rules',
(Davis and King, 1976)).

The rules represent the knowledge of the human expert, which has
been found to be a collection of heuristics rather than an
algorithm; i.e. the expert's knowledqe tends to consist of 'rules
of thumb' developed by experience, and, as such, is difficult, if
not impossible, to represent by a sequential algorithm. (See
Sloman, 1979 for a discussion of the nature of knowledge.)

So, to describe a subject area, we would have a collection of
facts ('declarative knowledge' - describing things), together
with a collection of rules ('procedural knowledge' - describing

actions). The interactions of facts and rules (as performed by
the 'inference engine') in effect gives us our expert system
basis.

The relationships between the inference engine, the database
(i.e. the set of facts) and the knowledge source (the set of
rules) is as shown in Figure 4 for a 'typical' expert system.

The way in which the system works is, generally, as follows:

The inference engine (i.e. the mechanism for applying rules to
facts) has to select an applicable rule from the knowledge source
(i.e. the set of rules), and apply it, subsequently updating the
database (i.e. the set of facts). This repeats until the
solution is reached. It is, in essence, a very simple process -
pick a rule according to some criterion, apply it, changing one
or more of the facts if necessary, pick the next rule, etc. etc.
until the answer, or rather to use the jargon, an assessment,
appears.

However, the system has to know how to select a rule, and, which
particular rule to select. There are two main methods of rule
selection: Data-driven and demand-(goal) driven; they are often
used together in expert system implementations.

Rules tend to be of the form:

IF condition THEN action

although implementations of rules in different programming
languages can make them virtually unrecognisable. However, think
of rules as having the above form.

3.3.1 Data-Driven Rule Selection

Data-driven rule selection methods work as follows:

- the condition part of each rule is hecked against the facts
in the database to see if the condition is met. - a rule is selected whose condition is satisfied. - the action part of the rule is carried out. - the facts in the database are updated by the action part of
the rule (if appropriate). - repeat.

If more than one rule's conditions are met in the database, then
a rule will be selected either by physical position in the rule
set (i.e. first encountered, first used); or by a series of
weightings of importance as imposed by the human expert when
divulging his knowledge, and encoded as part of the rule
structure.

l2mmEECE ENGINE
(mechanism for applying
rules to facts)

D A T U KNOWLEDGE SOURCE
(fact set) (a l e set)

i

Figure 4 'Typical' EX& System (after Cox, 1984)

16

The data-driven method is, therefore:

Put initial facts into database
Repeat

Test condition of each rule against database
Select rule 'R' from the set of possible rules
Apply rule 'R', updating database

Until database satisfies goal condition

An example of an application requiring a data-driven rule
selection method might be a real time monitoring and control
system for urban traffic. For example, traffic sensors would
send information into the database, which would be continually
monitored by the application of rules, representing the processes
a human system manager would undergo in examining the system
state. A 'goal state' for the system would exist, representing
optimal system use perhaps, and rules would be applied as a
result of data coming into the database and taking the system
away from its goal state. Rule actions might well be controlling
traffic light times etc. Thus we have a system which operates as
a result of the data available to it.

3.3 .2 Demand-(Goal) Driven Rule Selection

This approach means that rules are 'chained' together, the action
parts of subsequent rules providing information about the
condition part of preceeding rules. In our urban traffic network
management system example, this approach would be adopted if the
expert system had knowledge of, say, bus schedules available to
it: suppose that a no. 26 bus were due at a certain point in the
network at a certain time, according to the schedules; and that
the data being passed to the system by the traffic sensors
included a 'bus identifier' of some kind. A demand- or goal-
driven rule selection method would examine the incoming data for
evidence of the expected bus. System performance could, perhaps,
then be assessed on the earliness or lateness of the bus, and
appropriate actions taken. The system is taking action to
achieve a certain goal.

3 .4 How a system knows its subject -- --
The methods of selecting rules (or 'firing' rules to use the
jargon) do not, obviously, account for intelligent behaviour,
they are purely methods of applying expert knowledge to a
particular problem. In fact, expert systems depend entirely upon
the knowledge they possess for their intelligent performance.
Their power comes from the knowledge base (i.e. the combination
of facts and rules), not from the inference engine (i.e. the way
rules are applied to facts). Feigenbaum (1979) discusses this in
some depth. The dependence upon knowledge gives rise to expert
systems' alternative name - Intelligent Knowledge-Based Systems
(IKBS). These names seem to be used completely inter-changeably,
so we will note the alternative and pass on. (It is, however,
worth noting that in some. circles at least, an IKBS is only an
expert system if it can fulfil a human expert's role; whilst in

others the terms are completely inter-changeable)

How does an expert system get its knowledge? and how is that
knowledge represented and used? Well, we have already seen that
rules are extremely important, as are facts. Facts will be
looked at later, as there are many ways of representing them; let
us look first at how the knowledge is initially obtained from the
human expert.

3.4.1 What is Knowledge Engineering?

Given that the power of an expert system depends upon the quality
of the knowledge it possesses, then it is obviously very
important that the knowledge to be used in establishing an expert
system is as accurate and well defined as possible. This task of
obtaining knowledge from human experts falls to the 'knowledge
engineer'.

Knowledge engineering is the term applied to the process of
turning the essentially heuristic human expert's knowledge into a
set of rules and facts for inclusion in the expert system. There
are a number of techniques for eliciting human experts'
knowledge, all of them seemingly under continual refinement.
They range from the simple, manual method of sitting down and
talking with the expert, discussing case studies and working
through examples, through to an expert system which infers rules
from examples input to it. The former approach is 'explicit'
knowledge acquisition, i.e. the expert tries to explain his
thought processes, whilst the latter approach is 'implicit'
knowledge acquisition, i.e. a computer program extracts the
salient features from a series of examples.

Knowledge engineering is a subject obviously closely connected
with expert systems, but it is also a large subject on its own
account. It has been used to describe the process of building
expert systems (Feigenbaum, 1979), i.e. not only eliciting the
knowledge, but also designing the data structures and programming
requirements for representing the knowledge in the expert system.
It has also been used to describe the process of eliciting expert
knowledge only (Cox, 1984). In a sense, this conflict of
terminology is irrelevant, the essential element is that of
acquiring the experts' knowledge in a form that can then be input
to the expert system mechanisms.

There are a number of articles relevant to knowledge engineering
in both its senses, and it is recommended that any serious
potential expert system designer at least read Waterman, 1979;
Quinlan, 1979; and the section on Knowledge Acquisition in the
Proceedings of the Expert Systems Conference, Cambridge
University, 1983.

3.4.2 What is Knowledge Representation?

The method of representing.know1edge within an expert system is
probably the most argued area in expert systems. We have already

looked at rules and how they work, and systems which rely
entirely upon rules, or at least which have a major part of their
knowledge represented as rules, are known as 'Rule-based
Systems'. Rules are adequate for expert systems which are highly
specific and apply to limited subject areas (Cox, 1984); but,
when the area is broader, then rule-based representation tends to
become unsatisfactory, largely because a lack of 'common sense'
tends to become apparant. This is because the set of rules
becomes so large that it looses its coherence, and side-effects
can emerge that were not anticipated. This problem can to some
extent be overcome by adding what is termed 'meta-knowledge' to
the expert system (see 3.4.3 below), but it is often more
appropriate to adopt a different form of knowledge
representation.

It is at this stage that things become a little complicated!
There are a number of alternative approaches to representing
knowledge, but they seem to resolve themselves into one of two
distinct camps. Logic, and its manipulation, termed 'first order
predicate calculus', is one (as advocated by McCarthy and
followers, see McCarthy, 1979); whilst frame-based representation
is the other (as advocated by Minsky and followers, see Minsky,
1975). If you want to read about some of the ways proposed for
representing knowledge, then look through the Knowledge
Representation sections of the proceedings of International
Conferences on Artificial Intelligence. A good general state-of-
the-art discussion is available in IEEE Computer, 1983.

Let us look briefly at the two main protagonists.

3.4.2.1 Logic and PROLOG

Logic and first-order predicate calculus are somewhat difficult
concepts to come to terms with, and there is little indication in
the expert systems literature of any easy introductory text,
Crossley et al, 1972 is a good mathematical text for those who
are interested. However, the definitive PROLOG text (Clocksin
and Mellish, 1981) contains much that is relevant to knowledge
representation in logic, and the following discussion relies
heavily upon that text. Examples are given in PROLOG form.
PROLOG is a computer programming language that is used for
solving problems involving objects, and the relationships between
objects; it is, in effect, a step towards the goal of programming
in pure logic.

A simple example of a fact expressed in logic would be: (in
PROLOG form)

run-on (trains, rails) (1)

i.e. 'trains run on rails'

this example shows two important things: firstly, we have
defined a relationship 'run-on', and secondly we have defined two
objects 'trains' and 'rails'. These are referred to respectively

as a predicate and arguments. Thus we have a predicate 'run-on'
with two arguments 'trains' and 'rails'. The selection of names
for both the predicate and its arguments is totally arbitrary -
we might just as well have said:

a (b, c) (2)
which could have meant the same as (I) , but we would have to
remember what a, b and c respectively stood for. In effect, we
have now defined a fact, i.e. that trains run on rails.

