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SUMMARY

Despite rapid advances in mapping genetic drivers and gene expression changes in hematopoietic stem cells 
(HSCs), few studies exist at the protein level. We perform a deep, multi-omics characterization (epigenome, 
transcriptome, and proteome) of HSCs in a mouse model carrying a loss-of-function mutation in Tet2, a driver 
of increased self-renewal in blood cancers. Using state-of-the-art, multiplexed, low-input mass spectrometry 
(MS)-based proteomics, we profile TET2-deficient (Tet2 − /− ) HSCs, revealing previously unrecognized molec-

ular processes that define the pre-leukemic HSC molecular landscape. Specifically, we obtain more accurate 
stratification of wild-type and Tet2 − /− HSCs than transcriptomic approaches and identify extracellular matrix 
(ECM) molecules as being dysregulated upon TET2 loss. HSC expansion assays using ECM-functionalized 
hydrogels confirm a selective effect on the expansion of Tet2-mutant HSCs. Taken together, our study 
represents a comprehensive molecular characterization of Tet2-mutant HSCs and identifies a previously 
unanticipated role of ECM molecules in regulating self-renewal of disease-driving HSCs.

INTRODUCTION

Hematological malignancies are commonly initiated by single 

hematopoietic stem cells (HSCs) that have acquired mutations, 

which confer a clonal advantage relative to non-mutated he-

matopoietic cells. 1 Loss-of-function (LoF) mutations in the 

gene encoding the DNA-demethylating enzyme Tet methylcyto-

sine deoxygenase 2 (TET2) are commonly found in hematologi-

cal malignancies, and evidence points toward its loss driving 

an increase in HSC self-renewal. 1–5 At the transcript level, muta-

tions in Tet2 are associated with altered gene expression in 

mouse HSCs; however, relatively few of these potential partner 

genes have been implicated in directly driving disease initiation 

and progression, 2–4 thus highlighting an urgent need to further 

explore the molecular landscape of mutated HSCs.

Historically, comprehensive profiling of HSCs beyond the 

transcriptome has been impeded due to their low numbers. 

To address the prohibitively large amount of material typically 

required for global proteomic characterization, multiple strate-

gies for facilitating low cell number and single-cell mass spec-

trometry (MS)-based proteomics have begun to emerge, 6–12 

including a recent effort which profiles thousands of hemato-

poietic stem and progenitor cells (HSPCs) at the single cell 

level. 13 These studies have revealed a generally poor correla-

tion between proteome and transcriptome, especially in 

non-homeostatic contexts such as inflammation and dis-

ease, 10,11,14,15 further highlighting the need to develop low-

cell-number approaches to facilitate the study of the global 

proteome in HSCs and assess the functional unit of molecular 

activity.

Cell Reports 45, 116770, January 27, 2026 © 2025 The Authors. Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ll
OPEN ACCESS

http://creativecommons.org/licenses/by/4.0/
mailto:david.kent@york.ac.uk
https://doi.org/10.1016/j.celrep.2025.116770
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2025.116770&domain=pdf
http://creativecommons.org/licenses/by/4.0/


In this study, we use an MS-based method for global proteo-

mic profiling of low numbers (10,000–20,000) of primary HSPCs 

as a part of a comprehensive multi-omics profiling of TET2-defi-

cient (Tet2 − /− ) long-term (LT)-HSCs and uncover previously un-

described regulators of Tet2-mutant HSC biology. Analysis of 

the proteome exclusively identifies extracellular matrix (ECM) in-

teractions as a point of dysregulation upon loss of TET2 in HSCs, 

providing evidence for ECM molecules altering the differentiation 

and self-renewal of mutant HSCs relative to their non-mutant 

counterparts, and thus identifies previously unexplored path-

ways for therapeutic intervention. These data highlight the 

importance of assessing the proteome of pre-leukemic and 

leukemic HSCs in order to reveal novel biology that is typically 

hidden from genomic and transcriptomic studies.

RESULTS

Integrative single-cell ATAC-seq and RNA-seq analysis 

of TET2-deficient HSCs

To understand molecular changes in HSCs induced by TET2 

LoF, we first assessed chromatin accessibility and gene expres-

sion at the single-cell level. Using a genetic knockout mouse 

model with targeted disruption of the TET2 catalytic domain, 5 

we applied single-cell assay for transposase-accessible chro-

matin by sequencing (scATAC-seq; Figures 1A–1C) and single-

cell RNA sequencing 16 (scRNA-seq; Figures 1D and 1E) to 

fluorescence-activated cell sorting (FACS)-isolated CD45 + 

CD48 − CD150 + EPCR + Sca-1 + (ESLAM Sca-1 + ) HSCs, a cell 

population highly enriched (>60%) for HSCs with LT serial recon-

stitution capacity 17 from Tet2 − /− and wild-type (WT) mice. scA-

TAC-seq analysis revealed changes in chromatin accessibility 

induced by TET2 LoF, and differential analysis revealed more 

accessible genomic regions in Tet2 − /− HSCs compared to 

HSCs isolated from WT littermate controls (Figure 1A; Table 

S1). Nearly half (47% of peaks) of the regions deemed to be 

more accessible in the Tet2 − /− HSCs were intronic (Figure 1B) 

and potentially related to specific gene regulation. In line with 

this, recent studies of chromatin accessibility revealed that 

HSCs with mutated Tet2 have hypermethylation of enhancer 

sites. 18 Analysis of transcription factor (TF) binding sites identi-

fied specific motifs enriched in Tet2 − /− HSCs, including binding 

motifs for known self-renewal regulator Smarcc1, 19 tumor sup-

pressor Runx3, 20 and cell cycle and oxidative stress regulator 

Bach1, 21 among others (Figure 1C).

Next, we undertook plate-based (scRNA-seq) to determine 

changes in gene expression between WT and Tet2 − /− HSCs. 

As in our scATAC-seq data, scRNA-seq indicated significant 

molecular changes upon Tet2 loss (Figure 1D; Table S2). We 

identified 54 differentially expressed genes (log2 fold change 

[FC] > 1 and adjusted p value < 0.05), including 18 upregulated 

and 36 downregulated in Tet2 − /− HSCs compared to WT 

(Figure 1E). In accordance with previous studies, 24 Gene 

Ontology (GO) analysis identified enrichment in pathways regu-

lating transcription and cellular response to calcium ion 

(Figure 1F).

To further study the mechanisms underpinning the self-

renewal differences in Tet2 − /− compared to WT HSCs, scA-

TAC-seq and scRNA-seq datasets were integrated. The closest

genes to peaks identified in the scATAC-seq analysis were 

determined, and the expression of these genes was assessed 

in the scRNA-seq data (distance to transcription start 

site < 100,000 bp 22 ). Out of 698 identified closest genes in the 

scATAC-seq analysis, only 16 had significantly altered expres-

sion between Tet2 − /− and WT HSCs in the scRNA-seq data 

(Figures 1G and 1H), with 14 of these appearing among the top 

40 differentially expressed genes in the scRNA-seq dataset. 

Analysis of predicted protein associations using the Genemania 

database 25 showed high connectivity, strongly suggesting bio-

logical relatedness (Figure 1I). For example, among the genes 

with both lower chromatin accessibility and gene expression in 

Tet2 − /− HSCs were three members of the Krü ppel-like factor 

(Klf) family (Klf2, Klf4, and Klf6) that regulate self-renewal 26 and 

Fosb, a member of the AP1 complex, recently shown by us to 

be downregulated in hibernating HSCs. 27 To further integrate 

the information from both analyses, we built a TF regulatory 

network using the DoRothEA database. 26 We selected all TFs 

whose binding motifs were significantly more accessible in 

Tet2 − /− HSCs (as shown in our scATAC-seq analysis) and 

curated a list of all differentially expressed genes (as determined 

by our scRNA-seq analysis) that the selected TFs regulate. The 

constructed interaction network containing all defined regulons 

(TF regulatory gene pairs) identified a set of TFs potentially regu-

lating the HSC fate (Figure 1J), among which we found well-

known HSC regulators, such as Gata2, Gata3, Fli1, and 

Runx1. 28–30 Together, these data both identify factors important 

for normal HSC function and identify additional candidate regu-

lators of the increased self-renewal observed in Tet2 − /− HSCs.

