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Abstract

This study employs numerical simulations to investigate the effects of solid
viscoelasticity and loading rates on the squeeze film lubrication performance. A novel
generalized numerical lubrication model of point contact including a rigid sphere
interacting with a viscoelastic semi-infinite plane is established. The Maxwell and
Standard Linear Solid (SLS) models are adopted to describe the solid viscoelastic
characteristics. By integrating the multigrid method (MG) with Fast Fourier Transform
(FFT) algorithm, the viscoelastic squeeze film lubrication simulation was conducted.
The proposed squeeze film lubrication model with SLS viscoelastic solid was applied
to quantitatively analyze the time-dependent film thickness and pressure distributions
in ultra-high-molecular-weight polyethylene (UHMWPE) hip joints. Results indicate
that the initial squeeze-film stage requires a higher number of time step divisions, while
the influence of time step partitioning weakens as squeeze time increases. A distinct
secondary pressure equilibrium of the SLS model was exhibited after the initial squeeze
stage, with minimum film thickness becoming significantly larger (up to 52% at 67) and
central film thickness markedly greater (up to 51% at 67) than those predicted by a
purely elastic model. Under high loading rates, instantaneous elasticity dominates,
yielding higher pressures and film thicknesses, while low rates promote residual
deformation, leading to wider contact areas and flatter pressure distributions. The
unloading phase demonstrated lower peak pressures and a broader contact area
compared to loading at the same load. The numerical framework provides an effective
tool for analyzing transient squeeze-film lubrication performance in viscoelastic
materials, offering insights for designing polymer-based lubricated systems.
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1 Introduction

Viscoelastic materials, characterized by their time-dependent mechanical response, are
extensively employed in a wide range of engineering and biomedical applications, such
as tires, seals, rolling bearings [1] and biomedical implants [2]. Unlike purely elastic
materials, which exhibit an instantaneous and fully recoverable deformation upon
loading, viscoelastic materials display significant hysteresis due to their inherent
structural complexity. This behavior cannot be adequately described by classical elastic
contact mechanics. Instead, the time-dependent property can be described using
different kinds of viscoelastic constitutive models such as Maxwell and standard linear
solid (SLS) models. Among them, the Maxwell viscoelastic solid model is primarily
used for simulating the deformation of soft thermoplastic plastics near their melting
temperature (exhibiting strong viscoelastic properties). However, the Maxwell
viscoelastic model is too simple to accurately capture the creep characteristics of
polymers and similar materials. Consequently, more sophisticated models such as the
SLS are frequently adopted to better characterize the viscoelastic properties of these
materials.

Numerous studies have focused on dry contact involving solid viscoelastic properties.
However, lubricants are often present between solid surfaces or need to be added to
enhance the tribological performance of friction pairs. Proper lubrication can reduce
adhesion and wear and extend the service life of soft materials such as polymers.
Therefore, the solid viscoelastic properties and lubrication should be considered in
combination to investigate their interaction mechanisms. Lubrication that takes into
account the viscoelastic properties of solid materials is referred to as viscoelastic
hydrodynamic lubrication (VEHL). Comparative analyses have revealed substantial
deviations of the VEHL model from conventional elastohydrodynamic lubrication
(EHL) frameworks, whether based on steady-state [3-11] or time-dependent conditions
[12-20].

Elsharkawy [3] used the Newton-Raphson iterative method to solve the line contact
viscoelastic hydrodynamic lubrication problem. Hooke and Huang [4] employed the
multigrid method to examine the impact of solid viscoelastic properties on line contact
viscoelastic hydrodynamic lubrication. Putignano and Dini [7] applied the BEM
method to solve the viscoelastic hydrodynamic lubrication problem between a rigid
sphere and a viscoelastic semi-infinite plane, investigating the influence of viscoelastic
properties on lubrication. Building on this model, Putignano [11, 17] further studied the
effects of solid viscoelasticity on viscoelastic hydrodynamic lubrication for different
contact pairs, such as hard on soft, soft on hard, and soft on soft. Yan Zhao [8, 21]
developed a computational method for viscoelastic deformation of a semi-infinite plane
in point contact and applied it within the multigrid method to construct a point contact
viscoelastic hydrodynamic lubrication model, studying the effects of solid
viscoelasticity on fluid film pressure and thickness distribution. He et al. [ 14] developed
a VEHL model to examine how imperfect viscoelastic-elastic interfaces affect
lubrication, demonstrating that interface defects, layer thickness, and modulus ratio
markedly influence film thickness and pressure profiles. Li et al. [ 18] developed a semi-
analytical VEHL model for polymer composites with non-uniform reinforcements,



showing that reinforcement properties, shape, and position markedly affect contact
pressure and film thickness.

The aforementioned studies on viscoelastic lubrication were all conducted under
steady-state lubrication contact conditions. However, significant differences arise when
considering the non-stationary lubrication conditions, particularly the pure squeeze
viscoelastic lubrication conditions. Rohde et al. [22], Yoo [12] and Kaneko [13]
developed a viscoelastic pure squeeze lubrication model for a rigid cylinder and a
viscoelastic semi-infinite plane and conducted numerical solutions, finding that the film
thickness in viscoelastic lubrication is different from that in pure elastic cases. Mustafa
et al. [23, 24] conducted a numerical model for an oscillating squeeze film lubrication
between a rubber and rigid surface and investigated the effects of permeability and
roughness of the rubber surface on the hydrodynamic force and the leakage flow rate
in the squeeze film. Recently, Putignano [19] constructed a viscoelastic line contact
pure squeeze lubrication model for a rigid cylinder and a viscoelastic semi-infinite
plane, solving the Reynolds equation using the finite difference method and solid
deformation using the Boundary Element Method. The results showed that, unlike
classical elastohydrodynamic lubrication, fluid pressure and film thickness depend on
the viscoelastic relaxation of the solid material, with peaks occurring at the edges of the
lubrication contact area, emphasizing the necessity of considering solid viscoelasticity
in lubrication.

In addition to the VEHL in line and cylindrical contacts, in engineering applications,
many practical problems such as polymer-based artificial joints and rolling bearings
can be simplified to a squeeze film lubrication model including a rigid spherical
indenter and a semi-infinite viscoelastic solid plane. Sahasranaman et al. [25, 26]
proposed a non-iterative numerical method for VEHL in point contact and solved the
relaxation problem including a rigid spherical indenter rapidly makes contact with a
viscoelastic substrate lubricated by a liquid film. Except for the relaxation problem of
squeeze film lubrication, many practical applications can be simplified as squeeze film
lubrication in point contact under constant load such as soft artificial joints, seals and
ball bearings et al. However, numerical simulation of constant loaded squeeze film
lubrication in point contact considering solid viscoelasticity remains limited.
Additionally, due to the time-dependent property of Viscoelastic materials, the
deformation of present time instant is determined by the present and historical loading
profiles. It has been indicated by Chen et al. [27] that the loading rate has great
influences on the viscoelastic dry contact performance. However, the influences of
loading rates on the viscoelastic squeeze film behavior remains unclear.

By integrating established methodologies including the MG method, FFT algorithm
and linear viscoelastic constitutive models (Maxwell and SLS), a novel computational
framework has been developed to model the transient viscoelastic squeeze-film
lubrication of point contact. In contrast to the classical EHL theory, the time-dependent
deformation (stress relaxation and creep) of the solid is considered. A more realistic
simulation of the squeeze-film lubrication behavior in soft material contacts has been
implemented. The underlying physical mechanisms have been elucidated through
investigating the interaction between the viscoelastic relaxation-induced surface



recovery and transient squeeze-film flow effects. The accuracy of the proposed model
and numerical method was indirectly validated through comparison with the dry contact
simulation results. Furthermore, the SLS viscoelastic models are adopted to more
accurately describe the complex viscoelastic behavior of UHMWPE hip joints. Based
on this model, the effects of loading rate on squeeze-film lubrication performance were
systematically investigated, with particular emphasis on the viscoelastic characteristics
of UHMWPE in prosthetic applications. This analysis provides mechanistic sight into
how loading conditions influence pressure distribution, film thickness and the transition
between elastic-dominated and viscoelastic-dominated response regimes in polymer-
based lubricated systems.