The number of arguments a predicate takes does not seem to be
limited, although any given PROLOG implementation will obviously
have a maximum number. We could, thus, define further facts:

drive-on (cars, lorries, buses, roads) (3)

i.e. 'cars and lorries and buses drive on roads'.

operate (PTE, buses)

i.e. 'PTE operates buses'.

operate (BR, trains) (5)

i.e. 'BR operates trains'.

operate (private-people, cars)

i.e. 'private-people operate cars'.

etc. etc.

So, we could now put all these facts into a database, and then
ask questions about them. The database would look like this:

run-on (trains, rails)
drive-on (cars, lorries, buses, roads)
operate (PTE, buses)
operate (BR, trains)
operate (private-people, cars)

We could now query this database. PROLOG accepts questions in
the same form as facts, preceeded by two special symbols the
question-mark (?) and the hyphen (-1. Thus:

? - run-on (cars, rails) (7)

i.e. 'do cars run on rails?'

The system would reply: 'No'

but

? - operate (BR, trains) would produce the answer 'Yes'.

If we asked

? - likes (HRK, PROLOG) (8)

the answer would be 'no', because the system can find no
reference in the database to any of 'likes', 'HRK' or 'PROLOG'.
So, 'no' in effect means 'not as far as I know'. This obviously
has implications for mis-spellings etc.

All this is very well, but slightly limiting. How could we ask
the system what, for example, BR operates, or what drive on
roads. Well, like most programming languages, we use variables.
Thus:

? - operate (BR, X) (9)

will produce the answer

X = trains.

Similarly the query:

? - drive-on (X, roads)

will produce the answers

X = cars
X = lorries
X :: buses

Logic, and its implementation in PROLOG, allows some very
flexible and powerful constructs. Me can, for example, ask more
complicated questions, such as:

? - operate (BR, XI, run-on (X, rails) (11)

i.e. 'What does BR operate that runs on rails?'

We can also construct rules (hence 'rule-based' programming
language) which, in this case, is a sort of generalisation of a
list of facts. For example, we could have a database consisting
of facts concerning what BR do; say, operate different classes of
locomotives, rolling stock, maintenance teams, management teams,
etc. etc. looking something like:

run-on (class 37, rails)
run-on (freightliner-wagon, rails)
work-in (management-team, headquarters)
etc. etc.

We could define a rule to produce listing of all BR mobile
equipment, thus:

mobile (BR, X):- run-on (X, rails)

(the :- reads as 'if'). .-

Hopefully, this somewhat basic discussion will give an indication
of the power of both logic and PROLOG. Interested readers are
referred to Clocksin and Mellish, 1981 for a far more detailed
examination of PROLOG. The use of logic to represent knowledge
boils down to defining objects and the relationships between
them, and then manipulating those relationships.

A small justification for treating logic and PROLOG together in
such a cavalier fashion is required. ITS, whilst most probably
using PROLOG for devising rule-based systems defining logical
relationships, is most unlikely to want to build complete expert
systems from scratch using pure logic as a knowledge
representation medium. Thus, we have tried to kill two birds
with one stone - introducing both logic and PROLOG.

3.4 .2 .2 What is Frame-Based Knowledge?

A frame-based knowledge representation medium can be described as
follows:

A class of objects or events or scenes is initially described by
a prototype (somewhat similar to the SIMULA class concept for
those familiar with such things). The prototype is considered as
a stereotype description of members of the class. For example:

Suppose we wish to describe a prototype of the Light Commercial
Vehicle as specified in TAM, 1981:

PROTOTYPE : Light-Commercial
UNLADEN-WEIGHT : i 3 Ton

REAR-WHEELS : Twin (1)
PLATE : None

Thus, the prototype has 'slots', which are the characteristics of
all members of the prototype class, and which in the above
example are 'UNLADEN-WEIGHTS', REAR-WHEELS', and 'PLATE' (i.e.
presence of rear reflective plate). The values expressed in the
prototype slots can act as default values for specific members of
the prototype class. The specific members of the class are known
as instances of the class, or 'instantiations'. Thus, to
represent the fact that a Ford Transit is a light commercial
vehicle (if it has twin rear wheels and is i 30 cwt !) , we would
write:

FORD TRANSIT
INSTANCE OF : Light-Commercial (2)

If the system were then asked about Ford Transits, it would say
that Ford Transits had an unladen weight i3 tons, had twin rear
wheels and no reflective rear plate; i.e. the information would
come from the values put in the prototype slots.

An important characteristic of frame-based knowledge
representation is that of-,'property inheritance'. This is where
instances of prototypes possess all the characteristics of the

parent prototype. For example, we could change (1) above to
include the fact that light commercial vehicles are instances of
road-going vehicles, and therefore possess all the
characteristics of road-going vehicles such as, say, steering
mechanisms, motive power, fuel storage or whatever. Suppose we
had specified a prototype 'ROAD-GOING-VEHICLE' with all the
appropriate attributes, and wanted the prototype 'light-
commercial' to possess all these attributes as well as the
further ones we are going to specify, we would write:

PROTOTYPE : Light-Commercial
INSTANCE OF : Road-Going-Vehicle

UNLADEN-WEIGHT : i 3 ton (3)
REAR-WHEELS : Twin

PLATE : None

The system would now know that light commercial vehicles, as well
as having the above explicit chracteristics, would also have all
characteristics of road-going vehicles, as specified in the Road-
Going-Vehicle prototype.

Suppose we now want to make a deduction from the information the
system has. For example, suppose we wanted to represent 'George
drove a Transit', and 'Norman drove whatever George drove'. This
could be represented as follows:

Declare a prototype

PROTOTYPE : Driving
DRIVER
VEHICLE :

(note the attributes of 'Driving' are empty, therefore no default
values are available)

and two instances

Dl
INSTANCE OF : Driving
DRIVER : George
VEHICLE : Ford Transit

D2
INSTANCE OF : Driving
DRIVER : Norman
VEHICLE : Vehicle (Dl)

Thus, the system could easily give us the answer to the question

'What vehicle did Norman drive?'

As in logic-based knowledge representation, we can construct
rules to act as generalisations or to carry out actions. For
example, we could build a-prototype rule, thus:

PROTOTYPE : Rule
I F :

THEN :

and an instance o f a ru le , say

' I f x i s a t ransport consultant i n f i r m y, and z i s a
founder partner o f f i r m y, then z i s the boss o f x.'

(We use ru les i n t h i s representation t o s t ructure knowledge tha t
i s not eas i ly structured by prototypes and t h e i r a t t r ibutes.
Data s t ruc tu r ing aims t o re-create na tu ra l l y occurring
relat ionships between data objects. See Tenenbaum and
Augenstein, 1981 .)

R1
INSTANCE OF : Rule

I F : (x works i n y) AN0 (8)
(z partner of y)

THEN : z boss o f x

We can incorporate ru les i n t o t h i s frame-based representation i n
such a way tha t i f a s l o t value i n an instance i s unknown, then
the defaul t value i n the prototype can be a c a l l t o a r u l e t o
i n f e r the required value. For example:

prototypes:

PROTOTYPE : Consultant
NAME :

WORKS I N :
BOSS : i R l i

PROTOTYPE : Partner
NAME :
FIRM :

and instances:

B1
INSTANCE OF : Consultant (1'1)
NAME : E.J. Thribb
WORKS IN : Fagin and Partners
BOSS

82
INSTANCE OF : Partner (12)
NAME : W. Shylock
FIRM : Fagin and Partners

These declarations would mean tha t the question 'who i s E.J.
Thribb's boss?' would produce the fol lowing actions:

The 'Boss' s l o t of (11) js, unknown, so the defau l t vaue i n (9) i s
implemented. This i s a c a l l t o r u l e R1 (B), which then i n f e r s

that E.J. Thribb's boss is, in fact, W. Shylock.

There are more complicated constructs of knowledge using this
type of representation, but the basic principles remain much the
same. See Minsky, 1975 and Nilsson, 1982 for more detailed
discussions.

3.4.3 What is Meta-Knowledge?

Meta-Knowledge is the term applied to the knowledge that a system
has of its own knowledge. Or, to put it another way, the rules
that the system has for asking questions, or activating other
rules, etc. For example, a meta-knowledge rule would be of the
form:

IF (no. wheels known) AND
(no. axles known) AND
(unladen weight is required)

THEN (ask question 'n').

Meta-Knowledge is one method of giving large, rule-based systems
in particular, some degree of 'common-sense'. Another method is
by weighting or 'blocking' particular rules. This is dealt with
next, and comes under the concept of 'uncertainty'.

3.5 How does a system cope with incomplete and uncertain data?

An important feature of an expert system is its ability to handle
uncertainty. Human experts tend to be able to arrive at
conclusions after consideration of incomplete evidence, and may
often say things like 'its probably factor x that causes the
problem', or more precisely 'there's a 75% chance that factor x
causes the problem'. Expert systems do the same. We can design
our expert system so that if a piece, or pieces, of evidence are
missing, the system will still arrive at a valid conclusion,
assigning probability to its conclusion.

