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Data-Driven Kalman Filter with Maximum Incremental Capacity

Measurement for Battery State-of-Health Estimation
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Abstract—State of health (SoH) estimation is crucial for the
reliable operation of battery management systems. While various
SoH estimation approaches have been proposed, the integration
of adaptive filtering with practical indirect health measurements
remains insufficiently explored. This study introduces an online,
data-driven SoH estimation framework that combines Gaussian
process regression (GPR) with an extended Kalman filter (EKF).
Moreover, the proposed method uses the normalized maximum
incremental capacity measurement as a health indicator (HI). Ex-
tracting this HI during the constant current phase of the constant
current constant voltage charging protocol enables online SoH
estimation. The equivalent full cycle count is used for a priori
prediction, while the HI is employed for a posteriori updates.
Experimental validation of the method is carried out using three
publicly available battery datasets, i.e., Dataset 1, Dataset 2, and
Dataset 3, through a leave-one-battery-out cross-validation under
varying operational conditions. The proposed GPR-EKF outper-
forms the EKF on Datasets 1-2 and is comparable on Dataset 3,
while outperforming the Long Short-Term Memory-EKF across
all datasets with average root mean square errors (RMSEs) of
1.88%, 0.45%, and 1.06%, respectively. Furthermore, the method
exhibits robust SoH estimation, maintaining an RMSE of 0.91%
even when the HI measurement is intermittently available with
an 80% probability. These results highlight the potential of the
proposed GPR-EKF method for accurate, robust, and online SoH
estimation in practice.

Index Terms—Lithium-ion Batteries; Battery Management
System (BMS); State of Health (SoH) Estimation; Incremental
Capacity Analysis (ICA); Extended Kalman Filter (EKF); Gaus-
sian Process Regression (GPR); Online Monitoring

I. INTRODUCTION

L ITHIUM-ion batteries (LIBs) are widely used in con-
sumer electronics and electric vehicles as a primary en-

ergy source. However, LIBs undergo capacity degradation over
the long term. Battery state of health (SoH), defined as the ratio
of the battery’s current actual capacity to its initial capacity
at the beginning of life [1], is used to assess this degradation.
Calculating SoH remains challenging due to complex internal
electrochemical reactions and varying operational conditions.
To address these challenges and enhance calculation accuracy,
various techniques have been developed, broadly categorized
into model-based and data-driven methods [2].

Model-based methods relate SoH to variations in model
parameters using empirical models, electrochemical models
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(EMs), or equivalent circuit models (ECMs). Singh et al. [3]
proposed a semi-empirical model with parameters for tem-
perature, discharge rate, and cycle count, enabling rapid and
accurate SoH estimation from charge–discharge data. Cacciato
et al. [4] used a second-order Thevenin ECM with an added
resistor to model the capacity loss at high current rates and
designed a physics-informed observer to estimate SoH from
voltage comparison. Bartlett et al. [5] proposed a reduced-
order EM with a dual nonlinear observer to estimate capacity
loss only as cyclable lithium reduction. While EMs are com-
putationally intensive, ECMs are simpler and better suited for
onboard use with limited accuracy [6]. He et al. [7] combined
a current-integral principle, second-order Thevenin ECM, and
real-time open-circuit voltage characteristic to predict current
and feed its error into a proportional–integral observer for SoH
estimation. However, bias, drift, and noise in Hall-effect or
shunt sensors can degrade the accuracy and stability of the
method. In model-based methods, observer design is required,
and SoH estimation accuracy is limited by the precision of
model parameter identification [8].

Data-driven methods for SoH estimation rely on historical
battery data to model degradation behaviour, without incor-
porating physical or electrochemical knowledge. Common
approaches include Gaussian process regression (GPR) [9],
random forest regression [10], and support vector regression
[11], as well as deep learning models such as long short-
term memory (LSTM) networks [12] and hybrid architectures
combining LSTM with convolutional neural networks (NNs)
[13]. While these methods typically need large datasets and
high computing power, they offer high accuracy by using
statistical and machine learning techniques [14]. To estimate
SoH, Wang et al. introduced a physics-informed NN whose
physical interpretability is constrained by empirical and state-
space models [15]. Wu et al. [16] applied linear regression
with recursive feature elimination, which is cost-efficient yet
inadequate for capturing complex nonlinear SoH behavior. A
crucial step in data-driven methods is the extraction of health
indicators (HIs), which are SoH-related features that strongly
correlate with battery degradation and provide insights into
aging [17].

Various techniques for HI extraction have been employed
in the SoH estimation of LIBs, which can be categorized into
direct and indirect measurement methods. Internal resistance
measurement via electrochemical impedance spectroscopy
(EIS) is one of the most widely used direct measurement
approaches [18]. EIS provides insights into battery impedance,
which serves as a reliable proxy for SoH, as demonstrated by
Kim et al. [19]. Coulomb counting is another direct measure-
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ment method that estimates SoH by measuring ampere-hours
during complete charge–discharge cycles [20]. Direct mea-
surement methods offer accurate SoH assessment. However,
EIS requires dedicated impedance-measurement hardware in
a battery management system (BMS), and Coulomb counting
requires at least one full charge/discharge cycle for a reliable
SoH estimation. In contrast, indirect measurement methods
address these limitations by relying on readily available oper-
ational data. For instance, Wang et al. [21] extracted charging
data from the constant voltage (CV) charging phase, while
Guo et al. [22] analyzed constant current (CC) phase data
to derive a transformation function and time-based parameter
to estimate SoH during the constant current–constant voltage
(CCCV) charging process. Other indirect methods include in-
cremental capacity analysis (ICA) [23], ultrasonic diagnostics
for detecting internal structural anomalies [24], entropy-based
approaches [25], differential thermal voltammetry [26], and
wavelet packet energy entropy analysis [27]. These techniques
enable non-destructive and efficient monitoring of battery
health using measurable signals.