Optimization of a low-input proteomic workflow

Our analyses of the epigenome and transcriptome of cells largely 

reflected current knowledge surrounding Tet2 LoF mutations, 

whereby expression and chromatin accessibility of a number 

of genes’ hematopoietic TFs with known roles in cellular differen-

tiation are altered. These data further accord with the pheno-

types observed in mouse models and patients with hematologi-

cal malignancies (i.e., an accumulation of myeloid progenitor 

cells 1,5 ). In order to explore changes in populations of primary 

HSCs that might occur downstream of the transcriptome, a 

global proteomic method for low cell numbers was required. 

To develop this method, we used the hematopoietic progenitor 

cell line HoxB8-FL 31 for protocol optimization. In an initial sin-

gle-vessel sample preparation and protein-level tandem mass 

tag (TMT) 10plex isobaric labeling approach applied to a sample 

set of 3 × 10,000 cells and 7 × 20,000 cells, just 2,218 and 1,345 

proteins were identified and quantified, respectively, across the 

entire multiplexed set (Figure 2A and 10K direct) with only 

modest benefit gained by increasing the smaller samples from 

10,000 to 15,000 cells and carrier samples from 20,000 to 

30,000 cells (Figure 2A and 15K direct). Next, through a multi-

stage optimization process, we devised a method using single-

vessel sample preparation, peptide-level isobaric labeling with 

a carrier approach, and high-resolution offline fractionation, 

which resulted in robust quantification of over 3,500 proteins 

from as few as 10,000 cells (Figures 2A–2C). These results sug-

gest that the higher labeling efficiency achieved by peptide-level 

isobaric labeling outweighs the benefits of combining samples
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Figure 1. Single-cell analyses reveal increased chromatin accessibility and decreased transcriptional activity in Tet2 − /− HSCs

(A) Volcano plot showing differentially accessible sites between WT and Tet2 − /− HSCs in scATAC-seq analysis (log2 FC > 0.5, adjusted p value < 0.1).

(B) Proportion of significantly more accessible peak regions categorized by genomic feature in Tet2 − /− HSCs.

(C) Motif enrichment for TF motifs more accessible in Tet2 − /− HSCs.

(D) Uniform Manifold Approximation and Projection visualization of scRNA-seq data. Each dot represents one cell.

(E) Volcano plot showing differentially expressed genes between WT and Tet2 − /− HSCs in scRNA-seq analysis (log2 FC > 1, adjusted p value < 0.05).

(F) GO biological processes enrichment analysis of differentially expressed genes in scRNA-seq. Node sizes reflect the statistical significance of the terms. Force-

directed layout presented by the kappa score. The layout was adjusted to minimize label overlap.

(G) Venn diagram showing the overlap of targets identified in both scATAC-seq and scRNA-seq modalities (Tet2 − /− versus WT HSC pairwise testing).

(H) Volcano plot of scRNA-seq data with labeled selected genes identified in the scATAC-seq closest gene analysis (Tet2 − /− versus WT HSC pairwise testing). 

Blue/orange dots indicate genes down/upregulated in scRNA-seq data analysis; blue/orange labels indicate less/more accessible markers in the scATAC-seq 

data analysis.

(I) Interaction graph for targets identified in the integrative scATAC-seq/scRNA-seq data analysis constructed using the Genemania database. 22 Purple, co-

expression; blue, co-localization; orange, predicted; green, shared protein domains; and red, physical interaction.

(J) Interaction graph of identified regulons: TF (scATAC-seq analysis) and genes they regulate (scRNA-seq analysis). Network built using information from the 

DoRothEA database. 23 Pink, TF and blue, regulated genes.

See also Figure S1.
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earlier in the protocol with protein-level labeling, and that reduc-

tion of sample complexity by offline fractionation prior to liquid 

chromatography-MS analysis is the most important factor in 

achieving high proteome coverage in low-input samples.

To assess the type of information gained by proteome-level 

characterization, we mapped protein abundance from the Fract 

II experiment (Table S3) against gene expression 32 (Figure 2D) 

and observed a positive correlation overall (r 2 = 0.13, 

p < 2.2 × 10 − 18 ). Clustering analysis identified a set of genes/ 

proteins showing particularly strong enrichment at the protein 

level (Figure 2D, cluster 1, shown in green), including 33 that 

were uniquely detected in the proteome data (Figure 2E). Intrigu-

ingly, 8 of these 33 proteins (24%) were associated with ECM or-

ganization (Figure 2E, highlighted in red), suggesting that ECM 

components might be more readily captured by proteomic rela-

tive to transcriptomic analysis.

Global proteomics identifies distinct molecular changes 

in Tet2 − /− HSPCs not captured by transcriptomics

To generate a comprehensive molecular map of WT and Tet2 − /− 

HSPCs, we applied our low-input proteomic workflow (Figure 2) 

to WT and Tet2 − /− HSPCs with primary and secondary trans-

plantation capacity (lineage [Lin] − cKit + CD45 + CD48 − CD150 + ; 

collectively called ‘‘CD150 + ’’) or those limited to finite reconstitu-

tion capacity in a primary transplantation (Lin − cKit + CD45 + 

CD48 − CD150 - ; collectively called ‘‘CD150 - ’’; Figure 3A). 33 We 

additionally analyzed the proteome of WT ESLAM HSCs 

(CD45 + CD48 − CD150 + EPCR + ) as a reference LT-HSC popula-

tion 33 and WT Lin − cKit + cells as a carrier proteome population to 

increase mapping efficiency. 9 To assess the degree of post-tran-

scriptional regulation and the overall correlation between tran-

scriptome and proteome in Tet2 − /− HSPCs, we performed bulk 

RNA-seq on WT and Tet2 − /− CD150 + and CD150 - cells. Using 

just 10,000–30,000 cells per sample, the MS analysis identified 

4,133 unique proteins, out of which 3,989 (∼97%) were reliably 

quantified across all cell populations (Table S4). Notably, our 

low cell number multiplex captured 55% of proteins previously 

quantified in HSCs 34 using only 2.5%–7.5% of total cell input 

per sample, and protein coverage was similar to recent studies 

using 40,000–100,000 hematopoietic progenitor cells per sam-

ple and a similar methodology for sample preparation and MS 

analysis. 11,12 Normalization against sample loading successfully 

corrected for the difference in cell number between samples 

(Figure S2A).

Following the generation of global proteomic datasets for WT 

and Tet2 − /− HSPCs, we first compared proteome and transcrip-

tome datasets. Principal component analysis (PCA) of proteomic 

data clearly separated cell populations according to genetic 

background in principle component (PC) 1 (Figure 3B), whereas 

separation in PC1 and PC2 for RNA-seq data was driven by cell 

type rather than Tet2 mutational status (Figure 3C), indicating 

that the transcriptome and proteome have substantial global dif-

ferences in regulation. Interestingly, in Figure 3B, the Tet2 − /− 

CD150 − samples are most distinct compared to WT populations 

and Tet2 − /− CD150 + cells, suggesting that proteome dysregula-

tion in Tet2 − /− hematopoietic cells is exacerbated as cells 

mature past the stem cell state, a finding potentially associated 

with the myeloid skewing observed with loss of TET2. 1,5 To a 

lesser extent, this was also reflected in PC2 of the transcriptome 

data (Figure 3C). To investigate which proteins best separated
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with different upper intensity precursor selection limit in the two runs (Fract II). K: 1000.
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(E) Identifications unique to proteome data. Proteins in red are associated with ECM organization.
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Figure 3. The proteome and transcriptome highlight alterations in disparate cellular processes upon loss of Tet2 in HSPCs

(A) Workflow for liquid chromatography-tandem mass spectrometry analysis of WT and Tet2 − /− HSPCs.

(B and C) PCA of proteomic (B) and transcriptomic (C) data.