2 Materials and methods
2.1 Model description

The squeeze film lubrication behavior under conditions of pure normal approach
motion was investigated in the present study. This scenario is highly relevant in
numerous engineering applications. For example, it appears during the initial or final
stages of impact loading or reciprocating motion, where the formulation and sustenance
of the lubricating film are predominantly governed by the squeeze effect between the
surfaces. Under this specific condition, the generation of hydrodynamic pressure
primarily stems from the time-dependent variation in film thickness, known as the
squeeze film motion.

To characterize the indentation contact between a rigid sphere and a viscoelastic half
space, a ball on plane configuration is adopted as the fundamental geometrical model
in this study (Figure 1). Through equivalent treatment in terms of elastic modulus and
geometry, this sphere-plane model can be widely applied to the lubrication analysis of
artificial hip and knee joints, as well as polymer rolling bearings.

2.2 Viscoelastic squeeze film lubrication equations

Since squeeze film motion was incorporated into the study, the time-dependent
Reynolds equation [28] was applied to characterize the system’s transient response.
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where the term 0h/dt denotes the squeeze film motion, while p represents the
hydrodynamic pressure and 7 signifies the lubricant viscosity. The formulation of this
equation rests upon the classical assumptions of lubrication theory, wherein the
lubricant flow is considered laminar. Due to the viscoelastic response effects, the
pressure is too low to affect either the viscosity or density for the soft contact problem
[4, 19]. Therefore, the fluid is modeled as an isoviscous and incompressible Newtonian
fluid, and the no-slip boundary condition is applied at the solid-fluid interfaces.
Furthermore, owing to the extremely thin film geometry, the pressure is assumed to be
constant across the film thickness, and the effects of inertial and body forces are
neglected. A critical simplification adopted in the current model is the isothermal
assumption, which neglects thermal effects and associated viscosity variations induced
by viscous shear within the squeeze film.



The film thickness [8], 4, comprises the undeformed geometrical gap and the
viscoelastic deformation, which can be formulated as follows

xZ y2
h(x,y,t) = hoo(t) + TR 8(t) )

where hgo(t) represents the rigid displacement, R denotes the equivalent radius along
x and y directions, e.g., for the artificial hip joint with radial clearance c, the equivalent
radius can be calculated as R= (Rn(Rntc))/c, Rn 1s the radius of the rigid femoral head,
d(t) accounts for the time-dependent viscoelastic deformation.
The external load applied to the rigid ball was balanced by the resultant force produced
by the film pressure

[ [ [p(xy,t) dedydt = w(t) (3)
2.3 Viscoelastic constitutive relation and Boltzmann principle
The detailed theory of viscoelasticity of has been introduced in the previous studies [16,
29]. Briefly, based on the framework of linear viscoelasticity and small strain
assumptions, the stress-strain relationship is described by the Boltzmann superposition
principle in the present study. This principle states that the strain of the material at
present time ¢ is the superposition of the effects of all historical stress applications. Each
stress increment applied at a previous moment ¢ contributes to the current strain,
determined by the material’s creep compliance @(#-¢) over the time interval #-&. The
time-dependent strain &(¢) can be obtained by the creep compliance @(z-¢) [19] and
Boltzmann hereditary integral [27, 30]

&) = [ ot - T d¢ 4)

For the Maxwell viscoelastic model as shown in Figure 2(a), the creep compliance
function [27] is

P (8) = 25 (145) 5)

where, E represents the storage modulus and v the Poisson’s ratio, and 7 the relaxation
time, 7/E. The Maxwell viscoelastic model is relatively too simple to capture the
relaxation and creep behaviors of polymer based materials [27]. Therefore, the further
complex viscoelastic model such as SLS model (Figure 2(b)) is used to describe the
time-dependent deformation behaviors of such materials. For the standard linear

viscoelastic model, the creep compliance function [27] is
t

B (t) = Ei[1 + ? (1-e7)] (6)
where, E, represents the storage modulus and E; the loss modulus, and 7 the
relaxation time.

2.4 Computational framework for viscoelastic deformation

Based on the semi-infinite half-space approximation and linear elasticity assumption,
the Boussinesq integral [31] has been widely used to calculate the normal displacement
of the contact surfaces for the elastic point contact between a rigid ball and an elastic
half space
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Similar to the time-dependent strain calculation in Section 3.1, for the system consisting
of a rigid ball and a viscoelastic half space, the viscoelastic deformation can be
determined by substituting the elastic compliance (1 —v?)/E in equation (7) with the
viscoelastic compliance operator @,(t)[4]. It should be noted that the viscoelastic
compliance operator @, (t) refers to the general conceptual variables such as Maxwell
and SLS viscoelastic models. Combine with Boltzmann hereditary integration, the
viscoelastic deformation can be calculated as follows
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The non-dimensional form can be written as
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In order to perform numerical calculations, it is necessary to discretize the continuous
space-time and pressure history into grids and steps, respectively. The pressure
distributions were assumed as constant in each time step. On each grid level, the
pressure at node (k, /) at y'" time instant was denoted as Py, then the pressure increment
in the y step was Pk 14-Pi.1-1. The discretized viscoelastic deformation at node (i, /) at
y™ time instant can be written as

gi,j,y =X Z)t':l{ac(y 0] Dy Z;lyo Dyi—iytj-t| Prryr — Priy-)]} (10)

where, D);_gj-y is the elastic deformation coefficient matrix.

It can be seen from equation (10) that the elastic deformation at initial time instant can
be calculated as a discrete convolution of initial pressure distributions and
instantaneous elastic deformation coefficients. The effects of previous pressure
distributions of adjacent time instant on the present time instant were considered by the
Boltzmann hereditary integral principle. The elastic deformation at y time instant is a
convolution of elastic deformation coefficients and pressure increment of y™ time
instant and adjacent previous (y-/)" time instant. The discrete convolution was
calculated using the 2-based decimation-in-frequency FFT algorithm, which can
significantly improve the efficiency of convolution operation. With the developed
numerical algorithms, the viscoelastic deformation under arbitrary loading conditions
can be calculated efficiently as long as the viscoelastic compliance operator is
determined whatever the material is linear or nonlinear.

2.5 Numerical algorithm and implementation

This section details the numerical framework developed to solve the coupled
viscoelastic squeeze film lubrication problem. The algorithm integrates a MG method
for efficient solution of the transient Reynolds equation, a FFT-accelerated convolution
scheme for calculating surface deformations, and the Boltzmann hereditary integral to
account for viscoelastic material memory effects. A rigorous convergence criterion
based on error norms ensures the reliability of the numerical solutions.

To enhance numerical stability and facilitate the analysis of scaling effects, the
governing equations were first non-dimensionalized. The Reynolds equation for pure



squeeze motion in a point contact configuration was then discretized on a uniform
spatial grid. At k" grid level, the domain is discretized into (7x*+1)x(n*+1) nodes. The
densest grid on the finest level used in this study has dimensions NxxNy along x and y
directions. A second-order central difference scheme was applied to the pressure-
induced Poiseuille flow terms, and a first-order backward difference scheme was used
for the transient squeeze flow term.

