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SUMMARY

Despite rapid advances in mapping genetic drivers and gene expression changes in hematopoietic stem cells
(HSCs), few studies exist at the protein level. We perform a deep, multi-omics characterization (epigenome,
transcriptome, and proteome) of HSCs in a mouse model carrying a loss-of-function mutation in Tet2, a driver
of increased self-renewal in blood cancers. Using state-of-the-art, multiplexed, low-input mass spectrometry
(MS)-based proteomics, we profile TET2-deficient (Tet2 /) HSCs, revealing previously unrecognized molec-
ular processes that define the pre-leukemic HSC molecular landscape. Specifically, we obtain more accurate
stratification of wild-type and Tet2/~ HSCs than transcriptomic approaches and identify extracellular matrix
(ECM) molecules as being dysregulated upon TET2 loss. HSC expansion assays using ECM-functionalized
hydrogels confirm a selective effect on the expansion of Tet2-mutant HSCs. Taken together, our study
represents a comprehensive molecular characterization of Tet2-mutant HSCs and identifies a previously
unanticipated role of ECM molecules in regulating self-renewal of disease-driving HSCs.

INTRODUCTION Historically, comprehensive profiling of HSCs beyond the

transcriptome has been impeded due to their low numbers.

Hematological malignancies are commonly initiated by single
hematopoietic stem cells (HSCs) that have acquired mutations,
which confer a clonal advantage relative to non-mutated he-
matopoietic cells." Loss-of-function (LoF) mutations in the
gene encoding the DNA-demethylating enzyme Tet methylcyto-
sine deoxygenase 2 (TET2) are commonly found in hematologi-
cal malignancies, and evidence points toward its loss driving
an increase in HSC self-renewal.’™ At the transcript level, muta-
tions in Tet2 are associated with altered gene expression in
mouse HSCs; however, relatively few of these potential partner
genes have been implicated in directly driving disease initiation
and progression,”™ thus highlighting an urgent need to further
explore the molecular landscape of mutated HSCs.

™

Gheck for
Updates

To address the prohibitively large amount of material typically
required for global proteomic characterization, multiple strate-
gies for facilitating low cell number and single-cell mass spec-
trometry (MS)-based proteomics have begun to emerge,®'?
including a recent effort which profiles thousands of hemato-
poietic stem and progenitor cells (HSPCs) at the single cell
level.'® These studies have revealed a generally poor correla-
tion between proteome and transcriptome, especially in
non-homeostatic contexts such as inflammation and dis-
ease, %1415 further highlighting the need to develop low-
cell-number approaches to facilitate the study of the global
proteome in HSCs and assess the functional unit of molecular
activity.
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In this study, we use an MS-based method for global proteo-
mic profiling of low numbers (10,000-20,000) of primary HSPCs
as a part of a comprehensive multi-omics profiling of TET2-defi-
cient (Tet2~'7) long-term (LT)-HSCs and uncover previously un-
described regulators of Tet2-mutant HSC biology. Analysis of
the proteome exclusively identifies extracellular matrix (ECM) in-
teractions as a point of dysregulation upon loss of TET2 in HSCs,
providing evidence for ECM molecules altering the differentiation
and self-renewal of mutant HSCs relative to their non-mutant
counterparts, and thus identifies previously unexplored path-
ways for therapeutic intervention. These data highlight the
importance of assessing the proteome of pre-leukemic and
leukemic HSCs in order to reveal novel biology that is typically
hidden from genomic and transcriptomic studies.

RESULTS

Integrative single-cell ATAC-seq and RNA-seq analysis
of TET2-deficient HSCs

To understand molecular changes in HSCs induced by TET2
LoF, we first assessed chromatin accessibility and gene expres-
sion at the single-cell level. Using a genetic knockout mouse
model with targeted disruption of the TET2 catalytic domain,”
we applied single-cell assay for transposase-accessible chro-
matin by sequencing (scATAC-seq; Figures 1A-1C) and single-
cell RNA sequencing'® (scRNA-seq; Figures 1D and 1E) to
fluorescence-activated cell sorting (FACS)-isolated CD45*
CD48~ CD150" EPCR* Sca-1* (ESLAM Sca-1*) HSCs, a cell
population highly enriched (>60%) for HSCs with LT serial recon-
stitution capacity'” from Tet2~'~ and wild-type (WT) mice. scA-
TAC-seq analysis revealed changes in chromatin accessibility
induced by TET2 LoF, and differential analysis revealed more
accessible genomic regions in Tet2™~ HSCs compared to
HSCs isolated from WT littermate controls (Figure 1A; Table
S1). Nearly half (47% of peaks) of the regions deemed to be
more accessible in the Tet2~/~ HSCs were intronic (Figure 1B)
and potentially related to specific gene regulation. In line with
this, recent studies of chromatin accessibility revealed that
HSCs with mutated Tet2 have hypermethylation of enhancer
sites.'® Analysis of transcription factor (TF) binding sites identi-
fied specific motifs enriched in Tet2~/~ HSCs, including binding
motifs for known self-renewal regulator Smarcc1,'® tumor sup-
pressor Runx3,°° and cell cycle and oxidative stress regulator
Bach1,?" among others (Figure 1C).

Next, we undertook plate-based (scRNA-seq) to determine
changes in gene expression between WT and Tet2~/~ HSCs.
As in our scATAC-seq data, scRNA-seq indicated significant
molecular changes upon Tet2 loss (Figure 1D; Table S2). We
identified 54 differentially expressed genes (log2 fold change
[FC] > 1 and adjusted p value < 0.05), including 18 upregulated
and 36 downregulated in Tet2”~ HSCs compared to WT
(Figure 1E). In accordance with previous studies,®® Gene
Ontology (GO) analysis identified enrichment in pathways regu-
lating transcription and cellular response to calcium ion
(Figure 1F).

To further study the mechanisms underpinning the self-
renewal differences in Tet2™~ compared to WT HSCs, scA-
TAC-seq and scRNA-seq datasets were integrated. The closest
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genes to peaks identified in the scATAC-seq analysis were
determined, and the expression of these genes was assessed
in the scRNA-seq data (distance to transcription start
site < 100,000 bp??). Out of 698 identified closest genes in the
scATAC-seq analysis, only 16 had significantly altered expres-
sion between Tet2~~ and WT HSCs in the scRNA-seq data
(Figures 1G and 1H), with 14 of these appearing among the top
40 differentially expressed genes in the scRNA-seq dataset.
Analysis of predicted protein associations using the Genemania
database® showed high connectivity, strongly suggesting bio-
logical relatedness (Figure 1l). For example, among the genes
with both lower chromatin accessibility and gene expression in
Tet2~/~ HSCs were three members of the Kriippel-like factor
(KIf) family (KIf2, KIf4, and KIf6) that regulate self-renewal®® and
Fosb, a member of the AP1 complex, recently shown by us to
be downregulated in hibernating HSCs.?” To further integrate
the information from both analyses, we built a TF regulatory
network using the DoRothEA database.?® We selected all TFs
whose binding motifs were significantly more accessible in
Tet2/~ HSCs (as shown in our ScATAC-seq analysis) and
curated a list of all differentially expressed genes (as determined
by our scRNA-seq analysis) that the selected TFs regulate. The
constructed interaction network containing all defined regulons
(TF regulatory gene pairs) identified a set of TFs potentially regu-
lating the HSC fate (Figure 1J), among which we found well-
known HSC regulators, such as Gata2, Gata3, Fli1, and
Runx1.287%° Together, these data both identify factors important
for normal HSC function and identify additional candidate regu-
lators of the increased self-renewal observed in Tet2~/~ HSCs.