As stated briefly above, the way in which human beings handle
incomplete evidence and uncertainty is, as yet, not totally
understood, and so we cannot build an exact model of the human
processes into our expert system. There are, however, several
theories which address this problem of uncertainty (termed
'possibility' in the jargon), and these are all summarised by
Quinlan, 1983. It is argued that all the current forms of so-
called possibility theory do not, in fact, work (Cox, 1984), and
that the development of a workable theory is the task of the
psychologists rather than the computer scientists. The attitude
amongst expert system researchers is one of 'we have something
that seems to work alright, but it is by no means perfect. We'll
stick with it until something better turns up'. The technique
that is currently used by most (but by no means all) expert
systems is Bayes Theorem, or some derivative thereof. We shall
look in some detail at how this is used.

3.5.1 What is Bayes Theorem?

It has been argued that 'PROSPECTOR' handles probabilities and
conclusions in a way that is the best worked out of any expert
system (Naylor, 1984). It uses Bayes Theorem to assess the
effect of a large amount of cumulative evidence on the validity
of an hypothesis, and it works like this:

Bayes' formula is applied to prior probabilities to assess the
posterior probabilities of an event occurring. An event might be
something like the hypothesis that a particular road junction has
reached its capacity and needs to be redesigned. Each hypothesis
in the system, there can be quite a few, starts off with a prior
probability of being true - P(H). Thus, we might give the above
example of junction capacity the prior probability 0.5; i.e.

Now, supposing that there is a huge tailback of traffic at our
junction throughout each peak period, the probability P(H)
changes to P(H : E), i.e. the probability of the hypothesis given
the new evidence. So, the system assigns the value of P(H : E)
to P(H), nd we can now go on to look at the next piece of
evidence and input that to the system. The problem is how we
calculate P(H : E).

The answer is:

where

LS = P(E : H)/P(E : not H)

which can be roughly explained as follows:

LS is the ratio of the probability of getting a particular piece
of evidence if the hypothesis were true, divided by the
probability of getting that same bit of evidence if the
hypothesis were not true. (Any statisticians will by now have
recognised LS as 'the likelihood ratio') .
Using the saturated junction example above, we can now see how
evidence, or the lack of it, updates prior probability. P(H) was
initialised at 0.5; supposing that long tailbacks have a
probability of 0.8 if the hypothesis is true, and 0.1 if it is
not true. Thus, LS now takes the value 8, because (3) says

LS = P(E : H)/P(E : not H)

i.e. LS = 0.8/0.1 = 8 (4)

so, subs t i tu t ing i n t o (2), we get

Then, subs t i tu t ing P(H) = 0.5 i n t o (5), we get

so, P(H) i s given the value P(H : E), and i t i s beginning t o look
as i f we need a new junction! Further evidence would then be
treated i n the same way, updating P(H). However, we have not
considered the f a c t tha t the evidence we obtain suggests tha t the
hypothesis i s not t rue - so f a r we have only looked a t the
'pos i t i ve ' e f fec ts o f evidence. We might, f o r example, f i n d t ha t
there are never any queues longer than two vehicles a t our
junction, suggesting t ha t f a r from redesigning it, we should
perhaps look a t adopting t ha t design f o r a l l future junctions!
How do we put t h i s i n t o our expert system? Well, the
calculat ions are the same, but we are looking a t not-E, rather
than E, t o show t h a t the evidence i s lacking. We then calculate
the l i ke l i hood r a t i o and update P(H) as before. However, we do
need t o have a d i f f e r e n t se t o f p robab i l i t i es , as the previous
set was based on the presence o f evidence, whereas t h i s i s now
concerned wi th the e f f ec t o f a lack o f evidence. Thus, we take:

LN = P(not E : H)/P(not E : not H) (7)

which i s the l i ke l i hood r a t i o associated w i th the lack o f a
cer ta in piece o f evidence. We now calculate P(H) = P(H : not E)
as above, but use LN, not LS.

To rever t t o our junct ion example, suppose tha t we have found no
evidence o f peak per iod t r a f f i c t ra i lbacks, then we might assign
the p robab i l i t y t ha t no t r a f f i c jams occur given tha t the
junct ion has reached i t s capacity as, say, 0.2, and the
p robab i l i t y tha t no t r a f f i c jams occur given tha t the junct ion
has not reached capacity as 0.9. This gives:

So, subs t i tu t ing LN fo r LS, and s t i l l assuming P(H) i n i t i a l l y as
0.5 we would get

P(H : not E) = 0.2 P(H)/(l - P(H) + 0.2 P(H))
= 0.1/(0.5 + 0.1)
= 0.1/0.6
= 0.1666

which indicates t ha t the lack o f t r a f f i c jams a t our junct ion
suggests tha t we do not need t o redesign it.

The above example shows how the presence or lack of evidence can
be accounted for in an expert system, and the use of the LS and
LN factors prevent the system from asking irrelevant questions;
i.e. if you were asked by the system about the presence of
traffic jams, and you answered that there was such evidence, the
system would then not be so stupid as to ask you if it were true
that there were no traffic jams. The LS and LN values (sometimes
helpfully described as Logical Sufficiency and Logical Necessiiy)
effectively put together the results of the two questions,
without actually asking both.

This is still not quite the end of the story, however, because we
need to be able to input our evidence in a way that reflects our
certainty about its validity. For example, we would recognise no
traffic jam, just as we would recognise a 3 mile tailback, but
what about a 100 metre queue? or a 4 vehicle queue? (For the sake
of example let us pretend we know nothing about transport, and
are novice surveyors collecting evidence in a survey.) How do we
input a "well, there was a bit of a queue, but not really a
traffic jam" statement? For this, indicators of certainty can be
used, as described in the next section.

3.5.2 How can uncertainty be represented?

Many expert systems query the user for evidence in the form "How
certain are you that ...", and allow answers on a scale -5 to +5,
representing complete uncertainty and complete certainty
respectively. 0 represents 'don't know'. Some systems treat 0
as a special case representing ambivalence rather than 'don't
know, and have a distinct 'don't know' symbol; they also allow
'Yes' and 'No' as completely certain and completely uncertain
respectively.

A point to mention here is that experience within ITS has shown
that the "how certain are you that ..." phraseology can be
misleading. For example, "how certain are you that there is a
traffic jam" could be interpreted as meaning either "is there a
traffic jam, and if so how big or small on a scale -5 to 5", or
"do you think that what you saw constitutes a traffic jam, on a
scale -5 to 5". The latter interpretation tends to be the one
meant by the system.

We have seen in the previous section how LS and LN are used to
weight evidence; we now need to see how our so-called input
certainty values are applied to these factors. The relationship
between LS, LN and the input certainty is shown in Figure 5 and
works as follows:

The 'odds' form of Bayes Theorem is used, whereby

odds = probability/(l - probability) (1)
probability = odds/(l + odds)

Thus, instead of probabifities as in the above section, odds are
used, as derived from (1) . The principle is the same but odds

factor

input certainty

, igure 5 Multiplication Factors for Bayes Rule

seem t o be easier t o work wi th . I f t h e i n p u t c e r t a i n t y is 0 ,
t hen t h e mu l t i p l y i ng f a c t o r is 1 and t h e hypo thes is p r i o r odds do
no t change. I f t h e i n p u t c e r t a i n t y is less t han 0 , t hen t h e
mu l t i p l y i ng f a c t o r is less t han 1, and t h e hypo thes is odds a r e
decreased; and i f t h e i n p u t c e r t a i n t y is g r e a t e r t h a n 0 t hen t h e
hypo thes is odds a r e inc reased . The s e t t i n g o f va l ues f o r LS and
LN g i v e s g r e a t f l e x i b i l i t y i n c a l i b r a t i n g systems, and a l l ows t h e
e x p e r t t o pu t we ights on t h e importance o f v a r i o u s b i t s o f
evidence.

One o t h e r way i n which u n c e r t a i n t y i n t h e va lue o f a n a t t r i b u t e
may be rep resen ted is th rough t h e use o f fuzzy sets - a concept
due t o Zadeh (1965). Th is is no t exp lo red f u r t h e r h e r e however.

3.6 How a system e x p l a i n s what it does.

In o rder t o communicate s o l u t i o n s t o problems e f f e c t i v e l y , an
e x p e r t system must be a b l e t o o f f e r exp lana t i ons o f what it is
doing. Exp lana t ions a r e necessary n o t on ly when a s o l u t i o n h a s
been reached, i .e. how t h a t s o l u t i o n was reached; bu t a l s o when
t h e system r e q u e s t s a p i ece o f ev idence from t h e use r , i .e. i n
unders tand ing why t h a t p i ece o f ev idance is needed. The
convent iona l way o f i n c l ud i ng exp lana to ry comments i n programs is
t h e so -ca l led 'canned t e x t ' method. Th is is where a comment is
p r i n t e d when t h e program reaches a c e r t a i n p o i n t i n its
opera t ion . We shou ld by now, however, be aware t h a t a n e x p e r t
system program does no t fo l l ow a s e q u e n t i a l cou rse o f ope ra t i on ,
and s o 'canned t e x t ' would n o t on ly be d i f f i c u l t t o implement, it
would a l s o no t g i v e much f l e x i b i l i t y .