(D) Top 15% loadings from PC1 in (B).

(E) Correlation between protein and gene expression differences (log2 FC) between Tet2 − /− and WT CD150 + cells. The dotted red line indicates the linear 

trendline. r 2 represents the Pearson correlation coefficient.

(F) Protein expression difference between Tet2 − /− and WT CD150 + cells. Candidate target proteins (log2 FC > 0.5 across all comparisons between Tet2 − /− and 

WT CD150 + cells) enriched and depleted in Tet2 − /− relative to WT CD150 + cells are shown in blue and orange, respectively.

(G) Gene expression difference between Tet2 − /− and WT CD150 + cells. Candidate target genes (log2 FC > 0.5 and adjusted p value < 0.05) enriched and depleted 

in Tet2 − /− relative to WT CD150 + cells are shown in blue and orange, respectively.

(H) Overlap between candidate target genes and proteins enriched or depleted in Tet2 − /− relative to WT CD150 + cells.

(I and J) KEGG pathway analysis of candidate target proteins and genes enriched (I) or depleted (J) in Tet2 − /− relative to WT CD150 + cells. The dotted lines mark 

adjusted p value = 0.05.

See also Figure S2.
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WT and Tet2 − /− cells, we extracted the top and bottom 15% of 

loadings for PC1 (27 WT-enriched and 9 Tet2 − /− -enriched; 

Figure 3D). Proteins associated with the TET2-deficient cell pop-

ulations included inflammatory proteins S100A9 and LCN2, 

which have been reported to be involved in the pathogenesis 

of myelodysplastic syndrome and myelofibrosis, respec-

tively. 35,36 WT-enriched loadings included interleukin-1 (IL-1) re-

ceptor antagonist protein IL-1RA, a protein important for damp-

ening IL-1-driven inflammation, which was recently shown to 

contribute to the clonal outgrowth of Tet2 +/− HSPCs during 

aging. 37 Two of the top loadings for WT cells in PC1 were anti-

coagulant proteins antithrombin III (SERPINC1) and plasmin-

ogen (PLG), suggesting potential dysregulation of clotting mech-

anisms in Tet2 − /− HSPCs. Intriguingly, LoF mutations in TET2 

have recently been linked to an increased risk for myeloprolifer-

ative neoplasm (MPN)-associated thrombosis, and patients car-

rying TET2 mutations have significantly lower levels of anti-

thrombin III than those with intact TET2 expression. 38 Our data 

suggest that the increased production of inflammatory proteins

and impaired clotting functions associated with mutations in 

Tet2 are evident already at the level of HSPCs.

Next, we specifically interrogated the immature CD150 + pop-

ulation. There was no correlation between the protein and RNA

datasets for the CD150 + population (r 2 = 0.0053; Figure 3E),

which accords with previous studies that reported a high degree

of post-transcriptional regulation in early HSPCs, 10,14,15 and

poor correlation between proteome and transcriptome in HSCs 

compared to downstream progenitors. 14 The correlation be-

tween transcriptome and proteome in the CD150 - population 

was equally poor (r 2 = 0.0056; Figure S2B). To further assess 

concordance between the two datasets, we next generated 

shortlists of candidate proteins and genes and compared the 

lists (Figures 3F and 3G; Table S4). In the CD150 + LT-HSC-en-

riched population, only 6 candidate targets overlapped between 

the two datasets; these included inflammatory biomarker hapto-

globin, which showed elevated expression in Tet2 − /− cells, and 

anti-inflammatory methallothionein 2, which was enriched in 

WT relative to knockout cells (Figure 4H). The overlap in the
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Figure 4. Expression of ECM proteins is altered upon loss of Tet2 and correlates with self-renewal potential

(A and B) Reactome pathway analysis of candidate target proteins enriched (A) or depleted (B) in Tet2 − /− relative to WT CD150 + cells. The dotted lines mark 

q value = 0.05.

(C) Relative abundance of proteins contained within the reactome pathway ‘‘ECM organization’’ in WT CD150 + , Tet2 − /− CD150 + , and WT ESLAM cells.

(D) Correlation between protein and gene expression differences (log2 FC) of proteins/genes contained within the reactome pathway ‘‘ECM organization’’ be-

tween Tet2 − /− and WT CD150 + cells.
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CD150 − population was substantially higher, with 33 and 97 

candidate proteins (representing 15% and 21% of all candidate 

proteins, respectively) significantly enriched at the transcript 

level in Tet2 − /− and WT cells, respectively (Figure S2C). 

Despite the low overlap of specific targets between the MS 

and RNA-seq datasets, Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) pathway enrichment analysis of candidate pro-

teins/genes in the CD150 + LT-HSC-enriched population high-

lighted some commonalities (Figures 3I and 3J), suggesting 

significant dysregulation in HSPCs upon loss of Tet2. The most 

prominent of these categories were ‘‘metabolic pathways’’ and 

‘‘mineral absorption,’’ both strongly enriched among proteins 

and genes downregulated in Tet2 − /− relative to WT CD150 + 

cells. Surprisingly, the top enriched pathway among proteins up-

regulated in Tet2 − /− relative to WT cells was ‘‘motor proteins,’’ 

and the proteomic datasets highlighted changes in additional 

pathways related to the actomyosin motor and the ECM upon 

loss of TET2 in immature HSPCs, such as ‘‘leukocyte transendo-

thelial migration’’ and ‘‘ECM-receptor interaction’’ (Figure 3J). 

Metabolism and the actomyosin motor were also altered in 

CD150 − cells, pointing to their dysregulation as a general feature 

of TET2 loss in HSPCs (Figures S2D and S2E). In line with the de-

regulated expression of thrombosis-related proteins in Tet2 − /− 

CD150 + cells (Figure 3D), ‘‘platelet activation’’ was one of the 

pathways enriched among proteins with lower expression in 

mutant compared to WT cells (Figure 4J).

ECM interactions regulate self-renewal of Tet2 − /− HSCs 

Reactome pathway enrichment analysis (Figures 4A and 4B) 

identified several pathways related to the actomyosin motor 

and to ECM organization among proteins more highly expressed 

in either Tet2 − /− (Figure 4A) or WT (Figure 4B) cells. Analysis of 

individual proteins contained within the reactome pathway 

‘‘ECM organization’’ revealed distinct expression patterns of 

ECM proteins in the three most HSC-enriched cell populations 

in our proteomic data (Figure 4C), with proteins either being 

depleted or enriched with increasing self-renewal potential. A 

subset of these proteins, including four collagen family mem-

bers, displayed particularly high expression in Tet2 − /− CD150 + 

cells, and three of these (ITGB2, COL2A2, and P4HB) overlapped 

with the more highly HSC-enriched WT ESLAM population. 

Notably, bulk RNA-seq data did not capture these changes, 

instead showing that ECM-associated genes were either un-

changed between WT and TET2-deficient cells or had opposing 

expression patterns compared to the proteome data (Figure 4D). 

All ECM proteins identified in the MS data are known interac-

tion partners, and, intriguingly, proteins enriched in Tet2 − /− and 

WT CD150 + cells were positioned in distinct areas of the interac-

tion network (Figure 5A). Several findings in our proteome anal-

ysis pointed toward a deregulation of platelet-associated path-

ways in Tet2-mutant HSCs (Figures 3D and 3J). We therefore 

next decided to focus on ECM proteins with known roles in meg-

akaryopoiesis—ITGA2B/CD41, ITGB3/CD61, and von Wille-

brand factor (vWF). Intracellular flow cytometry confirmed that 

a significantly smaller proportion of Tet2 − /− CD150 + cells ex-

press vWF and ITGA2B/CD41 (Figures 5B and 5C). The propor-

tion of ITGB3/CD61 + CD150 + cells was also reduced in 2/3 as-

sayed animals (Figure S3A). Immunofluorescence measured by

confocal microscopy provided further proof of a lower abun-

dance of vWF in mutant relative to WT CD150 + HSPCs 

(Figures 5D, S3B, and S3C). As both ITGA2B/CD41 and vWF 

mark HSCs primed toward platelet production, 15,39 our findings 

here suggest that the low expression of proteins associated with 

platelet activation, Tet2 − /− CD150 + , relative to WT cells, is due to 

a loss of megakaryocyte-biased HSCs within the stem cell pool. 