Optimization of a low-input proteomic workflow

Our analyses of the epigenome and transcriptome of cells largely
reflected current knowledge surrounding Tet2 LoF mutations,
whereby expression and chromatin accessibility of a number
of genes’ hematopoietic TFs with known roles in cellular differen-
tiation are altered. These data further accord with the pheno-
types observed in mouse models and patients with hematologi-
cal malignancies (i.e., an accumulation of myeloid progenitor
cells®). In order to explore changes in populations of primary
HSCs that might occur downstream of the transcriptome, a
global proteomic method for low cell numbers was required.
To develop this method, we used the hematopoietic progenitor
cell line HoxB8-FL*' for protocol optimization. In an initial sin-
gle-vessel sample preparation and protein-level tandem mass
tag (TMT) 10plex isobaric labeling approach applied to a sample
set of 3 x 10,000 cells and 7 x 20,000 cells, just 2,218 and 1,345
proteins were identified and quantified, respectively, across the
entire multiplexed set (Figure 2A and 10K direct) with only
modest benefit gained by increasing the smaller samples from
10,000 to 15,000 cells and carrier samples from 20,000 to
30,000 cells (Figure 2A and 15K direct). Next, through a multi-
stage optimization process, we devised a method using single-
vessel sample preparation, peptide-level isobaric labeling with
a carrier approach, and high-resolution offline fractionation,
which resulted in robust quantification of over 3,500 proteins
from as few as 10,000 cells (Figures 2A-2C). These results sug-
gest that the higher labeling efficiency achieved by peptide-level
isobaric labeling outweighs the benefits of combining samples
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Figure 1. Single-cell analyses reveal increased chromatin accessibility and decreased transcriptional activity in Tet2/~ HSCs

(A) Volcano plot showing differentially accessible sites between WT and Tet2~/~ HSCs in scATAC-seq analysis (log2 FC > 0.5, adjusted p value < 0.1).

(B) Proportion of significantly more accessible peak regions categorized by genomic feature in Tet2~/~ HSCs.

(C) Motif enrichment for TF motifs more accessible in Tet2~/~ HSCs.

(D) Uniform Manifold Approximation and Projection visualization of scRNA-seq data. Each dot represents one cell.

(E) Volcano plot showing differentially expressed genes between WT and Tet2~/~ HSCs in scRNA-seq analysis (log2 FC > 1, adjusted p value < 0.05).

(F) GO biological processes enrichment analysis of differentially expressed genes in scRNA-seq. Node sizes reflect the statistical significance of the terms. Force-
directed layout presented by the kappa score. The layout was adjusted to minimize label overlap.

(G) Venn diagram showing the overlap of targets identified in both scATAC-seq and scRNA-seq modalities (Tet2~/~ versus WT HSC pairwise testing).

(H) Volcano plot of scRNA-seq data with labeled selected genes identified in the sScATAC-seq closest gene analysis (Tet2~'~ versus WT HSC pairwise testing).
Blue/orange dots indicate genes down/upregulated in scRNA-seq data analysis; blue/orange labels indicate less/more accessible markers in the scATAC-seq
data analysis.

(I) Interaction graph for targets identified in the integrative scATAC-seq/scRNA-seq data analysis constructed using the Genemania database.?” Purple, co-
expression; blue, co-localization; orange, predicted; green, shared protein domains; and red, physical interaction.

(J) Interaction graph of identified regulons: TF (sScCATAC-seq analysis) and genes they regulate (scRNA-seq analysis). Network built using information from the
DoRothEA database.?® Pink, TF and blue, regulated genes.

See also Figure S1.
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Figure 2. An optimized workflow enables deep proteomic profiling of low numbers of hematopoietic cells

(A) Number of identified and quantified proteins in HoxB8-FL cells using direct injection or offline fractionation into 6 fractions (Fract I) or 5 fractions x 2 runs each
with different upper intensity precursor selection limit in the two runs (Fract Il). K: 1000.

(B) Total protein abundance across TMT channels in the 10K Fract Il experiment from (A). K: 1000.

(C) Coefficient of variance (CV) values for the 10K Fract | and 10K Fract Il experiments. K:1000.

(D) Correlation between protein and mRNA abundance in HoxB8-FL cells. Points are colored according to the k-means cluster they belong to. Correlation

assessed using Pearson’s correlation coefficient r2.

(E) Identifications unique to proteome data. Proteins in red are associated with ECM organization.

earlier in the protocol with protein-level labeling, and that reduc-
tion of sample complexity by offline fractionation prior to liquid
chromatography-MS analysis is the most important factor in
achieving high proteome coverage in low-input samples.

To assess the type of information gained by proteome-level
characterization, we mapped protein abundance from the Fract
Il experiment (Table S3) against gene expression®? (Figure 2D)
and observed a positive correlation overall (2 0.13,
p < 2.2 x 107'8). Clustering analysis identified a set of genes/
proteins showing particularly strong enrichment at the protein
level (Figure 2D, cluster 1, shown in green), including 33 that
were uniquely detected in the proteome data (Figure 2E). Intrigu-
ingly, 8 of these 33 proteins (24 %) were associated with ECM or-
ganization (Figure 2E, highlighted in red), suggesting that ECM
components might be more readily captured by proteomic rela-
tive to transcriptomic analysis.

Global proteomics identifies distinct molecular changes
in Tet2~/~ HSPCs not captured by transcriptomics

To generate a comprehensive molecular map of WT and Tet2 ™/~
HSPCs, we applied our low-input proteomic workflow (Figure 2)
to WT and Tet2~/~ HSPCs with primary and secondary trans-
plantation capacity (lineage [Lin]~ cKit* CD45" CD48~ CD150%;
collectively called “CD150*”) or those limited to finite reconstitu-
tion capacity in a primary transplantation (Lin~ cKit" CD45*
CD48~ CD1507; collectively called “CD150™”; Figure 3A).°°* We
additionally analyzed the proteome of WT ESLAM HSCs
(CD45* CD48~ CD150* EPCR") as a reference LT-HSC popula-
tion®® and WT Lin~ cKit* cells as a carrier proteome population to
increase mapping efficiency.’ To assess the degree of post-tran-

4 Cell Reports 45, 116770, January 27, 2026

scriptional regulation and the overall correlation between tran-
scriptome and proteome in Tet2 ™/~ HSPCs, we performed bulk
RNA-seq on WT and Tet2~~ CD150* and CD150" cells. Using
just 10,000-30,000 cells per sample, the MS analysis identified
4,133 unique proteins, out of which 3,989 (~97%) were reliably
quantified across all cell populations (Table S4). Notably, our
low cell number multiplex captured 55% of proteins previously
quantified in HSCs®* using only 2.5%-7.5% of total cell input
per sample, and protein coverage was similar to recent studies
using 40,000-100,000 hematopoietic progenitor cells per sam-
ple and a similar methodology for sample preparation and MS
analysis.""'? Normalization against sample loading successfully
corrected for the difference in cell number between samples
(Figure S2A).