Among all the aforementioned HI extraction methods, ICA
is widely used due to its ability to extract reliable aging
characteristics from real-time operational data. Dubarru et al.
[28] combined ICA and open circuit voltage for degradation
source identification. Wang et al. [29] showed that changes
in partial ICA curve areas reflect SoH loss. Stroe et al. [30]
emphasised its strength in identifying capacity fade through
ICA curve valleys. Wei et al. [31] applied ICA to estimate
the SoH of lithium cobalt oxide (LCO) / lithium nickel cobalt
oxide (NCO) batteries. The effectiveness of ICA for nickel
manganese cobalt (NMC) batteries was demonstrated in [32].
Li et al. [33] extracted ICA peak features (height, position, and
area) to train a support vector regression model, achieving a
maximum absolute error below 2% in SoH prediction. Anseán
et al. [34] showed that ICA curve peak height is a reliable
SoH indicator for lithium iron phosphate (LFP) batteries, as it
strongly correlates with lithium inventory loss.

Despite its potential, the integration of adaptive filtering
techniques with indirect measurement approaches for bat-
tery SoH estimation remains underexplored, particularly in
frameworks where the relationship between SoH and HIs
is modelled using data-driven techniques. The availability
of ICA during the CC phase of standard CCCV charging
protocols enables its online implementation within a filtering
framework. Utilising ICA-derived, physically interpretable,
and low-dimensional features reduces the need for large
training datasets and enables accurate and generalizable SoH
estimation with limited data. To overcome the drawbacks
of fully model-based and fully data-driven approaches while
leveraging their respective advantages, this study introduces a
hybrid SoH estimation framework that integrates ICA-derived
features with an extended Kalman filter (EKF) informed by
data-driven modelling. The proposed method offers a practical
solution for real-time BMSs. The main contributions of this
work are as follows:

1) Identification of a normalized ICA feature that reliably
reflects battery health across diverse operational condi-
tions.

2) Design procedure of an adaptive GPR-EKF framework
that incorporates uncertainty from data-driven diagnostic
features without requiring large-scale training datasets.

3) Experimental validation of the method using publicly
available LIB datasets, including a case where HI mea-
surements are not consistently available.

The structure of this paper is organised as follows: Sec-
tion II outlines the methodology, including the extraction of
health indicators and dataset description, the filter-based SoH
estimation approach, followed by an explanation of the adap-
tive GPR-EKF method. Section III presents the experimental
results, along with the hyperparameter settings and robustness
tests. Finally, Section IV provides the conclusion and future
research.

II. METHODOLOGY

To develop a filter-based SoH estimation algorithm, we
first identify an HI, then establish polynomial prediction and
measurement models. We design EKFs for SoH estimation
using the polynomial models alone and with GPR and LSTM
in separate variants.

A. Health indicator extraction

To identify accurate and robust HIs, choosing the CCCV
charging mode is ideal as charging profiles are more stable
and the SoH is not updated as frequently as the state of charge.
This ensures that the extracted health features are consistent
and reliable.

We explore the ICA method for assessing the HI of LIBs.
ICA is a diagnostic technique used to assess the health and
aging behavior of LIBs. It is based on the differentiation of the
battery’s charge capacity with respect to the terminal voltage
of battery during the CC phase of a standard CCCV charging
protocol. The ICA curve, represented as the incremental charge
versus the terminal voltage, highlights characteristic peaks
and valleys corresponding to electrochemical processes such
as phase transitions and redox reactions within the electrode
materials.

As the battery ages, these ICA curve features would undergo
notable changes: peaks and valleys may shift in position,
diminish in magnitude, or disappear entirely. These variations
are associated with degradation mechanisms including the
growth of the solid electrolyte interphase (SEI) layer, loss of
active material, or increased internal resistance. Monitoring the
evolution of these features over time enables early detection
of degradation and supports accurate SoH estimation.

The incremental capacity (IC) is defined by

IC =
dQ

dV
(1)

where Q denotes the charge capacity in Coulomb and V is
the terminal voltage in Volts. This formulation indicates that
IC can be calculated from standard charge data, making it a
practical tool for online health monitoring in BMSs. However,
calculating derivatives from measured data can amplify noise,
especially in high-resolution battery datasets, and the division
could produce numerical overflows when the terminal voltage
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TABLE I
DATASET 1, DATASET 2, AND DATASET 3 DETAILS

Parameter Dataset 1 Dataset 2 Dataset 3
Battery type Pouch Pouch Cylindrical
Cathode material NMC LCO/NCO LFP
Nominal capacity 5000 mAh 740 mAh 1200 mAh
Charge voltage limit 4.2 V 4.2 V 3.6 V
Cut-off voltage 3.0 V 2.7 V 2 V
Charge current 0.5C 1C 2C
Discharge current 0.5C, 1.5C 1C 1.5C
Operating temperatures 0°C, 25°C, 45°C 40°C No data
Batteries used 01, 03, 10, 11, 12 All (1-8) 51-55

remains close to a constant. To address this, the raw data must
undergo preprocessing before differentiation. To mitigate high-
frequency noise in the voltage–capacity data during ICA, a
central difference approximation was applied when calculating
the IC. Specifically, a symmetric window of size 2ω + 1 was
used to compute the derivative as:

dQ

dV
≈ Q̃(k + ω)− Q̃(k − ω)

Ṽ (k + ω)− Ṽ (k − ω)
(2)

where Q̃ and Ṽ are the measured quantities that include sensor
noise as follows:

Q̃(k ± ω) = Q(k ± ω) + nq(k ± ω) (3a)

Ṽ (k ± ω) = V (k ± ω) + nv(k ± ω) (3b)

where nq and nv are zero-mean Gaussian white noise whose
ranges are typically around ±10 mAs and ±1 mV, respectively
[35]. Substitute (3) into (2)

dQ

dV
≈ ∆Q+∆nq

∆V +∆nv
=

∆Q/∆V +∆nq/∆V

1 + ∆nv/∆V
≈ ∆Q

∆V
(4)

where ∆(·) is the difference of the quantity corresponding to
(·), ω is chosen such that ∆V is big enough compared to ∆nq

and ∆nv and at the same time ω is small enough to approxi-
mate the derivative by the finite difference. It is found that ω
equal to 5 s is appropriate for the approximation during the CC
phase of CCCV charging process. This calculation method can
be replaced by more advanced numerical differentiators [36].