In order to test the functional impact of HSC-vWF interaction, 

we cultured ESLAM HSCs derived from WT and Tet2 − /− animals 

using recently published HSC culture conditions 41 in tissue cul-

ture plates functionalized with vWF (Figure 5E). In these condi-

tions, vWF did not affect the expansion of primitive Lin − Sca-

1 + cKit + (LSK) HSPCs and EPCR + LSK (ELSK) 40 HSCs 

(Figures S3D and S3E). However, in line with our findings 

regarding deregulated expression of platelet-associated pro-

teins in Tet2 − /− HSCs (Figures 3D and 3J) and a smaller propor-

tion of platelet-biased cells within the Tet2-deficient HSC pool 

(Figures 5B and 5C), we observed a lower output of megakaryo-

cytic (MK; CD41 + CD42d + ) cells from Tet2 − /− relative to WT 

HSCs at steady-state, which was partially rescued by vWF 

(Figure 5F). WT HSCs were unaffected by vWF in this regard, 

suggesting that TET2-deficient HSCs are more sensitive to the 

pro-thrombotic effects of vWF signaling.

We hypothesized that presenting ECM proteins to cells in a 

setting more closely resembling the bone marrow (BM) niche 

may elicit different effects on HSC expansion and differentiation. 

To this end, we utilized STEMBOND hydrogels functionalized 

with vWF or hyaluronan (HA) as HA receptors CD44 and 

ITGB1/CD29 were among proteins showing self-renewal and 

Tet2-status-associated differences in expression (Figure 4C). 

As expected, loss of TET2 confers a self-renewal advantage in 

HSCs 1,5 that presents itself as an increase in the frequency of 

LSK HSPCs and ELSK HSCs compared to WT controls 

(Figures 5G, 5H, S3F, and S3G). Strikingly, this mutant self-

renewal advantage was abolished when cells were cultured in 

the presence of hydrogel-anchored vWF (Figures 5G and 5H), 

and, to a lesser extent, HA (Figures S3F and S3G). The reduced 

fraction of progenitors (LSK) and HSCs (ELSK) was only 

observed in the Tet2 − /− cultures, suggesting that vWF is selec-

tively (and negatively) influencing TET2-mediated HSC expan-

sion. Importantly, transplantation of cells cultured in the pres-

ence of niche-anchored vWF revealed that vWF-exposed 

Tet2 − /− HSCs have an impaired capacity to engraft in the BM 

(Figure 5I). Together these data show that exposure to different 

ECMs can regulate both the differentiation and self-renewal ca-

pacity of Tet2 − /− HSCs and firmly establish that features 

captured exclusively by proteomic analysis provide novel insight 

into HSC biology.

DISCUSSION

TET2 has been widely studied in the context of clonal hemato-

poiesis and myeloid malignancies due to its recurring LOF muta-

tions and its functional role in HSC self-renewal. The exact mo-

lecular mechanism of the increased self-renewal initiated by 

loss of TET2 function remains unclear, and transcriptomic 

studies to date have been unable to identify clear drivers of 

increased HSC self-renewal. Our integrated ATAC-seq and
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scRNA-seq analyses implicated KLF family members and key 

hematopoietic TFs Gata2, Gata3, Fli1, and Runx1 in the regula-

tion of Tet2-mutant HSCs, confirming that loss of TET2-driven 

demethylase activity causes widespread and functionally rele-

vant dysregulation of the epigenome and transcriptome of 

HSCs. Specifically interrogating changes in methylation status

upon loss of TET2 using, for example, bisulfite-seq, represents 

an important future direction to fully understand the effects of 

TET2 mutations on the epigenome.

Moving beyond transcriptomics to capture global proteome 

level data, we identify a distinct set of ECM molecules with spe-

cific roles in altering the function of Tet2-mutated HSCs.
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Figure 5. Interaction with niche-anchored vWF inhibits expansion of Tet2 − /− HSCs

(A) Protein interaction network of proteins contained within the reactome pathway ‘‘ECM organization.’’ Outlined nodes represent candidate target proteins. 

(B and C) Proportion of cells expressing CD41 (B) and vWF (C) of WT and Tet2 − /− CD150 + cells. n = 3 individual mice per genotype.

(D) Representative immunofluorescence images of vWF in WT and Tet2 − /− CD150 + HSPCs. Scale bars, 2 μM.

(E) Experimental workflow for assessing the effect of ECM-HSC interaction ex vivo.

(F) Frequency of megakaryocytic (MK) cells (CD41 + CD42d + ) following 28-day culture in tissue culture plates functionalized with vWF. n = 2 and n = 3 individual 

mice for WT-vWF and all other conditions, respectively.

(G and H) Frequency of HSPCs (LSK; G) and HSCs (ELSK 40 ; H) following 28-day culture of WT and Tet2 − /− ESLAM HSCs on hydrogels functionalized with vWF. 

n = 3 individual mice per genotype.

(I) Bone marrow chimerism at 16 weeks post-transplantation of WT and Tet2 − /− ESLAM HSCs cultured for 28 days on hydrogels functionalized with vWF. n = 2 

and n = 3 individual mice for WT-vWF and all other conditions, respectively. ***p < 0.001; **p < 0.01; *p < 0.05; and ns, non-significant. Error bars = SD.

See also Figure S3.
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Intriguingly, ECM protein abundance does not correlate with the 

expression of associated transcripts as determined by RNA-seq, 

suggesting a high degree of post-transcriptional regulation in 

this group of proteins. Alternatively, ECM proteins may be tran-

scribed by other cell types and bind to or be taken up by 

HSCs; however, our similar findings in hematopoietic cell line 

HoxB8-FL, which is a system devoid of other cell types, speak 

against this theory.

Techniques to undertake global proteomics in limited numbers 

of cells are rapidly evolving, such that even over the course of this 

study, single-cell proteomic methodologies have been developed 

that obtain thousands of unique proteins in individual human 

HSCs. 13 While our method still captures more proteins in the 

HSC population, it remains completely blind to cell-cell heteroge-

neity. Application of single-cell proteomic approaches to larger 

numbers of cells in normal and diseased states will permit dissec-

tion of more complete pathways in addition to understanding the 

functional and molecular heterogeneity of different cell types. 

Functionalizable hydrogels represent a novel tool to study 

components of the ECM and their impact on cell function. In 

this study, we utilize STEMBOND hydrogels, 42 which permit 

robust matrix tethering and have tunable stiffness, to test the 

ECM components that emerged from our proteomic studies. 

This permits the investigation of biophysical properties of cells 

with LoF Tet2 mutations, and we demonstrate a clear role for 

vWF in specifically restricting TET2-mediated HSC expansion 

in vitro and BM engraftment in vivo. While our study shows a 

clear selective effect of exogenous vWF in Tet2-mutant HSCs, 

whether mutant and healthy cells differ in their interaction with 

vWF and other ECM in vivo remains to be determined. 

Furthermore, our proteomic data point to actomyosin motor 

control as being dysregulated when Tet2 is mutated. While 

TET2 has been previously implicated in cytoskeleton organiza-

tion in ovarian cells 43 and in smooth muscle cell plasticity, 44 its 

role in the actomyosin motor of HSPCs has not yet been 

described. In this vein, myosins are upregulated during inflam-

matory stress in HSCs, 15 and their inhibition impairs growth 

and survival of acute myeloid leukemia cells, 45 implying that their 

high expression in Tet2-mutant HSPCs may be linked to the 

aberrant phenotype of the cells.