Following the generation of global proteomic datasets for WT
and Tet2~~ HSPCs, we first compared proteome and transcrip-
tome datasets. Principal component analysis (PCA) of proteomic
data clearly separated cell populations according to genetic
background in principle component (PC) 1 (Figure 3B), whereas
separation in PC1 and PC2 for RNA-seq data was driven by cell
type rather than Tet2 mutational status (Figure 3C), indicating
that the transcriptome and proteome have substantial global dif-
ferences in regulation. Interestingly, in Figure 3B, the Tet2™/~
CD150™ samples are most distinct compared to WT populations
and Tet2~/~ CD150* cells, suggesting that proteome dysregula-
tion in Tet2™/~ hematopoietic cells is exacerbated as cells
mature past the stem cell state, a finding potentially associated
with the myeloid skewing observed with loss of TET2."° To a
lesser extent, this was also reflected in PC2 of the transcriptome
data (Figure 3C). To investigate which proteins best separated
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Figure 3. The proteome and transcriptome highlight alterations in disparate cellular processes upon loss of Tet2 in HSPCs
(A) Workflow for liquid chromatography-tandem mass spectrometry analysis of WT and Tet2~/~ HSPCs.
(B and C) PCA of proteomic (B) and transcriptomic (C) data.
(D) Top 15% loadings from PC1 in (B).
(E) Correlation between protein and gene expression differences (log2 FC) between Tet2~/~ and WT CD150" cells. The dotted red line indicates the linear
trendline. r? represents the Pearson correlation coefficient.

(F) Protein expression difference between Tet2~’~ and WT CD150* cells. Candidate target proteins (log2 FC > 0.5 across all comparisons between Tet2”~ an

WT CD150* cells) enriched and depleted in Tet2™/~ relative to WT CD150* cells are shown in blue and orange, respectively.
(G) Gene expression difference between Tet2 '~ and WT CD150* cells. Candidate target genes (log2 FC > 0.5 and adjusted p value < 0.05) enriched and depleted
in Tet2~/~ relative to WT CD150" cells are shown in blue and orange, respectively.
(H) Overlap between candidate target genes and proteins enriched or depleted in Tet2 ™/~ relative to WT CD150" cells.

d

(land J) KEGG pathway analysis of candidate target proteins and genes enriched (1) or depleted (J) in Tet2~/~ relative to WT CD150* cells. The dotted lines mark
adjusted p value = 0.05.
See also Figure S2.
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Figure 4. Expression of ECM proteins is altered upon loss of Tet2 and correlates with self-renewal potential
(A and B) Reactome pathway analysis of candidate target proteins enriched (A) or depleted (B) in Tet2 '~ relative to WT CD150* cells. The dotted lines mark

q value = 0.05.

(C) Relative abundance of proteins contained within the reactome pathway “ECM organization” in WT CD150*, Tet2~/~ CD150*, and WT ESLAM cells.
(D) Correlation between protein and gene expression differences (log2 FC) of proteins/genes contained within the reactome pathway “ECM organization” be-

tween Tet2~/~ and WT CD150* cells.

WT and Tet2/~ cells, we extracted the top and bottom 15% of
loadings for PC1 (27 WT-enriched and 9 Tet2~'~-enriched;
Figure 3D). Proteins associated with the TET2-deficient cell pop-
ulations included inflammatory proteins S100A9 and LCN2,
which have been reported to be involved in the pathogenesis
of myelodysplastic syndrome and myelofibrosis, respec-
tively.>>*® WT-enriched loadings included interleukin-1 (IL-1) re-
ceptor antagonist protein IL-1RA, a protein important for damp-
ening IL-1-driven inflammation, which was recently shown to
contribute to the clonal outgrowth of Tet2*’~ HSPCs during
aging.®” Two of the top loadings for WT cells in PC1 were anti-
coagulant proteins antithrombin Il (SERPINC1) and plasmin-
ogen (PLG), suggesting potential dysregulation of clotting mech-
anisms in Tet2~/~ HSPCs. Intriguingly, LoF mutations in TET2
have recently been linked to an increased risk for myeloprolifer-
ative neoplasm (MPN)-associated thrombosis, and patients car-
rying TET2 mutations have significantly lower levels of anti-
thrombin 1l than those with intact TET2 expression.*® Our data
suggest that the increased production of inflammatory proteins
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and impaired clotting functions associated with mutations in
Tet2 are evident already at the level of HSPCs.

Next, we specifically interrogated the immature CD150" pop-
ulation. There was no correlation between the protein and RNA
datasets for the CD150* population ( = 0.0053; Figure 3E),
which accords with previous studies that reported a high degree
of post-transcriptional regulation in early HSPCs,'®'*'® and
poor correlation between proteome and transcriptome in HSCs
compared to downstream progenitors.’* The correlation be-
tween transcriptome and proteome in the CD150" population
was equally poor (? = 0.0056; Figure S2B). To further assess
concordance between the two datasets, we next generated
shortlists of candidate proteins and genes and compared the
lists (Figures 3F and 3G; Table S4). In the CD150* LT-HSC-en-
riched population, only 6 candidate targets overlapped between
the two datasets; these included inflammatory biomarker hapto-
globin, which showed elevated expression in Tet2~'~ cells, and
anti-inflammatory methallothionein 2, which was enriched in
WT relative to knockout cells (Figure 4H). The overlap in the
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CD150~ population was substantially higher, with 33 and 97
candidate proteins (representing 15% and 21% of all candidate
proteins, respectively) significantly enriched at the transcript
level in Tet2~~ and WT cells, respectively (Figure S2C).

Despite the low overlap of specific targets between the MS
and RNA-seq datasets, Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analysis of candidate pro-
teins/genes in the CD150" LT-HSC-enriched population high-
lighted some commonalities (Figures 3l and 3J), suggesting
significant dysregulation in HSPCs upon loss of Tet2. The most
prominent of these categories were “metabolic pathways” and
“mineral absorption,” both strongly enriched among proteins
and genes downregulated in Tet2™/~ relative to WT CD150*
cells. Surprisingly, the top enriched pathway among proteins up-
regulated in Tet2 ™/~ relative to WT cells was “motor proteins,”
and the proteomic datasets highlighted changes in additional
pathways related to the actomyosin motor and the ECM upon
loss of TET2 in immature HSPCs, such as “leukocyte transendo-
thelial migration” and “ECM-receptor interaction” (Figure 3J).
Metabolism and the actomyosin motor were also altered in
CD150™ cells, pointing to their dysregulation as a general feature
of TET2 loss in HSPCs (Figures S2D and S2E). In line with the de-
regulated expression of thrombosis-related proteins in Tet2™/~
CD150* cells (Figure 3D), “platelet activation” was one of the
pathways enriched among proteins with lower expression in
mutant compared to WT cells (Figure 4J).