This research utilizes three open-source datasets, referred to
as Dataset 1, Dataset 2 and Dataset 3. Table I summarizes the
datasets. Dataset 1 [37] consists of 21 NMC111-based pouch
batteries. Each battery was subjected to distinct aging proto-
cols involving variations in charge/discharge C-rates, depth-of-
discharge (DoD), cycling profiles, and operating temperatures.
For the purposes of ICA, three specific criteria were considered
essential: i) the lowest available constant-current charge rate to
ensure sufficient resolution of electrochemical features, ii) full
100% DoD cycling to capture all distinguishable electrochem-
ical features across the full voltage range, and iii) progression
of aging down to at least approximately 80% SoH to allow
meaningful degradation analysis. Based on these criteria, five
batteries (01, 03, 10, 11, and 12) were selected. All were
charged at 0.5C to ensure consistent ICA curve comparison.
Aging temperatures were 25°C for Batteries 01 and 10, 45°C
for Batteries 03 and 12, and 0°C for Battery 11. Discharge
rates were 0.5C for Batteries 01 and 03, and 1.5C for Batteries
10, 11, and 12.

Fig. 1. (Dataset 1) Comparison of IC curves under different aging conditions:
a) Effect of temperature: battery 10 (1.5C, 25°C), battery 11 (1.5C, 0°C), and
battery 12 (1.5C, 45°C); b) Effect of discharge rate: battery 01 (0.5C, 25°C)
vs. battery 10 (1.5C, 25°C).

Dataset 2 [38] consists of eight pouch batteries with
LCO/NCO cathode chemistry. These batteries were tested in
a controlled environment at a constant temperature of 40°C
using a thermal chamber. Characterization measurements were
conducted at intervals of every 100 cycles to monitor battery
performance over time. These measurements were carried out
by charging and discharging the battery at 1C. However, some
batteries exhibited capacity dips during testing. Despite this,
all batteries were retained for model development, as they
provide diverse degradation behaviors that contribute to a more
comprehensive understanding of the battery performance.

Dataset 3 [39] includes battery aging data from 64 LFP
cylindrical batteries. Batteries underwent aging through CCCV
cycling, with a reference performance test conducted approx-
imately every 100 cycles. Five batteries (51-55) were selected
because only these batteries were tested for a full 100% DoD.
The batteries were charged at 2C and discharged at 1.5C.

For all datasets, the current battery capacity is calculated
using the Coulomb counting method by integrating the load
current over time during complete charge–discharge cycles.
By definition, the SoH is expressed as [1]:

SoH =

∫
I(t)dt

Qrated
(5)

where I(t) is the load current as a function of time, and Qrated
is the nominal capacity at the beginning of life.

Fig. 1a) and 1b) present ICA curves at various SoH levels,
measured under differing temperature conditions and cycling
discharge rates, respectively. At 25°C and 45°C, four distinct
peaks (P1, P2, P3, and P4) and three valleys (V1, V2, and
V3) are apparent. In contrast, at 0°C, the absence of peaks
P1 and P2 and valleys V1 and V2 reflects the suppression
of electrochemical activity at low temperatures. Progressive
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Fig. 2. (Dataset 1) Extracted IC features under different aging conditions: a)
P3 peak magnitude; b) normalized P3 magnitude; c) P3 voltage position; d)
V3 valley magnitude; e) normalized V3 magnitude; f) V3 voltage position;
and g) cycle number versus SoH.

battery aging leads to a reduction in the amplitude of peak
P4, increasing the significance of peak P3 and valley V3 for
subsequent analysis. The magnitude of the most prominent
peak, denoted as Pmax, and its position remain relatively stable
between 25°C and 45°C at comparable SoH levels. However,
at 0°C, P3 not only decreases in magnitude but also shifts to-
ward the higher voltage plateau, indicating kinetic constraints
under these conditions. Furthermore, variations in discharge
rate at 25°C influence both Pmax and the location of P3; higher
discharge rates accelerate capacity degradation, resulting in a
lower Pmax and a positional shift of P3 toward higher voltages.
The characteristics of valley V3 also correlate with battery
aging. Specifically, as the battery degrades, the magnitude
of V3 diminishes modestly, and its position migrates toward
higher voltages, though without a strictly monotonic pattern.
The sensitivity of P3 and V3 to aging underscores their utility
as an HI.

Fig. 2 illustrates the evolution of peak P3 and valley V3 as
batteries age, along with the SoH as a function of equivalent
full cycle (EFC) for multiple batteries subjected to various
cycling conditions. Across all batteries, Pmax demonstrates a
consistent trend but differs in absolute value depending on
the operational conditions, Fig. 2a). Therefore, the normalized
Pmax, calculated dividing by its value at SoH equal to 1, is
incorporated as a candidate HI, Fig. 2b). The position of
P3, Fig. 2c), exhibits a systematic shift toward higher volt-
age plateau as aging progresses, reflecting increased internal
resistance and kinetic limitations; however, the rate of this

TABLE II
PEARSON rp VALUES BETWEEN SOH AND SELECTED FEATURES.