Gauss-Seidal point relaxation iteration method was used to solve the discrete non-
dimensional Reynolds equation at each level of the grids. Different from the Finite
Difference Method for the line contact Reynolds equation, which is effective for 1D
problems. Applying a simple FDM to the 2D point contact equation would be
prohibitively slow and may fail to converge for the fine meshes required to resolve the
high pressure gradients. The slow convergence of low-frequency error components
after grid refinement is a well-known limitation of traditional iterative methods. To
overcome this fundamental limitation, the MG method was employed.

The main advantage of the MG method lies in its hierarchical approach to error
correction. High-frequency errors are efficiently smoothed by a small number of
iterations on the fine grid, while low-frequency errors are effectively corrected on the
coarse grid. This process is recursive, dramatically accelerating the overall convergence
rate to nearly grid-independent efficiency.

In the current study, a Full Approximation Scheme (FAS) was implemented within the
MG framework. Its core concept lies in solving an equation on the coarse grid that
incorporates not only the residual from the fine grid but also the solution information
inherent to the coarse grid itself. This ensures consistency in the overall approximation
between the coarse and fine grids. A 3-level W-cycle strategy was employed in the
present study. The explanation of single W-cycle has been detailed in the previous
research [32].

A grid convergence study was conducted using three grid densities (129%x129, 257x257
and 513x513). The relative difference in key output parameters was less than 3%
between the 257x257 and 513x513 grids, indicating sufficient numerical convergence
was achieved at the 257x257 density. Consequently, this grid size was adopted for all
simulations. On each grid level, the second-order central difference method was used
to the pressure induced flow terms and first-order backward difference to the right
squeeze induced flow term.

On each grid level, the discrete convolution was solved to calculate the elastic
deformation and FFT algorithm was used to facilitate this calculation process. The
detailed information towards the application of FFT algorithm on the calculation of
discrete convolution can be illustrated as follows: Firstly, zero-padding is applied to the
pressure and influence coefficients to convert linear convolution into circular
convolution. Secondly, FFT is used to transform the zero-padded sequences into the
frequency domain. Thirdly, the complex spectra of the pressure and influence
coefficients are multiplied pointwise in the frequency domain. Fourthly, an Inverse FFT
(IFFT) is performed to transform the product back to the spatial domain. Finally, the
elastic deformation in the physical domain is obtained by truncating the first NxxNy
points from the IFFT result. This combination was particularly advantageous for point



contact, which drastically reduces the computational cost of the convolution integral
from O(Nx**Ny?) to O((Nx*Ny)log(NxxNy)) for a NxxNy grid. Combined with the
Boltzmann hereditary integral, the viscoelastic deformation can be calculated for all the
time instants during the whole squeeze film process. The rigid displacement constant
hoo was adjusted using the external load and integration of pressure distributions. The
detailed technical routine that combined the MG method and viscoelastic deformation
algorithm is illustrated in Figure 3.

The pressure relaxation iteration was regarded as convergence when the accumulated
pressure relative differences between adjacent iterations. The relative pressure
differences calculation formula and criterion can be given as follows

Ny
DD p'f;J il <1 %107 a1
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The relative error between the integrated squeeze film pressure within the contact area
and the externally applied load can be calculated by the following formula

N __
ZNX h y p
% <1x1075 (12)
where, W is the dimensionless applied external load.
A rigorous mesh sensitivity analysis requires quantitative evaluation based on error
norms. Among these, the L> norm is widely adopted due to its ability to reflect the global
error over the entire computational domain. For time-dependent minimum film
thickness, central film thickness, and maximum pressure (u(¢)), the error can be defined
as:

Err, =

|uAt_uAtref|
Erry=———2

|uAtref|L2 (13)
where, uaqr denotes the reference solution obtained with a finer time step of 600,
which is regarded as being closer to the true solution. In this study, a relative L, error
of 5% is adopted as the threshold for temporal convergence of the numerical solution.
The solution is considered converged when the error is at or below this value.

2.6 Model validation

To ensure the reliability and accuracy of the proposed viscoelastic squeeze film
lubrication model of point contact, systematic model validation and numerical
verification procedure were implemented. The approaches aimed to assess the model’s
capability in capturing the core physical mechanisms, guaranteeing the stability of the
numerical solution, and ensuring the reproducibility of the results.

The validity of the current computational results was verified by comparing them with
the corresponding dry contact calculation results. In order to validate the current
lubrication model and related numerical method, the pressure and film thickness
distributions were expressed in dimensionless form and direct comparisons of pressure
distributions with the dry contact calculation results were conducted. The verification
confirms that the selected operating condition parameters are consistent with the dry
contact calculation conditions used by Chen et al. [27]. This parameter selection ensures
that the computational results can be directly compared and validated against related



analytical and numerical studies.

A typical feature of VEHL is the strong coupling between the transient fluid flow and
the time-dependent, historical-sensitive deformation of the viscoelastic solid. The
viscoelastic deformation at any given instant is intrinsically dependent on the entire
loading history, making the accuracy of the numerical solution highly sensitive to the
temporal discretization density. To analyze this temporal grid sensitivity, the total
squeeze time was discretized into a range of 20 to 600 time steps.

Furthermore, to verify the numerical stability of the implemented Boltzmann hereditary
integral algorithm, which plays an important role in the calculation of the time-
dependent viscoelastic deformation, a dedicated convergence test was also conducted.
The viscoelastic deformation at a specific time instant (z = 27) was calculated using a
series of mesh densities ranging from 25 to 600 time steps.

Similarly, the sufficiency of the spatial computational domain was verified. The
primary simulations employed a domain from -2 to 2 (in dimensionless coordinates) in
both the x and y directions. To confirm that this domain size is adequate to capture the
essential physics of the squeeze film lubrication without being influenced by artificial
boundary effects, a comparative simulation was performed using a significantly larger
domain (-4 to 4 in both directions).

2.7 Computational conditions for UHMWPE hip joint analyses

The computational parameters for this study on UHMWPE hip joints were selected
based on established literature [29, 33] concerning joint biomechanics and implant
performance. Varied loads from 300 N to 3000 N were adopted, with a femoral head
radius of 0.014 m and a radial clearance of 1x10* m. The material’s viscoelastic
properties, namely the relaxation time (7) and the mechanical loss factor (defined as the
ratio of loss and storage modulus, E1/E2), were chosen corresponding to the normal
human body temperature of 37°C [34]. To comprehensively capture the time-dependent
material response including creep, stress relaxation and recovery, which is crucial for
analyzing rate-sensitive behavior, the SLS viscoelastic model was employed for the
investigations detailed in section 3.4.

To simulate dynamic physiological loading, conditions of different loading rates
particular three gait patterns were implemented. Based on reported gait cycle durations
ranging from 0.59 s to 1.33 s for activities such as slow walking, normal walking and
slow running [35], corresponding loading rates of 2407 N/s, 5538 N/s and 9562 N/s
were applied. A broader parametric study was also conducted by simulating continuous
loading rates corresponding to cycles from 0.1 s to 1.5 s. This approach was designed
to reveal the effect of loading rate on viscoelastic squeeze film lubrication performance.
To ensure that observed differences were stemmed solely from the loading physics and
not from numerical artifacts, a uniform time step (A7 = 0.0056) was used for all the
loading rate cases. It is important to note that for all these cyclic loading simulations,
the final maximum load reached in each case was consistent at 3000 N, differing only
in the rate at which this load was applied. The specific geometric and material
parameters employed herein are referenced from typical designs of UHMWPE artificial
hip joints, with details provided in Table 1.