ECM interactions regulate self-renewal of Tet2 /~ HSCs
Reactome pathway enrichment analysis (Figures 4A and 4B)
identified several pathways related to the actomyosin motor
and to ECM organization among proteins more highly expressed
in either Tet2~/~ (Figure 4A) or WT (Figure 4B) cells. Analysis of
individual proteins contained within the reactome pathway
“ECM organization” revealed distinct expression patterns of
ECM proteins in the three most HSC-enriched cell populations
in our proteomic data (Figure 4C), with proteins either being
depleted or enriched with increasing self-renewal potential. A
subset of these proteins, including four collagen family mem-
bers, displayed particularly high expression in Tet2~/~ CD150*
cells, and three of these (ITGB2, COL2A2, and P4HB) overlapped
with the more highly HSC-enriched WT ESLAM population.
Notably, bulk RNA-seq data did not capture these changes,
instead showing that ECM-associated genes were either un-
changed between WT and TET2-deficient cells or had opposing
expression patterns compared to the proteome data (Figure 4D).
All ECM proteins identified in the MS data are known interac-
tion partners, and, intriguingly, proteins enriched in Tet2~/~ and
WT CD150" cells were positioned in distinct areas of the interac-
tion network (Figure 5A). Several findings in our proteome anal-
ysis pointed toward a deregulation of platelet-associated path-
ways in Tet2-mutant HSCs (Figures 3D and 3J). We therefore
next decided to focus on ECM proteins with known roles in meg-
akaryopoiesis—ITGA2B/CD41, ITGB3/CD61, and von Wille-
brand factor (vWF). Intracellular flow cytometry confirmed that
a significantly smaller proportion of Tet2~'~ CD150" cells ex-
press VWF and ITGA2B/CD41 (Figures 5B and 5C). The propor-
tion of ITGB3/CD61* CD150" cells was also reduced in 2/3 as-
sayed animals (Figure S3A). Immunofluorescence measured by
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confocal microscopy provided further proof of a lower abun-
dance of VWF in mutant relative to WT CD150" HSPCs
(Figures 5D, S3B, and S3C). As both ITGA2B/CD41 and vWF
mark HSCs primed toward platelet production,’>*® our findings
here suggest that the low expression of proteins associated with
platelet activation, Tet2~/~ CD150", relative to WT cells, is due to
a loss of megakaryocyte-biased HSCs within the stem cell pool.

In order to test the functional impact of HSC-vWEF interaction,
we cultured ESLAM HSCs derived from WT and Tet2~/~ animals
using recently published HSC culture conditions™' in tissue cul-
ture plates functionalized with vWF (Figure 5E). In these condi-
tions, VWF did not affect the expansion of primitive Lin~ Sca-
1* cKit* (LSK) HSPCs and EPCR* LSK (ELSK)® HSCs
(Figures S3D and S3E). However, in line with our findings
regarding deregulated expression of platelet-associated pro-
teins in Tet2~/~ HSCs (Figures 3D and 3J) and a smaller propor-
tion of platelet-biased cells within the Tet2-deficient HSC pool
(Figures 5B and 5C), we observed a lower output of megakaryo-
cytic (MK; CD41* CD42d*) cells from Tet2™/~ relative to WT
HSCs at steady-state, which was partially rescued by vWF
(Figure 5F). WT HSCs were unaffected by vWF in this regard,
suggesting that TET2-deficient HSCs are more sensitive to the
pro-thrombotic effects of vVWF signaling.

We hypothesized that presenting ECM proteins to cells in a
setting more closely resembling the bone marrow (BM) niche
may elicit different effects on HSC expansion and differentiation.
To this end, we utilized STEMBOND hydrogels functionalized
with VWF or hyaluronan (HA) as HA receptors CD44 and
ITGB1/CD29 were among proteins showing self-renewal and
Tet2-status-associated differences in expression (Figure 4C).
As expected, loss of TET2 confers a self-renewal advantage in
HSCs'*® that presents itself as an increase in the frequency of
LSK HSPCs and ELSK HSCs compared to WT controls
(Figures 5G, 5H, S3F, and S3G). Strikingly, this mutant self-
renewal advantage was abolished when cells were cultured in
the presence of hydrogel-anchored VWF (Figures 5G and 5H),
and, to a lesser extent, HA (Figures S3F and S3G). The reduced
fraction of progenitors (LSK) and HSCs (ELSK) was only
observed in the Tet2™/~ cultures, suggesting that vVWF is selec-
tively (and negatively) influencing TET2-mediated HSC expan-
sion. Importantly, transplantation of cells cultured in the pres-
ence of niche-anchored VWF revealed that vWF-exposed
Tet2~/~ HSCs have an impaired capacity to engraft in the BM
(Figure 5l). Together these data show that exposure to different
ECMs can regulate both the differentiation and self-renewal ca-
pacity of Tet2’~ HSCs and firmly establish that features
captured exclusively by proteomic analysis provide novel insight
into HSC biology.

DISCUSSION

TET2 has been widely studied in the context of clonal hemato-
poiesis and myeloid malignancies due to its recurring LOF muta-
tions and its functional role in HSC self-renewal. The exact mo-
lecular mechanism of the increased self-renewal initiated by
loss of TET2 function remains unclear, and transcriptomic
studies to date have been unable to identify clear drivers of
increased HSC self-renewal. Our integrated ATAC-seq and
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Figure 5. Interaction with niche-anchored VWF inhibits expansion of Tet2~/~ HSCs

(A) Protein interaction network of proteins contained within the reactome pathway “ECM organization.” Outlined nodes represent candidate target proteins.
(B and C) Proportion of cells expressing CD41 (B) and VWF (C) of WT and Tet2~/~ CD150" cells. n = 3 individual mice per genotype.

(D) Representative immunofluorescence images of vVWF in WT and Tet2~/~ CD150* HSPCs. Scale bars, 2 pM.

(E) Experimental workflow for assessing the effect of ECM-HSC interaction ex vivo.

(F) Frequency of megakaryocytic (MK) cells (CD41* CD42d") following 28-day culture in tissue culture plates functionalized with VWF. n = 2 and n = 3 individual

mice for WT-vWF and all other conditions, respectively.

(G and H) Frequency of HSPCs (LSK; G) and HSCs (ELSK"%; H) following 28-day culture of WT and Tet2~/~ ESLAM HSCs on hydrogels functionalized with VWF.

n = 8 individual mice per genotype.

(I) Bone marrow chimerism at 16 weeks post-transplantation of WT and Tet2~~ ESLAM HSCs cultured for 28 days on hydrogels functionalized with VWF. n = 2
and n = 3 individual mice for WT-vWF and all other conditions, respectively. ***p < 0.001; **p < 0.01; *p < 0.05; and ns, non-significant. Error bars = SD.

See also Figure S3.

scRNA-seq analyses implicated KLF family members and key
hematopoietic TFs Gata2, Gata3, Fli1, and Runx1 in the regula-
tion of Tet2-mutant HSCs, confirming that loss of TET2-driven
demethylase activity causes widespread and functionally rele-
vant dysregulation of the epigenome and transcriptome of
HSCs. Specifically interrogating changes in methylation status
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upon loss of TET2 using, for example, bisulfite-seq, represents
an important future direction to fully understand the effects of
TET2 mutations on the epigenome.

Moving beyond transcriptomics to capture global proteome
level data, we identify a distinct set of ECM molecules with spe-
cific roles in altering the function of Tet2-mutated HSCs.
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Intriguingly, ECM protein abundance does not correlate with the
expression of associated transcripts as determined by RNA-seq,
suggesting a high degree of post-transcriptional regulation in
this group of proteins. Alternatively, ECM proteins may be tran-
scribed by other cell types and bind to or be taken up by
HSCs; however, our similar findings in hematopoietic cell line
HoxB8-FL, which is a system devoid of other cell types, speak
against this theory.

Techniques to undertake global proteomics in limited numbers
of cells are rapidly evolving, such that even over the course of this
study, single-cell proteomic methodologies have been developed
that obtain thousands of unique proteins in individual human
HSCs."® While our method still captures more proteins in the
HSC population, it remains completely blind to cell-cell heteroge-
neity. Application of single-cell proteomic approaches to larger
numbers of cells in normal and diseased states will permit dissec-
tion of more complete pathways in addition to understanding the
functional and molecular heterogeneity of different cell types.