Feature Pmax [Ah/V] Normalized Pmax Pmax position [V]

rp 0.8356 0.9842 0.8013

Feature V3min [Ah/V] Normalized V3min V3min position [V]

rp 0.6903 0.7217 0.5641

shift varies between batteries, corresponding to differences in
degradation rates.

Both the V3 magnitude, Fig. 2d), and its normalized form,
Fig. 2e), display greater nonlinearity and sensitivity under
different temperature conditions, suggesting these features are
more affected by environmental factors than those related to
P3. The position of V3 remains relatively stable near 3.9 V for
SoH between approximately 0.85 and 0.78, before dropping
sharply to 3.75 V, Fig. 2f). This abrupt transition introduces a
discontinuity that limits the utility of V3 position as an HI over
the full lifetime at low temperatures. Finally, Fig. 2g) displays
the SoH degradation trajectories, highlighting the accelerated
capacity fade at elevated temperatures. Batteries 03 and 12
reach 80% SoH in less than 130 cycles, while Batteries 01
and 11 require approximately 300 cycles to reach the same
threshold. In comparison, Battery 10 reaches 80% SoH after
approximately 400 cycles.

To quantitatively analyze the correlation between the se-
lected features and SoH, we performed a Pearson correlation
analysis whose formula [40] is given by

rp =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(6)

where rp is the Pearson correlation coefficient, xi refers to
the information of each peak or valley, yi denotes the SoH,
(̄·) is the mean of (·). The Pearson correlation coefficient is
commonly interpreted within five categories between 0 and
1, with intervals of 0.2 corresponding to extremely low, low,
moderate, strong, and extremely strong levels of association.
Table II summarizes the rp values and shows that normal-
ization increases the Pmax–SoH correlation coefficient from
0.8356 to 0.9842, moving it from the strong category to the
extremely strong category.

For Dataset 2, a distinct dominant peak is observed for
each charging cycle for each battery as shown in Fig. 3.
During early cycles, smaller secondary peaks appear near
3.6 V, but they consistently remain lower than the main
peak. With increasing EFC, Pmax gradually diminishes. This
decline indicates the loss of active lithium inventory and
structural degradation in the electrode materials. As the battery
ages, electrochemical activity decreases, reducing its ability to
intercalate lithium ions, reflected by a lower Pmax in the IC
curve.

The relationship between the normalized Pmax and SoH
exhibits a consistent trend across all batteries, as illustrated
in Fig. 4a). Furthermore, among the eight batteries, Batteries
4 to 6 underwent half the number of EFCs compared to the
remaining batteries as shown in Fig. 4b). This observation
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Fig. 3. (Dataset 2) Variation in IC curves with increasing EFC count between
0 and 4,000 or up to 8,000

Fig. 4. (Dataset 2) Extracted IC feature and SoH trend with EFC:
a)Normalized IC peak magnitudes as a function of SoH, b) SoH degradation
trend as a function of EFC

suggests that normalized Pmax is primarily a function of SoH
rather than EFCs, highlighting its effectiveness as a reliable
HI of battery SoH.

For Dataset 3, Fig. 5 illustrates a single primary dominant
peak at each cycling step for every battery, similarly to Dataset
2. Figs. 6a) and 6b) demonstrate that the SoH-Normalized Pmax
and EFC–SoH relationships exhibit consistent and systematic
trends, respectively.

Overall, normalized Pmax emerges as the most robust and
consistent feature under different operational conditions, main-
taining a nearly constant relationship with SoH across all

Fig. 5. (Dataset 3) Variations in IC curves with increasing EFC count between
0 and 3873

Fig. 6. (Dataset 3) Extracted IC feature and SoH trend with EFC:
a)Normalized IC peak magnitudes as a function of SoH, b) SoH degradation
trend as a function of EFC

batteries. This stability and insensitivity to varying operational
conditions highlight its suitability for online SoH estimation,
particularly under CCCV charging protocols, thereby rein-
forcing its practical relevance for real-world battery health
assessment.

B. Polynomial Model & Filter-Based SoH Estimation

Figs. 7, 8 and 9 illustrate the performance of polynomial
curve fitting for a given SoH providing the normalized Pmax
and for a given EFC count providing SoH across varying
polynomial degrees for Datasets 1, 2 and 3, respectively.
For the EFC-SoH relations, increasing the polynomial degree
from 2 to 3 yields negligible improvement in root mean
square error (RMSE)—remaining unchanged for Dataset 2
and showing only a minor reduction for Datasets 1 and
3. Therefore, a second-order polynomial is selected for the
EFC-SoH. In contrast, the SoH-Normalized Pmax achieves the
highest performance with a third-order polynomial, yielding an
RMSE of 0.0140 and R2 of 0.9951 for Dataset 2, an RMSE
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Fig. 7. (Dataset 1) Polynomial fitting for Dataset 1. Each subplot shows data
from all batteries. Red lines in a), b), and c) and blue lines in d), e), and f)
indicate polynomial fits. Poly (·) refers to (·)-th order polynomial.

Fig. 8. (Dataset 2) Polynomial fitting for Dataset 2. Each subplot shows data
from all batteries. Red lines in a), b), and c) and blue lines in d), e), and f)
indicate polynomial fits. Poly (·) refers to (·)-th order polynomial.

of 0.0172 and R2 of 0.9780 for Dataset 3. The model yielded
an RMSE of 0.0297 and R2 of 0.9050 for Dataset 1. Thus, a
third-order polynomial is employed for SoH-Normalized Pmax

relations.
Results from three datasets reveal that the SoH does not

degrade equally with EFC count, as illustrated in Fig. 2g),
Fig. 4b) and Fig. 6b). Despite this variability, the underlying
EFC–SoH relationship provides useful prior knowledge for
SoH estimation. To compensate the variability in the SoH
estimation, we use a recursive SoH tracking using the EKF.
To design the EKF, we propose a predictive model and a
measurement model.