I t is a t t h i s s t a g e t h a t we begin t o d e a l w i th i s s u e s no t o f s o l e
concern t o e x p e r t systems. The whole a r e a o f e f f e c t i v e and
meaningful d ia logue between computer systems and t h e i r u s e r s is
t h e a r e a known a s 'Man Machine I n t e r f a c i n g ' (MMI). MMI is
ano ther o f t h e concerns i d e n t i f i e d by t h e Alvey Report a s be ing
i n need o f f u r t h e r work, and a g r e a t d e a l is c u r r e n t l y happening
i n t h a t a rea . See Kidd and Cooper, 1983, f o r an i n t e r e s t i n g
d i scuss i on o f MMI f o r an e x p e r t system.

So, an expe r t system needs a method o f communicating t o its u s e r s
i n a way t h a t is f a m i l i a r t o them, and t h e most common method o f
s o doing at t h e moment is t o use t h e phraseology o f t h e r u l e s and
f a c t s a l r eady i n t h e knowledge base. Th is presupposes t h a t t h e
use r is f a m i l i a r w i th t h e s u b j e c t a r e a o f t h e expe r t system, and
t h u s is f a m i l i a r w i th t h e t e c h n i c a l terms and jargon o f t h e
s u b j e c t . The system is no t be ing p a r t i c u l a r l y c l e v e r i n
r e g u r g i t a t i n g exp lana t i ons i n t h i s way - it is r e a l l y on ly a
s l i g h t s t e p ahead o f 'canned t e x t ' . A l l t h a t happens when a
system is asked 'why' it wants f u r t h e r i n fo rmat ion , o r 'how' it
reached a p a r t i c u l a r conc lus ion is t h a t it retraces its s t e p s
through t h e r u l e s it has implemented s o f a r .

Returning t o ou r example o f v e h i c l e c l a s s i f i c a t i o n s s p e c i f i e d i n
TAM, suppose we have a sys tem which is used t o i d e n t i f y v e h i c l e
t ypes , and it a s k s u s

'How certain are you that the vehicle had twin rear wheels?'

and we answer

'Why?'

the system would reply something like

'Twin rear wheels are a feature of light commercial
vehicles, and so we need to establish whether the vehicle
had twin rear wheels'

-

which would come from the rule implemented when asking the
question.

The explanation facility of expert systems is still in its
infancy, and is mentioned here as a desirable feature of expert
systems. The whole area of MMI is as large as expert systems,
and the interested reader must follow up such texts as
Shortliffe, 1976; Swartout, 1983; and Fox et al, 1983 for
discussions of explanatory facilities.

4. SOME EXISTING EXPERT SYSTEMS

This chapter l i s t s a number o f expert systems tha t have been
developed i n various f ie lds , and gives some de ta i l s o f three o f
the larger and more well-known expert systems tha t have been
developed and implemented. It then reviews some o f those systems
tha t have been designed t o enable other expert systems t o be
generated. This i s by no means a comprehensive survey, the
purpose being t o ind icate the range o f ex is t ing expert system
applications. For a good acount o f contemporary expert system
applications, see Bramer, 1981.

The fol lowing l i s t o f expert systems i n various subjects i s based
on tha t i n Naylor, 1983. Those described i n some d e t a i l l a t e r are
asterisked (*) .
Medical Diagnosis

Engineering Diagnostics

C i r cu i t Analysis
Genetics
Mechanics
Programming
Configuring Computers
Machine Acoustics
Medical Measurements
Electronics Tui t ion
Medical Tu i t ion

Knowledge Acquis i t ion

Bui ld ing Expert Systems

MYCIN*
PUFF
P I P
CASNET
INTERN151

SACON
PROSPECTOR*
DENDRAL*
SECHS
SYNCHEM

EL
MDLGEN
MECHO
PECOS
R1
SU/X
VM
SOPHIE
GUIDON

TEIRESIAS
EMYCIN*
EXPERT
KAS

ROSIE
AGE
HEARSAY I11
AL/X*
SAGE*
EXPERT-EASE*
MICRO-EXPERT*

The systems categorised as 'Bu i ld ing Expert Systems' and, t o some
extent, those also categorised as 'Knowledge Acquis i t ion' , are
ca l led 'Expert System Shel ls ' . These are reviewed i n sect ion 4.4.
But we f i r s t describe DENDRAL, MYCIN and PROSPECTOR.

4.1 DENDRAL

4.1.1 History. Initiated in 1965 as part of the Stanford
Heuristic Programming Project, in conjunction with the Stanford
Mass Spectrometry Laboratory.

4.1.2 Purpose. 'To enumerate plausible structures (atom-bond
graphs) for organic molecules, given two kinds of information:
analytic instrument data from a mass spectrometer and a nuclear
magnetic resonance spectrometer; and user-supplied constraints on
the answers, derived from any other source of knowledge
(instrumental or contextual) available to the user'.
(Feigenbaum, 1979)

4.1.3 Knowledge Representation. Chemical structures represented
as node-link graphs; theory of mass spectrometry represented by
rules.

4.1.4 Method of Operation. A 3-stage heuristic search - 'plan-
generate-test'. 'Generate' is a process for generating plausible
structures, under the constraints imposed by the 'plan' process
or the user. 'Test' refines the plausible set of structures,
discarding the less appropriate and ranking the remainder for
user examination. 'Plan1 produces direct inferences about likely
substructures from patterns in the data indicative of the
presence of a substructure.

4.1.5 Comments. Arguably the first major expert system
development; currently in every day use by Stanford chemists, it
is claimed to out-perform humans in pure structure elucidation
under constraints, and to match human expert performnces in
structure elucidation with instrument data. DENDRAL was an
indicator of the shift in A1 towards knowledge-based systems, and
has shown the importance of rule-based knowledge representation.

4.1.6 Further Details

Feigenbaum, Buchanan and Lederberg, 1971
Feigenbaum, 1979
Buchanan, Duffield and Robertson, 1971.

4.2 MYCIN -
4.2.1 History. Originally the PhD thesis of E. Shortliffe
(Shortliffe, 1976), MYCIN has generated an enormous amount of
associated work. Many cof the problems encountered (and/or
overcome) by MYCIN have been examined by other researchers. The
project was carried out in collaboration with the Infectious
Diseases group at the Stanford Medical School.

4.2.2 Purpose. The diagnosis of blood and meningitis infections,
and the recommendation of drug treatment.

4.2.3 Knowledge Represent.t.ion. Rules of the form:
IF ... THEN ... with certainty P.

4.2.4 Method of Operation. 'Generation-and-test', similar to
DENDRAL, but, where DENDRAL uses heuristic search without
feedback, MYCIN establishes a line-of-reasoning by backchaining
rules. A number of 'somewhat-true' lines-of-reasoning may be
established because each rule supplied by an expert has a degree
of certainty associated with it (on a scale of 1 to lo),
indicating how confident the expert is of the validity of the
rule. MYCIN employs an ad-hoc, but surprisingly workable method
of cumulating certainty, and thus is able to handle uncertainty
and inexact reasoning. An important point about MYCIN is that
its user-interface language is a sort of Doctor-ese English, and
so the system appears to be very friendly and understanding; its
explanations, as well as its queries, use this language.

4.2.5 Comments. MYCIN is a highly regarded system, not least
because its design strategy is very simple. It has led to a
number of associated or related system developments, not the
least of which are TEIRESIAS, which is a knowledge acquisition
sytem, and EMYCIN, which is the shell of MYCIN (i.e. all the
elements of MYCIN but without the domain specific knowledge; so
the user can input his own domain knowledge whilst still being
able to use MYCIN's explanatory, inferential and inexact
reasoning facilities).

4.2.6 Further Details.

Shortliffe, 1976
Davis, Buchanan and Shortliffe, 1977
Shortliffe and Buchanan, 1975.

4.3 PROSPECTOR

4.3.1 History. Developed at SRI International, California, the
final report being published in 1978 (Duda et al, 1978).

4.3.2 Purpose. A consultant system to aid geologists in
assessing how favourable an explanation site or region might be
for occurrences of ore deposits of various types.

4.3.3 Knowledge Representation. Inference network of relations
between field evidence and geological hypotheses (see Figure 3) .
Three kinds of relations are used:

i) Logical relations, using standard Boolean logic connectives
- AND, OR and NOT.

ii) Plausible relations, using methods derived from Bayesian
probability (see Section 3. above), of the form:

IF . . . THEN (to degree LS, LN) . . .
iii) Contextual relations, used to express any preconditions for

using assertions in the reasoning process e.g. there is no
point, for example, looking for granite associated minerals
if no granite is present in the area.

4.3.4 Method of Operation. As explained in Figure 3 earlier, a
'model' is selected either by the user or automatically (a
'model' in this case refers to 'a body of knowledge about a
particular domain of expertise that is encoded into the system
and on which the system can act1 (Duda et al, 1979), so we are
talking about information about each class of ore deposit). The
system then backtracks from the model to the evidence, asking for
user information, or perhaps sensor information, when an evidence
hypothesis is met. The flow of information is from evidence to
model, and so the model is evaluated as a result of evidence
obtained from the user or sensors. Further models may be
evaluated after the first, and so the most likely model can be
established from the available evidence.