Functionalizable hydrogels represent a novel tool to study
components of the ECM and their impact on cell function. In
this study, we utilize STEMBOND hydrogels,*® which permit
robust matrix tethering and have tunable stiffness, to test the
ECM components that emerged from our proteomic studies.
This permits the investigation of biophysical properties of cells
with LoF Tet2 mutations, and we demonstrate a clear role for
VWF in specifically restricting TET2-mediated HSC expansion
in vitro and BM engraftment in vivo. While our study shows a
clear selective effect of exogenous VWF in Tet2-mutant HSCs,
whether mutant and healthy cells differ in their interaction with
vWF and other ECM in vivo remains to be determined.

Furthermore, our proteomic data point to actomyosin motor
control as being dysregulated when Tet2 is mutated. While
TET2 has been previously implicated in cytoskeleton organiza-
tion in ovarian cells*® and in smooth muscle cell plasticity,** its
role in the actomyosin motor of HSPCs has not yet been
described. In this vein, myosins are upregulated during inflam-
matory stress in HSCs,'® and their inhibition impairs growth
and survival of acute myeloid leukemia cells,*® implying that their
high expression in Tet2-mutant HSPCs may be linked to the
aberrant phenotype of the cells.

There were also a number of proteins more highly expressed in
WT cells, in particular a set of proteins related to platelet func-
tion. Interestingly, the WT-enriched proteins representing these
processes include those with anti-coagulant (e.g., PLG,
SERPINC1, and ANXA5) as well as pro-thrombotic (e.g., FGG,
VWEF, and ITGBS3) functions, suggesting that TET2 loss results
in a general decrease in expression of proteins related to platelet
production and coagulation in HSPCs and perhaps even related
to a shift in HSC subtypes away from MK-biased HSCs. In line
with this, we found that the HSC pool of Tet2-deficient animals
contains fewer VWF* and CD41* MK-biased cells and that
Tet2™’~ HSCs produce fewer MK cells in vitro, a defect that
can be partially reversed by the addition of vVWF.

Clonal hematopoiesis and myeloid malignancies driven by
mutations in TET2 predominantly affect individuals over 70 years
of age”® (corresponding to 18-24 months of age in mice), and
TET2 loss in these patients is often hetero- rather than homozy-
gous.”” Our proteome analysis was performed in 30-week-old
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Tet2™/~ animals and as such provides insight into molecular
changes occurring in fully TET2-deficient HSCs in middle age.
Conducting the same analyses in older and Tet2"~ animals
will be an important future direction in order to fully understand
TET2 LoF-driven pathology in a clinically relevant setting. Of
further note, our current data are in a transplantation setting,
and selection in people typically operates in the absence of
transplantation and occurs over many decades, and the relative
role of ECM molecules in mediating these selection pressures
in vivo is completely unknown. Further work to modulate ECM
over sustained periods in vivo would therefore be of great future
interest.

Overall, our study emphasizes the importance of moving
beyond transcriptomic studies to reveal new aspects of mutant
cell biology during processes of HSC self-renewal and leukemo-
genesis. In particular, proteomic studies have triggered the
investigation of the mechanisms by which the ECM alters HSC
self-renewal and influences clonal advantage competition during
aging and disease. How changes in ECM composition
throughout aging might contribute to the clinical observations
of clonal hematopoiesis and pre-leukemic cell expansion is an
intriguing concept that accords with recent studies showing
that integrins and their molecular regulators underpin healthy ag-
ing.*®7° This in turn, opens up new lines of thinking regarding
potential therapies, and new tools such as functionalizable hy-
drogels will accelerate discoveries that reach well beyond the
HSC system for applications in numerous other stem cell sys-
tems as has already been pioneered for oligodendrocyte precur-
sors®' and pluripotent stem cells.*

Limitations of the study

While the ECM-functionalized hydrogels provide evidence that
Tet2-mutant cells respond differently than WT cells to distinct
components of the microenvironment (e.g., VWF), these data
do not formally demonstrate that increased vWF protein in vivo
would drive a functional decline of TET2-mutant HSCs. Similarly,
while many components of the ECM are dysregulated in Tet2-
mutant HSCs, their relevance to steering clonal selection or
clonal hematopoiesis more broadly remains unclear and will
require future work in spatial-omics, mechanobiology, and new
methods to dissect HSC competition in vitro and in vivo. Finally,
our data are not yet sufficient to understand the heterogeneity of
ECM composition in individual cells, which will require new tech-
nological advances in single-cell proteomics and/or in vivo HSC-
niche reporters coupled with spatial-omics tools.

RESOURCE AVAILABILITY

Lead contact
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Materials availability
This study did not generate new, unique reagents.

Data and code availability
® The MS proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE®? partner repository with the dataset identi-
fier PXD059814. scRNA-seq and scATAC-seq data have been
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PRJNA1210137 and PRJNA1210127, respectively.

® Code used to analyze raw data in this manuscript is available from the
lead contact upon request.

® Any additional information is available from the lead contact upon
request.
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STARxMETHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
FITC anti-mouse CD45 BioLegend Clone 30-F11, Cat#103107
Brilliant Violet 785™ anti-mouse CD45 BioLegend Clone 30-F11, Cat#103149
PE/Cyanine7 anti-mouse CD150 (SLAM) BioLegend Clone

TC15-12F12.2, Cat#115913
APC anti-mouse CD48 BioLegend Clone HM48-1, Cat#103412
Brilliant Violet 421™ anti-mouse CD48 BioLegend Clone HM48-1, Cat#103427
PE anti-mouse CD201 (EPCR) eBioscience Clone eBio1560, Cat#12-2012-82
APC/Cyanine7 anti-mouse CD117 (c-kit) BioLegend Clone 2B8, Cat#105826
Brilliant Violet 421™ anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108128
Brilliant Violet 510™ anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108129
Brilliant Violet 605™ anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108134
PE anti-mouse/rat CD61 BioLegend Clone 2C9.G2, Cat#104307

Biotin anti-mouse CD201 (EPCR)

Stem Cell Technologies

Clone 1560, Cat#60038BT

Alexa Fluor® 647 Streptavidin BioLegend Cat#405237

Alexa Fluor® 488 anti-vWF Abcam Cat#AB307389

Chemicals, peptides, and recombinant proteins

Animal-free recombinant mouse SCF Peprotech AF-250-03

Animal-free recombinant mouse TPO Peprotech AF-315-14

POLY(VINYL ALCOHOL), 87-90% HYDROLYZED Sigma-Aldrich P8136

Ham’s F-12 Nutrient Mix Gibco 11510586
Insulin-Transferrin-Selenium-Ethanolamine Gibco 10524233

(ITS -X) (100X)

Penicillin-Streptomycin-Glutamine (PSG) (100X) Gibco 12090216

HEPES, 1M Buffer Solution Gibco 11550496

Recombinant Mouse Von Willebrand Factor antibodies.com A317514

Hyaluronan R&D Systems GLR002

Fibronectin human plasma Sigma Aldrich F0895

Critical commercial assays

TMT10plex™ Isobaric Label Reagents Thermo Fisher Scientific 90110

PicoPure™ RNA Isolation Kit Thermo Fisher Scientific KIT0204

EasySep™ Mouse Hematopoietic Stem Cell Technologies 19856

Progenitor Cell Isolation Kit

BD Cytofix/Cytoperm™ BD 554714

Fixation/Permeabilization Kit

Chromium Next GEM Single Cell 10X Genomics PN-1000176

ATAC Library & Gel Bead Kit

ERCC RNA Spike-In Mix Invitrogen 4456740

Deposited data

Raw scRNA-seq data This paper Sequence Read Archive PRINA1210137
Raw scATAC-seq data This paper Sequence Read Archive PRINA1210127
Raw proteome data This paper ProteomeXchange Consortium PXD059814

Raw HoxB8-FL RNA-seq data

Kucinski et al.*?