The observed SoH degradation trend as a function of EFC
is approximated using a second-order polynomial model as
follows:

SoH(u) = a1u
2 + a2u+ a3 (7)

where u denotes the EFC count, and a1, a2 and a3 are model

Fig. 9. (Dataset 3) Polynomial fitting for Dataset 3. Each subplot shows data
from all batteries. Red lines in a), b), and c) and blue lines in d), e), and f)
indicate polynomial fits. Poly (·) refers to (·)-th order polynomial.

coefficients. Since SoH is normalized such that SoH = 1 at
u = 0, it follows directly that a3 = 1. The EFC count for
partial cycling is computed as:

u =

N∑
i=1

∫ ti,end

ti,start

I(t) dt

Qrated
(8)

where N denotes the total number of discharge events, I(t) is
the discharge current, and ti,start and ti,end represent the start
and end times of the i-th discharge interval, respectively.

To facilitate recursive estimation, we define the next step
EFC, uk+1, using the current step EFC, uk, and the current
increment, ∆uk, as follows: uk+1 = uk + ∆uk, where the
step k+ 1 is the next full or partial completion of the CCCV
charging process and k is the current full or partial completed
CCCV charging process. Substituting this into Eq. (7) with the
process noise yields the following recursive formulation as a
prediction model for the EKF:

SoHk+1 = a1(uk +∆uk)
2 + a2(uk +∆uk) + a3 + wk

= a1
(
u2
k + 2uk∆uk +∆u2

k

)
+ a2uk + a2∆uk + a3 + wk

= a1u
2
k + a2uk + a3 + 2a1uk∆uk

+ a1∆u2
k + a2∆uk + wk

= SoHk + 2a1uk∆uk + a1∆u2
k + a2∆uk + wk (9)

where SoHk+1 and SoHk are SoH(uk+1) and SoH(uk), re-
spectively, and wk ∼ N (0, q) denotes the zero-mean Gaussian
process noise with the variance equal to q. The unmodeled or
hidden dynamics is represented by the process noise.

The normalized Pmax, measured during CC phase of CCCV
charging, i.e., P̃max,k, provides the following measurement
model for the EKF:

P̃max,k = b1SoH3
k + b2SoH2

k + b3SoHk + b4 + vk (10)
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TABLE III
POLYNOMIAL, GPR, AND LSTM MODEL PERFORMANCES ON DATASETS 1, 2, AND 3

Dataset Battery Poly Pred. Model
R2 / RMSE

Poly Meas. Model
R2 / RMSE

GPR Pred. Model
R2 / RMSE

GPR Meas. Model
R2 / RMSE

LSTM Pred. Model
R2 / RMSE

LSTM Meas. Model
R2 / RMSE

Dataset 1

Bat.01 0.9509 / 0.0217 0.9725 / 0.0361 0.9173 / 0.0220 0.9730 / 0.0360 0.8106 / 0.0347 0.9409 / 0.0347
Bat.03 0.9903 / 0.0612 0.9525 / 0.0192 0.9757 / 0.0581 0.9503 / 0.0198 0.8972 / 0.0630 0.9376 / 0.0173
Bat.10 0.9347 / 0.0618 0.9785 / 0.0254 0.7881 / 0.0494 0.9772 / 0.0256 0.8036 / 0.0575 0.9545 / 0.0285
Bat.11 0.9594 / 0.0266 0.9173 / 0.0430 0.8880 / 0.0277 0.9174 / 0.0432 0.8703 / 0.0285 0.9029 / 0.0451
Bat.12 0.9951 / 0.0649 0.9538 / 0.0442 0.9541 / 0.0627 0.9508 / 0.0444 0.8334 / 0.0984 0.8869 / 0.0468
Avg. 0.9661 / 0.0472 0.9549 / 0.0336 0.9046 / 0.0440 0.9537 / 0.0338 0.8430 / 0.0564 0.9246 / 0.0345

Dataset 2

Bat.1 0.9910 / 0.0072 0.9944 / 0.0146 0.9901 / 0.0076 0.9950 / 0.0138 0.9876 / 0.0084 0.9946 / 0.0142
Bat.2 0.8962 / 0.0282 0.9951 / 0.0138 0.8963 / 0.0282 0.9933 / 0.0162 0.8938 / 0.0285 0.9931 / 0.0163
Bat.3 0.9853 / 0.0090 0.9954 / 0.0138 0.9852 / 0.0090 0.9968 / 0.0115 0.9625 / 0.0144 0.9920 / 0.0182
Bat.4 0.8150 / 0.0288 0.9962 / 0.0128 0.8109 / 0.0291 0.9962 / 0.0129 0.8341 / 0.0272 0.9956 / 0.0137
Bat.5 0.7966 / 0.0311 0.9938 / 0.0153 0.7969 / 0.0311 0.9969 / 0.0109 0.8048 / 0.0304 0.9949 / 0.0138
Bat.6 0.9755 / 0.0093 0.9922 / 0.0175 0.9741 / 0.0096 0.9942 / 0.0150 0.9715 / 0.0100 0.9875 / 0.0220
Bat.7 0.7119 / 0.0341 0.9925 / 0.0165 0.7119 / 0.0341 0.9939 / 0.0148 0.6122 / 0.0395 0.9898 / 0.0192
Bat.8 0.9579 / 0.0153 0.9942 / 0.0148 0.9581 / 0.0153 0.9954 / 0.0133 0.9066 / 0.0228 0.9949 / 0.0137
Avg. 0.8912 / 0.0204 0.9942 / 0.0149 0.8904 / 0.0205 0.9952 / 0.0136 0.8716 / 0.0227 0.9928 / 0.0164