4.3.5 Comments. PROSPECTOR is apparently in commercial use, its
consultation rates being something of the order of $10 per
session at commercial computer rates (Ouda et al, 1979). The use
of an inference network for representing knowledge hs been
claimed to aid geologists in their thinking; organising and
quantifying expertise for input into a PROSPECTOR model sharpens
thinking! (Duda et al, 1979). It is further thought that
PROSPECTOR has a potential value as an educational tool.

4.3.6 Further Details

Ouda et al, 1976
Ouda et al, 1978
Duda et al, 1979.

4.4 Expert System Shells

An expert system shell is a system which has all the methods of
inferencing, inexact reasoning, explanation, communicating etc.
already established, but which has no domain specific knowledge.
To some extent it is comparable to a 'package', such as say, SPSS
or SAS, which only needs information from the user in order to
work, all the calculating methods and statistical tests are
already programmed, it just needs something to work on. Expert
system shells, similarly, need something to work, on, and,
depending upon the particular system, this will most often be
domain knowledge in the form of rules.

An expert system shell is undoubtedly going to be the most
appropriate means of developing an expert system in ITS, for
reasons discussed in Chapter 5 below but it is difficult to
review objectively those currently available, or shortly to
become available, to ITS. The reason for this is simply a lack
of 'hands-on' experience. We have operated 'Micro-Expert' in its
demonstrator form, and, although being impressed by its power,
were unimpressed by its user-interface (very unfriendly) and its
lack of scope for 'serious' applications - not the least of which
is its limited memory availability on a 64k Apple 11. These two
limitations are serious indeed when developing what will
hopefully be a 'showpiece' transport expert system. User
friendliness is particularly important as we are not only trying

to convert 'stick-in-the-mud' FORTRAN programmers, but also those
practitioners with little or no computing knowledge.

'Expert-Ease' supposedly scores on its distinctly friendly user-
interface, and emerges well, generally speaking, from reviews
(e.g. SOFT magazine, 1984). It uses Quinlan's algorithm for
discovering rules by induction (Quinlan, 1979) for obtaining its
knowledge. In other words, rules are induced by the system from
a number of examples input to it, and these rules can then be
used to solve problems in the same subject area. ITS currently
has a bid to obtain 'expert-base' for use on a Sirius micro, for
the purpose of evaluation for building transport expert systems.

'SAGE' is a much larger scale system than either of the above,
and is well recommended by those in the know. A version is
currently mounted on Leeds University's SYSTIME computer, and is
maintained by the Computer Based Learning Unit at the University.
It is rumoured that there may be a micro-version under
development.

Expert system shells are becoming increasingly common as media
for developing expert systems, and it is worth looking briefly at
some details and applications of expert system shells,
particularly if bearing possible transport applications in mind.

4.4.1 Micro-Expert

Micro-expert is produced by ISIS Sytems Ltd., 11 Oakdene Road,
Redhill, Surrey (0737 71327/8). It runs under the UCSO - p
system, and is really too limited for any serious use. However,
it is undoubtedly a good way of becoming familiar not only with
some of the operating characteristics of expert systems, but also
with the terminology and some of the concepts involved. The
manual, when used in conjunction with even the demonstrator
system makes a reasonable expert system 'primer'. It is rumoured
that a new and 'larger' version of Micro-Expert is currently
under development. There has been no reference in the literature
to any applications using Micro-Expert, but it is most probable
that it is used by many people to come to terms with expert
systems before they move to develop 'serious' applications on
more powerful expert system shells.

4.4.2 Expert

'Expert' was developed by the Admiralty Surface Weapons
Establishment (ASWE), part of the Ministry of Defence (MOD). It
is strongly based on 'PROSPECTOR' for its construction, and, from
comments in the manual, appears to have been developed so that
ASWE, and other MOD establishments, could evaluate the worth of
expert systems. It is apparently up and running at Leeds
University, again under the auspices of the Computer Based
Learning Unit, who are evaluating it themselves. It is thought
to be a 'reasonable' system, although it is known to have been
modified by Ferranti and CBL are awaiting the arrival of the
updated system. It is not known whether any serious applications

have been undertaken using this system. MOD tend not to
publicise their new systems!

4.4.3 AL/X
AL/X was developed at Edinburgh University, and is marketed by
Intelligent Terminals Ltd. It is a shell, again based on
'PROSPECTOR', and copies of the manual (Paterson, 1981) seem to
be hard to find! The only application come across was that
reported by Kidd and Cooper, 1983, which was primarily concerned
with Man-Machine Interface issues arising from the system. It
would be worth investigating AL/X further.

4.4.4 Expert-Ease

'Expert-Ease' is marketed by Expert Software International, 4
Canongate Venture, 5 New Street, Royal Mile, Edinburgh (031 556
3266). It differs from the majority of other systems in that, as
stated above, it induces rules from examples. In other words,
the user 'teaches' the system rather than programs it with pre-
defined rules. It is a 'spread-sheet' system, and is very user
friendly. It is the user friendliness that makes Expert-Ease
score over other systems, even though it appears to be not as
powerful or technically advanced as, say, SAGE. Reviews have
generally been favourable, although one particular review
compared it unfavourably with a BBC Micro BASIC system called
'HULK', which costs approximately 60 times less! (£25 as opposed
to c £1500). ITS will soon be able to make its own evaluation,
as 'HULK' is already here, but not working, whilst 'Expert-Ease'
is hopefully on its way. Applications apparently include
classifying lymphatic caucers; identifying chemicals as potential
herbicides, and predicting the Dow-Jones index.

4.4.5 SAGE -

'SAGE' is produced by SPL International, Cambridge, UK. It is a
larger system than any of the above, and it is not reported that
there are any 'micro' implementations, with the possible
exception of an ICL PERQ implementation which is, as yet, not
commercially available. The SAGE user manual (SPL, 1982) is very
comprehensive, and deals with both the structure and the uses of
SAGE in some detail. Leeds University's CBL Unit are, again,
evaluating SAGE, and a copy of their report would be well worth
obtaining. ITS has been advised by CBL that SAGE will probably
be the most appropriate shell for developing a transport expert
system.

A particularly interesting application of SAGE is that of ICL's
Knowledge Engineering Group. This application, known as DRAGON,
was the building of a computer sizing consultant system. There
are obvious parallels with transport - network sizing and
evaluation, assigning flows to branches of the network, cost-
effectiveness, etc. etc. It is recommended that the report of
the DRAGON system be-.read, and consideration given to
establishing a similar transport project. See Keen, 1983 for

further details.

A further interesting point about SAGE, raised by Keen's report,
is that 'conventionally' programmed models or calculations or
whatever can be 'plugged into' SAGE, the results being used by
the Expert System - a SATURN interpreter? (Note for those not in
ITS: SATURN stands for a program developed in ITS, and now widely
used in practice, for the 'Simulation and Assignment of Traffic
to Urban Road Networks'.)

SAGE is definitely worth further investigation.

5. CONCLUDING COMMENTS

The wide variety of applications and implementations described in
Section 4 shows how prevalent expert system thinking is becoming.
If we were to widen the constraints on definition to include
Decision Support Systems, Data-base management systems, Advisory
Systems etc. etc. as is done by some people trying to join the
'expert systems bandwagon' then the lists would be much longer.
The difficulties in classifying systems as 'expert' only heighten
the definition problems, they do not detract from the value of
the techniques.

It is recommended that close liaison be maintained with people
using, developing and/or evauating expert systems, as this seems
to be the most promising means of obtaining information of direct
relevance to ITS as it develops into this field.

For suggestions as to possible transport applications to develop,
see the companion report, ITS Technical Note 145.

6. READINGS AND REFERENCES

6.1 Easy Expert System Reading

FEIGENBAUM and McCORDUCK (1984)
MICHIE (1979)
NAYLOR (1983)
COX (1984)
ADDIS (1984)
BRAMER (1981)

Full bibliographic references are given in section 6.2.

6.2 Main references

Adams, D. 'The Hitch-Hikers Guide to the Galaxy', Penguin, 1977.

Adams, J.B. 'A probability model of medical reasoning and the
MYCIN model'. Mathematical Biosciences, Vol. 32, pp. 177-
186, 1976.

Addis, T.R. 'Expert Systems: An Evolution in Information
Retrieval', in Information Technology: Research and
Development. C.J. van Rijsbergen (ed.) Vol. 1 , no. 4, 1984.

Adler, M.R. 'Computer Interpretation of PEANUTS Cartoons'.
Proceedings, 5th IJCAI, 1977.

Alvey Committee, 'A Programme for Advanced Information
Technology'. Dept. Industry, HMSO, 1982.

Baldwin, J.F. 'A Theory of Fuzzy Logic' in 'Fuzzy Reasoning and
its Applications' (Ed. Mandani, E. and Gaines, 8.1, Academic
Press, 1981.