Gene Expression Omnibus GSE146128

Experimental models: Cell lines

Human: HoxB8-FL cell line

Laboratory of Dr Hans Hacker

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental models: Organisms/strains

C57BL/6W4HWH_|y5 1 (W41) mouse In-house breeding N/A
C57BL/6 mouse In-house breeding N/A
Tet2~/~ mouse (derived from In-house breeding N/A

B6(Cg)-Tet2!™-2Ra0/ )

Software and algorithms

FlowJo
edgeR package

ArchR package
chromVAR package

ggplot2 package

Seurat toolkit
Cytoscape

ClueGO

clusterProfiler package

enrichPlot package

DoRothEA
VennDiagram package

igraph package

Proteome Discoverer (version 2.2)

PCAtools package

limma package

ReactomePA package

BD

Robinson et al.*®

Granja et al.>

Schep et al.>®

Wickham®®

Hao et al.,”” Hao et al.*®
Shannon et al.*®

Bindea et al.?°

Wu et al.®’

Yu62

Garcia-Alonso et al.*®
Chen et al.®®

Csardi et al.**

Thermo Fisher Scientific

Bioconductor
Ritchie et al.®®

Yu and He®®

https://www.flowjo.com/

https://bioconductor.org/packages/
release/bioc/html/edgeR.html

https://www.archrproject.com/

https://bioconductor.org/packages/
release/bioc/html/chromVAR.html

https://cran.r-project.org/web/packages/
ggplot2/index.html

https://satijalab.org/seurat/
https://cytoscape.org/
https://apps.cytoscape.org/apps/cluego

https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

http://bioconductor.org/packages/
release/bioc/html/enrichplot.html

https://saezlab.github.io/dorothea/

https://cran.r-project.org/web/
packages/VennDiagram/index.html
https://r.igraph.org/
https://www.thermofisher.com/se/en/
home/industrial/mass-spectrometry/
liquid-chromatography-mass-spectrometry-
Ic-ms/Ic-ms-software/multi-omics-data-
analysis/proteome-discoverer-software.html

https://www.bioconductor.org/packages/
release/bioc/html/PCAtools.html
https://bioconductor.org/packages/
release/bioc/html/limma.html

https://bioconductor.org/packages/
release/bioc/html/ReactomePA.html

STRING Szklarczyk et al.®” https://string-db.org/

Prism software GraphPad https://www.graphpad.com/
Other

96-well CELLview™ plates Greiner N/A

EXPERIMENTAL MODELS AND STUDY PARTICIPANTS DETAILS

Mice

Wild-type C57BL/6N and Tet2~'~ mice bred in-house were used for all experiments. Adult animals aged 12-16 weeks were used for
all experiments except for MS analysis where used animals were 30 weeks old. A mix of male and female animals was used. Animals
were housed in individually ventilated cages (IVC) and provided with sterile food and water ad libitum. All mice were kept in specified
pathogen-free conditions, and all procedures performed according to the United Kingdom Home Office regulations, in accordance

with the Animal Scientific Procedure Act.
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Cell lines

Hoxb8-FL cells were cultured in RPMI 1640 media (Sigma), supplemented with 10% FBS (Gibco), 0.1% mercaptoethanol (Invitro-
gen), 1% penicillin-streptomycin (Sigma), 1% glutamine (Sigma), 1 uM estradiol and 5% FLT3L conditioned media from the B16-
FL cell line. Cells were maintained in culture at concentrations of 10°-10° cells/ml.

METHOD DETAILS

Flow cytometry and FACS

For sorting of primary HSPCs, bone marrow was extracted from hind limbs, hips, sternum, and spine collected in ice-cold phosphate
buffered saline (PBS). Bones were crushed using a mortar and pestle and cell suspension was mechanically dissociated using a
pipette and passed through a 40 uM filter. Red blood cells were lysed by incubation with ammonium chloride (Stem Cell Technolo-
gies). Mature cells were magnetically depleted from the cell suspension using the EasySep Mouse Hematopoietic Stem and Progen-
itor Cell Isolation Kit (Stem Cell Technologies). For sorting for MS analysis, cell suspensions were stained with fluorophore-conju-
gated antibodies against CD45, CD150, CD48, EPCR, and cKit by incubation for 30 min on ice protected from light. For all other
experiments, anti-cKit antibody was omitted and anti-Sca-1 antibody was included. Where indicated, antibodies against CD61
and CD41 were included in the panel. For flow cytometric analysis of cultured HSCs, cell suspensions were stained with fluoro-
phore-conjugated antibodies against CD45, CD11b, Gr-1, cKit, Sca-1, and EPCR. In all flow cytometry and FACS experiments,
7-aminoactinomycin D (7-AAD) staining was used to exclude dead cells. For intracellular flow experiments, bone marrow cells
were stained with Fc block for 15 min on ice prior to cell surface staining with antibodies described above. Following cell surface
staining, cells were fixed and permeabilized using BD Cytofix/Cytoperm kit in accordance with manufacturer’s protocol. Staining
with intracellular antibodies was carried out overnight at 4°C. In cases where a biotinylated primary antibody was used, secondary
staining with Streptavidin-Alexa Fluor 647 was performed. FACS experiments were performed on a BD Influx at the Cambridge Insti-
tute for Medical Research, or a Beckamn Coulter MoFlo Astrios or BD FACS Discoverer S8 at the Imaging & Cytometry Technology
Facility at the University of York. All flow cytometric analyses were performed on a Beckman Coulter CytoFlex LX or BD LSRFortessa
X20 at the Imaging & Cytometry Technology Facility at the University of York. All flow cytometry data were analyzed using FlowJo
software (BD).

Immunofluorescence

SLAM cells were isolated by FACS as described above directly into fibronectin-coated (10 pg/cm?) 8-well ibidi chamber slides con-
taining HSC expansion media without cytokines. Cells were incubated overnight at 37°C and 5% CO, to allow adherence to the slide.
Following removal of media, cells were fixed with 2% PFA for 10 min at RT. Cells were washed and blocked for 1 h at RT in PBS
containing 5% FBS and 0.01% tween. Blocking buffer was removed and cells were stained with fluorophore conjugated antibodies
against ECM proteins for 1 h at RT. Following staining for ECM proteins, cells were stained with 0.5 pg/mL DAPI for 15 min at RT. Cells
were imaged on a Zeiss LSM 880 confocal microscope at the Imaging & Cytometry Technology Facility at the University of York.