There were also a number of proteins more highly expressed in 

WT cells, in particular a set of proteins related to platelet func-

tion. Interestingly, the WT-enriched proteins representing these 

processes include those with anti-coagulant (e.g., PLG, 

SERPINC1, and ANXA5) as well as pro-thrombotic (e.g., FGG, 

VWF, and ITGB3) functions, suggesting that TET2 loss results 

in a general decrease in expression of proteins related to platelet 

production and coagulation in HSPCs and perhaps even related 

to a shift in HSC subtypes away from MK-biased HSCs. In line 

with this, we found that the HSC pool of Tet2-deficient animals 

contains fewer vWF + and CD41 + MK-biased cells and that 

Tet2 − /− HSCs produce fewer MK cells in vitro, a defect that 

can be partially reversed by the addition of vWF.

Clonal hematopoiesis and myeloid malignancies driven by 

mutations in TET2 predominantly affect individuals over 70 years 

of age 46 (corresponding to 18–24 months of age in mice), and 

TET2 loss in these patients is often hetero- rather than homozy-

gous. 47 Our proteome analysis was performed in 30-week-old

Tet2 − /− animals and as such provides insight into molecular 

changes occurring in fully TET2-deficient HSCs in middle age. 

Conducting the same analyses in older and Tet2 +/− animals 

will be an important future direction in order to fully understand 

TET2 LoF-driven pathology in a clinically relevant setting. Of 

further note, our current data are in a transplantation setting, 

and selection in people typically operates in the absence of 

transplantation and occurs over many decades, and the relative 

role of ECM molecules in mediating these selection pressures 

in vivo is completely unknown. Further work to modulate ECM 

over sustained periods in vivo would therefore be of great future 

interest.

Overall, our study emphasizes the importance of moving 

beyond transcriptomic studies to reveal new aspects of mutant 

cell biology during processes of HSC self-renewal and leukemo-

genesis. In particular, proteomic studies have triggered the 

investigation of the mechanisms by which the ECM alters HSC 

self-renewal and influences clonal advantage competition during 

aging and disease. How changes in ECM composition 

throughout aging might contribute to the clinical observations 

of clonal hematopoiesis and pre-leukemic cell expansion is an 

intriguing concept that accords with recent studies showing 

that integrins and their molecular regulators underpin healthy ag-

ing. 48–50 This in turn, opens up new lines of thinking regarding 

potential therapies, and new tools such as functionalizable hy-

drogels will accelerate discoveries that reach well beyond the 

HSC system for applications in numerous other stem cell sys-

tems as has already been pioneered for oligodendrocyte precur-

sors 51 and pluripotent stem cells. 42

Limitations of the study

While the ECM-functionalized hydrogels provide evidence that 

Tet2-mutant cells respond differently than WT cells to distinct 

components of the microenvironment (e.g., vWF), these data 

do not formally demonstrate that increased vWF protein in vivo 

would drive a functional decline of TET2-mutant HSCs. Similarly, 

while many components of the ECM are dysregulated in Tet2-

mutant HSCs, their relevance to steering clonal selection or 

clonal hematopoiesis more broadly remains unclear and will 

require future work in spatial-omics, mechanobiology, and new 

methods to dissect HSC competition in vitro and in vivo. Finally, 

our data are not yet sufficient to understand the heterogeneity of 

ECM composition in individual cells, which will require new tech-

nological advances in single-cell proteomics and/or in vivo HSC-

niche reporters coupled with spatial-omics tools.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, David G. Kent (david.kent@york.ac.uk).

Materials availability

This study did not generate new, unique reagents.

Data and code availability 

• The MS proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE 52 partner repository with the dataset identi-

fier PXD059814. scRNA-seq and scATAC-seq data have been
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deposited to the Sequence Read Archive with dataset identifiers 

PRJNA1210137 and PRJNA1210127, respectively.

• Code used to analyze raw data in this manuscript is available from the 

lead contact upon request.

• Any additional information is available from the lead contact upon 

request.
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48. Skinder, N., Sanz Ferná ndez, I., Dethmers-Ausema, A., Weersing, E., and 

de Haan, G. (2023). CD61 identifies a superior population of aged murine 

HSCs and is required to preserve quiescence and self-renewal. Blood 

Adv. 8, 99–111. https://doi.org/10.1182/bloodadvances.2023011585.

49. Su, T.-Y., Hauenstein, J., Somuncular, E., Dumral, O ¨ ., Leonard, E., Gus-

tafsson, C., Tzortzis, E., Forlani, A., Johansson, A.-S., Qian, H., et al. 

(2024). Aging is associated with functional and molecular changes in 

distinct hematopoietic stem cell subsets. Nat. Commun. 15, 7966. 

https://doi.org/10.1038/s41467-024-52318-1.

50. Widjaja, A.A., Lim, W.-W., Viswanathan, S., Chothani, S., Corden, B., Da-

san, C.M., Goh, J.W.T., Lim, R., Singh, B.K., Tan, J., et al. (2024). Inhibition 

of IL-11 signalling extends mammalian healthspan and lifespan. Nature 

632, 157–165. https://doi.org/10.1038/s41586-024-07701-9.

51. Segel, M., Neumann, B., Hill, M.F.E., Weber, I.P., Viscomi, C., Zhao, C., 

Young, A., Agley, C.C., Thompson, A.J., Gonzalez, G.A., et al. (2019). 

Niche stiffness underlies the ageing of central nervous system progenitor 

cells. Nature 573, 130–134. https://doi.org/10.1038/s41586-019-1484-9.

52. Perez-Riverol, Y., Bai, J., Bandla, C., Garcı́a-Seisdedos, D., Hewapathir-

ana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, 

A., Eisenacher, M., et al. (2022). The PRIDE database resources in 2022: 

a hub for mass spectrometry-based proteomics evidences. Nucleic Acids 

Res. 50, D543–D552. https://doi.org/10.1093/nar/gkab1038.

53. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bio-

conductor package for differential expression analysis of digital gene 

expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bio-

informatics/btp616.

54. Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., 

Chang, H.Y., and Greenleaf, W.J. (2021). ArchR is a scalable software 

package for integrative single-cell chromatin accessibility analysis. Nat. 

Genet. 53, 403–411. https://doi.org/10.1038/s41588-021-00790-6.

55. Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). chrom-

VAR: inferring transcription-factor-associated accessibility from single-

cell epigenomic data. Nat. Methods 14, 975–978. https://doi.org/10. 

1038/nmeth.4401.

56. Wickham, H. (2016). ggplot2 (Springer International Publishing). https:// 

doi.org/10.1007/978-3-319-24277-4.

57. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., 

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis 

of multimodal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/ 

10.1016/j.cell.2021.04.048.

58. Hao, Y., Stuart, T., Kowalski, M.H., Choudhary, S., Hoffman, P., Hartman, 

A., Srivastava, A., Molla, G., Madad, S., Fernandez-Granda, C., and Satija, 

R. (2024). Dictionary learning for integrative, multimodal and scalable sin-

gle-cell analysis. Nat. Biotechnol. 42, 293–304. https://doi.org/10.1038/ 

s41587-023-01767-y.

59. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., 

Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A Software 

Environment for Integrated Models of Biomolecular Interaction Networks. 

Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303.

60. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilov-
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC anti-mouse CD45 BioLegend Clone 30-F11, Cat#103107

Brilliant Violet 785 TM anti-mouse CD45 BioLegend Clone 30-F11, Cat#103149

PE/Cyanine7 anti-mouse CD150 (SLAM) BioLegend Clone

TC15-12F12.2, Cat#115913

APC anti-mouse CD48 BioLegend Clone HM48-1, Cat#103412

Brilliant Violet 421 TM anti-mouse CD48 BioLegend Clone HM48-1, Cat#103427

PE anti-mouse CD201 (EPCR) eBioscience Clone eBio1560, Cat#12-2012-82

APC/Cyanine7 anti-mouse CD117 (c-kit) BioLegend Clone 2B8, Cat#105826

Brilliant Violet 421 TM anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108128

Brilliant Violet 510 TM anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108129

Brilliant Violet 605 TM anti-mouse Ly-6A/E (Sca-1) BioLegend Clone D7, Cat#108134

PE anti-mouse/rat CD61 BioLegend Clone 2C9.G2, Cat#104307

Biotin anti-mouse CD201 (EPCR) Stem Cell Technologies Clone 1560, Cat#60038BT

Alexa Fluor® 647 Streptavidin BioLegend Cat#405237

Alexa Fluor® 488 anti-vWF Abcam Cat#AB307389

Chemicals, peptides, and recombinant proteins

Animal-free recombinant mouse SCF Peprotech AF-250-03

Animal-free recombinant mouse TPO Peprotech AF-315-14

POLY(VINYL ALCOHOL), 87–90% HYDROLYZED Sigma-Aldrich P8136

Ham’s F-12 Nutrient Mix Gibco 11510586

Insulin-Transferrin-Selenium-Ethanolamine 

(ITS -X) (100X)

Gibco 10524233

Penicillin-Streptomycin-Glutamine (PSG) (100X) Gibco 12090216

HEPES, 1M Buffer Solution Gibco 11550496

Recombinant Mouse Von Willebrand Factor antibodies.com A317514

Hyaluronan R&D Systems GLR002

Fibronectin human plasma Sigma Aldrich F0895

Critical commercial assays

TMT10plex TM Isobaric Label Reagents Thermo Fisher Scientific 90110

PicoPure TM RNA Isolation Kit Thermo Fisher Scientific KIT0204

EasySep TM Mouse Hematopoietic 

Progenitor Cell Isolation Kit

Stem Cell Technologies 19856

BD Cytofix/Cytoperm TM 

Fixation/Permeabilization Kit

BD 554714

Chromium Next GEM Single Cell 

ATAC Library & Gel Bead Kit

10X Genomics PN-1000176

ERCC RNA Spike-In Mix Invitrogen 4456740

Deposited data

Raw scRNA-seq data This paper Sequence Read Archive PRJNA1210137

Raw scATAC-seq data This paper Sequence Read Archive PRJNA1210127

Raw proteome data This paper ProteomeXchange Consortium PXD059814

Raw HoxB8-FL RNA-seq data Kucinski et al. 32 Gene Expression Omnibus GSE146128

Experimental models: Cell lines

Human: HoxB8-FL cell line Laboratory of Dr Hans Hä cker N/A
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EXPERIMENTAL MODELS AND STUDY PARTICIPANTS DETAILS

Mice

Wild-type C57BL/6N and Tet2 − /− mice bred in-house were used for all experiments. Adult animals aged 12–16 weeks were used for 

all experiments except for MS analysis where used animals were 30 weeks old. A mix of male and female animals was used. Animals 

were housed in individually ventilated cages (IVC) and provided with sterile food and water ad libitum. All mice were kept in specified 

pathogen-free conditions, and all procedures performed according to the United Kingdom Home Office regulations, in accordance 

with the Animal Scientific Procedure Act.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

C57BL/6 W41/W41 -Ly5.1 (W41) mouse In-house breeding N/A

C57BL/6 mouse In-house breeding N/A

Tet2 − /− mouse (derived from 

B6(Cg)-Tet2 tm1.2Rao /J)

In-house breeding N/A

Software and algorithms

FlowJo BD https://www.flowjo.com/

edgeR package Robinson et al. 53 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

ArchR package Granja et al. 54 https://www.archrproject.com/

chromVAR package Schep et al. 55 https://bioconductor.org/packages/

release/bioc/html/chromVAR.html

ggplot2 package Wickham 56 https://cran.r-project.org/web/packages/

ggplot2/index.html

Seurat toolkit Hao et al., 57 Hao et al. 58 https://satijalab.org/seurat/

Cytoscape Shannon et al. 59 https://cytoscape.org/

ClueGO Bindea et al. 60 https://apps.cytoscape.org/apps/cluego

clusterProfiler package Wu et al. 61 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

enrichPlot package Yu 62 http://bioconductor.org/packages/

release/bioc/html/enrichplot.html

DoRothEA Garcia-Alonso et al. 23 https://saezlab.github.io/dorothea/

VennDiagram package Chen et al. 63 https://cran.r-project.org/web/

packages/VennDiagram/index.html

igraph package Csá rdi et al. 64 https://r.igraph.org/

Proteome Discoverer (version 2.2) Thermo Fisher Scientific https://www.thermofisher.com/se/en/ 

home/industrial/mass-spectrometry/ 

liquid-chromatography-mass-spectrometry-

lc-ms/lc-ms-software/multi-omics-data-

analysis/proteome-discoverer-software.html

PCAtools package Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/PCAtools.html

limma package Ritchie et al. 65 https://bioconductor.org/packages/

release/bioc/html/limma.html

ReactomePA package Yu and He 66 https://bioconductor.org/packages/

release/bioc/html/ReactomePA.html

STRING Szklarczyk et al. 67 https://string-db.org/

Prism software GraphPad https://www.graphpad.com/

Other

96-well CELLview TM plates Greiner N/A
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Cell lines

Hoxb8-FL cells were cultured in RPMI 1640 media (Sigma), supplemented with 10% FBS (Gibco), 0.1% mercaptoethanol (Invitro-

gen), 1% penicillin-streptomycin (Sigma), 1% glutamine (Sigma), 1 μM estradiol and 5% FLT3L conditioned media from the B16-

FL cell line. Cells were maintained in culture at concentrations of 10 5 -10 6 cells/ml.

METHOD DETAILS

Flow cytometry and FACS

For sorting of primary HSPCs, bone marrow was extracted from hind limbs, hips, sternum, and spine collected in ice-cold phosphate 

buffered saline (PBS). Bones were crushed using a mortar and pestle and cell suspension was mechanically dissociated using a 

pipette and passed through a 40 μM filter. Red blood cells were lysed by incubation with ammonium chloride (Stem Cell Technolo-

gies). Mature cells were magnetically depleted from the cell suspension using the EasySep Mouse Hematopoietic Stem and Progen-

itor Cell Isolation Kit (Stem Cell Technologies). For sorting for MS analysis, cell suspensions were stained with fluorophore-conju-

gated antibodies against CD45, CD150, CD48, EPCR, and cKit by incubation for 30 min on ice protected from light. For all other 

experiments, anti-cKit antibody was omitted and anti-Sca-1 antibody was included. Where indicated, antibodies against CD61 

and CD41 were included in the panel. For flow cytometric analysis of cultured HSCs, cell suspensions were stained with fluoro-

phore-conjugated antibodies against CD45, CD11b, Gr-1, cKit, Sca-1, and EPCR. In all flow cytometry and FACS experiments, 

7-aminoactinomycin D (7-AAD) staining was used to exclude dead cells. For intracellular flow experiments, bone marrow cells 

were stained with Fc block for 15 min on ice prior to cell surface staining with antibodies described above. Following cell surface 

staining, cells were fixed and permeabilized using BD Cytofix/Cytoperm kit in accordance with manufacturer’s protocol. Staining 

with intracellular antibodies was carried out overnight at 4 ◦ C. In cases where a biotinylated primary antibody was used, secondary 

staining with Streptavidin-Alexa Fluor 647 was performed. FACS experiments were performed on a BD Influx at the Cambridge Insti-

tute for Medical Research, or a Beckamn Coulter MoFlo Astrios or BD FACS Discoverer S8 at the Imaging & Cytometry Technology 

Facility at the University of York. All flow cytometric analyses were performed on a Beckman Coulter CytoFlex LX or BD LSRFortessa 

X20 at the Imaging & Cytometry Technology Facility at the University of York. All flow cytometry data were analyzed using FlowJo 

software (BD).

Immunofluorescence

SLAM cells were isolated by FACS as described above directly into fibronectin-coated (10 μg/cm 2 ) 8-well ibidi chamber slides con-

taining HSC expansion media without cytokines. Cells were incubated overnight at 37 ◦ C and 5% CO 2 to allow adherence to the slide. 

Following removal of media, cells were fixed with 2% PFA for 10 min at RT. Cells were washed and blocked for 1 h at RT in PBS 

containing 5% FBS and 0.01% tween. Blocking buffer was removed and cells were stained with fluorophore conjugated antibodies 

against ECM proteins for 1 h at RT. Following staining for ECM proteins, cells were stained with 0.5 μg/mL DAPI for 15 min at RT. Cells 

were imaged on a Zeiss LSM 880 confocal microscope at the Imaging & Cytometry Technology Facility at the University of York.