Baldwin, J.F., 'F.R.I.L. - An Inference Language based on Fuzzy
Logic.' Proceedings of Expert Systems Conference, Cambridge
University, 1983.

Bramer, M.A. 'A Survey and Critical Review of Expert Systems
Research' in 'Information Technologoy for the Eighties',
Parslow, R.D. (Ed.), Heyden, 1981.

Buchanan, B.G., A.M. Duffield and A.V. Robertson, 'An Application
of Artificial Intelligence to the Interpretation of Mass
Spectra' in 'Mass Spectrometry Techniques and Applications',
Milne, G.W.A. (Ed.), Wiley, 1971.

Buchanan, J.R. and R.D. Fennell, 'An Intelligent Information
System for Criminal Case Management in the Federal Courts',
Proceedings 5th IJCAI, 1977.

Bundy, A., 'Analysing Mathematical Proofs (or reading between the
lines)', Dept. of A1 Research Report 2, Edinburgh
University, 1975. .

Charniak, E., 'CARDS, A Program Which Solves Calculus Word
Problems', MIT Report MAC-TR-51, 1968.

Charniak, E., 'Toward a Model of Children's Story
Comprehension', MIT A1 Lab. Report AI-TR-266, 1972.

Clocksin, W.F. and C.S. Mellish, 'Programming in PROLOG',
Springer-Verlag, Berlin, 1981.

Cox, I.J., 'Expert Systems', Electronics and Power, Vol. 30, no.
3, March 1984.

Crossley, J.N., et al, 'What is Mathematical Logic?', Oxford
University Press, 1972.

Dahl, O.J., E.W. Dijkstra and C.A.R. Hoare, 'Structural
Programming', Automatic Programming Information Centre,
Studies in data processing 8.

Davies, R. and King, J., 'An Overview of Production Systems', in
Machine Intelligence 8, pp 300-332, 1976.

Davies, R, B.G. Buchanan and E.H. Shortliffe, 'Production Rules
as a Representation for a Knowledge-Based Consultation
Program', Artificial Intelligence 8, Feb. 1977.

DeJong, G., 'Skimming Newspaper Stories by Computer', Proceedings
of 5th IJCAI, 1977.

Duda, R.O., P.E. Hart and N.J. Nilsson, 'Subjective Bayesian
Methods for Rule-based Inference Systems', Proc. National
Computer Conference, pp. 1075-1082, 1976.

Duda, R.O., et al, 'Development of the Prospector System for
Mineral Exploration', SRI International, Menlo Park,
California, Oct. 1978.

Duda, R.O., J. Gasching and P. Hart, 'Model Design in the
Prospector Consultant System', in 'Expert Systems in the
Micro-Electronic Age', Michie, D. (Ed.) , Edinburgh
University Press, 1979.

Feigenbaum, E.A., B.G. Buchanan and J. Lederberg, 'On Generality
and Problem Solving: a Case Study Using the DENDRAL
Program', Machine Intelligence 6 , Edinburgh University
Press, 1971.

Feigenbaum, E.A., 'Artificial Intelligence Research: What is it?
What has it achieved? Where is it going?', Symposium on
Artificial Intelligence, Canberra, Australia, 1974.

Feigenbaum, E.A., 'Themes and Case Studies of Knowledge
Engineering', in 'Expert Systems in the Micro Electronic
Age' , D. Michie (Ed .Z,. Edinburgh University Press, 1979.

Feigenbaum, E.A. and P. McCorduck, 'The Fifth Generation.
Artificial intelligence and Japan's computer challenge to
the world1. Pan Books, London, 1984.

Fox, J., et al, 'Decision Technology and Man-Machine Interaction,
the PROPS Package', Proceedings of Expert Systems
Conference, Cambridge University, 1983.

Hodges, A., 'Turing', 1984.

Keen, M.J.R., 'An Expert System For Computer Performance
Prediction', Proceedings of Expert Systems Conference,
Cambridge University, 1983.

Kidd, A.L. and M.B. Cooper, 'Man-Machine Interface for an Expert
System', in Proceedings of Expert Systems Conference,
Cambridge University, 1983.

King, M., et al, 'Ghosts in the Machine: an A1 Treatment of
Medieval History', Proceedings 5th IJCAI, 1977.

Kirby, H.R., 'Telecommunications information technology and
transport'. Technical Note 134, Institute for Transport
Studies, University of Leeds, 1984.

Knuth, D.E., 'The Art of Computer Programming', Vol. 1
Fundamental Algorithms, Addison Wesley, 1973.

Kowalski, R., 'Logic for Expert Systems', Invited Talk,
Proceedings of Expert Sytems Conference, Cambridge
University, 1983.

Lehnert, W., 'Question Answering in a Story Understanding
System', Cognitive Science, Vol. 1 , No. 1, pp. 47-73, 1977.

McCarthy, J., 'First-order Theories of Individual Concepts and
Propositions' in Expert Systems in the Micro-Electronic Age,
D. Michie (Ed.), Edinburgh University Press, 1979.

Meehan, J.R., 'TALE-SPIN, An Interactive Program that Writes
Stories', Proceedings of 5th IJCAI, 1977.

Mendelson, E., 'Introduction to Mathematical Logic', Van Nostrand
Reinhold, 1964.

Michie, D. (Ed.), 'Expert Systems in the Micro-Electronic Age',
Edinburgh Univeristy Press, 1979.

Michie, D., 'The Civilised World of Expert Systems Has Got Steam
Fever', Datalink 9 , 1983.

Minsky, M, A Framework for Representing Knowledge' in 'The
Psychology of Computer Vision', Winston, P.H. (Ed.) McGraw-
Hill, 1975. -. .

Naylor, C., 'Build Your Own Expert System', Sigma Technical
Press, 1983.

Nilsson, N., 'Principles of Artificial Intelligence', Springer-
Verlag, 1982.

Novak, G.S., 'Computer Understanding of Physics Problems Stated
in Natural Language', Technical Report NL-30, Computer
Science Dept., The University of Texas at Austin, 1976.

Page, E.S., and L.B. Wilson, 'Information Representation and
Manipulation Using PASCAL', Cambridge University Press, 1982.

Paterson, A., 'AL/X User Manual', Intelligent Terminals Ltd.,
Oxford, 1981.

Quinlan, J.R., 'Discovering Roles by Induction From Large
Collections of Examples', in 'Expert Systems in the Micro-
Electronic Age', D. Michie (Ed.), Edinburgh Univeristy
Press, 1979.

Quinlan, J.R., 'Inferno: a cautious approach to uncertain
inference', Computer Journal, No. 26, 1983.

Rieger, C., 'The Common Sense Algorithm as a Basis for Computer
Models of Human Memory, Inference, Belief and Contextual
Language Comprehension', Proceedings TINLAP Workshop, MIT,
1975.

Shortliffe, E.H. and B.G. Buchanan, 'A Model of Inexact Reasoning
in Medicine', Mathematical Biosciences 23, 1975.

Shortliffe, E.H, 'Computer-based Medical Consultations: MYCIN',
American Elsevier, New York, 1976.

Sloman, A., 'Epistemology and Artificial Intelligence' in 'Expert
Systems in the Micro-Electronic Age, Michie, D. (Ed.),
Edinburgh University Press, 1979.

SOFT magazine, 'Your Specialist Subject?', Feb/March 1984.

Special Issue on Knowledge Representation', IEEE Computer, 1983.

SPL 'SAGE User Manual', Systems Programming Ltd., SAG03, 1982.

Swartout, W.R., tXPLAIN: A System for Creating and Explaining
Expert Consulting Programs', Artificial Intelligence 21 (3),
1983.

Tenenubaum and Augenstein, 'Data Structures Using Pascal',
Prentice Hall, 1981 .

Traffic Appraisal Manual (TAM), London, Dept. Transport, 1981.
-. .

Ulrich, J.W., 'The Analysis and Synthesis of JAZZ by Computer',
Proceedings 5th IJCAI, 1977.

Welsh, J.R. and J. Elder, 'Introduction to PASCAL', Prentice Hall
1982.

Wigan, M.R., 'Information technology and transport: what research
needs to be started now?' Working -2 Paper 172 - Inst. Transp. s, Univ. Leeds, Leeds, 1983a.

Wigan, M.R. 'Expert systems and Prolog course'. Extracts from a
report to the Australian Road Research Board. Technical
Note 133, Inst. Transp. Stud., Univ. Leeds, Leeds, 1984. ---

Winograd, T., 'Understanding Natural Language', Academic Pres,
New York, 1972.

Zadeh, L., 'Fuzzy Sets', Information and Control 8, 1965.

7. GLOSSARY

Artificial Intelligence (AI): the study of the construction of
intelligent artifacts, and the development of principles, methods
and techniques useful in such construction. Also seen as a means
of seeking explicit and valid information processing models of
human thought.

Back Tracking: Another term for Backward Chaining.

Backward Chaining: The common term for Back Tracking and the
Goal-Driven Rule Selection Strategy. Involves the system first
considering hypothesis H, discovering it needs to know evidence
E3 to establish H, discovering it needs to know E2 to know E3,
and El to know EZ, so it requests data on El, after which it
proceeds forward to H.