HSC gel culture

96-well CELLview plates (Greiner) were activated to allow the binding of StemBond. Plates were treated inside a plasma system
(Henniker HPT-200) and functionalized using 5% Bind Silane solution (GE Healthcare). Plates were washed thoroughly with 100%
ethanol. 3 mL soft hydrogel solutions were prepared using 40% acrylamide (210 pL), 2% Bis-acrylamide (120 pL), TEMED (15 pL),
10% Ammonium Persulfate (APS, 30uL), and water (2461.8 pL) and transferred to the CELLview plates. Following polymerisation,
gels were rinsed twice in methanol, followed by a PBS rinse. Prior to activation with EDAC/NHS solution (Sigma Aldrich), gels
were rinsed with pH 6.1 MES buffer. Once activated, gels were rinsed with chilled 60% methanol in PBS, followed by a 50 mM
pH 8.5 HEPES buffer rinse. Gels and plastic control wells were coated 100-200 pg/mL of ECM protein diluted in HEPES buffer
and incubated overnight at 4°C. Following incubation, the protein solution was removed and gels were rinsed with HEPES buffer.
Ethanolamine solution (0.5 M; ChemCruz) in HEPES buffer was used to block the gels for 30 min at room temperature. Gels were
rinsed for a final time with pH 7.4 HEPES buffer and PBS to equilibrate the pH. Gels were stored at 4°C until use. 50 ESLAM
HSCs per well were sorted directly onto gels into HSC expansion media®'®® and maintained in culture at 37 C and 5% CO2 for
28 days with media changes every 2-3 days.

Bulk RNA-seq

To match the cell populations extracted for proteomic profiling, Lin~ CD45" CD48~ CD150" cKit* (collectively called CD150%) and Lin~
CD45" CD48~ CD150" cKit* (collectively called CD1507) were isolated using FACS (as described above). A total of 1000 cells were
collected per biological sample from homogenized cell extracts (femurs, tibiae, hips and spines) of Tet2 ™'~ and WT mice. RNA extraction
was performed using the Picopure RNA Isolation Kit (Thermo Scientific) according to manufacturer’s protocol. Library preparation and
sequencing was performed at the Cancer Research UK Cambridge Institute Genomics Core as previously described.*® Data processing
was conducted as previously described. In brief, adapter trimming was performed using trim_galore (parameters: —paired —quality 30
—clip_R2 3). Reads alignment against the Mus musculus genome build (mm10) was conducted using STAR (default parameters). Gene
counts were computed using HTSeq (parameters: —-format = bam —stranded = reverse —type = exon -mode = intersection-nonempty
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—additional-attr = gene_name). Downstream processing and quality control was conducted using EdgeR>*®° (version 3.28.1), with read
counts being transformed to counts per million (cpm), genes with fewer than 2 samples expressing >1 cpm being excluded and read
count normalization being performed using the trimmed mean of M values (TMM) method.”°

scATAC-seq

sCATAC-seq data were generated from Tet2~~ mice and WT littermate controls. ESLAM HSCs were isolated as described above.
Cells were isolated from 5 WT mice and 5 Tet2~’~ mice (4,000 cells per genotype). Libraries were prepared using the 10x Genomics
Chromium Next GEM Single Cell ATAC Reagent Kits v1.1. Sequencing was run at Leeds University Next Generation Sequencing fa-
cility using a NextSeq 2000.

Plate-based scRNA-seq

scRNA-seq data were generated from Tet2~'~ mice and WT littermate controls. ESLAM HSCs were FACS-purified as previously
described. Freshly isolated HSCs were subjected to single-cell RNA SmartSeq?2 sequencing (4 x 96-well plates). RNA was extracted
using the Picopure RNA isolation kit (Thermo Fisher). Libraries were prepared using a protocol adapted from the msSCRB-seq work-
flow and quality control was performed using the Bioanalyzer system (Agilent). ERCC external RNA Spike-In controls were used
(ERCC RNA Spike-In Mix; ThermoFisher). Constructed libraries were sequenced using the lllumina NovaSeq X and Novogene sys-
tems using a paired end 150 bp run.

Sample preparation for proteome analysis
Prior to proteomic analysis, Hoxb8-FL cells were resuspended in phosphate buffered saline (PBS). For experiments ‘Direct 10K’ and
‘Direct 15K, cell lysis was performed using 2% sodium dodecyl sulfate (SDS) with subsequent boiling at 95°C. Cell lysates were son-
icated and dried using vacuum centrifugation. Samples were re-suspended in 100 mM TEAB. Reduction and alkylation of cysteine
residues was performed by incubation with a final concentration of 5 mM tris-2-carboxyethyl phosphine (TCEP) at 60°C for 30 min
followed by final concentration 10 mM iodoacetamide (IAA) for 30 min at RT protected from light. Protein-level isobaric labeling was
performed using TMT 10plex reagents (Thermo Scientific) in accordance with manufacturer’s protocol. 100% (w/v) trichloroacetic
acid (TCA) was added to the sample mixture at a ratio of 1-4, followed by incubation for 10 min. The sample was centrifuged at
14,000 rpm and the resulting protein pellet was resuspended in 100 mM TEAB buffer. Trypsin was added and proteins were digested
overnight at 37°C. For experiments ‘10K Fract I’ and ‘10K Fract II’, cells in a volume of 20 pL of PBS were thawed oniceand 2 pL1 M
TEAB, 1 uL2% SDS, and 1 pL Halt Protease & Phosphatase inhibitor cocktail (pre-diluted 1:5 in water) was added. Cells were lysed by
bath sonication for 5 min followed by 3 min incubation at 90°C. Reduction and alkylation of cysteine residues were performed by
incubation with 2 uL. 50 mM TCEP at 40°C for 30 min followed by 1 uL 200 mM IAA for 30 min at RT protected from light. 0.5 pg trypsin
was added, and proteins were digested overnight at RT. Peptide-level Isobaric labeling was performed using TMT 10plex reagents
(Thermo Scientific) in accordance with manufacturer’s protocol. Following quenching of the reaction with 5% hydroxylamine, sam-
ples were combined and dried completely by vacuum centrifugation. High pH Reversed-Phase (RP) fractionation was performed with
the Waters XBridge C18 column (2.1 x 150 mm, 3.5 pm, 120 ,&) on a Dionex UltiMate 3000 HPLC system. Ammonium hydroxide at
0.1% v/v was used as mobile phase A and mobile phase B was set as 100% acetonitrile/0.1% v/v ammonium hydroxide. The peptide
mixture was reconstituted in 100 uL mobile phase A and subjected to gradient elution at 200 pL/min as follows: 5 min isocratic at 5%
B, for 15 min gradient to 35% B, for 5 min gradient to 80% B, isocratic for 5 min and re-equilibration to 5% (B). The chromatogram was
recorded at 215 and 280 nm and fractions were collected every minute. Fractions were dried completely by vacuum centrifugation
and stored at —20°C until further use.

For primary mouse samples, 10,000-30,000 cells from Tet2~’~ and WT mice were FACS-sorted into 0.1 mL PCR tubes containing
20 pL ice-cold PBS and processed as described above for the ‘10K Fract I’ and ‘10K Fract II’ experiments. 6, 5 and 8 fractions were
finally subjected to LC-MS analysis for the ‘10K Fract I, ‘10K Fract II’ and primary mouse samples, respectively.