Dataset 3

Bat.51 0.9770 / 0.0109 0.9943 / 0.0090 0.9937 / 0.0057 0.9951 / 0.0084 0.9332 / 0.0186 0.9406 / 0.0290
Bat.52 0.9875 / 0.0087 0.9914 / 0.0108 0.9967 / 0.0045 0.9943 / 0.0088 0.8918 / 0.0257 0.9286 / 0.0310
Bat.53 0.9724 / 0.0107 0.9836 / 0.0145 0.9917 / 0.0059 0.9833 / 0.0146 0.8808 / 0.0222 0.9561 / 0.0237
Bat.54 0.9693 / 0.0108 0.9817 / 0.0137 0.9877 / 0.0069 0.9816 / 0.0138 0.8006 / 0.0276 0.9332 / 0.0262
Bat.55 0.9923 / 0.0064 0.9924 / 0.0105 0.9958 / 0.0047 0.9934 / 0.0098 0.9577 / 0.0149 0.9407 / 0.0294
Avg. 0.9797 / 0.0095 0.9887 / 0.0117 0.9931 / 0.0055 0.9895 / 0.0111 0.8928 / 0.0218 0.9398 / 0.0279

where b1, b2, b3 and b4 are regression coefficients. vk ∼
N (0, r) denotes the zero-mean Gaussian measurement noise
with the variance equal to r. Note that if the CCCV charge
does not encompass the voltage region between 3.6–3.85 V
for Dataset 1, 3.8–3.9 V for Dataset 2, or 3.35–3.50 V for
Dataset 3, P̃max,k may not be available.

Eqs. (9) and (10) together define a state-space model as
follows:

xk+1 = Axk +BUk + wk

zk = h(xk) + vk
(11)

where xk = SoHk, zk = P̃max,k,
Uk = [uk∆uk, ∆u2

k, ∆uk]
T , A = 1, B = [2a1, a1, a2], and

h(xk) = b1x
3
k + b2x

2
k + b3xk + b4. This is one of the standard

forms for the EKF design, where the prediction model is linear
and the measurement model is nonlinear.

While the polynomial models provide a reasonable approx-
imation of the average SoH trajectory, they are limited in
capturing battery-to-battery variability and nonlinear degrada-
tion patterns. To address these limitations and improve the
performance of the EKF, a more flexible probabilistic model
is introduced next.

C. GPR Model Based Extended Kalman Filter
GPR is a non-parametric Bayesian approach that captures

nonlinear relationships and quantifies prediction uncertainty,
making it well-suited for individualized battery health mod-
eling. GPR defines a distribution over functions, offering
both a predictive mean and a variance at each input. From
Eq. (9), the training data set for the prediction model is
defined as Dp = {(ik, ok)}nk=1, where the input vector is ik =
[SoHk, uk,∆uk]

T and the output vector is ok = [µk, σk]
T ,

where µk denotes the SoH mean prediction at the k-th charge
cycle, and σk represents the associated predictive uncertainty.
The relationship between inputs and outputs is modeled as

ok = f(ik) + ϵk, ϵk ∼ N (0, σ2
n) (12)

Fig. 10. GPR fitting for data from all batteries. Red and blue lines indicate
measurement and prediction fits, respectively. a) and b) show results for
Dataset 1, c) and d) for Dataset 2, e) and f) for Dataset 3.

where f(·) follows a Gaussian process prior, i.e., f(·) ∼
GP(µ(i), k(i, i′)), with mean function µ(·) and kernel function
k(·, ·) and ϵk is the measurement noise [42].

GPR model is employed to model the prediction and mea-
surement models. Fig. 10 b), d) and f) present the GPR-based
prediction and a), c) and e) present measurement models for
Datasets 1, 2, and 3, respectively. For the measurement model,
GPR achieves superior performance over the third-order poly-
nomial model on Dataset 2, yielding an RMSE of 0.0120
and an R2 of 0.9964. The GPR and third-order polynomial
models have similar performances in Datasets 1 and 3. For
the prediction model, GPR exhibits an advantage on Dataset
1, yielding an RMSE of 0.0312 and outperforming the second-



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 8

Fig. 11. LSTM fitting for data from all batteries. Red and blue lines indicate
measurement and prediction fits, respectively. a) and b) show results for
Dataset 1, c) and d) for Dataset 2, e) and f) for Dataset 3.

order polynomial baseline. In Dataset 2, both models achieve
comparable performance, whereas in Dataset 3, GPR again
surpasses the second-order polynomial model. Additionally,
LSTM models are employed to represent both the prediction
and measurement components and Fig. 11 shows the fitting
results. In all corresponding cases, GPR models have better
performance than LSTM models. These results demonstrate
that GPR achieves a more sensitive and accurate fit to the
characteristics of each dataset.

Battery-level open-loop performance for each model was
assessed using a leave-one-battery-out validation strategy, with
the results summarized in Table III. Across all three datasets,
the GPR prediction model generally achieved the lowest aver-
age RMSE, calculated as the arithmetic mean of the individual
battery-level RMSE values. In Dataset 1, the average RMSE
values were 0.0440 for GPR, 0.0472 for the polynomial
model, and 0.0564 for the LSTM model. In Dataset 2, the
GPR model achieved an average RMSE of 0.0205, demon-
strating performance nearly equivalent to the polynomial
model (0.0204) while still outperforming the LSTM model
(0.0227). In Dataset 3, the GPR model achieved an average
RMSE of 0.0055, compared to 0.0095 for the polynomial
model and 0.0218 for the LSTM model, demonstrating the
strongest performance. For the measurement models, the GPR
model generally achieved the lowest average RMSE, except in
Dataset 1, where the polynomial and GPR models had similar
performance. The average RMSEs for the GPR, polynomial,
and LSTM models were 0.0338, 0.0336, and 0.0345 in Dataset
1; 0.0136, 0.0149, and 0.0164 in Dataset 2; and 0.0111,
0.0117, and 0.0279 in Dataset 3, respectively. Overall, the
GPR models consistently delivered the lowest average errors in
most cases, followed closely by the polynomial models, while
the LSTM models showed comparatively weaker performance.
Additionally, the GPR models offer uncertainty estimates,
which is advantageous for Kalman filter applications where