- - - - chaining

- - - - - - - flow of information

Bayesl Theorem A method of dealing with uncertainty and
incomplete evidence.

The probability of the hypothesis being true given the evidence.

Certainty: A means of accepting user input, usually on a scale
of -5 to +5, meaning completely uncertain and completely certain
respectively. 0 usually means 'do not know', but can be treated
differently by some systems. Questions are asked of the user in
the form:

"How certain are you that"
Certainty Factor: A value associated with a rule, showing how
much confidence the expert who supplied the rule has in its
validity. Usually on a scale from 1 to 10. Particularly
associated with the MYCIN system. Rules with certainty factors
are of the form:

IF ... THEN ... with certainty P.

Database: The area of memory in which all the program's
variables are contained. Initially, it represents the initial
data or facts from which the expert system is to infer some
higher-level information.-. .

Data-driven Rule Selection Strategy: Another term for Forward
Chaining.

Domain Area: The subject area of an expert system. For example,
the domain area of MYCIN is blood and meningitis infections and
associated drug treatment. A limited domain expert system,
therefore, would be only working in a very small subject area.

Expert System: The formal definition from the British Computer
Society's committee of the specialist group on expert systems is:

"...the- embodiment within a computer of a knowledge-based
component from an expert skill in such a form that the
system can offer Intelliegent Advice or take an Intelligent
Decision about a orocessino function. A desirable . -
additional characteristic, which many would consider
fundamental, is the capability of the system, on demand, to
justify its own line of reasoning in - a manner direclty
intelligible to the enquirer. The style adopted to attain
these characteristics is rule-based programming."

Explanation facility: the means whereby a line-of-reasoning, or
a conclusion, is explained to the user. Usually it involves re-
tracing the Bteps the system has taken so far, "sing the text of
the rules fired as explanatory text.

Forward Chaining: The common term for a Data-Driven Rule
Selection Strategy. It simply means that the system is given
evidence, after which it can deduce the validity of an
hypothesis. i.e.

For example, the system is given El, after which it is given €2,
then €3, after which it can deduce H.

Frame-Based Knowledge Representation: A method of representing
information and the relationships between the bits of
information. A class of objects or events or scenes is initially
described by a prototype, which has attributes; an example of a
class is an 'instantiation', and can take the values of the
prototype's attributes (known as 'Property Inheritance'), as well
as having its own attributes. Essentially a data-structuring
approach to representing knowledge.

Fuzzy Logic: Another method of dealing with uncertainty and
imcoplete evidence; in conjunction with fuzzy set theory it is
used to attempt to resolve ill-defined concepts. The example
given in a paper on the subject is 'a bush, for example, cannot
be precisely defined. Our ability to decide if a given object is

a bush or a tree is not the result of a lack of information but a
lack of definition' (Baldwin, 1983). Fuzzy logic and set theory
attempt to resolve such problems.

Fuzzy Set Theory: See above.

Goal: A terminating condition for an expert system insofar as it -
tries to attain goals, which involve proving and/or disproving
hypotheses. A goal state is the set of values in the database
that the system is trying to obtain.

Goal-Driven Rule Selection Strategy: Another term for Backward
Chaining.

Inference Engine: The mechanism by which inferences are made,
rules fired and deductions made. The old philosophical term for
a computer.

Inference Network: The collection of rules, models and evidence
hypotheses that together make up the inter-relationships enabling
the system to progress through its stages of reasoning.

Instantiation: An instance of a class in a frame-based knowledge
representation; or more generally, the assignment of a particular
value to a variable in a program.

Intelligent Knowledge-Based System (IKBS): A system which uses
knowledge, either frame-based, logic-based or rule-based, or any
combination, to exhibit 'intelligence'. 'Intelligence' has yet
to be defined by psychologists, but it is taken here to mean that
the system appears to understand the particular domain area. Can
be used as an alternative name for an expert system, but does not
necessarily exhibit expert performance.

Knowledge Acquisition: The process of eliciting a human expert's
knowledge. The term 'knowlege engineering' is sometimes applied
to this task; although it most often refers to the whole task of
eliciting the information, and then coding it into the
appropriate knowledge representation form. Knowledge acquisition
can be done by humans in conversation with an expert;
interactively by computer, such as the TEIRESIAS program; or
automatically by computer using induction from examples.

Knowled e Base: This is the complete set of facts (declarative
b n d rules (procedural knowledge) which together
constitute the computerised version of the human expert's
knowledge. i.e. the knowledge source and the database.

Knowledge Engineering: Used to mean either the knowledge
acquisition task, or the complete field of building an expert
system.

Knowledge Representation: The methods by which a human expert's
knowledae is represented within the computer. There are many
differeGt types 'o f knowledge representation, but they can

46

gene ra l l y be c l a s s i f i e d i n t o e i t h e r logic-based o r frame-based.

Knowledge Source: The c o l l e c t i v e term app l i ed t o t h e p a r t o f t h e
system which c o n t a i n s t h e necessary in fo rmat ion t o s o l v e a
p s r t i c u l a r problem, i .e t h e r u l e s f o r i n t e r p r e t i n g t h e f a c t s .

Logic-Based Knowledge Representa t ion: A method o f r e p r e s e n t i n g
o b j e c t s and t h ? i r a s s o c i a t i o n s . F i r s t o rde r l o g i c is used,
i nco rpo ra t i ng set t heory , as an a l t e r n a t i v e t o frame-based
knowledge r e p r e s e n t a t i o n methods. P red i ca te Ca lcu lus is used t o
manipulate t h e o b j e c t s and t h e i r a s s o c i a t i o n s .

Mao-Machine I n t e r f a c e (MMI): The wsy i n which t h e use r and
computer communicate. M ~ J C ~ r esea rch is c u r r e n t l y be ing c a r r i e d
o u t i n t o des ign ing MMIs which a r e a s n a t u r a l a s p x s i b l e .

Meta-Knowledge: The knowledge t h a t t h e system h a s o f i t s e l f ,
i .e. a s e t o f r u l e s t e l l i n g t h e system which ev idence t o a c q u i r e
nex t g iven t h e ev idence i t a l r eady has.

Model: A body o f knowledge about a p a r t i c u l a r domain o f --
e x p e r t i s e t h a t is en-oded i n t o t h e system and on which t h e system
can a - t . Refers t o a ' p r o t o t y p i c a l ' s i t u a t i o n - a ' bes t -
p o s s i b l e ' s i t u a t i o n .

Na tu ra l Language: F a m i l i a r language t o humans. Mi41 work t e n d s
t o concen t ra te 0-1 des ign ing n a t u r a l language i n t e r f a c e s which
wauld enab le u s e r s t o communicate w i th t h e computer i n , say ,
Eng l i sh o r French, i n s t e a d o f 'computer-ese'.

P a t t e r n Matchinq: Se l f -exp lana to ry . Used i n PROLOG f o r answer ing
que r i es . When a ques t i on is asked o f PROLOG it s e a r c h e s through
t ~ i e database look ing f o r f a c t s t h a t match t h e s i t u a t i o n p a r t o f
t h e r u l e used as t h e ques t i on , o r t h e f a c t p a ~ t o f t h e q t ~ e s t i o n .
For example, suppose a da tabase c o n s i s t s o f t h e f a c t s :

d r i v e (c a r s , peop le)
walk-on (p a t h s , peop le)
f l y - in (p l anes , peop le)

we cou ld ask

- f l y - in (pa ths , peop le)

and PROLOG wot~ld t r y t o match t h e p a t t e r n o f t h e ques t i on a g a i n s t
t h e f a c t s i n t h e da tabase , r e p l y i n g 'no ' .

P red i ca te Calcu lus : A form o f l o g i c used t o r e p r e s e n t o b j e c t s
and a s s o c i a t i o n s , and t h e means o f changing t h e i n t e r -
r e l a t i o n s h i p s . Ob jec ts are r ep resen ted by 'terms' which can be
e i t h e r ' cons tan t symbols ' , ' v a r i a b l e symbols' o r 'compound terms'
(t h e l a t t e r be ing a t ype o f s t r u c t u r e) . See Mendelson, 1964 f o r
a d e t a i l e d t r ea tmen t .

Product ion Rules: Ru les o f t h e form:

IF c o n d i t i o n s THEN a c t i o n s

o f t e n used t o encode human e x p e r t s ' h e u r i s t i c e x p e r t i s e .

PROLOG: A programming language which is e s s e n t i a l l y ru le-based.
Known a s a 'very h i g h l e v e l language' o r a ' f u n c t i o n a l l anguage ' ;
' conven t iona l ' languages such as PASCAL, ALGOL etc a r e ' h i g h
level languages ' o r ' i m p e ~ a t i v e la?guages l (t h e la t ter owing t o
t h e i r r e l i a n c e on s t a t e m e n t s) . See Clocks in and M e l l i s h , 1981
f o r t h e d e f i n i t i v e t e x t on PROLOG.

Rules: can be though t o f a s a series o f IF... THEN...
s ta tements . See Produc t ion Rules.

