
 

 

 

 

 

Accepted by Tribology International as a research paper 

 

Effects of solid viscoelasticity and loading rates on the 

squeeze film lubrication towards polymer-based materials: A 

numerical study 

 

 

Xianjiu Lua*1, Kaiyue Jinga, Xiangquan Wub, Qingen Mengc, Zhongmin Jinc,d,e*2 

 

 

 

 

 
a College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia 

Road, Qingdao, Shandong, 266071, China 
b School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, 

Shaanxi, 710048, China 
c School of Mechanical Engineering, University of Leeds, LS2 9JT, UK 
d State Key Laboratory of Manufacturing System Engineering, School of Mechanical 

Engineering, Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi, 710054, 

China 
e Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong 

University, Chengdu, 610031, Sichuan, China 

 

 

 

 

 

*1 Corresponding author: 

Tel: 0086-18936418630 

Email: xjlu@qdu.edu.cn 

*2 Corresponding author: 

Tel: 0086-13689289660 

Email: zmjin@swjtu.edu.cn 

 

 



Abstract 

This study employs numerical simulations to investigate the effects of solid 

viscoelasticity and loading rates on the squeeze film lubrication performance. A novel 

generalized numerical lubrication model of point contact including a rigid sphere 

interacting with a viscoelastic semi-infinite plane is established. The Maxwell and 

Standard Linear Solid (SLS) models are adopted to describe the solid viscoelastic 

characteristics. By integrating the multigrid method (MG) with Fast Fourier Transform 

(FFT) algorithm, the viscoelastic squeeze film lubrication simulation was conducted. 

The proposed squeeze film lubrication model with SLS viscoelastic solid was applied 

to quantitatively analyze the time-dependent film thickness and pressure distributions 

in ultra-high-molecular-weight polyethylene (UHMWPE) hip joints. Results indicate 

that the initial squeeze-film stage requires a higher number of time step divisions, while 

the influence of time step partitioning weakens as squeeze time increases. A distinct 

secondary pressure equilibrium of the SLS model was exhibited after the initial squeeze 

stage, with minimum film thickness becoming significantly larger (up to 52% at 6τ) and 

central film thickness markedly greater (up to 51% at 6τ) than those predicted by a 

purely elastic model. Under high loading rates, instantaneous elasticity dominates, 

yielding higher pressures and film thicknesses, while low rates promote residual 

deformation, leading to wider contact areas and flatter pressure distributions. The 

unloading phase demonstrated lower peak pressures and a broader contact area 

compared to loading at the same load. The numerical framework provides an effective 

tool for analyzing transient squeeze-film lubrication performance in viscoelastic 

materials, offering insights for designing polymer-based lubricated systems. 
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1 Introduction 

Viscoelastic materials, characterized by their time-dependent mechanical response, are 

extensively employed in a wide range of engineering and biomedical applications, such 

as tires, seals, rolling bearings [1] and biomedical implants [2]. Unlike purely elastic 

materials, which exhibit an instantaneous and fully recoverable deformation upon 

loading, viscoelastic materials display significant hysteresis due to their inherent 

structural complexity. This behavior cannot be adequately described by classical elastic 

contact mechanics. Instead, the time-dependent property can be described using 

different kinds of viscoelastic constitutive models such as Maxwell and standard linear 

solid (SLS) models. Among them, the Maxwell viscoelastic solid model is primarily 

used for simulating the deformation of soft thermoplastic plastics near their melting 

temperature (exhibiting strong viscoelastic properties). However, the Maxwell 

viscoelastic model is too simple to accurately capture the creep characteristics of 

polymers and similar materials. Consequently, more sophisticated models such as the 

SLS are frequently adopted to better characterize the viscoelastic properties of these 

materials. 

Numerous studies have focused on dry contact involving solid viscoelastic properties. 

However, lubricants are often present between solid surfaces or need to be added to 

enhance the tribological performance of friction pairs. Proper lubrication can reduce 

adhesion and wear and extend the service life of soft materials such as polymers. 

Therefore, the solid viscoelastic properties and lubrication should be considered in 

combination to investigate their interaction mechanisms. Lubrication that takes into 

account the viscoelastic properties of solid materials is referred to as viscoelastic 

hydrodynamic lubrication (VEHL). Comparative analyses have revealed substantial 

deviations of the VEHL model from conventional elastohydrodynamic lubrication 

(EHL) frameworks, whether based on steady-state [3-11] or time-dependent conditions 

[12-20]. 

Elsharkawy [3] used the Newton-Raphson iterative method to solve the line contact 

viscoelastic hydrodynamic lubrication problem. Hooke and Huang [4] employed the 

multigrid method to examine the impact of solid viscoelastic properties on line contact 

viscoelastic hydrodynamic lubrication. Putignano and Dini [7] applied the BEM 

method to solve the viscoelastic hydrodynamic lubrication problem between a rigid 

sphere and a viscoelastic semi-infinite plane, investigating the influence of viscoelastic 

properties on lubrication. Building on this model, Putignano [11, 17] further studied the 

effects of solid viscoelasticity on viscoelastic hydrodynamic lubrication for different 

contact pairs, such as hard on soft, soft on hard, and soft on soft. Yan Zhao [8, 21] 

developed a computational method for viscoelastic deformation of a semi-infinite plane 

in point contact and applied it within the multigrid method to construct a point contact 

viscoelastic hydrodynamic lubrication model, studying the effects of solid 

viscoelasticity on fluid film pressure and thickness distribution. He et al. [14] developed 

a VEHL model to examine how imperfect viscoelastic-elastic interfaces affect 

lubrication, demonstrating that interface defects, layer thickness, and modulus ratio 

markedly influence film thickness and pressure profiles. Li et al. [18] developed a semi-

analytical VEHL model for polymer composites with non-uniform reinforcements, 



showing that reinforcement properties, shape, and position markedly affect contact 

pressure and film thickness. 

The aforementioned studies on viscoelastic lubrication were all conducted under 

steady-state lubrication contact conditions. However, significant differences arise when 

considering the non-stationary lubrication conditions, particularly the pure squeeze 

viscoelastic lubrication conditions. Rohde et al. [22], Yoo [12] and Kaneko [13] 

developed a viscoelastic pure squeeze lubrication model for a rigid cylinder and a 

viscoelastic semi-infinite plane and conducted numerical solutions, finding that the film 

thickness in viscoelastic lubrication is different from that in pure elastic cases. Mustafa 

et al. [23, 24] conducted a numerical model for an oscillating squeeze film lubrication 

between a rubber and rigid surface and investigated the effects of permeability and 

roughness of the rubber surface on the hydrodynamic force and the leakage flow rate 

in the squeeze film. Recently, Putignano [19] constructed a viscoelastic line contact 

pure squeeze lubrication model for a rigid cylinder and a viscoelastic semi-infinite 

plane, solving the Reynolds equation using the finite difference method and solid 

deformation using the Boundary Element Method. The results showed that, unlike 

classical elastohydrodynamic lubrication, fluid pressure and film thickness depend on 

the viscoelastic relaxation of the solid material, with peaks occurring at the edges of the 

lubrication contact area, emphasizing the necessity of considering solid viscoelasticity 

in lubrication. 

In addition to the VEHL in line and cylindrical contacts, in engineering applications, 

many practical problems such as polymer-based artificial joints and rolling bearings 

can be simplified to a squeeze film lubrication model including a rigid spherical 

indenter and a semi-infinite viscoelastic solid plane. Sahasranaman et al. [25, 26] 

proposed a non-iterative numerical method for VEHL in point contact and solved the 

relaxation problem including a rigid spherical indenter rapidly makes contact with a 

viscoelastic substrate lubricated by a liquid film. Except for the relaxation problem of 

squeeze film lubrication, many practical applications can be simplified as squeeze film 

lubrication in point contact under constant load such as soft artificial joints, seals and 

ball bearings et al. However, numerical simulation of constant loaded squeeze film 

lubrication in point contact considering solid viscoelasticity remains limited. 

Additionally, due to the time-dependent property of Viscoelastic materials, the 

deformation of present time instant is determined by the present and historical loading 

profiles. It has been indicated by Chen et al. [27] that the loading rate has great 

influences on the viscoelastic dry contact performance. However, the influences of 

loading rates on the viscoelastic squeeze film behavior remains unclear. 