3 Results



3.1 Spatiotemporal mesh sensitivity analysis

Figure 4 presents the dimensionless minimum/central film thickness, maximum
pressure and relative L error across different number of time step discretization within
a squeeze period (27). As the number of time steps increases, the relative L errors of
the minimum/central film thickness and maximum pressure show a monotonically
decreasing trend. When the time steps increase from 20 to 200, the error decreases
rapidly. When the number of time steps reaches 200, the errors in the minimum film
thickness, central film thickness, and maximum pressure all fall below 5%, satisfying
the convergence criterion. At the 0.57 time instant, the numerical analysis revealed
significant differences in key parameters: the minimum film thickness shows
substantial variations of 53.9% between cases with 20 and 600 time steps, gradually
decreasing to 9.2% for 100 steps, 5.2% for 160 steps, and 3.8% for 200 steps. Parallel
trends were observed in central film thickness, with relative differences of 42%, 7.6%,
4.3%, and 3.2% for the same number of time steps, respectively. Maximum pressure
values exhibited remarkable consistency, with relative differences of merely 3.1%
between 20 and 600 steps and 0.49% for 100 steps. The comparative analysis at
subsequent time instants (r and 27) revealed markedly reduced relative differences
between cases. Specifically, the minimum film thickness showed variations of only 2.5%
and 1.6% between 200 and 600 steps at 7 and 2z, respectively, while the maximum
pressure demonstrated negligible differences of 0.002%. It can be seen that increasing
temporal resolution significantly enhanced the stability and accuracy of film thickness
and pressure calculations, particularly during the critical initial stage of the squeeze
period (0.57). The influence of time step discretization became progressively less
pronounced at later stages (r and 27). The temporal pattern suggested that accurate
numerical modeling requires higher time step resolution primarily during the early
phase of the squeeze period, while coarser discretization may be sufficient during later
stages without compromising computational accuracy.

Figure 5 illustrates the impact of computational domain size on the evolution of both
the minimum/central film thickness and the maximum pressure throughout the
simulated squeeze process. The results from the two tested domain sizes exhibit
excellent agreement for both film thickness and pressure profiles, confirming that a
computational domain spanning from -2 to 2 in both the x and y directions is adequate
to capture the essential physics of the squeeze film lubrication phenomenon across the
entire simulated duration.

Figure 6 further investigates the sensitivity of the numerical solution to temporal
discretization by presenting the viscoelastic deformation at the specific time instant of
27 under different time step sizes. Notably, the maximum discrepancy between the
results obtained with the coarsest (25 steps) and finest (600 steps) temporal
discretization is less than 0.02%. The negligible difference demonstrates the excellent
numerical stability of the adopted Boltzmann hereditary integral algorithm with the
present chosen time step of 200, ensuring the reliability of the time-dependent
deformation predictions.

3.2 The squeeze film lubrication of Maxwell viscoelastic model

Figure 7(a) presents the evolution of dimensionless maximum pressure for both the



purely elastic and Maxwell viscoelastic models during the squeeze-film lubrication
process. Figure 7(b) provides a comparative analysis of the dimensionless pressure
distributions from the present squeeze-film lubrication model against established dry-
contact pressure solutions by Radok and Lee [36] and Chen et al. [27] at specific time
instants (0.57, 7, and 27). The overall pressure profiles predicted by the lubrication
model show excellent agreement with the dry-contact solutions across these time points.
Notably, the peak pressure location for both conditions shifts to the edge of the contact
region by ¢ = 2z. The primary discrepancy arises in the exit region of the contact area,
where the squeeze-film pressure exhibits a gradual decay to ambient conditions, a
feature absent in the dry-contact models where pressure terminates abruptly. This
gradual pressure relief at the outlet is a characteristic dictated by fluid flow dynamics
in lubrication. The strong correlation demonstrated in Figure 7(b) validates that the
current viscoelastic squeeze-film lubrication model accurately captures the pressure
distribution evolution across a wide range of time scales, effectively bridging the
behavior between instantaneous elastic contact and time-dependent viscoelastic
response under lubricated conditions.

In addition to the pressure distributions, the film thickness evolution for both purely
elastic and viscoelastic (Maxwell model) squeeze-film lubrication was analyzed. Figure
8 illustrates the dimensionless minimum and central film thicknesses during the process.
Initially, the film thicknesses for both material models were nearly identical. However,
as the squeeze motion progressed, a distinct divergence emerged: the decay rate of the
minimum film thickness for the Maxwell model began to exceed that of the elastic
model, and this difference gradually widened over time. Concurrently, the central film
thickness for the viscoelastic Maxwell model became and remained thicker than that of
the elastic counterpart shortly after motion onset, with the disparity also increasing as
the process continued.

Figure 9 shows the temporal evolution of dimensionless pressure and film thickness
distributions along the entrainment direction (y=0). During the squeeze-film process,
the pressure distribution of the elastic model resembled the Hertzian contact, with the
lubricated contact area remaining relatively constant over time. The film thickness
decreased rapidly initially and then more slowly, becoming progressively flatter as the
motion proceeds. In contrast to the elastic model, the overall pressure distribution of
the Maxwell model was significantly smaller, and the contact area was much larger.
Notably, the pressure peak gradually decreased in magnitude and shifted towards the
edge regions of the contact, resulting in a distinctive "double-peak" distribution.
Furthermore, the overall film thickness of the Maxwell model was thinner at the edges
of the contact zone but thicker in the central region compared to the elastic model. As
the squeeze motion continued, the film thickness in the central region gradually
decreased while local peaks formed near the contact edges, as shown in Figure 9.

3.3 The squeeze film lubrication of SLS viscoelastic model

Figure 10 (a) presents the temporal evolution of the dimensionless maximum pressure
for the purely elastic and SLS viscoelastic models during the pure squeeze-film
lubrication process. For the elastic model, the dimensionless maximum pressure rapidly
increases to a peak and stabilizes at a value approximating unity. In contrast, the



maximum pressure for the SLS model exhibits a distinct viscoelastic relaxation
response: after an initial rise, it undergoes a gradual decay, eventually tending to
stabilize at a significantly lower value of approximately 0.63. This divergence
underscores the fundamental difference between instantaneous elastic recovery and
time-dependent stress relaxation inherent to viscoelastic materials. Figure 10 (b) shows
the cross-sectional profiles of the dimensionless pressure distribution for both
lubricated and dry contact conditions at selected time instants (¢ = 0.5z, 1.0z, and 2.07).
A key observation is that the pressure distributions under lubricated and dry contact
conditions are remarkably similar across the central contact region, conforming to
expectations from classical Hertzian contact theory where lubricant pressures in the
contact zone can approximate dry contact stresses. The primary distinction emerges in
the exit regions of the lubricated contact. Here, the hydrodynamic lubrication pressure
does not terminate abruptly but rather decays gradually to ambient conditions,
following the characteristic behavior dictated by the Reynolds equation. This smooth
decay at the outlet is a critical feature of fluid film lubrication that prevents pressure
discontinuities and influences load capacity. The comparative analysis highlights how
the introduction of a lubricant film modifies the pressure field at the contact boundaries
while maintaining a similar core pressure distribution, a factor essential for accurate
modeling of mixed or full-film lubrication regimes.

Figure 11 shows the evolution of dimensionless minimum and central film thicknesses
for the purely elastic and SLS viscoelastic models during the squeeze-film lubrication
process. The initial dimensionless minimum film thicknesses for both the elastic and
SLS models were nearly identical at the onset of squeeze motion. A critical crossover
point is observed at a dimensionless time of # = 1.287z, where the minimum film
thickness of the SLS model begins to consistently exceed that of the elastic model. At
this precise moment, both models share an identical minimum film thickness value of
0.00658. Following this crossover, the evolution of the minimum film thickness for the
SLS model diverges markedly from that of the purely elastic (and Maxwell) model. As
the squeeze process continues, the minimum film thickness for the SLS model not only
overtakes but sustains a growing advantage over the elastic case. This disparity
progressively amplifies, culminating in a substantial 52% difference by ¢ = 6z
Quantitatively, at this final time instant, the dimensionless minimum film thickness is
0.00254 for the elastic model compared to 0.00386 for the SLS model. A similar, yet
more pronounced trend is evident for the central film thickness. The central film
thickness for the SLS model is generally greater than that of the elastic model shortly
after the squeeze motion begins, and this difference also enlarges over time. By ¢ = 67,
the central film thickness for the SLS model (0.00865) is 51% larger than that of the
purely elastic model (0.00574).