LC-MS/MS analysis

LC-MS/MS analysis was performed on a Dionex UltiMate 3000 UHPLC system coupled with an Orbitrap Lumos Mass Spectrometer
(Thermo Scientific). Each peptide fraction was reconstituted in 10 pL 0.1% formic acid and 7 pL were loaded on the Acclaim PepMap
100, 100 pm x 2 cm C18, 5 pm, trapping column with the plPickUp method at a flow rate of 10 pL/min. The samples were subjected to
amulti-step gradient elution on an EASY-Spray (75 pm x 50 cm, 2 pm) C18 capillary column (Thermo Scientific) at 45°C. Mobile phase
A was 0.1% formic acid and mobile phase B was 80% acetonitrile/0.1% formic acid. The gradient separation method at flow rate 300
nL/min was as follows: for 90 min gradient 5%-38% B, for 10 min up to 95% B, for 5 minisocratic at 95% B, re-equilibration to 5% B in
5 min, for 10 min isocratic at 5% B. Precursor ions were selected with mass resolution of 120k, AGC 4x10° and max IT 50 ms in the
top speed mode within 3 s. Peptides were isolated for HCD fragmentation with quadrupole isolation width 0.7 Th and 50k resolution.
Collision energy was set at 38% with AGC 1x10° and max IT 105 ms. Targeted precursors were dynamically excluded from further
isolation and activation for 45 s with 7 ppm mass tolerance. For the ‘Direct 10K’ and ‘Direct 15K’ runs a 150 min 5%-38% B gradient
was used. For the ‘10K Fract I’ experiment, the 5 fractions were injected twice by setting a maximum intensity threshold at 5x 108 in
the second run (from 5x10%%),
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QUANTIFICATION AND STATISTICAL ANALYSIS

scATAC-seq

Read alignment to a reference genome (mm10) was performed using CellRanger pipeline (CellRanger-ATAC, 10x Genomics, cell-
ranger-atac count). For downstream data analyzes, the ArchR workflow was used.®* Due to the low intra-sample heterogeneity,
the ArchR’s simulation of synthesized in silico doublets over the data was not used to exclude potential doublet cells and doublets
were removed by filtering cells containing less than 40,000 fragments instead. The term frequency-inverse document frequency (TF-
IDF) normalization and the singular value decomposition (SVD) were performed (latent semantic indexing, LSI”") using ArchR’s ad-
dlterativel SI. Uniform Manifold Approximation and Projection (UMAP) dimension reduction’® was run with ArchR’s addUMAP.
Pseudo-bulk replicates were created, and peaks were called using MACS2.”® Marker peaks unique to individual groups were iden-
tified with ArchR’s getMarkerFeatures. Paired samples Wilcoxon test was used to compare WT and Tet2 ™/~ samples (FDR 0.1 & ab-
solute log2 FC > 0.5)). Transcription factor binding motifs were annotated using ArchR’s addMotifAnnotations function, and motif set
from the cisbp database’* was used (chromVAR package®®). Differentially accessible peaks were tested for motif enrichment with
ArchR’s peakAnnoEnrichment function. Closest genes to the accessible regions were identified if the distance to the transcription
start site was <100k base pairs (FDR < 0.1 and log2 FC > 0.5). Computational analysis was performed using the University of
York Research High Performance Computing Cluster (Rocky 8.8, Viking2). Plots were made with ArchR,>* ggplot2,°° Seurat,®”*® Cy-
toscape®® and ClueGO.%°

Plate-based scRNA-seq

Sequenced reads were aligned to the GRCm39 (Genecode version M33) reference mouse genome using STAR aligner’® and gene
counts were computed using featureCounts.”® For downstream scRNA-seq data analysis, the Seurat workflow®”*® was used.
Sequencing data from the scRNAseq experiments were integrated using Harmony.”” Data were normalized using regularized nega-
tive binomial regression (Seurat’s SCTransform). Principal component analysis (PCA) reduction analysis was performed with Seurat’s
RunPCA (default parameters), and the top 5 principal components were selected. UMAP”? was run with Seurat’s RunUMAP (default
parameters). Local neighbourhoods were defined with Seurat’s FindNeighbors, and cells were clustered using the Louvain algo-
rithm’® (Seurat’s FindClusters). Differentially expressed genes for Tet2™~ and WT cell groups were found with Seurat’'s
FindMarkers. Significantly up/down regulated genes were defined as q value <0.05 and absolute average log2 FC > 1. To compare
functional profiles for identified genes, clusterProfiler®’ and enrichplot®” were used. Gene Ontology analysis was performed with Cy-
toscape®® and ClueGO.?° Computational analysis was performed using the University of York Research High Performance
Computing Cluster (Rocky 8.8 and Viking2). Plots were made with ArchR,** ggplot2,°® Seurat,*”-*® Cytoscape® and ClueGO.%°

Integrative scATAC-seq and scRNA-seq data analysis

The lists of more/less accessible regions in the SCATAC-seq closest gene analysis determined by the Tet2 ™'~ HSC versus WT HSC
pairwise testing were intersected with the lists of genes showing higher/lower expression in the Tet2~'~ HSC versus WT HSC scRNA-
seq analysis. To find genes related to identified scATAC-seq/scRNA-seq targets, the Genemania database®® was used. Network of
TFs (scATAC-seq analysis) and genes they regulate (scRNA-seq analysis) was built using information from the DoRothEA data-
base.?® Plots were made with with VennDiagram,®® ggplot2,°® Genemania,?® DoRothEA®® and igraph.®*

Protein identification and quantification

MS raw data was searched against the SwissProt human or mouse database using the SequestHT node in Proteome Discoverer 2.2.
Precursor mass tolerance was 20 ppm and fragment ion mass tolerance was 0.02 Da. Spectra were searched for fully tryptic peptides
with no more than 2 missed cleavages and a minimum length of 6 amino acids. TMT6plex at N-termini and lysine residues and car-
bamidomethyl at cysteine residues were set as fixed modifications. Methionine oxidation and glutamine and asparagine deamidation
were set as dynamic modifications. Peptide FDR was set to 0.01 and validation was based on g-value and target-decoy database
search using the Percolator node. The Reporter lon Quantifier node included a custom TMT-10plex quantification method with an
integration window tolerance of 15 ppm. At least one unique peptide was required for identification and only unique peptides
were used for quantification.

Bioinformatic analysis of proteomic and bulk RNA-seq data

Scaled quantitative values were obtained by dividing each TMT signal-to-noise (S/N) ratio by the mean TMT S/N across samples per
protein. For bulk RNA-seq data, the gene list was filtered for genes with a minimum of 2 libraries with a minimum count per million
(CPM) of 1. Remaining CPM values were normalized using the trimmed mean of M values (TMM) method in the edgeR R package®
(version 3.40.2). Principal component analysis (PCA) was performed using the R package PCAtools (version 2.10.0). The bottom 10%
least variable genes/proteins were not included in PCA. Correlation between proteome and bulk transcriptome data was assessed
using the Pearson correlation coefficient. For shortlisting targets for follow-up analysis, proteins with an absolute log2 FC of >0.5
across all comparisons between the two Tet2 ™'~ and WT replicates were considered potential targets. For the bulk RNAseq dataset,
a Students’ t test was performed and genes with an absolute log2 FC > 0.5 and adjusted p-value <0.05 were considered potential
targets. KEGG and Reactome pathway analysis were performed using the limma®® (version 3.54.2) and ReactomePA®® (version
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1.42.0) package, respectively. Interaction network analysis was performed using the STRING database®” with a combined score cut-
off of 0.4. Networks were visualized in Cytoscape®® (version 3.10.0).

Statistical analysis

For all other experiments, differences between groups were assessed by one or two-tailed Students’ t test (two groups) or one-way
ANOVA with Tukey’s post hoc test (three or more groups) using Prism software (GraphPad). Details about number of replicates used
for experiments can be found in the respective figure legends. Error bars represent SD. ****p < 0.0001, ***p < 0.001, **p < 0.01, and
*p < 0.05 and ns = non-significant.
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