By integrating established methodologies including the MG method, FFT algorithm 

and linear viscoelastic constitutive models (Maxwell and SLS), a novel computational 

framework has been developed to model the transient viscoelastic squeeze-film 

lubrication of point contact. In contrast to the classical EHL theory, the time-dependent 

deformation (stress relaxation and creep) of the solid is considered. A more realistic 

simulation of the squeeze-film lubrication behavior in soft material contacts has been 

implemented. The underlying physical mechanisms have been elucidated through 

investigating the interaction between the viscoelastic relaxation-induced surface 



recovery and transient squeeze-film flow effects. The accuracy of the proposed model 

and numerical method was indirectly validated through comparison with the dry contact 

simulation results. Furthermore, the SLS viscoelastic models are adopted to more 

accurately describe the complex viscoelastic behavior of UHMWPE hip joints. Based 

on this model, the effects of loading rate on squeeze-film lubrication performance were 

systematically investigated, with particular emphasis on the viscoelastic characteristics 

of UHMWPE in prosthetic applications. This analysis provides mechanistic sight into 

how loading conditions influence pressure distribution, film thickness and the transition 

between elastic-dominated and viscoelastic-dominated response regimes in polymer-

based lubricated systems. 

2 Materials and methods 

2.1 Model description 

The squeeze film lubrication behavior under conditions of pure normal approach 

motion was investigated in the present study. This scenario is highly relevant in 

numerous engineering applications. For example, it appears during the initial or final 

stages of impact loading or reciprocating motion, where the formulation and sustenance 

of the lubricating film are predominantly governed by the squeeze effect between the 

surfaces. Under this specific condition, the generation of hydrodynamic pressure 

primarily stems from the time-dependent variation in film thickness, known as the 

squeeze film motion. 

To characterize the indentation contact between a rigid sphere and a viscoelastic half 

space, a ball on plane configuration is adopted as the fundamental geometrical model 

in this study (Figure 1). Through equivalent treatment in terms of elastic modulus and 

geometry, this sphere-plane model can be widely applied to the lubrication analysis of 

artificial hip and knee joints, as well as polymer rolling bearings. 

2.2 Viscoelastic squeeze film lubrication equations 

Since squeeze film motion was incorporated into the study, the time-dependent 

Reynolds equation [28] was applied to characterize the system’s transient response. 
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where the term 𝜕ℎ/𝜕𝑡  denotes the squeeze film motion, while p represents the 

hydrodynamic pressure and 𝜂 signifies the lubricant viscosity. The formulation of this 

equation rests upon the classical assumptions of lubrication theory, wherein the 

lubricant flow is considered laminar. Due to the viscoelastic response effects, the 

pressure is too low to affect either the viscosity or density for the soft contact problem 

[4, 19]. Therefore, the fluid is modeled as an isoviscous and incompressible Newtonian 

fluid, and the no-slip boundary condition is applied at the solid-fluid interfaces. 

Furthermore, owing to the extremely thin film geometry, the pressure is assumed to be 

constant across the film thickness, and the effects of inertial and body forces are 

neglected. A critical simplification adopted in the current model is the isothermal 

assumption, which neglects thermal effects and associated viscosity variations induced 

by viscous shear within the squeeze film. 



The film thickness [8], h, comprises the undeformed geometrical gap and the 

viscoelastic deformation, which can be formulated as follows 

ℎ(𝑥, 𝑦, 𝑡) = ℎ00(𝑡) +
𝑥2

2𝑅
+

𝑦2

2𝑅
+ δ(𝑡)                    (2) 

where ℎ00(𝑡) represents the rigid displacement, R denotes the equivalent radius along 

x and y directions, e.g., for the artificial hip joint with radial clearance c, the equivalent 

radius can be calculated as R= (Rh(Rh+c))/c, Rh is the radius of the rigid femoral head, 

𝛿(𝑡) accounts for the time-dependent viscoelastic deformation. 

The external load applied to the rigid ball was balanced by the resultant force produced 

by the film pressure 

∫∫∫p(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦𝑑𝑡 = 𝑤(𝑡)                      (3) 

2.3 Viscoelastic constitutive relation and Boltzmann principle 

The detailed theory of viscoelasticity of has been introduced in the previous studies [16, 

29]. Briefly, based on the framework of linear viscoelasticity and small strain 

assumptions, the stress-strain relationship is described by the Boltzmann superposition 

principle in the present study. This principle states that the strain of the material at 

present time t is the superposition of the effects of all historical stress applications. Each 

stress increment applied at a previous moment ξ contributes to the current strain, 

determined by the material’s creep compliance Φ(t-ξ) over the time interval t-ξ. The 

time-dependent strain ε(t) can be obtained by the creep compliance Φ(t-ξ) [19] and 

Boltzmann hereditary integral [27, 30] 

𝜀(𝑡) = ∫ 𝛷(𝑡 − 𝜉)
𝑑𝜎

𝑑𝜉
𝑑𝜉

𝑡

0
                       (4) 

For the Maxwell viscoelastic model as shown in Figure 2(a), the creep compliance 

function [27] is 

𝛷𝑐𝑚(𝑡) =
1−𝜈2

𝐸
(1 +

𝑡

𝜏
)                         (5) 

where, E represents the storage modulus and  the Poisson’s ratio, and τ the relaxation 

time, /E. The Maxwell viscoelastic model is relatively too simple to capture the 

relaxation and creep behaviors of polymer based materials [27]. Therefore, the further 

complex viscoelastic model such as SLS model (Figure 2(b)) is used to describe the 

time-dependent deformation behaviors of such materials. For the standard linear 

viscoelastic model, the creep compliance function [27] is 

𝛷𝑐𝑠(𝑡) =
1

𝐸2
[1 +

𝐸2

𝐸1
(1 − 𝑒−

𝑡

𝜏)]                   (6) 

where, 𝐸2  represents the storage modulus and 𝐸1  the loss modulus, and τ the 

relaxation time. 

2.4 Computational framework for viscoelastic deformation 

Based on the semi-infinite half-space approximation and linear elasticity assumption, 

the Boussinesq integral [31] has been widely used to calculate the normal displacement 

of the contact surfaces for the elastic point contact between a rigid ball and an elastic 

half space 

δ(𝑥, 𝑦) =
1−𝜐2

𝜋𝐸
∫∫

𝑝(𝑥′,𝑦′)

√(𝑥−𝑥′)2+(𝑦−𝑦′)2
𝑑𝑥′𝑑𝑦′                (7) 



Similar to the time-dependent strain calculation in Section 3.1, for the system consisting 

of a rigid ball and a viscoelastic half space, the viscoelastic deformation can be 

determined by substituting the elastic compliance (1 − 𝜐2)/𝐸 in equation (7) with the 

viscoelastic compliance operator 𝛷𝑐(𝑡) [4]. It should be noted that the viscoelastic 

compliance operator 𝛷𝑐(𝑡) refers to the general conceptual variables such as Maxwell 

and SLS viscoelastic models. Combine with Boltzmann hereditary integration, the 

viscoelastic deformation can be calculated as follows 

δ(𝑥, 𝑦, 𝑡) = ∫
𝛷𝑐(𝑡−𝜉)

𝜋
∫∫

1

√(𝑥−𝑥′)2+(𝑦−𝑦′)2

𝑡

0

𝜕𝑝(𝑥′,𝑦′,𝜉)

𝜕𝜉
𝑑𝑥′𝑑𝑦′𝑑𝜉       (8) 

The non-dimensional form can be written as 

𝛿(𝑋, 𝑌, 𝑇) = 𝜆1 ∫ 𝛷𝑐(𝑇 − 𝜉) ∫∫
1

√(𝑋−𝑋′)2+(𝑌−𝑌′)2

𝑇

0

𝜕𝑃(𝑋′,𝑌′,𝜉)

𝜕𝜉
𝑑𝑋′𝑑𝑌′𝑑𝜉   (9) 

where, 𝜆1 =
2𝑝𝐻𝑅𝑥

𝜋𝐸′𝑎
. 

In order to perform numerical calculations, it is necessary to discretize the continuous 

space-time and pressure history into grids and steps, respectively. The pressure 

distributions were assumed as constant in each time step. On each grid level, the 

pressure at node (k, l) at γth time instant was denoted as Pk,l,γ, then the pressure increment 

in the γth step was Pk,l,γ-Pk,l,γ-1. The discretized viscoelastic deformation at node (i, j) at 

γth time instant can be written as 

𝛿𝑖,𝑗,𝛾 = 𝜆1∑ {𝛷𝑐(𝛾 − 𝛾′)[∑ ∑ 𝐷|𝑖−𝑘|,|𝑗−𝑙|
𝑛𝑦
𝑙=0 (𝑃𝑘,𝑙,𝛾′ − 𝑃𝑘,𝑙,𝛾′−1)

𝑛𝑥
𝑘=0 ]}

𝛾
𝛾′=1    (10) 

where, 𝐷|𝑖−𝑘|,|𝑗−𝑙| is the elastic deformation coefficient matrix. 