Figure 12(a) shows the evolution of dimensionless rigid displacements for the purely
elastic and SLS viscoelastic models during the squeeze-film lubrication process. The
rigid displacement for both models rapidly decreases to approximately -0.9 within a
very short initial period (¢ < 0.047). Subsequently, the elastic model displacement
stabilizes around -0.996, whereas the SLS model displacement continues to decrease,
eventually reaching a value of approximately -1.58. This divergence highlights the



pronounced time-dependent, creep-dominated deformation characteristic of the
viscoelastic material, which is absent in the purely elastic response. Figure 12(b) shows
the dimensionless deformation profiles for the elastic and SLS models at selected time
instants (¢ = 0.5z, 1.0z, 2.0z, 3.07, 4.0z, 6.07). The viscoelastic deformation increment
progressively diminishes as the squeeze motion proceeds, indicating that the material’s
time-dependent response gradually approaches a steady state. Notably, the relative
difference in maximum deformation between ¢ = 4.07 and ¢ = 6.0t is merely 0.5%,
suggesting that the deformation evolution becomes nearly negligible beyond ¢ = 4.0t
for the given conditions. This observation underscores the critical role of the material's
relaxation time (7) in governing the transient deformation kinetics during squeeze-film
lubrication.

Figure 13 shows temporal evolution of the cross-sectional dimensionless pressure and
film thickness profiles for the purely elastic and SLS viscoelastic models, as simulated
by the present squeeze-film lubrication model. During the squeeze process, the pressure
distribution for the elastic model closely resembles the classic Hertzian contact profile,
with the lubricated contact area remaining relatively constant over time.
Correspondingly, the film thickness for the elastic case decreases rapidly initially,
followed by a more gradual decline, and the profile becomes progressively flatter as the
motion proceeds. In contrast, the pressure distribution for the SLS model is significantly
lower in magnitude and spread over a much larger contact area compared to the elastic
case. The film thickness in the central constriction region of the SLS contact is initially
smaller than that of the elastic model at early times (e.g., # = 0.57 and 1.07). However,
as the squeeze process continues, the overall film thickness profile along the x-direction
for the SLS model eventually becomes greater than that of the purely elastic case.
Throughout the entire squeeze duration, the contact area for the SLS model remains
substantially larger than that for the elastic model, highlighting the profound influence
of solid viscoelasticity on transient lubrication mechanics.

3.4 Effects of loading rates on the VEHL performance of UHMWPE hip joints
The key lubrication performance parameters (including maximum pressure, minimum
film thickness, central film thickness and rigid displacement) under a load of 3000 N
are quantitatively summarized for the three investigated loading rates in Table 2. When
the loading rate decreases from 9562 N/s to 2407 N/s, the maximum pressure decreases
by approximately 24.0%, the minimum film thickness decreases by about 57.4%, the
central film thickness decreases by about 41.3%, while the rigid displacement increases
by about 24.1%. These systematic variations highlight the significant influence of
loading rate on viscoelastic squeeze-film lubrication behavior, with lower rates
promoting greater material compliance and flattened pressure distributions, ultimately
leading to reduced film thickness and expanded contact area.

Figure 14 shows the dimensionless maximum squeeze-film pressure as a function of
external load for UHMWPE hip joints during the loading phase under three different
loading rates (2407 N/s, 5538 N/s, and 9562 N/s). For all three loading rates, the
pressure initially increased to a peak value before undergoing a subsequent gradual
decrease as the squeeze-film motion progressed. Notably, the initial peak values of the
dimensionless maximum pressure were remarkably similar across the different loading



rates. However, following this initial peak, the pressure evolution began to diverge
significantly based on the loading rate. The most pronounced decrease in maximum
fluid pressure was observed at the slowest loading rate of 2407 N/s. The pressure
decline was less severe at the intermediate rate of 5538 N/s, and the least decrease
occurred at the fastest rate of 9562 N/s. This demonstrates a clear inverse relationship
between the loading rate and the magnitude of pressure decay after the initial peak. By
the time the final peak load of 3000 N was reached, the dimensionless maximum
pressures had stabilized at distinct final values: 0.69772 for 2407 N/s, 0.85494 for 5538
N/s, and 0.91792 for 9562 N/s. This quantitative result underscores the significant
influence of loading rate on the steady-state pressure distribution within the viscoelastic
squeeze film, with higher loading rates preserving a greater proportion of the initial
peak pressure.

Figure 15 shows the dimensionless rigid displacement as a function of external load for
UHMWPE hip joints under different loading rates. The results for the three loading
rates (2407 N/s, 5538 N/s and 9562 N/s) exhibit a trend of gradual convergence with
increasing load. Notably, the overall rigid displacement is highest for the fastest loading
rate (9562 N/s), followed by the intermediate rate (5538 N/s), and is lowest for the
slowest rate (2407 N/s). Figure 16 illustrates the dimensionless minimum and central
film thickness with external load for UHMWPE hip joints under three different loading
rates. During the loading phase (from 300 N to 3000 N), both the minimum and central
film thicknesses demonstrate a clear dependence on loading rate: the film thickness
values are greatest for the highest loading rate (9562 N/s), intermediate for 5538 N/s,
and smallest for the lowest rate (2407 N/s).

Figure 17 shows the cross-sectional pressure distributions along the x direction under a
constant load of 1650 N for different loading rates during the loading and unloading
phases. A clear dependence of the pressure profile on the loading rate is observed. For
both loading and unloading, the pressure distribution exhibits its flattest profile at the
slowest loading rate of 2407 N/s. Correspondingly, the contact area is largest at this rate,
followed by 5538 N/s and 9562 N/s, indicating a transition from a viscoelasticity-
dominated to an elasticity-dominated response with increasing loading rate.
Furthermore, under the same load of 1650 N, the peak pressure during the unloading
phase is notably lower, while the contact area is broader compared to the loading phase,
highlighting the path-dependent and hysteretic behavior of the viscoelastic material.
Figure 18 shows the cross-sectional film thickness distributions along the x direction
under a constant external load of 1650 N for different loading rates during the loading
and unloading phases. Consistent with the pressure results, the film thickness profile is
also flattest at the slowest loading rate of 2407 N/s. The overall film thickness values
in this case are smaller than those observed at the higher rates of 5538 N/s and 9562
N/s. This trend aligns with the enlarged contact area observed in Figure 17, where
lubricant is distributed over a wider region, resulting in a thinner film on average.
Figure 19 illustrates the influence of varying loading time (corresponding to continuous
loading rates) from 300 N to 3000 N on the maximum pressure and rigid displacement
during a squeeze film lubrication process. As the loading time increases, the maximum
squeeze film pressure generated upon reaching 3000 N correspondingly decreases.



Concurrently, the rigid displacement increases with prolonged loading time. However,
the growth rate gradually decelerates. Figure 20 shows the effect of varying loading
cycles (0.1 s to 1.5 s) on both the minimum and central film thicknesses. It can be
observed that both the minimum and central film thicknesses decrease as the loading
time increases. Furthermore, the rate of this decrease gradually diminishes with loading
times.