CCCV charging

Battery

ICA analysis

x̂0 P0

GPR prediction model

GPR measure-
ment model

Eq. 13b

Kalman gain (Eq. 15a): Kk

HI difference: P̃max,k − P̂max,k
State update (Eq. 15b): x̂k|k
Variance update (Eq. 15c): Pk|k

k
=

k
+
1

k
=

k
+
1

k
=

k
+
1

EFC
counter

EFC count

I, V, and T

P̃max,k

x̂k|k−1 qk

P
k|k−

1

SoHk

P̂max,k, rk

uk−1,
∆uk−1

HI extraction
Initialization

EKF algorithm

Fig. 12. Flowchart of the proposed GPR-EKF SoH estimation algorithm.

determining appropriate prediction and measurement variance
parameters can be challenging.

The GPR predictive variance σ2(ik) is interpreted as a data-
driven estimate of the process noise variance. This enables a
more informed prediction step within the EKF:

x̂k|k−1 = µ(ik−1) (13a)

Pk|k−1 = Fk|k−1Pk−1|k−1F
⊤
k|k−1 + σ2(ik−1) (13b)

where P is the prediction covariance. The Jacobian Fk|k−1 is
numerically estimated using central finite differences:

Fk|k−1 ≈ µ(ik−1 + δe1)− µ(ik−1 − δe1)

2δ
(14)

where e1 = [1, 0, 0]T and δ is a small perturbation. Again, this
simple finite difference can be replaced by advanced numerical
differentiation methods in [36]. Similarly, a measurement GPR
model is trained to relate SoH to the measurable Pmax. From
Eq. (10), the training dataset for the model is defined as
Dm = {(SoHk,Pmax,k)}nk=1. At each calculation step, the
measurement update is given by:

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k + rk)

−1 (15a)

x̂k|k = x̂k|k−1 +Kk

[
z̃k − h(x̂k|k−1)

]
(15b)

Pk|k = (I−KkHk)Pk|k−1 (15c)

where Kk is the Kalman gain, h(·) is the mean function of the
GPR measurement model, rk is the prediction variance from
the measurement GPR model, and Hk equal to dh(xk)/dxk is
computed via finite differences, analogous to Fk|k−1. Fig. 12
summarizes the flowchart of the proposed online SoH estima-
tion method. The proposed method eliminates the reliance on
physical models and integrates EFC count and ICA-based HI
measurement within an uncertainty-aware EKF framework to
optimize SoH estimation. Note that the LSTM-EKF employs
Jacobian calculations and model training similar to the GPR-
EKF. In all methods, the prediction and measurement models
are trained offline.
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Fig. 13. (Dataset 1) SoH estimation results for batteries using standard EKF,
GPR-EKF and LSTM-EKF compared to the reference SoH.

Fig. 14. (Dataset 2) SoH estimation results for batteries using standard EKF,
GPR-EKF and LSTM-EKF compared to the reference SoH.

III. EXPERIMENTS AND RESULTS

This section presents the performance evaluation of the
proposed SoH estimation framework. It is assessed using a
leave-one-battery-out validation strategy, where each battery
is sequentially excluded from the training set and exclusively
used for testing. Estimation accuracy is quantified through
standard metrics, including RMSE and mean absolute error
(MAE). Battery simulations continue until the SoH decreases
to 80%, indicating the end of the useful life [43].

In standard EKF simulations, initial P , q, and r were
determined by manual tuning minimizing the estimation error
while maintaining stability. Each parameter was varied over
a practical range, and the configuration yielding the lowest
RMSE without filter divergence was selected. For Dataset 1,
initial P , q, and r were set to 0.01, 0.3, and 0.2, respectively.

Fig. 15. (Dataset 3) SoH estimation results for batteries using standard EKF,
GPR-EKF and LSTM-EKF compared to the reference SoH.

For Datasets 2 and 3, these parameters were adjusted to
0.01, 0.2, and 0.1, reflecting lower noise levels. GPR-EKF
simulations maintained identical initial P for fair comparison,
while q and r values were provided directly from GPR model
outputs. The GPR models employed a squared-exponential
kernel, with kernel scale, noise variance, and basis coefficients
automatically tuned via MATLAB’s Bayesian optimization
[44]. The LSTM-EKF simulations were conducted with the
same initial P , q, and r as the EKF for each dataset. The
LSTM prediction model consisted of a sequence input layer,
a 16-unit LSTM layer with last-step output, ReLU activation,
dropout (0.1), a fully connected layer, and a regression layer.
The LSTM measurement model followed the same structure
but used an 8-unit LSTM layer without dropout. Both models
were trained using the Adam optimizer for 100 epochs with a
mini-batch size of 16, an initial learning rate of 1.27× 10−3,
gradient clipping at 1, and L2 regularization of 10−4. In
all datasets, the reference SoH values are determined using
Eq. (5).