It can be seen from equation (10) that the elastic deformation at initial time instant can 

be calculated as a discrete convolution of initial pressure distributions and 

instantaneous elastic deformation coefficients. The effects of previous pressure 

distributions of adjacent time instant on the present time instant were considered by the 

Boltzmann hereditary integral principle. The elastic deformation at γ time instant is a 

convolution of elastic deformation coefficients and pressure increment of γth time 

instant and adjacent previous (γ-1)th time instant. The discrete convolution was 

calculated using the 2-based decimation-in-frequency FFT algorithm, which can 

significantly improve the efficiency of convolution operation. With the developed 

numerical algorithms, the viscoelastic deformation under arbitrary loading conditions 

can be calculated efficiently as long as the viscoelastic compliance operator is 

determined whatever the material is linear or nonlinear. 

2.5 Numerical algorithm and implementation 

This section details the numerical framework developed to solve the coupled 

viscoelastic squeeze film lubrication problem. The algorithm integrates a MG method 

for efficient solution of the transient Reynolds equation, a FFT-accelerated convolution 

scheme for calculating surface deformations, and the Boltzmann hereditary integral to 

account for viscoelastic material memory effects. A rigorous convergence criterion 

based on error norms ensures the reliability of the numerical solutions. 

To enhance numerical stability and facilitate the analysis of scaling effects, the 

governing equations were first non-dimensionalized. The Reynolds equation for pure 



squeeze motion in a point contact configuration was then discretized on a uniform 

spatial grid. At kth grid level, the domain is discretized into (nx
k+1)×(nx

k+1) nodes. The 

densest grid on the finest level used in this study has dimensions Nx×Ny along x and y 

directions. A second-order central difference scheme was applied to the pressure-

induced Poiseuille flow terms, and a first-order backward difference scheme was used 

for the transient squeeze flow term. 

Gauss-Seidal point relaxation iteration method was used to solve the discrete non-

dimensional Reynolds equation at each level of the grids. Different from the Finite 

Difference Method for the line contact Reynolds equation, which is effective for 1D 

problems. Applying a simple FDM to the 2D point contact equation would be 

prohibitively slow and may fail to converge for the fine meshes required to resolve the 

high pressure gradients. The slow convergence of low-frequency error components 

after grid refinement is a well-known limitation of traditional iterative methods. To 

overcome this fundamental limitation, the MG method was employed. 

The main advantage of the MG method lies in its hierarchical approach to error 

correction. High-frequency errors are efficiently smoothed by a small number of 

iterations on the fine grid, while low-frequency errors are effectively corrected on the 

coarse grid. This process is recursive, dramatically accelerating the overall convergence 

rate to nearly grid-independent efficiency. 

In the current study, a Full Approximation Scheme (FAS) was implemented within the 

MG framework. Its core concept lies in solving an equation on the coarse grid that 

incorporates not only the residual from the fine grid but also the solution information 

inherent to the coarse grid itself. This ensures consistency in the overall approximation 

between the coarse and fine grids. A 3-level W-cycle strategy was employed in the 

present study. The explanation of single W-cycle has been detailed in the previous 

research [32]. 

A grid convergence study was conducted using three grid densities (129×129, 257×257 

and 513×513). The relative difference in key output parameters was less than 3% 

between the 257×257 and 513×513 grids, indicating sufficient numerical convergence 

was achieved at the 257×257 density. Consequently, this grid size was adopted for all 

simulations. On each grid level, the second-order central difference method was used 

to the pressure induced flow terms and first-order backward difference to the right 

squeeze induced flow term. 

On each grid level, the discrete convolution was solved to calculate the elastic 

deformation and FFT algorithm was used to facilitate this calculation process. The 

detailed information towards the application of FFT algorithm on the calculation of 

discrete convolution can be illustrated as follows: Firstly, zero-padding is applied to the 

pressure and influence coefficients to convert linear convolution into circular 

convolution. Secondly, FFT is used to transform the zero-padded sequences into the 

frequency domain. Thirdly, the complex spectra of the pressure and influence 

coefficients are multiplied pointwise in the frequency domain. Fourthly, an Inverse FFT 

(IFFT) is performed to transform the product back to the spatial domain. Finally, the 

elastic deformation in the physical domain is obtained by truncating the first Nx×Ny 

points from the IFFT result. This combination was particularly advantageous for point 



contact, which drastically reduces the computational cost of the convolution integral 

from O(Nx
2×Ny

2) to O((Nx×Ny)log(Nx×Ny)) for a Nx×Ny grid. Combined with the 

Boltzmann hereditary integral, the viscoelastic deformation can be calculated for all the 

time instants during the whole squeeze film process. The rigid displacement constant 

ℎ00 was adjusted using the external load and integration of pressure distributions. The 

detailed technical routine that combined the MG method and viscoelastic deformation 

algorithm is illustrated in Figure 3. 

The pressure relaxation iteration was regarded as convergence when the accumulated 

pressure relative differences between adjacent iterations. The relative pressure 

differences calculation formula and criterion can be given as follows 

𝐸𝑟𝑟𝑝 =
∑ ∑ |𝑃̃𝑖,𝑗−𝑃̅𝑖,𝑗|

𝑁𝑦
𝑗=0

𝑁𝑥
𝑖=0

∑ ∑ 𝑃̃𝑖,𝑗
𝑁𝑦
𝑗=0

𝑁𝑥
𝑖=0

< 1 × 10−7                (11) 

The relative error between the integrated squeeze film pressure within the contact area 

and the externally applied load can be calculated by the following formula 

𝐸𝑟𝑟𝑤 =
∑ ∑ 𝑃̃𝑖,𝑗

𝑁𝑦
𝑗=0

𝑁𝑥
𝑖=0 −𝑊̅

𝑊̅
< 1 × 10−5                (12) 

where, 𝑊̅ is the dimensionless applied external load. 

A rigorous mesh sensitivity analysis requires quantitative evaluation based on error 

norms. Among these, the L2 norm is widely adopted due to its ability to reflect the global 

error over the entire computational domain. For time-dependent minimum film 

thickness, central film thickness, and maximum pressure (u(t)), the error can be defined 

as: 

𝐸𝑟𝑟𝑢 =
|𝑢∆𝑡−𝑢∆𝑡𝑟𝑒𝑓|𝐿2
|𝑢∆𝑡𝑟𝑒𝑓|𝐿2

                       (13) 

where, 𝑢∆𝑡𝑟𝑒𝑓 denotes the reference solution obtained with a finer time step of 600, 

which is regarded as being closer to the true solution. In this study, a relative L2 error 

of 5% is adopted as the threshold for temporal convergence of the numerical solution. 

The solution is considered converged when the error is at or below this value. 

2.6 Model validation 

To ensure the reliability and accuracy of the proposed viscoelastic squeeze film 

lubrication model of point contact, systematic model validation and numerical 

verification procedure were implemented. The approaches aimed to assess the model’s 

capability in capturing the core physical mechanisms, guaranteeing the stability of the 

numerical solution, and ensuring the reproducibility of the results. 

The validity of the current computational results was verified by comparing them with 

the corresponding dry contact calculation results. In order to validate the current 

lubrication model and related numerical method, the pressure and film thickness 

distributions were expressed in dimensionless form and direct comparisons of pressure 

distributions with the dry contact calculation results were conducted. The verification 

confirms that the selected operating condition parameters are consistent with the dry 

contact calculation conditions used by Chen et al. [27]. This parameter selection ensures 

that the computational results can be directly compared and validated against related 



analytical and numerical studies. 

A typical feature of VEHL is the strong coupling between the transient fluid flow and 

the time-dependent, historical-sensitive deformation of the viscoelastic solid. The 

viscoelastic deformation at any given instant is intrinsically dependent on the entire 

loading history, making the accuracy of the numerical solution highly sensitive to the 

temporal discretization density. To analyze this temporal grid sensitivity, the total 

squeeze time was discretized into a range of 20 to 600 time steps. 

Furthermore, to verify the numerical stability of the implemented Boltzmann hereditary 

integral algorithm, which plays an important role in the calculation of the time-

dependent viscoelastic deformation, a dedicated convergence test was also conducted. 

The viscoelastic deformation at a specific time instant (t = 2τ) was calculated using a 

series of mesh densities ranging from 25 to 600 time steps. 

Similarly, the sufficiency of the spatial computational domain was verified. The 

primary simulations employed a domain from -2 to 2 (in dimensionless coordinates) in 

both the x and y directions. To confirm that this domain size is adequate to capture the 

essential physics of the squeeze film lubrication without being influenced by artificial 

boundary effects, a comparative simulation was performed using a significantly larger 

domain (-4 to 4 in both directions). 