4 Discussions

A novel viscoelastic squeeze film lubrication model is proposed specifically formulated
for point contact scenarios, which are characterized by a finite, typically elliptical
contact area. Unlike the infinite line contact problem, a more complex, two dimensional
pressure and film thickness distributions are involved in the point contact conditions,
which is also significantly influenced by lateral side leakage of the lubricant. Accurately
capturing these phenomena is therefore essential for simulating a wide range of real-
world engineering components where the contact area is inherently finite. Key
applications include artificial hip and knee joints, polymer rolling bearings, and gear
contacts operating under misalignment or at the ends of teeth, where the contact
geometry deviates from an ideal line. Therefore, a corresponding computational
algorithm tailored for polymer-based materials was implemented. The related
governing equations were solved to obtain full numerical lubrication solutions for two
typical viscoelastic constitutive models: Maxwell and SLS models. The validity of the
proposed model and numerical scheme was established through a rigorous verification
process. In details, the computed squeeze film pressure distributions were compared
against analytical and numerical dry contact solutions. Different temporal discretization
densities were used to verify the accurate numerical lubrication modeling and
Boltzmann integral numerical stability. Excellent agreement between the present
numerical solution and the analytical and numerical dry contact solutions indirectly
validated the proposed model and algorithms. Based on the developed viscoelastic
squeeze film lubrication model, different loading modes particularly the three gait
patterns were adopted to investigate the effects of loading rates on the viscoelastic
squeeze film lubrication performance.

The calculation of viscoelastic deformation in this study is founded upon the Boltzmann
superposition principle, which constitutes the cornerstone of linear viscoelastic theory
under the assumption of small strains. The principle posits that the strain response of a
material at any given time is a linear superposition of the effects of its entire loading
history. The adopted framework is computationally efficient and provides excellent
accuracy for scenarios where deformation remain within the material’s linear response
regime, a condition satisfied during the early and intermediate stages of the squeeze
process investigated here. In the present numerical implementation for squeeze film
lubrication, the viscoelastic deformation at each computational time step is computed
by incorporating the complete loading history from the simulation’s inception. The
material’s intrinsic memory effect was fully captured without employing a truncated
time window. Consequently, the accuracy of accumulated deformation, and the
predicted pressure and film thickness, becomes inherently sensitive to the density of



the temporal grid discretization.

A comprehensive temporal grid sensitive analysis was conducted to critically assess the
discretization requirements for accurately resolving the lubrication simulation within a
squeeze cycle. The analysis revealed pronounced sensitivity of the film thicknesses to
temporal resolution, particularly during the initial compression phase (Figure 4). This
stage is characterized by rapid transients, where steep gradients in fluid flow and
surface deformation demand high temporal resolution to achieve physical fidelity.
Coarser discretization during this phase introduced significant deviations in both the
minimum and central film thicknesses. In contrast to film thickness, the maximum
pressure values exhibited robust consistency across discretization levels (Figure 4).
This suggests that the pressure distribution within the contact stabilizes more rapidly
and is less susceptible to variations in temporal resolution once the initial transient has
passed. The observed convergence patterns carry significant implications for
computational strategy. At the later stages of the squeeze process (e.g., at dimensionless
times t and 27), variations in both film thickness and pressure with further time-step
refinement became negligible. It is suggested that computational efficiency can be
substantially enhanced by employing adaptive time-stepping strategies. A finer
temporal resolution should be concentrated during the initial rapid transients, while
coarser steps can be adopted as the system evolves toward a quasi-steady state. Such an
approach would optimally balance numerical accuracy with computational resource
expenditure. The calculated viscoelastic deformation at 27 serves to validate the
numerical stability of the implemented Boltzmann hereditary integral algorithm within
the examined range of discretization. The successful verification underpins the
reliability of the subsequent simulations investigating the effects of viscoelastic model
and loading rates.

The Maxwell and SLS model were integrated into a pure squeeze film lubrication
framework to analyze the transient response of viscoelastic materials under normal
approach motion. The simulations revealed that both the film thickness and pressure
distribution during the squeeze process exhibited pronounced time-dependent evolution
and stress relaxation effects, which are typical features of viscoelastic behavior. This
behavior stands in fundamental contrast to the assumptions of classical EHL theory,
which typically treats the contacting solids as purely elastic, thereby neglecting the
material’s memory and rate-dependent response. The accuracy and predictive capability
of the proposed viscoelastic squeeze film lubrication model were rigorously validated.
A direct comparison was made between the pressure distributions predicted by the
present model and established reference solutions, including the analytical solutions of
Radok and Lee [36] as well as the numerical solution of Chen et al. [27] (Figures 7 and
10). The results demonstrated excellent agreement within the central contact region for
both the Maxwell and SLS model implementations.

Upon the application of an instantaneous load, both the Maxwell and SLS viscoelastic
models initially exhibit a response identical to that of a purely elastic material,
characterized by the immediate deformation of the spring element and the generation
of instantaneous elastic strain. It is consistent with the fundamental behavior of linear
viscoelastic models under suddenly applied loads, where an instantaneous elastic



response is always present. The evolution of the pressure distribution diverges
significantly from the classical elastic Hertzian solution due to the intrinsic time-
dependent nature of viscoelasticity.

In the Maxwell model, it is characterized by the development of a double-peak pressure
profile (Figures 7(b) and 9(a)). The formulation of this distribution can be attributed to
a complex, dynamic interplay among three key mechanisms: viscoelastic stress
relaxation, transient fluid squeeze flow, and the resulting time-evolving surface
deformation. The process can be detailed as follows: A Hertzian-like pressure peak was
induced firstly as the application of instantaneous load, which is governed by the
spring’s immediate elastic response. Subsequently, the dashpot in series introduces a
critical time delay in the load transfer and stress redistribution within the material. This
delay initially suppresses the full development of material deformation, leading to an
overall pressure magnitude lower than that predicted by a purely elastic model for the
same nominal load. As the process evolves, viscoelastic stress relaxation becomes the
dominant mechanism. The relaxation of the dashpot components leads to a rapid decay
of stress, and consequently pressure, at the center of the contact zone where the initial
stress concentration was highest. Concurrently, transient fluid dynamics play a decisive
role. The delayed deformation response of the viscoelastic solid, coupled with the
extrusion of fluid from the converging gap, acts to redistribute and concentrate the
pressure towards the peripheral regions of the contacts. In the edge regions, the initial
stress state is lower, allowing the viscoelastic relaxation process to reach completion
more rapidly. This facilitated a partial recovery of the elastic deformation due to the
viscoelastic effect. This localized elastic recovery induced increase in local film
thickness, creating a more favorable geometry for pressure generation. The observed
phenomenon is consistent with the temporal evolution of viscoelastic pressure
distributions reported in the literature [19].

For the SLS model, the mechanical behavior is described by a spring in parallel with a
Maxwell unit (Figure 2(b)). During the initial loading phase of the squeeze process, the
rapid fluid extrusion from the converging gap dominates the film thickness reduction
for both the purely elastic and SLS viscoelastic models. Since the instantaneous elastic
response of both materials is similar, their initial film thickness decay rates are
comparable (Figure 11). As time progresses under constant load, the viscous dashpot
within the SLS model begins to relax. The stress relaxation allows material to undergo
time-dependent creep, redistributing the internal stress. Crucially, this process gradually
releases a portion of the elastic energy stored in the spring elements. Due to this
relaxation behavior, a time-delayed surface recovery effect manifests during the
ongoing squeeze process. When the fluid is extruded and the film thickness decreases,
the surface of the SLS solid does not passively maintain its deformation. Instead, driven
by internal stress relaxation, it exhibits a tendency to recover its original shape. This
recovery motion opposes the approach of the two surfaces, thereby effectively slowing
the decay rate of the film thickness. As the film becomes thinner, the fluid extrusion
rate decelerates, while the cumulative effect of viscoelastic deformation recovery
becomes increasingly significant. Eventually, a transient balance is reached between
these two competing effects. As the squeeze film motion continues, the influence of



viscoelastic recovery begins to surpass that of fluid extrusion, resulting in a film
thickness under the SLS model that is notably greater than that predicted by the purely
elastic model. In contrast, the purely elastic model, lacking such an intrinsic recovery
mechanism, exhibits a more pronounced decay in film thickness.