HSC gel culture

96-well CELLview plates (Greiner) were activated to allow the binding of StemBond. Plates were treated inside a plasma system 

(Henniker HPT-200) and functionalized using 5% Bind Silane solution (GE Healthcare). Plates were washed thoroughly with 100% 

ethanol. 3 mL soft hydrogel solutions were prepared using 40% acrylamide (210 μL), 2% Bis-acrylamide (120 μL), TEMED (15 μL), 

10% Ammonium Persulfate (APS, 30uL), and water (2461.8 μL) and transferred to the CELLview plates. Following polymerisation, 

gels were rinsed twice in methanol, followed by a PBS rinse. Prior to activation with EDAC/NHS solution (Sigma Aldrich), gels 

were rinsed with pH 6.1 MES buffer. Once activated, gels were rinsed with chilled 60% methanol in PBS, followed by a 50 mM 

pH 8.5 HEPES buffer rinse. Gels and plastic control wells were coated 100–200 μg/mL of ECM protein diluted in HEPES buffer 

and incubated overnight at 4 ◦ C. Following incubation, the protein solution was removed and gels were rinsed with HEPES buffer. 

Ethanolamine solution (0.5 M; ChemCruz) in HEPES buffer was used to block the gels for 30 min at room temperature. Gels were 

rinsed for a final time with pH 7.4 HEPES buffer and PBS to equilibrate the pH. Gels were stored at 4 ◦ C until use. 50 ESLAM 

HSCs per well were sorted directly onto gels into HSC expansion media 41,68 and maintained in culture at 37 C and 5% CO2 for 

28 days with media changes every 2–3 days.

Bulk RNA-seq

To match the cell populations extracted for proteomic profiling, Lin − CD45 + CD48 − CD150 + cKit + (collectively called CD150 + ) and Lin − 

CD45 + CD48 − CD150 - cKit + (collectively called CD150 - ) were isolated using FACS (as described above). A total of 1000 cells were 

collected per biological sample from homogenized cell extracts (femurs, tibiae, hips and spines) of Tet2 − /− and WT mice. RNA extraction 

was performed using the Picopure RNA Isolation Kit (Thermo Scientific) according to manufacturer’s protocol. Library preparation and 

sequencing was performed at the Cancer Research UK Cambridge Institute Genomics Core as previously described. 40 Data processing 

was conducted as previously described. 40 In brief, adapter trimming was performed using trim_galore (parameters: –paired –quality 30 

–clip_R2 3). Reads alignment against the Mus musculus genome build (mm10) was conducted using STAR (default parameters). Gene 

counts were computed using HTSeq (parameters: –format = bam –stranded = reverse –type = exon –mode = intersection-nonempty
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–additional-attr = gene_name). Downstream processing and quality control was conducted using EdgeR 53,69 (version 3.28.1), with read 

counts being transformed to counts per million (cpm), genes with fewer than 2 samples expressing >1 cpm being excluded and read 

count normalization being performed using the trimmed mean of M values (TMM) method. 70

scATAC-seq

scATAC-seq data were generated from Tet2 − /− mice and WT littermate controls. ESLAM HSCs were isolated as described above. 

Cells were isolated from 5 WT mice and 5 Tet2 − /− mice (4,000 cells per genotype). Libraries were prepared using the 10x Genomics 

Chromium Next GEM Single Cell ATAC Reagent Kits v1.1. Sequencing was run at Leeds University Next Generation Sequencing fa-

cility using a NextSeq 2000.

Plate-based scRNA-seq

scRNA-seq data were generated from Tet2 − /− mice and WT littermate controls. ESLAM HSCs were FACS-purified as previously 

described. Freshly isolated HSCs were subjected to single-cell RNA SmartSeq2 sequencing (4 x 96-well plates). RNA was extracted 

using the Picopure RNA isolation kit (Thermo Fisher). Libraries were prepared using a protocol adapted from the msSCRB-seq work-

flow and quality control was performed using the Bioanalyzer system (Agilent). ERCC external RNA Spike-In controls were used 

(ERCC RNA Spike-In Mix; ThermoFisher). Constructed libraries were sequenced using the Illumina NovaSeq X and Novogene sys-

tems using a paired end 150 bp run.

Sample preparation for proteome analysis

Prior to proteomic analysis, Hoxb8-FL cells were resuspended in phosphate buffered saline (PBS). For experiments ‘Direct 10K’ and 

‘Direct 15K’, cell lysis was performed using 2% sodium dodecyl sulfate (SDS) with subsequent boiling at 95 ◦ C. Cell lysates were son-

icated and dried using vacuum centrifugation. Samples were re-suspended in 100 mM TEAB. Reduction and alkylation of cysteine 

residues was performed by incubation with a final concentration of 5 mM tris-2-carboxyethyl phosphine (TCEP) at 60 ◦ C for 30 min 

followed by final concentration 10 mM iodoacetamide (IAA) for 30 min at RT protected from light. Protein-level isobaric labeling was 

performed using TMT 10plex reagents (Thermo Scientific) in accordance with manufacturer’s protocol. 100% (w/v) trichloroacetic 

acid (TCA) was added to the sample mixture at a ratio of 1–4, followed by incubation for 10 min. The sample was centrifuged at 

14,000 rpm and the resulting protein pellet was resuspended in 100 mM TEAB buffer. Trypsin was added and proteins were digested 

overnight at 37 ◦ C. For experiments ‘10K Fract I’ and ‘10K Fract II’, cells in a volume of 20 μL of PBS were thawed on ice and 2 μL 1 M 

TEAB, 1 μL 2% SDS, and 1 μL Halt Protease & Phosphatase inhibitor cocktail (pre-diluted 1:5 in water) was added. Cells were lysed by 

bath sonication for 5 min followed by 3 min incubation at 90 ◦ C. Reduction and alkylation of cysteine residues were performed by 

incubation with 2 μL 50 mM TCEP at 40 ◦ C for 30 min followed by 1 μL 200 mM IAA for 30 min at RT protected from light. 0.5 μg trypsin 

was added, and proteins were digested overnight at RT. Peptide-level Isobaric labeling was performed using TMT 10plex reagents 

(Thermo Scientific) in accordance with manufacturer’s protocol. Following quenching of the reaction with 5% hydroxylamine, sam-

ples were combined and dried completely by vacuum centrifugation. High pH Reversed-Phase (RP) fractionation was performed with

the Waters XBridge C18 column (2.1 × 150 mm, 3.5 μm, 120 A ˚ ) on a Dionex UltiMate 3000 HPLC system. Ammonium hydroxide at

0.1% v/v was used as mobile phase A and mobile phase B was set as 100% acetonitrile/0.1% v/v ammonium hydroxide. The peptide 

mixture was reconstituted in 100 μL mobile phase A and subjected to gradient elution at 200 μL/min as follows: 5 min isocratic at 5% 

B, for 15 min gradient to 35% B, for 5 min gradient to 80% B, isocratic for 5 min and re-equilibration to 5% (B). The chromatogram was 

recorded at 215 and 280 nm and fractions were collected every minute. Fractions were dried completely by vacuum centrifugation 

and stored at − 20 ◦ C until further use.

For primary mouse samples, 10,000–30,000 cells from Tet2 − /− and WT mice were FACS-sorted into 0.1 mL PCR tubes containing 

20 μL ice-cold PBS and processed as described above for the ‘10K Fract I’ and ‘10K Fract II’ experiments. 6, 5 and 8 fractions were 

finally subjected to LC-MS analysis for the ‘10K Fract I’, ‘10K Fract II’ and primary mouse samples, respectively.