2.7 Computational conditions for UHMWPE hip joint analyses 

The computational parameters for this study on UHMWPE hip joints were selected 

based on established literature [29, 33] concerning joint biomechanics and implant 

performance. Varied loads from 300 N to 3000 N were adopted, with a femoral head 

radius of 0.014 m and a radial clearance of 110-4 m. The material’s viscoelastic 

properties, namely the relaxation time (τ) and the mechanical loss factor (defined as the 

ratio of loss and storage modulus, E1/E2), were chosen corresponding to the normal 

human body temperature of 37℃ [34]. To comprehensively capture the time-dependent 

material response including creep, stress relaxation and recovery, which is crucial for 

analyzing rate-sensitive behavior, the SLS viscoelastic model was employed for the 

investigations detailed in section 3.4. 

To simulate dynamic physiological loading, conditions of different loading rates 

particular three gait patterns were implemented. Based on reported gait cycle durations 

ranging from 0.59 s to 1.33 s for activities such as slow walking, normal walking and 

slow running [35], corresponding loading rates of 2407 N/s, 5538 N/s and 9562 N/s 

were applied. A broader parametric study was also conducted by simulating continuous 

loading rates corresponding to cycles from 0.1 s to 1.5 s. This approach was designed 

to reveal the effect of loading rate on viscoelastic squeeze film lubrication performance. 

To ensure that observed differences were stemmed solely from the loading physics and 

not from numerical artifacts, a uniform time step (T = 0.0056) was used for all the 

loading rate cases. It is important to note that for all these cyclic loading simulations, 

the final maximum load reached in each case was consistent at 3000 N, differing only 

in the rate at which this load was applied. The specific geometric and material 

parameters employed herein are referenced from typical designs of UHMWPE artificial 

hip joints, with details provided in Table 1. 

3 Results 



3.1 Spatiotemporal mesh sensitivity analysis 

Figure 4 presents the dimensionless minimum/central film thickness, maximum 

pressure and relative L2 error across different number of time step discretization within 

a squeeze period (2τ). As the number of time steps increases, the relative L2 errors of 

the minimum/central film thickness and maximum pressure show a monotonically 

decreasing trend. When the time steps increase from 20 to 200, the error decreases 

rapidly. When the number of time steps reaches 200, the errors in the minimum film 

thickness, central film thickness, and maximum pressure all fall below 5%, satisfying 

the convergence criterion. At the 0.5τ time instant, the numerical analysis revealed 

significant differences in key parameters: the minimum film thickness shows 

substantial variations of 53.9% between cases with 20 and 600 time steps, gradually 

decreasing to 9.2% for 100 steps, 5.2% for 160 steps, and 3.8% for 200 steps. Parallel 

trends were observed in central film thickness, with relative differences of 42%, 7.6%, 

4.3%, and 3.2% for the same number of time steps, respectively. Maximum pressure 

values exhibited remarkable consistency, with relative differences of merely 3.1% 

between 20 and 600 steps and 0.49% for 100 steps. The comparative analysis at 

subsequent time instants (τ and 2τ) revealed markedly reduced relative differences 

between cases. Specifically, the minimum film thickness showed variations of only 2.5% 

and 1.6% between 200 and 600 steps at τ and 2τ, respectively, while the maximum 

pressure demonstrated negligible differences of 0.002%. It can be seen that increasing 

temporal resolution significantly enhanced the stability and accuracy of film thickness 

and pressure calculations, particularly during the critical initial stage of the squeeze 

period (0.5τ). The influence of time step discretization became progressively less 

pronounced at later stages (τ and 2τ). The temporal pattern suggested that accurate 

numerical modeling requires higher time step resolution primarily during the early 

phase of the squeeze period, while coarser discretization may be sufficient during later 

stages without compromising computational accuracy. 

Figure 5 illustrates the impact of computational domain size on the evolution of both 

the minimum/central film thickness and the maximum pressure throughout the 

simulated squeeze process. The results from the two tested domain sizes exhibit 

excellent agreement for both film thickness and pressure profiles, confirming that a 

computational domain spanning from -2 to 2 in both the x and y directions is adequate 

to capture the essential physics of the squeeze film lubrication phenomenon across the 

entire simulated duration. 

Figure 6 further investigates the sensitivity of the numerical solution to temporal 

discretization by presenting the viscoelastic deformation at the specific time instant of 

2τ under different time step sizes. Notably, the maximum discrepancy between the 

results obtained with the coarsest (25 steps) and finest (600 steps) temporal 

discretization is less than 0.02%. The negligible difference demonstrates the excellent 

numerical stability of the adopted Boltzmann hereditary integral algorithm with the 

present chosen time step of 200, ensuring the reliability of the time-dependent 

deformation predictions. 

3.2 The squeeze film lubrication of Maxwell viscoelastic model 

Figure 7(a) presents the evolution of dimensionless maximum pressure for both the 



purely elastic and Maxwell viscoelastic models during the squeeze-film lubrication 

process. Figure 7(b) provides a comparative analysis of the dimensionless pressure 

distributions from the present squeeze-film lubrication model against established dry-

contact pressure solutions by Radok and Lee [36] and Chen et al. [27] at specific time 

instants (0.5τ, τ, and 2τ). The overall pressure profiles predicted by the lubrication 

model show excellent agreement with the dry-contact solutions across these time points. 

Notably, the peak pressure location for both conditions shifts to the edge of the contact 

region by t = 2τ. The primary discrepancy arises in the exit region of the contact area, 

where the squeeze-film pressure exhibits a gradual decay to ambient conditions, a 

feature absent in the dry-contact models where pressure terminates abruptly. This 

gradual pressure relief at the outlet is a characteristic dictated by fluid flow dynamics 

in lubrication. The strong correlation demonstrated in Figure 7(b) validates that the 

current viscoelastic squeeze-film lubrication model accurately captures the pressure 

distribution evolution across a wide range of time scales, effectively bridging the 

behavior between instantaneous elastic contact and time-dependent viscoelastic 

response under lubricated conditions. 

In addition to the pressure distributions, the film thickness evolution for both purely 

elastic and viscoelastic (Maxwell model) squeeze-film lubrication was analyzed. Figure 

8 illustrates the dimensionless minimum and central film thicknesses during the process. 

Initially, the film thicknesses for both material models were nearly identical. However, 

as the squeeze motion progressed, a distinct divergence emerged: the decay rate of the 

minimum film thickness for the Maxwell model began to exceed that of the elastic 

model, and this difference gradually widened over time. Concurrently, the central film 

thickness for the viscoelastic Maxwell model became and remained thicker than that of 

the elastic counterpart shortly after motion onset, with the disparity also increasing as 

the process continued. 

Figure 9 shows the temporal evolution of dimensionless pressure and film thickness 

distributions along the entrainment direction (y=0). During the squeeze-film process, 

the pressure distribution of the elastic model resembled the Hertzian contact, with the 

lubricated contact area remaining relatively constant over time. The film thickness 

decreased rapidly initially and then more slowly, becoming progressively flatter as the 

motion proceeds. In contrast to the elastic model, the overall pressure distribution of 

the Maxwell model was significantly smaller, and the contact area was much larger. 

Notably, the pressure peak gradually decreased in magnitude and shifted towards the 

edge regions of the contact, resulting in a distinctive "double-peak" distribution. 

Furthermore, the overall film thickness of the Maxwell model was thinner at the edges 

of the contact zone but thicker in the central region compared to the elastic model. As 

the squeeze motion continued, the film thickness in the central region gradually 

decreased while local peaks formed near the contact edges, as shown in Figure 9. 

3.3 The squeeze film lubrication of SLS viscoelastic model 

Figure 10 (a) presents the temporal evolution of the dimensionless maximum pressure 

for the purely elastic and SLS viscoelastic models during the pure squeeze-film 

lubrication process. For the elastic model, the dimensionless maximum pressure rapidly 

increases to a peak and stabilizes at a value approximating unity. In contrast, the 



maximum pressure for the SLS model exhibits a distinct viscoelastic relaxation 

response: after an initial rise, it undergoes a gradual decay, eventually tending to 

stabilize at a significantly lower value of approximately 0.63. This divergence 

underscores the fundamental difference between instantaneous elastic recovery and 

time-dependent stress relaxation inherent to viscoelastic materials. Figure 10 (b) shows 

the cross-sectional profiles of the dimensionless pressure distribution for both 

lubricated and dry contact conditions at selected time instants (t = 0.5τ, 1.0τ, and 2.0τ). 