A critical observation from the simulations is that the maximum dimensionless squeeze
film pressure in the SLS model stabilizes at an asymptotic value of approximately 0.63
(Figure 10). This stabilization is not arbitrary but arises from the intrinsic viscoelastic
relaxation characteristics of the SLS material and its dynamic coupling with the
transient fluid squeeze flow. When the material parameters satisfy £1/E>=1, the ratio of
the equilibrium modulus Eo (E; E,/(E;{+E>;)) to the instantaneous elastic modulus E> is
theoretically 0.5. In the present investigated spherical contact configurations, the
maximum pressure Pmax scales with the effective elastic modulus as Puax < E2?
according to Hertz theory. Consequently, the ratio between steady-state pressure and
initial pressure can be expressed as Pmax(00)/Pmax(0)~(Eo/E2)??~0.63. Due to the
weakening of fluid pressure as the film thins, the final support is determined by the
equilibrium elastic deformation of the solid. Therefore, the dimensionless squeeze film
pressure tends towards the dry contact maximum pressure (0.63) in the final equilibrium
state (Figure 10). When the squeeze time exceeded three times the relaxation time, the
viscoelastic material underwent significant relaxation, its viscoelastic effects gradually
diminished, the final support is determined by the equilibrium elastic deformation of
the solid and the squeeze film pressure and contact radius approached the asymptotic
values (Figure 10) determined by two springs connected in series.

The selection of an appropriate constitutive model is crucial for accurately capturing
the time-dependent mechanical response of polymers under dynamic loading. Although
both the Maxwell and SLS models are functional in linear viscoelasticity, they exhibit
distinct capabilities in simulating real material behaviors. The Maxwell model,
characterized by a spring and dashpot in series, is inherently limited in its ability to
accurately represent the creep and recovery behaviors typical of polymeric solids, as it
predicts unlimited creep strain under constant stress. In contrast, the SLS model, which
incorporates an additional spring in parallel with a Maxwell unit, provides a more
comprehensive framework. It can effectively describe not only stress relaxation but also
the bounded creep and eventual recovery observed in cross-linked polymers and many
engineering thermoplastics. This makes the SLS model particularly suitable for
simulating materials like UHMWPE, where long-term dimensional stability under load
is critical, such as in artificial joint applications.

Prior experimental and theoretical studies [33] have confirmed that under the specific
load of 300 N to 3000 N, the initial deformation response of UHMWPE can be well
approximated by a linear elastic assumption. The primary objective of the present
numerical model is to elucidate the fundamental time-dependent interplay between
viscoelastic stress relaxations within the solid and the transient squeeze flow of the
lubricant. For this purpose, a linear viscoelastic framework, as embodied by the SLS
model, serves as a well-established and valid starting point, balancing physical fidelity
with computational tractability. Consequently, the SLS model was adopted in this study
to systematically characterize the influence of varying loading rates on the squeeze film



lubrication performance of UHMWPE. A key finding from comparing the lubrication
characteristics of UHMWPE hip joints under different loading rates was the loading
rate independent nature of the initial peak pressure (Figure 14). This phenomenon
occurred because the initial instantaneous load was identical in all numerical tests,
despite the divergent differences determined by different loading rates. However, as the
loading process continued, the evolution of the pressure field and film thickness became
markedly rate-sensitive. Divergences in the transient response became apparent under
different loading rates once the external load began to increase (Figure 17). By the time
the instantaneous load reached 1650 N, the pressure distributions for the three
representative loading rates (simulating slow walking, normal walking, and running
gaits) were distinctly different. At this stage, the transient viscoelastic response became
dominant, meaning the material's deformation became highly sensitive to the rate at
which the load was applied. A general trend observed was that larger squeeze film
pressures were sustained under higher loading rates (Figures 17 and 18). This can be
attributed to the material exhibiting a more elastic-dominated response at high rates.
The viscous dashpot in the SLS model has insufficient time to relax and accommodate
the rapidly applied strain, leading to higher transient stresses within the solid and,
consequently, higher fluid pressures. Conversely, at lower loading rates, viscoelastic
effects become pronounced. The dashpot has adequate time to relax, leading to
significant stress decay and time-dependent creep deformation. This results in a larger
residual indentation depth, an enlarged contact area, and consequently, a flatter and
more distributed pressure profile.

To further investigate these mechanisms, 15 groups of loading times corresponding to
a continuous spectrum of loading rates were analyzed (Figures 19 and 20). The results
conclusively demonstrate that the viscoelastic material exhibits stronger apparent
contact resistance at higher loading rates. This finding aligns perfectly with previous
dry-contact numerical analyses by Chen et al. [27], which reported similar rate-
dependent pressure evolution. The interplay between the loading rate and the material’s
intrinsic relaxation time determines whether the contact response is predominantly
elastic (high rates) or viscoelastic (low rates), which in turn governs the pressure
distribution, film thickness, and load-bearing capacity throughout the loading cycle.
Notably, during the loading phase, when the viscoelastic material was subjected to
compression, the instantaneous elastic modulus dominated the response in a short
period, leading to higher pressure peaks concentrated in the central contact area (similar
to Hertz contact). During the unloading phase, the relaxation time of the base material
was relatively long, and compared to the loading phase, the base material began to
recover its deformation. However, the viscous resistance caused the recovery process
to lag, preventing rapid elastic rebound, which resulted in an enlarged contact area and
a dispersed pressure distribution.

Although valuable insights into the viscoelastic squeeze film lubrication mechanism
were provided by the present study, it is important to acknowledge the inherent
limitations, which stem from necessary simplifications adopted. The current model
incorporates several key simplifications related to several aspects such as surface
topography, fluid rheology and thermal effects. First, the contacting surfaces are



assumed to be perfectly smooth. In practical engineering and biological applications,
such as artificial joints or engineered bearings, surface roughness at the micrometer
scale is ubiquitous and can be comparable to the lubricant film thickness value. This
roughness can fundamentally alter the soft lubrication regime, potentially triggering a
transition from full-film to mixed lubrication [37] or even boundary lubrication.
Therefore, extending the current framework to incorporate measured or statistically
representative surface roughness is a crucial next step to enhance model fidelity for
real-world applications. Second, the lubricant is modeled as an isoviscous and
incompressible Newtonian fluid. The Barus or Roelands viscosity-pressure relationship
and fluid compressibility should be integrated into future models to accurately capture
the piezo viscous effects that significantly influence pressure generation and load-
bearing capacity in high pressure contacts. Third, the analysis is conducted under an
isothermal assumption, neglecting heat generation due to viscous shear within the fluid
and energy dissipation within the viscoelastic solid. This simplification was
strategically employed to focus on the fundamental coupling between viscoelastic
deformation and transient fluid flow. However, in scenarios involving high loading
rates or cyclic loading, significant self-heating effects can occur within viscoelastic
materials. This temperature rise can, in turn, alter the material's mechanical properties
[15] such as an increase in temperature typically leads to a decrease in the elastic
modulus and a shortening of relaxation times for polymers like UHMWPE. A fully
coupled thermo-visco-elastohydrodynamic analysis represents a critical and complex
future direction to understand performance under more severe operating conditions.
The model validation in this study relied on a rigorous numerical comparison with dry
viscoelastic contact solutions. While this is a necessary first step, direct experimental
validation of the transient lubricated squeeze-film process remains essential. Currently,
there is a notable lack of publicly available high-fidelity experimental data for
viscoelastic squeeze-film lubrication under conditions matching our simulations.
Future work will aim to bridge this gap by employing advanced experimental
techniques such as optical interferometry, a well-established method for in-situ
measurement of thin lubricating films with high spatial and temporal resolution.