Rule-Based System: A system which relies upon a c o l l e c t i o n o f
r u l e s f o r its o p e r a t i o n s . Unl ike I<BS i? t h a t a l though t h e r u l e s
o f t e n r e p r s s e n t knowledge, t h e y a r e t h e on ly t y p e o" knowledge
r e p r e s e n t a t i o n i n t h e system.

Rule-Fir ing: The term f o r a c t i v a t i n g a r u l e .

APPENDIX A: 'CONVENTIONAL' PROGRAMMING

Al. Programming Techniques

Wr i t ing computer programs is an ar t - form (Knuth 1373) hawever,
t h r e a r e a number o f techn iques t h a t can be app l i ed when w r i t i n g
a program t h a t can a s s i s t i n making programs c o r r e c t and
comprehensible. An i n t e r e s t i n g s t a r t i n g p o i n t is a set o f
f i g u r e s produced by IBM i n t h e l a t e s e v e n t i e s (Source unkmwn).
These f i g u r e s show t h e amount o f time each s t a g e i n t h e s a f t w a r e
development c y c l e t a k e s , and h i g h l i g h t s two very impor tant
points: - f i r s t l y , t h e steps %involved i n w r i t i n g so f tware ; and
secondly t h e i n o r d i n a t e amount o f time i i v o l v e d i n ma in ta in ing
sof tware.

Software Development Cycle 7; T i m e

What is Required
S p e c i f i c a t i o n o f System
Duaign o f Program
Write Program Code
Test Program Code
Complete System Tes t ing
M3intain System

The po in t t h a t must be taken from t h e s e f i g u r e s is t h a t programs
should be easy t o r e a d - t h e e a s i e r a program is t o r ead , t hen
t h e less time is s p e n t by people t r y i n g t o unders tand what t h e
program a c t u a l l y does (a s opposed t o what t h e d~ icumentat ion s a y s
i t does) , a i d hence t h e less time is spen t i n unnecessary , and
c a s t l y , r e p e t i t i v e work.

The remainder of t h i s s e c t i o n l ooks a t some techn iques f o r
w r i t i n g 'good' programs, bu t as a gene ra l r u l e a lways boar i n
mind t h e fo l lo id ing good programming p rac t i ces :

- Use a s t r u c t u r e d h igh- leve l language (e.g PASCAL.
FORTRAN is uns t ru - t u red , o t ~ t d a t e d and e r r o r prone,
BASIC i s n o t cons ide red t o be a programming language!).

- Use i d e n t i f i e r names t h a t mean something (e.g. c a l l t h e
v a r i a b l e f o r ' t h e nex t c a r i n t h e queue' next-car- in-q,
no t "nq") .

- Use s p a r i n g comments (your code i n PASCAL f o r example,
shou ld be c l e a r) .

- Use small p-ocedures (t h e r e is hard ly ever any need t o
have p rocedures /subrou t ines l a r g e r than c 20 l i n e s) .

- Spec i f y your procedures i n Engl ish (i . e . t h e main
a c t i o n (s) , pa ramete rs i n and ou t) .

- Use simple algorithms (do not write tortuous algorithms
fur the sake of it. Your might gain as much as 2a
instructions - which on the Amdahl mig4t save 20
miliseconds CPU time - but yo,^ may well spend 2 hours
trying to understand how the algorithm works when you
come back to it in 6 months time).

- Document everything.

- Review your program design whzn you have finished -
you may not be able to change this program, but you
will almost certainly have learnt something of use to
your next program.

AZ. Structured Programming

Tiis is often (incorrectly) called 'GOTO-less programming';
however, there is only one reason for using a GOT0 statement, and
that is to pick u? a catastrophic error which requires a program
stop. For example:

IF Catastrophic - Error THEN GOT0 Emergency - Stop

In all other cases where a GOT0 would be used, then use the
language constructs provided; if, as in the case of FORTRAN or
BASIC, there are few construzts provided, then build some ot~t of
the language primitives. Always take full advamtage of the
facilities a language offers.

There are t w ~ main reasons for avoiding using the GOTO: firstly
it complicates the compiler; and secondly it tends to complicate
programs - the readsr has to understand a larger portion of the
program than otherwise.

In summary, follow a sequential course through the program, use
procedures/subroutines/functions to solve distinct problems, do
not 'dot around' the code, use the language constructs provided.

A3. Program Development Design Strategies

Structured programming conjeztures that confidence in the correct
behaviour of a program is m x t easily attained by a :++zll-
organised program development process, in which each step
requires only a relatively simple justification. There are two
such design strategies: the top-down approach and the bottom-up
approach.

A3.1 Top-Down Development

The top-down approach embodies the following steps:

- Develop a program in a number of smsll design steps,
starting from the program specification and ultimately
finishing with.an.imp1ementation.

- Ma:a each s t e p dec ide very l i t t l e about t h e dsvelopment
o f t h e program.

- Delay eve ry des ign dec i s i on f o r as long a.s poss i b l e .

- I f each s t e p forms a number of sub-problems, t hen
des ign them top-down a s wa l l .

- Use procedures and f u n c t i o n s t o h i de 'problems' , i.e. a
p roceds~re o r a f unc t i on shou ld s o l v e a t most one
s p e c i f i c problem.

Unless o l e is working i n assembler on a comple te ly 'empty'
computer, t hen a number o f r o u t i n e s w i l l e x i s t a l ready . Make use
o' t hose t o b u i l d s l i g h t l y h igher l e v e l r o u t i n e s and i n t u r n use
t h e s e t o b u i l d even h igher l e v e l r ou t i nes . For example, use a
l ang .~age de f i ned f unc t i on , such a s '*' (mu l t i p l y) , t o b u i l d
(t o t h e povrer o f) .

A s a gene ra l r u l e , une top-down f o r program dss ign , and bot ton-
up f o r program coding.

A4. Tes t ing Sor tware

Tes t ing can o n l y show t h e p resence o f b ~ g s , i t can never show
t h a t no more bugs remain, even a f t e r t e s t i n g bugs may still
e x i s t . So, what is a ' c o r r e c t ' program. T%e fo l low ing criteria
t oge the r d s f i n e a c o r r e c t program.

1) A program t h a t c o n t a i n s nn syn tax e r r o r s .
2) A program t h a t c o n b a i n s n o compi la t ion o r execu t ion e r r o r s .
3) There e x i s t s test d a t a f o r which t h e program g i v e s c o r r e c t

answers.
4) For t y p i c a l sets o f test d a t a t h e program g i v e s c o r r e c t

answers.
5) For d i f f i c u l t sets o f t e s t d a t a t h e program g i v e s c o r r e c t

answers.
6) For a l l p o s s i b l e sets o f d a t a which a r e v a l i d f o r t h e

problem s p e c i f i c a t i o n , t h e program g i ves c o r r e c t answers.
7) For a l l p o s s i b l e sets o f v a l i d test d a t a and a l l l i k e l y

cond i t i ons o f ' e r roneous i n p u t t h e program g i v e s c o r r e c t
answers.

8) For a l l p o s s i b l e i n p u t t h e program g i ves c o r r e c t ou tpu t .

When choosing test d a t a , t r y t o fo l l ow t h e s e gu ide l i nes :

i) use s imp le cases
i i) use extreme c a s e s , i.e. test t h e 'edges ' o f v a l i d

ranges
i i i) use s p e c i a l v a l u e s
i v) make s u r e a l l p o s s i b l e branches o f f low are fo l lowed
v remember t o write. down what you expect t h s r e s u l t s t o

be.

A5. - Data S t r u c t u r i n q

V i r t u a l l y a l l h igh- leve l programming languages p rov ide data
s t r u c t u r i n g c a p a b i l i t i e s , rang ing i n coap lex i t y from t h e s imp le
' n ' d imensional a r r a y i n FORTRAN, through t h e p o i n t e r and reco rd
cons t ruc t i on of PASCAL, t o t h e a b s t r a c t d a t a t ype c a p a b i l i t i e s
o f languages such a s CLU. I f is impor tant when des ign ing a
program t h a t o r g a n i s a t i o n o f d a t a is taken i n t o account , and
t h a t , wherever p o s s i b l e , c o r r e c t s t r u c t u r e s are employed. M ~ c h
s t o r a g e space can be wasted by, f o r example, programming s t a c k s
and queues as a r r a y s r a t h e r t h a n l i n ked lists. I n t r a n s p o r t ,
probably t h e g r e a t e s t o f f ends r is t h e 0-D matr ix , p a r t i c u l a r l y
when sparse . A g lance through Tenenbaum and Augenstein, 1981
w i l l show how e f f i c i e n t l y t h i s can be done! Twre is n o t r e a l l y
space he re t o d i s c u s s d a t a s t r u c t u r i n g i n any depth , s u f f i c e it
t o say t h a t t h i s is an e s s e n t i a l p a r t o f program des ign , and
shou ld a lways be one o f t h e major d s c i s i o n s when das ign ing a
program. I f a language is l a ck i ng i n d s t a s t r u - t u r i n g
c a p a b i l i t i e s , t hen cons ide r us ing a d i f f e r e n t language.

	WP178 cover.pdf
	WP178.pdf