A key observation is that the pressure distributions under lubricated and dry contact 

conditions are remarkably similar across the central contact region, conforming to 

expectations from classical Hertzian contact theory where lubricant pressures in the 

contact zone can approximate dry contact stresses. The primary distinction emerges in 

the exit regions of the lubricated contact. Here, the hydrodynamic lubrication pressure 

does not terminate abruptly but rather decays gradually to ambient conditions, 

following the characteristic behavior dictated by the Reynolds equation. This smooth 

decay at the outlet is a critical feature of fluid film lubrication that prevents pressure 

discontinuities and influences load capacity. The comparative analysis highlights how 

the introduction of a lubricant film modifies the pressure field at the contact boundaries 

while maintaining a similar core pressure distribution, a factor essential for accurate 

modeling of mixed or full-film lubrication regimes. 

Figure 11 shows the evolution of dimensionless minimum and central film thicknesses 

for the purely elastic and SLS viscoelastic models during the squeeze-film lubrication 

process. The initial dimensionless minimum film thicknesses for both the elastic and 

SLS models were nearly identical at the onset of squeeze motion. A critical crossover 

point is observed at a dimensionless time of t = 1.28τ, where the minimum film 

thickness of the SLS model begins to consistently exceed that of the elastic model. At 

this precise moment, both models share an identical minimum film thickness value of 

0.00658. Following this crossover, the evolution of the minimum film thickness for the 

SLS model diverges markedly from that of the purely elastic (and Maxwell) model. As 

the squeeze process continues, the minimum film thickness for the SLS model not only 

overtakes but sustains a growing advantage over the elastic case. This disparity 

progressively amplifies, culminating in a substantial 52% difference by t = 6τ. 

Quantitatively, at this final time instant, the dimensionless minimum film thickness is 

0.00254 for the elastic model compared to 0.00386 for the SLS model. A similar, yet 

more pronounced trend is evident for the central film thickness. The central film 

thickness for the SLS model is generally greater than that of the elastic model shortly 

after the squeeze motion begins, and this difference also enlarges over time. By t = 6τ, 

the central film thickness for the SLS model (0.00865) is 51% larger than that of the 

purely elastic model (0.00574). 

Figure 12(a) shows the evolution of dimensionless rigid displacements for the purely 

elastic and SLS viscoelastic models during the squeeze-film lubrication process. The 

rigid displacement for both models rapidly decreases to approximately -0.9 within a 

very short initial period (t < 0.04τ). Subsequently, the elastic model displacement 

stabilizes around -0.996, whereas the SLS model displacement continues to decrease, 

eventually reaching a value of approximately -1.58. This divergence highlights the 



pronounced time-dependent, creep-dominated deformation characteristic of the 

viscoelastic material, which is absent in the purely elastic response. Figure 12(b) shows 

the dimensionless deformation profiles for the elastic and SLS models at selected time 

instants (t = 0.5τ, 1.0τ, 2.0τ, 3.0τ, 4.0τ, 6.0τ). The viscoelastic deformation increment 

progressively diminishes as the squeeze motion proceeds, indicating that the material’s 

time-dependent response gradually approaches a steady state. Notably, the relative 

difference in maximum deformation between t = 4.0τ and t = 6.0τ is merely 0.5%, 

suggesting that the deformation evolution becomes nearly negligible beyond t = 4.0τ 

for the given conditions. This observation underscores the critical role of the material's 

relaxation time (τ) in governing the transient deformation kinetics during squeeze-film 

lubrication. 

Figure 13 shows temporal evolution of the cross-sectional dimensionless pressure and 

film thickness profiles for the purely elastic and SLS viscoelastic models, as simulated 

by the present squeeze-film lubrication model. During the squeeze process, the pressure 

distribution for the elastic model closely resembles the classic Hertzian contact profile, 

with the lubricated contact area remaining relatively constant over time. 

Correspondingly, the film thickness for the elastic case decreases rapidly initially, 

followed by a more gradual decline, and the profile becomes progressively flatter as the 

motion proceeds. In contrast, the pressure distribution for the SLS model is significantly 

lower in magnitude and spread over a much larger contact area compared to the elastic 

case. The film thickness in the central constriction region of the SLS contact is initially 

smaller than that of the elastic model at early times (e.g., t = 0.5τ and 1.0τ). However, 

as the squeeze process continues, the overall film thickness profile along the x-direction 

for the SLS model eventually becomes greater than that of the purely elastic case. 

Throughout the entire squeeze duration, the contact area for the SLS model remains 

substantially larger than that for the elastic model, highlighting the profound influence 

of solid viscoelasticity on transient lubrication mechanics. 

3.4 Effects of loading rates on the VEHL performance of UHMWPE hip joints 

The key lubrication performance parameters (including maximum pressure, minimum 

film thickness, central film thickness and rigid displacement) under a load of 3000 N 

are quantitatively summarized for the three investigated loading rates in Table 2. When 

the loading rate decreases from 9562 N/s to 2407 N/s, the maximum pressure decreases 

by approximately 24.0%, the minimum film thickness decreases by about 57.4%, the 

central film thickness decreases by about 41.3%, while the rigid displacement increases 

by about 24.1%. These systematic variations highlight the significant influence of 

loading rate on viscoelastic squeeze-film lubrication behavior, with lower rates 

promoting greater material compliance and flattened pressure distributions, ultimately 

leading to reduced film thickness and expanded contact area. 

Figure 14 shows the dimensionless maximum squeeze-film pressure as a function of 

external load for UHMWPE hip joints during the loading phase under three different 

loading rates (2407 N/s, 5538 N/s, and 9562 N/s). For all three loading rates, the 

pressure initially increased to a peak value before undergoing a subsequent gradual 

decrease as the squeeze-film motion progressed. Notably, the initial peak values of the 

dimensionless maximum pressure were remarkably similar across the different loading 



rates. However, following this initial peak, the pressure evolution began to diverge 

significantly based on the loading rate. The most pronounced decrease in maximum 

fluid pressure was observed at the slowest loading rate of 2407 N/s. The pressure 

decline was less severe at the intermediate rate of 5538 N/s, and the least decrease 

occurred at the fastest rate of 9562 N/s. This demonstrates a clear inverse relationship 

between the loading rate and the magnitude of pressure decay after the initial peak. By 

the time the final peak load of 3000 N was reached, the dimensionless maximum 

pressures had stabilized at distinct final values: 0.69772 for 2407 N/s, 0.85494 for 5538 

N/s, and 0.91792 for 9562 N/s. This quantitative result underscores the significant 

influence of loading rate on the steady-state pressure distribution within the viscoelastic 

squeeze film, with higher loading rates preserving a greater proportion of the initial 

peak pressure. 

Figure 15 shows the dimensionless rigid displacement as a function of external load for 

UHMWPE hip joints under different loading rates. The results for the three loading 

rates (2407 N/s, 5538 N/s and 9562 N/s) exhibit a trend of gradual convergence with 

increasing load. Notably, the overall rigid displacement is highest for the fastest loading 

rate (9562 N/s), followed by the intermediate rate (5538 N/s), and is lowest for the 

slowest rate (2407 N/s). Figure 16 illustrates the dimensionless minimum and central 

film thickness with external load for UHMWPE hip joints under three different loading 

rates. During the loading phase (from 300 N to 3000 N), both the minimum and central 

film thicknesses demonstrate a clear dependence on loading rate: the film thickness 

values are greatest for the highest loading rate (9562 N/s), intermediate for 5538 N/s, 

and smallest for the lowest rate (2407 N/s). 

Figure 17 shows the cross-sectional pressure distributions along the x direction under a 

constant load of 1650 N for different loading rates during the loading and unloading 

phases. A clear dependence of the pressure profile on the loading rate is observed. For 

both loading and unloading, the pressure distribution exhibits its flattest profile at the 

slowest loading rate of 2407 N/s. Correspondingly, the contact area is largest at this rate, 

followed by 5538 N/s and 9562 N/s, indicating a transition from a viscoelasticity-

dominated to an elasticity-dominated response with increasing loading rate. 

Furthermore, under the same load of 1650 N, the peak pressure during the unloading 

phase is notably lower, while the contact area is broader compared to the loading phase, 

highlighting the path-dependent and hysteretic behavior of the viscoelastic material. 

Figure 18 shows the cross-sectional film thickness distributions along the x direction 

under a constant external load of 1650 N for different loading rates during the loading 

and unloading phases. Consistent with the pressure results, the film thickness profile is 

also flattest at the slowest loading rate of 2407 N/s. The overall film thickness values 

in this case are smaller than those observed at the higher rates of 5538 N/s and 9562 

N/s. This trend aligns with the enlarged contact area observed in Figure 17, where 

lubricant is distributed over a wider region, resulting in a thinner film on average. 