The current model is built upon the framework of linear viscoelasticity theory. This is
appropriate for the moderate deformations and effectively captures the core relaxation
and flow dynamics. However, for polymer-based materials like UHMWPE subjected
to very large strains or long-term creep, geometric nonlinearities arising from finite
deformations can become significant. In such cases, the changing contact geometry
under large strain can profoundly influence contact mechanics and pressure distribution,
and the stress-strain relationship itself becomes nonlinear. Building upon the present
work, a logical and important extension is to incorporate geometric nonlinearity and
develop a finite deformation viscoelastic constitutive model. This would involve
conducting related finite strain measurements to inform the model formulation,
ultimately leading to a more generalized framework capable of predicting the behavior
of soft materials under extreme loading conditions.

The current full-history integration approach is computationally manageable for the
cases presented (with up to 600 time steps), exploring very low loading rates would



necessitate a large number of steps to maintain accuracy. To enable efficient studies
across decades of loading rates, the implementation of a loading history truncation
method coupled with an adaptive time-stepping algorithm is proposed. Such an
algorithm would dynamically coarsen the temporal resolution during quasi-steady
periods and refine it during rapid transients. A corresponding sensitivity analysis of the
truncation length will be indispensable to rigorously balance computational efficiency
with numerical accuracy, ensuring reliable results across the entire parameter space.

5 Conclusions

The current numerical study systematically reveals the significant impact of the
viscoelastic properties of polymer materials on their squeeze film lubrication
characteristics. Based on the Maxwell and SLS viscoelastic models, combined with the
MG and FFT algorithm, the influence of the material's viscoelastic properties on
squeeze film pressure and film thickness distributions during the squeeze process, as
well as the characteristics under different loading rates, has been elucidated. The main
conclusions are as follows:

1. The selection of time step size has a significant impact on the numerical calculation
accuracy of lubrication, especially during the initial stage of squeeze. Increasing the
number of time steps can effectively reduce the numerical error of the transient response
in the initial stage and have little effect during the relaxation stage. This provides a
theoretical basis for adopting an adaptive time step strategy (refining the step size in
the initial stage and coarsening it in the later stage) to balance computational efficiency
and accuracy. For the viscoelastic (SLS modeled materials) squeeze film problems
investigated in this work, a time step of 200 is recommended to maintain a relative L
error below 5% while ensuring computational efficiency.

2. The squeeze film pressure distributions of the Maxwell and SLS viscoelastic models
show a high degree of consistency with the dry contact pressure distributions. The
consistency between lubricated and dry contact pressures provides a critical validation
of our deformation solver. This agreement is expected when fluid effects become
secondary to the solids' viscoelastic response, establishing the dry contact solution as a
rigorous benchmark.

3. At the initial squeeze film stage, the squeeze film pressure and film thickness of
Maxwell and SLS models were similar with that of the elastic model. After the initial
squeeze film stage, the maximum pressure reaches a secondary equilibrium state for the
SLS model from the time instant around 2z. The minimum film thickness of SLS
viscoelastic model was larger than the elastic model from time instant of 1.287, and the
difference expanded to 52% at time instant of 6z. The central film thickness of SLS was
generally larger than the elastic model from the squeeze film motion processed, and the
maximum difference expanded to 51% at time instant of 6z.

4. At high loading rates, the material exhibits predominantly instantaneous elastic
behavior, resulting in a larger overall pressure and thicker lubrication film in the contact
zone. Under low loading rates, the presence of residual deformation on the viscoelastic
solid surface leads to an expanded contact area and a flatter pressure distribution. Under
the same load, the unloading phase exhibits lower peak pressures and a wider contact



area compared to the loading phase, which is due to the longer relaxation time
experienced by the matrix material during unloading, resulting in greater viscoelastic
deformation.
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Table 1 Details of the lubrication conditions and computational parameters

Parameter Values
Load, w/N 300-3000
Ball radius, R/m 0.014
Radial clearance, ¢/m 1.0x10*
Storage modulus, E»/Pa 0.7x10°
Loss modulus, E1/Pa 0.7x10°
Relaxation time, 7/s 13.81
Environment viscosity, 70/Pa‘s 0.01
Dimensionless computational domains 2<X<2and-2<Y<2
Grid density 256x256
Temporal steps 20-600




Table 2 Dimensionless maximum pressure, minimum and central film thicknesses, and rigid
displacement at 3000 N obtained from different loading rates

Loading rate, Maximum Minimum film Central film Rigid
A(N/s) pressure, pmax/pu thickness, hmin/ho  thickness, Acen/ho  displacement, fgo
9562 0.91792 0.01353 0.02486 -1.0722
5538 0.85494 0.00992 0.01961 -1.1413

2407 0.69772 0.00577 0.01459 -1.3305




w(t)

Rigid sphere .7//1\

Figure 1 Squeeze film lubrication model of rigid ball and viscoelastic half space
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Figure 2 Maxwell (a) and SLS (b) models adopted in this study
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Figure 3 Calculation flow chart of viscoelastic squeeze film lubrication
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Figure 4 The dimensionless minimum/central film thicknesses, maximum pressures and relative 12

errors at time instants of 0.57, 7 and 27 for different time step discretization of one squeeze period
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Figure 9 Dimensionless pressure (p/pn) and film thickness (A/ho) distributions of y=0 along x
direction at different time instants obtained by the present squeeze film lubrication model
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lines) distributions of y=0 along x direction of elastic and SLS models at different time steps
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at different loading rates
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of UHMWPE hip joints at different loading rates
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Figure 17 Cross-sectional dimensionless pressure distributions along x direction when the load is
1650 N during the loading (a) and unloading (b) phases at different loading rates



0.06

Loading, 1650 N
0.054
0.04 1
< 0.031
0.02
—— 2407 N/s
—— 5538 N/s
0.014 —— 9562 N/s
0.00 . ; ; ; . . .
20 -15 -10 -05 00 05 10 15
xla
(a)

2.0

0.06
0.05
0.04

< 0.03

=
0.02 -

0.01 ~

0.00

unoading, 1650 N

—— 2407 N/s
—— 5538 N/s
—— 9562 N/s

-2.0

00 05
x/a

(b)

15 -10 05

1.0

1.5

2.0

Figure 18 Cross-sectional dimensionless film thickness distributions along x direction when the load

is 1650 N during the loading (a) and unloading (b) phases at different loading rates



11 0.2

0.0
1.0 |
] -0.24
0.9+ - -0.4+
I
EZ_S 084 ™ s -0.6 0.1s to 1.5s, increment: 0.1s
o | T -081
~
0.7 ~ -1.0+
~
- = -1.24
0.6 0.1s to 1.5s, increment: 0.1s
-1.44
05 T y T T T -1.6 T T T v T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Load/N Load/N
(a) (b)

Figure 19 Dimensionless maximum pressure (a) and rigid displacement (b) variations over loads
under different loading periods (0.1s to 1.5s)



o 0.14 <
5_5 0.1s to 1.5s, increment: 0.1s sé 0.1 0.1s to 1.5s, increment: 0.1s

£
=

0.01 4

T T T T T { 0.01 T T T T T 1
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Load/N Load/N
(a) (b)

Figure 20 Dimensionless minimum (a) and central film thickness (b) variations over load under
different loading periods (0.1s to 1.5s)