LC-MS/MS analysis

LC-MS/MS analysis was performed on a Dionex UltiMate 3000 UHPLC system coupled with an Orbitrap Lumos Mass Spectrometer 

(Thermo Scientific). Each peptide fraction was reconstituted in 10 μL 0.1% formic acid and 7 μL were loaded on the Acclaim PepMap 

100, 100 μm × 2 cm C18, 5 μm, trapping column with the μlPickUp method at a flow rate of 10 μL/min. The samples were subjected to 

a multi-step gradient elution on an EASY-Spray (75 μm × 50 cm, 2 μm) C18 capillary column (Thermo Scientific) at 45 ◦ C. Mobile phase 

A was 0.1% formic acid and mobile phase B was 80% acetonitrile/0.1% formic acid. The gradient separation method at flow rate 300 

nL/min was as follows: for 90 min gradient 5%–38% B, for 10 min up to 95% B, for 5 min isocratic at 95% B, re-equilibration to 5% B in

5 min, for 10 min isocratic at 5% B. Precursor ions were selected with mass resolution of 120k, AGC 4×10 5 and max IT 50 ms in the 

top speed mode within 3 s. Peptides were isolated for HCD fragmentation with quadrupole isolation width 0.7 Th and 50k resolution. 

Collision energy was set at 38% with AGC 1×10 5 and max IT 105 ms. Targeted precursors were dynamically excluded from further 

isolation and activation for 45 s with 7 ppm mass tolerance. For the ‘Direct 10K’ and ‘Direct 15K’ runs a 150 min 5%–38% B gradient 

was used. For the ‘10K Fract II’ experiment, the 5 fractions were injected twice by setting a maximum intensity threshold at 5×10 6 in 

the second run (from 5×10 20 ).
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QUANTIFICATION AND STATISTICAL ANALYSIS

scATAC-seq

Read alignment to a reference genome (mm10) was performed using CellRanger pipeline (CellRanger-ATAC, 10x Genomics, cell-

ranger-atac count). For downstream data analyzes, the ArchR workflow was used. 54 Due to the low intra-sample heterogeneity, 

the ArchR’s simulation of synthesized in silico doublets over the data was not used to exclude potential doublet cells and doublets 

were removed by filtering cells containing less than 40,000 fragments instead. The term frequency-inverse document frequency (TF-

IDF) normalization and the singular value decomposition (SVD) were performed (latent semantic indexing, LSI 71 ) using ArchR’s ad-

dIterativeLSI. Uniform Manifold Approximation and Projection (UMAP) dimension reduction 72 was run with ArchR’s addUMAP. 

Pseudo-bulk replicates were created, and peaks were called using MACS2. 73 Marker peaks unique to individual groups were iden-

tified with ArchR’s getMarkerFeatures. Paired samples Wilcoxon test was used to compare WT and Tet2 − /− samples (FDR 0.1 & ab-

solute log2 FC > 0.5)). Transcription factor binding motifs were annotated using ArchR’s addMotifAnnotations function, and motif set 

from the cisbp database 74 was used (chromVAR package 55 ). Differentially accessible peaks were tested for motif enrichment with 

ArchR’s peakAnnoEnrichment function. Closest genes to the accessible regions were identified if the distance to the transcription 

start site was <100k base pairs (FDR ≤ 0.1 and log2 FC ≥ 0.5). Computational analysis was performed using the University of 

York Research High Performance Computing Cluster (Rocky 8.8, Viking2). Plots were made with ArchR, 54 ggplot2, 56 Seurat, 57,58 Cy-

toscape 59 and ClueGO. 60

Plate-based scRNA-seq

Sequenced reads were aligned to the GRCm39 (Genecode version M33) reference mouse genome using STAR aligner 75 and gene 

counts were computed using featureCounts. 76 For downstream scRNA-seq data analysis, the Seurat workflow 57,58 was used. 

Sequencing data from the scRNAseq experiments were integrated using Harmony. 77 Data were normalized using regularized nega-

tive binomial regression (Seurat’s SCTransform). Principal component analysis (PCA) reduction analysis was performed with Seurat’s 

RunPCA (default parameters), and the top 5 principal components were selected. UMAP 72 was run with Seurat’s RunUMAP (default 

parameters). Local neighbourhoods were defined with Seurat’s FindNeighbors, and cells were clustered using the Louvain algo-

rithm 78 (Seurat’s FindClusters). Differentially expressed genes for Tet2 − /− and WT cell groups were found with Seurat’s 

FindMarkers. Significantly up/down regulated genes were defined as q value <0.05 and absolute average log2 FC > 1. To compare 

functional profiles for identified genes, clusterProfiler 61 and enrichplot 62 were used. Gene Ontology analysis was performed with Cy-

toscape 59 and ClueGO. 60 Computational analysis was performed using the University of York Research High Performance 

Computing Cluster (Rocky 8.8 and Viking2). Plots were made with ArchR, 54 ggplot2, 56 Seurat, 57,58 Cytoscape 59 and ClueGO. 60

Integrative scATAC-seq and scRNA-seq data analysis

The lists of more/less accessible regions in the scATAC-seq closest gene analysis determined by the Tet2 − /− HSC versus WT HSC 

pairwise testing were intersected with the lists of genes showing higher/lower expression in the Tet2 − /− HSC versus WT HSC scRNA-

seq analysis. To find genes related to identified scATAC-seq/scRNA-seq targets, the Genemania database 25 was used. Network of 

TFs (scATAC-seq analysis) and genes they regulate (scRNA-seq analysis) was built using information from the DoRothEA data-

base. 23 Plots were made with with VennDiagram, 63 ggplot2, 56 Genemania, 25 DoRothEA 23 and igraph. 64

Protein identification and quantification

MS raw data was searched against the SwissProt human or mouse database using the SequestHT node in Proteome Discoverer 2.2. 

Precursor mass tolerance was 20 ppm and fragment ion mass tolerance was 0.02 Da. Spectra were searched for fully tryptic peptides 

with no more than 2 missed cleavages and a minimum length of 6 amino acids. TMT6plex at N-termini and lysine residues and car-

bamidomethyl at cysteine residues were set as fixed modifications. Methionine oxidation and glutamine and asparagine deamidation 

were set as dynamic modifications. Peptide FDR was set to 0.01 and validation was based on q-value and target-decoy database 

search using the Percolator node. The Reporter Ion Quantifier node included a custom TMT-10plex quantification method with an 

integration window tolerance of 15 ppm. At least one unique peptide was required for identification and only unique peptides 

were used for quantification.

Bioinformatic analysis of proteomic and bulk RNA-seq data

Scaled quantitative values were obtained by dividing each TMT signal-to-noise (S/N) ratio by the mean TMT S/N across samples per 

protein. For bulk RNA-seq data, the gene list was filtered for genes with a minimum of 2 libraries with a minimum count per million 

(CPM) of 1. Remaining CPM values were normalized using the trimmed mean of M values (TMM) method in the edgeR R package 53 

(version 3.40.2). Principal component analysis (PCA) was performed using the R package PCAtools (version 2.10.0). The bottom 10% 

least variable genes/proteins were not included in PCA. Correlation between proteome and bulk transcriptome data was assessed 

using the Pearson correlation coefficient. For shortlisting targets for follow-up analysis, proteins with an absolute log2 FC of >0.5 

across all comparisons between the two Tet2 − /− and WT replicates were considered potential targets. For the bulk RNAseq dataset, 

a Students’ t test was performed and genes with an absolute log2 FC > 0.5 and adjusted p-value <0.05 were considered potential 

targets. KEGG and Reactome pathway analysis were performed using the limma 65 (version 3.54.2) and ReactomePA 66 (version
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1.42.0) package, respectively. Interaction network analysis was performed using the STRING database 67 with a combined score cut-

off of 0.4. Networks were visualized in Cytoscape 59 (version 3.10.0).

Statistical analysis

For all other experiments, differences between groups were assessed by one or two-tailed Students’ t test (two groups) or one-way 

ANOVA with Tukey’s post hoc test (three or more groups) using Prism software (GraphPad). Details about number of replicates used 

for experiments can be found in the respective figure legends. Error bars represent SD. ****p < 0.0001, ***p < 0.001, **p < 0.01, and 

*p < 0.05 and ns = non-significant.
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