Figure 19 illustrates the influence of varying loading time (corresponding to continuous 

loading rates) from 300 N to 3000 N on the maximum pressure and rigid displacement 

during a squeeze film lubrication process. As the loading time increases, the maximum 

squeeze film pressure generated upon reaching 3000 N correspondingly decreases. 



Concurrently, the rigid displacement increases with prolonged loading time. However, 

the growth rate gradually decelerates. Figure 20 shows the effect of varying loading 

cycles (0.1 s to 1.5 s) on both the minimum and central film thicknesses. It can be 

observed that both the minimum and central film thicknesses decrease as the loading 

time increases. Furthermore, the rate of this decrease gradually diminishes with loading 

times. 

4 Discussions 

A novel viscoelastic squeeze film lubrication model is proposed specifically formulated 

for point contact scenarios, which are characterized by a finite, typically elliptical 

contact area. Unlike the infinite line contact problem, a more complex, two dimensional 

pressure and film thickness distributions are involved in the point contact conditions, 

which is also significantly influenced by lateral side leakage of the lubricant. Accurately 

capturing these phenomena is therefore essential for simulating a wide range of real-

world engineering components where the contact area is inherently finite. Key 

applications include artificial hip and knee joints, polymer rolling bearings, and gear 

contacts operating under misalignment or at the ends of teeth, where the contact 

geometry deviates from an ideal line. Therefore, a corresponding computational 

algorithm tailored for polymer-based materials was implemented. The related 

governing equations were solved to obtain full numerical lubrication solutions for two 

typical viscoelastic constitutive models: Maxwell and SLS models. The validity of the 

proposed model and numerical scheme was established through a rigorous verification 

process. In details, the computed squeeze film pressure distributions were compared 

against analytical and numerical dry contact solutions. Different temporal discretization 

densities were used to verify the accurate numerical lubrication modeling and 

Boltzmann integral numerical stability. Excellent agreement between the present 

numerical solution and the analytical and numerical dry contact solutions indirectly 

validated the proposed model and algorithms. Based on the developed viscoelastic 

squeeze film lubrication model, different loading modes particularly the three gait 

patterns were adopted to investigate the effects of loading rates on the viscoelastic 

squeeze film lubrication performance. 

The calculation of viscoelastic deformation in this study is founded upon the Boltzmann 

superposition principle, which constitutes the cornerstone of linear viscoelastic theory 

under the assumption of small strains. The principle posits that the strain response of a 

material at any given time is a linear superposition of the effects of its entire loading 

history. The adopted framework is computationally efficient and provides excellent 

accuracy for scenarios where deformation remain within the material’s linear response 

regime, a condition satisfied during the early and intermediate stages of the squeeze 

process investigated here. In the present numerical implementation for squeeze film 

lubrication, the viscoelastic deformation at each computational time step is computed 

by incorporating the complete loading history from the simulation’s inception. The 

material’s intrinsic memory effect was fully captured without employing a truncated 

time window. Consequently, the accuracy of accumulated deformation, and the 

predicted pressure and film thickness, becomes inherently sensitive to the density of 



the temporal grid discretization. 

A comprehensive temporal grid sensitive analysis was conducted to critically assess the 

discretization requirements for accurately resolving the lubrication simulation within a 

squeeze cycle. The analysis revealed pronounced sensitivity of the film thicknesses to 

temporal resolution, particularly during the initial compression phase (Figure 4). This 

stage is characterized by rapid transients, where steep gradients in fluid flow and 

surface deformation demand high temporal resolution to achieve physical fidelity. 

Coarser discretization during this phase introduced significant deviations in both the 

minimum and central film thicknesses. In contrast to film thickness, the maximum 

pressure values exhibited robust consistency across discretization levels (Figure 4). 

This suggests that the pressure distribution within the contact stabilizes more rapidly 

and is less susceptible to variations in temporal resolution once the initial transient has 

passed. The observed convergence patterns carry significant implications for 

computational strategy. At the later stages of the squeeze process (e.g., at dimensionless 

times τ and 2τ), variations in both film thickness and pressure with further time-step 

refinement became negligible. It is suggested that computational efficiency can be 

substantially enhanced by employing adaptive time-stepping strategies. A finer 

temporal resolution should be concentrated during the initial rapid transients, while 

coarser steps can be adopted as the system evolves toward a quasi-steady state. Such an 

approach would optimally balance numerical accuracy with computational resource 

expenditure. The calculated viscoelastic deformation at 2τ serves to validate the 

numerical stability of the implemented Boltzmann hereditary integral algorithm within 

the examined range of discretization. The successful verification underpins the 

reliability of the subsequent simulations investigating the effects of viscoelastic model 

and loading rates. 

The Maxwell and SLS model were integrated into a pure squeeze film lubrication 

framework to analyze the transient response of viscoelastic materials under normal 

approach motion. The simulations revealed that both the film thickness and pressure 

distribution during the squeeze process exhibited pronounced time-dependent evolution 

and stress relaxation effects, which are typical features of viscoelastic behavior. This 

behavior stands in fundamental contrast to the assumptions of classical EHL theory, 

which typically treats the contacting solids as purely elastic, thereby neglecting the 

material’s memory and rate-dependent response. The accuracy and predictive capability 

of the proposed viscoelastic squeeze film lubrication model were rigorously validated. 

A direct comparison was made between the pressure distributions predicted by the 

present model and established reference solutions, including the analytical solutions of 

Radok and Lee [36] as well as the numerical solution of Chen et al. [27] (Figures 7 and 

10). The results demonstrated excellent agreement within the central contact region for 

both the Maxwell and SLS model implementations. 

Upon the application of an instantaneous load, both the Maxwell and SLS viscoelastic 

models initially exhibit a response identical to that of a purely elastic material, 

characterized by the immediate deformation of the spring element and the generation 

of instantaneous elastic strain. It is consistent with the fundamental behavior of linear 

viscoelastic models under suddenly applied loads, where an instantaneous elastic 



response is always present. The evolution of the pressure distribution diverges 

significantly from the classical elastic Hertzian solution due to the intrinsic time-

dependent nature of viscoelasticity. 

In the Maxwell model, it is characterized by the development of a double-peak pressure 

profile (Figures 7(b) and 9(a)). The formulation of this distribution can be attributed to 

a complex, dynamic interplay among three key mechanisms: viscoelastic stress 

relaxation, transient fluid squeeze flow, and the resulting time-evolving surface 

deformation. The process can be detailed as follows: A Hertzian-like pressure peak was 

induced firstly as the application of instantaneous load, which is governed by the 

spring’s immediate elastic response. Subsequently, the dashpot in series introduces a 

critical time delay in the load transfer and stress redistribution within the material. This 

delay initially suppresses the full development of material deformation, leading to an 

overall pressure magnitude lower than that predicted by a purely elastic model for the 

same nominal load. As the process evolves, viscoelastic stress relaxation becomes the 

dominant mechanism. The relaxation of the dashpot components leads to a rapid decay 

of stress, and consequently pressure, at the center of the contact zone where the initial 

stress concentration was highest. Concurrently, transient fluid dynamics play a decisive 

role. The delayed deformation response of the viscoelastic solid, coupled with the 

extrusion of fluid from the converging gap, acts to redistribute and concentrate the 

pressure towards the peripheral regions of the contacts. In the edge regions, the initial 

stress state is lower, allowing the viscoelastic relaxation process to reach completion 

more rapidly. This facilitated a partial recovery of the elastic deformation due to the 

viscoelastic effect. This localized elastic recovery induced increase in local film 

thickness, creating a more favorable geometry for pressure generation. The observed 

phenomenon is consistent with the temporal evolution of viscoelastic pressure 

distributions reported in the literature [19]. 

For the SLS model, the mechanical behavior is described by a spring in parallel with a 

Maxwell unit (Figure 2(b)). During the initial loading phase of the squeeze process, the 

rapid fluid extrusion from the converging gap dominates the film thickness reduction 

for both the purely elastic and SLS viscoelastic models. Since the instantaneous elastic 

response of both materials is similar, their initial film thickness decay rates are 

comparable (Figure 11). As time progresses under constant load, the viscous dashpot 

within the SLS model begins to relax. The stress relaxation allows material to undergo 

time-dependent creep, redistributing the internal stress. Crucially, this process gradually 

releases a portion of the elastic energy stored in the spring elements. Due to this 

relaxation behavior, a time-delayed surface recovery effect manifests during the 

ongoing squeeze process. When the fluid is extruded and the film thickness decreases, 

the surface of the SLS solid does not passively maintain its deformation. Instead, driven 

by internal stress relaxation, it exhibits a tendency to recover its original shape. This 

recovery motion opposes the approach of the two surfaces, thereby effectively slowing 

the decay rate of the film thickness. As the film becomes thinner, the fluid extrusion 

rate decelerates, while the cumulative effect of viscoelastic deformation recovery 

becomes increasingly significant. Eventually, a transient balance is reached between 

these two competing effects. As the squeeze film motion continues, the influence of 



viscoelastic recovery begins to surpass that of fluid extrusion, resulting in a film 

thickness under the SLS model that is notably greater than that predicted by the purely 

elastic model. In contrast, the purely elastic model, lacking such an intrinsic recovery 

mechanism, exhibits a more pronounced decay in film thickness. 

A critical observation from the simulations is that the maximum dimensionless squeeze 

film pressure in the SLS model stabilizes at an asymptotic value of approximately 0.63 

(Figure 10). This stabilization is not arbitrary but arises from the intrinsic viscoelastic 

relaxation characteristics of the SLS material and its dynamic coupling with the 

transient fluid squeeze flow. When the material parameters satisfy E1/E2=1, the ratio of 

the equilibrium modulus E0 (𝐸1𝐸2/(𝐸1+𝐸2)) to the instantaneous elastic modulus E2 is 

theoretically 0.5. In the present investigated spherical contact configurations, the 

maximum pressure Pmax scales with the effective elastic modulus as Pmax∝E2/3 

according to Hertz theory. Consequently, the ratio between steady-state pressure and 

initial pressure can be expressed as Pmax(∞)/Pmax(0)≈(E0/E2)
2/3≈0.63. Due to the 

weakening of fluid pressure as the film thins, the final support is determined by the 

equilibrium elastic deformation of the solid. Therefore, the dimensionless squeeze film 

pressure tends towards the dry contact maximum pressure (0.63) in the final equilibrium 

state (Figure 10). When the squeeze time exceeded three times the relaxation time, the 

viscoelastic material underwent significant relaxation, its viscoelastic effects gradually 

diminished, the final support is determined by the equilibrium elastic deformation of 

the solid and the squeeze film pressure and contact radius approached the asymptotic 

values (Figure 10) determined by two springs connected in series. 

The selection of an appropriate constitutive model is crucial for accurately capturing 

the time-dependent mechanical response of polymers under dynamic loading. Although 

both the Maxwell and SLS models are functional in linear viscoelasticity, they exhibit 

distinct capabilities in simulating real material behaviors. The Maxwell model, 

characterized by a spring and dashpot in series, is inherently limited in its ability to 

accurately represent the creep and recovery behaviors typical of polymeric solids, as it 

predicts unlimited creep strain under constant stress. In contrast, the SLS model, which 

incorporates an additional spring in parallel with a Maxwell unit, provides a more 

comprehensive framework. It can effectively describe not only stress relaxation but also 

the bounded creep and eventual recovery observed in cross-linked polymers and many 

engineering thermoplastics. This makes the SLS model particularly suitable for 

simulating materials like UHMWPE, where long-term dimensional stability under load 

is critical, such as in artificial joint applications. 

Prior experimental and theoretical studies [33] have confirmed that under the specific 

load of 300 N to 3000 N, the initial deformation response of UHMWPE can be well 

approximated by a linear elastic assumption. The primary objective of the present 

numerical model is to elucidate the fundamental time-dependent interplay between 

viscoelastic stress relaxations within the solid and the transient squeeze flow of the 

lubricant. For this purpose, a linear viscoelastic framework, as embodied by the SLS 

model, serves as a well-established and valid starting point, balancing physical fidelity 

with computational tractability. Consequently, the SLS model was adopted in this study 

to systematically characterize the influence of varying loading rates on the squeeze film 



lubrication performance of UHMWPE. A key finding from comparing the lubrication 

characteristics of UHMWPE hip joints under different loading rates was the loading 

rate independent nature of the initial peak pressure (Figure 14). This phenomenon 

occurred because the initial instantaneous load was identical in all numerical tests, 

despite the divergent differences determined by different loading rates. However, as the 

loading process continued, the evolution of the pressure field and film thickness became 

markedly rate-sensitive. Divergences in the transient response became apparent under 

different loading rates once the external load began to increase (Figure 17). By the time 

the instantaneous load reached 1650 N, the pressure distributions for the three 

representative loading rates (simulating slow walking, normal walking, and running 

gaits) were distinctly different. At this stage, the transient viscoelastic response became 

dominant, meaning the material's deformation became highly sensitive to the rate at 

which the load was applied. A general trend observed was that larger squeeze film 

pressures were sustained under higher loading rates (Figures 17 and 18). This can be 

attributed to the material exhibiting a more elastic-dominated response at high rates. 

The viscous dashpot in the SLS model has insufficient time to relax and accommodate 

the rapidly applied strain, leading to higher transient stresses within the solid and, 

consequently, higher fluid pressures. Conversely, at lower loading rates, viscoelastic 

effects become pronounced. The dashpot has adequate time to relax, leading to 

significant stress decay and time-dependent creep deformation. This results in a larger 

residual indentation depth, an enlarged contact area, and consequently, a flatter and 

more distributed pressure profile. 

To further investigate these mechanisms, 15 groups of loading times corresponding to 

a continuous spectrum of loading rates were analyzed (Figures 19 and 20). The results 

conclusively demonstrate that the viscoelastic material exhibits stronger apparent 

contact resistance at higher loading rates. This finding aligns perfectly with previous 

dry-contact numerical analyses by Chen et al. [27], which reported similar rate-

dependent pressure evolution. The interplay between the loading rate and the material’s 

intrinsic relaxation time determines whether the contact response is predominantly 

elastic (high rates) or viscoelastic (low rates), which in turn governs the pressure 

distribution, film thickness, and load-bearing capacity throughout the loading cycle. 

Notably, during the loading phase, when the viscoelastic material was subjected to 

compression, the instantaneous elastic modulus dominated the response in a short 

period, leading to higher pressure peaks concentrated in the central contact area (similar 

to Hertz contact). During the unloading phase, the relaxation time of the base material 

was relatively long, and compared to the loading phase, the base material began to 

recover its deformation. However, the viscous resistance caused the recovery process 

to lag, preventing rapid elastic rebound, which resulted in an enlarged contact area and 

a dispersed pressure distribution. 

Although valuable insights into the viscoelastic squeeze film lubrication mechanism 

were provided by the present study, it is important to acknowledge the inherent 

limitations, which stem from necessary simplifications adopted. The current model 

incorporates several key simplifications related to several aspects such as surface 

topography, fluid rheology and thermal effects. First, the contacting surfaces are 



assumed to be perfectly smooth. In practical engineering and biological applications, 

such as artificial joints or engineered bearings, surface roughness at the micrometer 

scale is ubiquitous and can be comparable to the lubricant film thickness value. This 

roughness can fundamentally alter the soft lubrication regime, potentially triggering a 

transition from full-film to mixed lubrication [37] or even boundary lubrication. 

Therefore, extending the current framework to incorporate measured or statistically 

representative surface roughness is a crucial next step to enhance model fidelity for 

real-world applications. Second, the lubricant is modeled as an isoviscous and 

incompressible Newtonian fluid. The Barus or Roelands viscosity-pressure relationship 

and fluid compressibility should be integrated into future models to accurately capture 

the piezo viscous effects that significantly influence pressure generation and load-

bearing capacity in high pressure contacts. Third, the analysis is conducted under an 

isothermal assumption, neglecting heat generation due to viscous shear within the fluid 

and energy dissipation within the viscoelastic solid. This simplification was 

strategically employed to focus on the fundamental coupling between viscoelastic 

deformation and transient fluid flow. However, in scenarios involving high loading 

rates or cyclic loading, significant self-heating effects can occur within viscoelastic 

materials. This temperature rise can, in turn, alter the material's mechanical properties 

[15] such as an increase in temperature typically leads to a decrease in the elastic 

modulus and a shortening of relaxation times for polymers like UHMWPE. A fully 

coupled thermo-visco-elastohydrodynamic analysis represents a critical and complex 

future direction to understand performance under more severe operating conditions. 

The model validation in this study relied on a rigorous numerical comparison with dry 

viscoelastic contact solutions. While this is a necessary first step, direct experimental 

validation of the transient lubricated squeeze-film process remains essential. Currently, 

there is a notable lack of publicly available high-fidelity experimental data for 

viscoelastic squeeze-film lubrication under conditions matching our simulations. 

Future work will aim to bridge this gap by employing advanced experimental 

techniques such as optical interferometry, a well-established method for in-situ 

measurement of thin lubricating films with high spatial and temporal resolution. 

The current model is built upon the framework of linear viscoelasticity theory. This is 

appropriate for the moderate deformations and effectively captures the core relaxation 

and flow dynamics. However, for polymer-based materials like UHMWPE subjected 

to very large strains or long-term creep, geometric nonlinearities arising from finite 

deformations can become significant. In such cases, the changing contact geometry 

under large strain can profoundly influence contact mechanics and pressure distribution, 

and the stress-strain relationship itself becomes nonlinear. Building upon the present 

work, a logical and important extension is to incorporate geometric nonlinearity and 

develop a finite deformation viscoelastic constitutive model. This would involve 

conducting related finite strain measurements to inform the model formulation, 

ultimately leading to a more generalized framework capable of predicting the behavior 

of soft materials under extreme loading conditions. 

The current full-history integration approach is computationally manageable for the 

cases presented (with up to 600 time steps), exploring very low loading rates would 



necessitate a large number of steps to maintain accuracy. To enable efficient studies 

across decades of loading rates, the implementation of a loading history truncation 

method coupled with an adaptive time-stepping algorithm is proposed. Such an 

algorithm would dynamically coarsen the temporal resolution during quasi-steady 

periods and refine it during rapid transients. A corresponding sensitivity analysis of the 

truncation length will be indispensable to rigorously balance computational efficiency 

with numerical accuracy, ensuring reliable results across the entire parameter space. 

5 Conclusions 

The current numerical study systematically reveals the significant impact of the 

viscoelastic properties of polymer materials on their squeeze film lubrication 

characteristics. Based on the Maxwell and SLS viscoelastic models, combined with the 

MG and FFT algorithm, the influence of the material's viscoelastic properties on 

squeeze film pressure and film thickness distributions during the squeeze process, as 

well as the characteristics under different loading rates, has been elucidated. The main 

conclusions are as follows: 

1. The selection of time step size has a significant impact on the numerical calculation 

accuracy of lubrication, especially during the initial stage of squeeze. Increasing the 

number of time steps can effectively reduce the numerical error of the transient response 

in the initial stage and have little effect during the relaxation stage. This provides a 

theoretical basis for adopting an adaptive time step strategy (refining the step size in 

the initial stage and coarsening it in the later stage) to balance computational efficiency 

and accuracy. For the viscoelastic (SLS modeled materials) squeeze film problems 

investigated in this work, a time step of 200 is recommended to maintain a relative L2 

error below 5% while ensuring computational efficiency. 

2. The squeeze film pressure distributions of the Maxwell and SLS viscoelastic models 

show a high degree of consistency with the dry contact pressure distributions. The 

consistency between lubricated and dry contact pressures provides a critical validation 

of our deformation solver. This agreement is expected when fluid effects become 

secondary to the solids' viscoelastic response, establishing the dry contact solution as a 

rigorous benchmark. 

3. At the initial squeeze film stage, the squeeze film pressure and film thickness of 

Maxwell and SLS models were similar with that of the elastic model. After the initial 

squeeze film stage, the maximum pressure reaches a secondary equilibrium state for the 

SLS model from the time instant around 2τ. The minimum film thickness of SLS 

viscoelastic model was larger than the elastic model from time instant of 1.28τ, and the 

difference expanded to 52% at time instant of 6τ. The central film thickness of SLS was 

generally larger than the elastic model from the squeeze film motion processed, and the 

maximum difference expanded to 51% at time instant of 6τ. 

4. At high loading rates, the material exhibits predominantly instantaneous elastic 

behavior, resulting in a larger overall pressure and thicker lubrication film in the contact 

zone. Under low loading rates, the presence of residual deformation on the viscoelastic 

solid surface leads to an expanded contact area and a flatter pressure distribution. Under 

the same load, the unloading phase exhibits lower peak pressures and a wider contact 



area compared to the loading phase, which is due to the longer relaxation time 

experienced by the matrix material during unloading, resulting in greater viscoelastic 

deformation. 
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Table 1 Details of the lubrication conditions and computational parameters 

Parameter Values 

Load, w/N 300-3000 

Ball radius, R/m 0.014 

Radial clearance, c/m 1.0×10-4 

Storage modulus, E2/Pa 0.7×109 

Loss modulus, E1/Pa 0.7×109 

Relaxation time, τ/s 13.81 

Environment viscosity, 𝜂0/Pas 0.01 

Dimensionless computational domains -2 ≤ X ≤ 2 and -2 ≤ Y ≤ 2 

Grid density 256×256 

Temporal steps 20-600 

 

  



Table 2 Dimensionless maximum pressure, minimum and central film thicknesses, and rigid 

displacement at 3000 N obtained from different loading rates 

Loading rate, 

λ(N/s) 

Maximum 

pressure, pmax/pH 

Minimum film 

thickness, hmin/h0 

Central film 

thickness, hcen/h0 

Rigid 

displacement, h00 

9562 0.91792 0.01353 0.02486 -1.0722 

5538 0.85494 0.00992 0.01961 -1.1413 

2407 0.69772 0.00577 0.01459 -1.3305 

 

  



 

Figure 1 Squeeze film lubrication model of rigid ball and viscoelastic half space 

 

  

w(t)

lubricants

Rigid sphere



         

(a)                (b) 

Figure 2 Maxwell (a) and SLS (b) models adopted in this study 

 

  



 

Figure 3 Calculation flow chart of viscoelastic squeeze film lubrication 
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Figure 4 The dimensionless minimum/central film thicknesses, maximum pressures and relative L2 

errors at time instants of 0.5τ, τ and 2τ for different time step discretization of one squeeze period 
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(a)                                   (b) 

Figure 5 Influence of computational domain size on minimum/central film thickness (a) and 

maximum pressure (b) 
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Figure 6 Influence of time step discretization on viscoelastic deformation at t=2τ 
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(a)                               (b) 

Figure 7 Dimensionless maximum pressures (a) of the elastic and Maxwell models during the 

squeeze film processes and cross-sectional dimensionless squeeze film pressure (b) and dry contact 

pressure distributions 
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(a)                                    (b) 

Figure 8 Dimensionless minimum film thicknesses (a) and central film thicknesses (b) of the elastic 

and viscoelastic models during the squeeze film processes 
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(a)                                    (b) 

Figure 9 Dimensionless pressure (p/pH) and film thickness (h/h0) distributions of y=0 along x 

direction at different time instants obtained by the present squeeze film lubrication model 
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(a)                                    (b) 

Figure 10 Dimensionless maximum lubrication pressures (a) of the elastic and SLS models during 

the squeeze film processes and Cross-sectional dimensionless lubrication and dry contact pressure 

distributions (b) at several time instants (t=0.5τ, 1.0τ and 2.0τ) 
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(a)                                    (b) 

Figure 11 Dimensionless minimum (a) and central film thicknesses (b) of elastic and SLS models 

during the squeeze film processes 
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(a)                                   (b) 

Figure 12 Rigid displacements (a) of elastic and SLS models during the squeeze film processes and 

dimensionless elastic and viscoelastic cross-sectional deformations (b) at different time instants 
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Figure 13 Cross-sectional dimensionless pressure p/pH (black lines) and film thickness h/h0 (red 

lines) distributions of y=0 along x direction of elastic and SLS models at different time steps 

obtained by the present squeeze film lubrication model. Dotted lines refers to the SLS model, solid 

lines refer the elastic case 
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Figure 14 Dimensionless maximum pressure variations over external loads of UHMWPE hip joints 

for the investigated three loading rates 
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Figure 15 Dimensionless rigid displacement variations over external loads of UHMWPE hip joints 

at different loading rates 
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(a)                                      (b) 

Figure 16 Dimensionless minimum (a) and central film thickness (b) variations over external loads 

of UHMWPE hip joints at different loading rates 
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(a)                                  (b) 

Figure 17 Cross-sectional dimensionless pressure distributions along x direction when the load is 

1650 N during the loading (a) and unloading (b) phases at different loading rates 
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(a)                                      (b) 

Figure 18 Cross-sectional dimensionless film thickness distributions along x direction when the load 

is 1650 N during the loading (a) and unloading (b) phases at different loading rates 
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(a)                                     (b) 

Figure 19 Dimensionless maximum pressure (a) and rigid displacement (b) variations over loads 

under different loading periods (0.1s to 1.5s) 
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(a)                                      (b) 

Figure 20 Dimensionless minimum (a) and central film thickness (b) variations over load under 

different loading periods (0.1s to 1.5s) 
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