Fig. 13 presents SoH estimation results for Dataset 1, while
Table IV details battery-level SoH estimation error metrics
across all datasets. In Dataset 1, the GPR-EKF method more
closely follows the reference curves compared to the EKF
and LSTM-EKF. The GPR-EKF achieved the lowest average
errors (RMSE = 0.0188, MAE = 0.0156), outperforming the
EKF (RMSE = 0.0217, MAE = 0.0186) and the LSTM-EKF
(RMSE = 0.0209, MAE = 0.0183). At 0°C, the results for
Battery 11 exhibited oscillations, which were attributable to
reduced lithium-ion kinetics and the amplifying effect of low
temperature on measurement noise and modelling errors. In
detail, the RMSE of GPR-EKF was 0.0242 at 0°C, with 17.9%
attributable to modelling bias and 82.1% to measurement
noise. At 25°C, the RMSE decreased to 0.0122, with 37.7%
arising from modelling bias and 62.3% from measurement
noise. At 45°C, the RMSE was 0.0239, comprising 47.7%
modelling bias and 52.3% measurement noise. During bat-
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TABLE IV
COMPARISON OF SOH ESTIMATION ACCURACY ACROSS THREE DATASETS

Dataset Battery EKF
RMSE / MAE

GPR-EKF
RMSE / MAE

LSTM-EKF
RMSE / MAE

Dataset 1

Bat.01 0.0198 / 0.0179 0.0213 / 0.0193 0.0171 / 0.0153
Bat.03 0.0229 / 0.0205 0.0123 / 0.0090 0.0119 / 0.0095
Bat.10 0.0169 / 0.0154 0.0122 / 0.0104 0.0233 / 0.0218
Bat.11 0.0274 / 0.0229 0.0242 / 0.0186 0.0235 / 0.0189
Bat.12 0.0214 / 0.0165 0.0239 / 0.0209 0.0289 / 0.0261
Avg. 0.0217 / 0.0186 0.0188 / 0.0156 0.0209 / 0.0183

Dataset 2

Bat.1 0.0033 / 0.0027 0.0042 / 0.0031 0.0043 / 0.0033
Bat.2 0.0035 / 0.0026 0.0036 / 0.0029 0.0033 / 0.0026
Bat.3 0.0046 / 0.0036 0.0040 / 0.0034 0.0048 / 0.0038
Bat.4 0.0044 / 0.0035 0.0036 / 0.0029 0.0103 / 0.0080
Bat.5 0.0034 / 0.0028 0.0034 / 0.0027 0.0034 / 0.0029
Bat.6 0.0037 / 0.0031 0.0045 / 0.0033 0.0058 / 0.0049
Bat.7 0.0188 / 0.0130 0.0065 / 0.0046 0.0062 / 0.0050
Bat.8 0.0091 / 0.0067 0.0062 / 0.0045 0.0065 / 0.0049
Avg. 0.0064 / 0.0048 0.0045 / 0.0034 0.0056 / 0.0044

Dataset 3

Bat.51 0.0102 / 0.0086 0.0104 / 0.0086 0.0100 / 0.0081
Bat.52 0.0111 / 0.0090 0.0113 / 0.0094 0.0141 / 0.0119
Bat.53 0.0089 / 0.0072 0.0095 / 0.0076 0.0172 / 0.0148
Bat.54 0.0091 / 0.0061 0.0088 / 0.0060 0.0108 / 0.0074
Bat.55 0.0135 / 0.0110 0.0131 / 0.0105 0.0137 / 0.0114
Avg. 0.0106 / 0.0084 0.0106 / 0.0084 0.0132 / 0.0107

teries’ late-life stage, i.e., SoH ∈ [0.80, 0.85], the GPR-EKF
attains the lowest average RMSE and MAE among the three
methods, as summarized in Table V.

In Dataset 2 shown in Fig. 14, all three approaches main-
tained high accuracy under stable operating conditions. How-
ever, the EKF in Battery 7 and the LSTM-EKF in Battery 4
produced relatively higher estimation errors due to significant
deviations in the EFC–SoH trend compared to the other
batteries. In contrast, the GPR-EKF demonstrated superior
robustness to such variability. The GPR-EKF achieved the
lowest average errors (RMSE = 0.0045, MAE = 0.0034),
relative to the EKF (RMSE = 0.0064, MAE = 0.0048) and the
LSTM-EKF (RMSE = 0.0056, MAE = 0.0044). At the late-life
stage, Table V indicates that the GPR-EKF and LSTM-EKF
exhibit comparable performance. Meanwhile, Fig. 14f) shows
that the GPR-EKF clearly outperforms the LSTM-EKF for
Battery 4 during the late-life stage.

In Dataset 3 shown in Fig. 15, the EKF and GPR-EKF
achieve similar performance, and both have superior accuracy
relative to the LSTM-EKF. The EKF and GPR-EKF yield
nearly identical average errors (RMSE = 0.0106, MAE =
0.0084), whereas the LSTM-EKF exhibits higher error metrics
(RMSE = 0.0132, MAE = 0.0107). Furthermore, Table V
shows that the GPR-EKF demonstrates superior late-life stage
performance compared with the other two methods.

Algorithm performances in the late-life stage were also
evaluated relative to those in the full-life stage, i.e., SoH ∈
[0.80, 1]. In Dataset 2, all methods experienced some increase
relative to their full-life performance. This deterioration re-
flects the exceptionally low errors in the full-life stage, rather
than a true decline in estimation capability. Nevertheless,
both the GPR-EKF and LSTM-EKF preserved high accuracy,
yielding RMSE values of 0.0066 and 0.0064 and MAE values
of 0.0057 and 0.0054, respectively. In Dataset 1, all algorithms
improved except for a small rise in the LSTM-EKF’s MAE.
In Dataset 3, the EKF remained nearly unchanged. The GPR-
EKF showed clear gains, while the LSTM-EKF exhibited
moderate improvement. Overall, the GPR-EKF demonstrated

Fig. 16. Data efficiency of each algorithm on Dataset 2.

TABLE V
ESTIMATION ERRORS IN THE LATE-LIFE SOH RANGE OF 0.80–0.85.

Dataset
EKF

Avg. RMSE / MAE
GPR-EKF

Avg. RMSE / MAE
LSTM-EKF

Avg. RMSE / MAE

Dataset 1 0.0157 / 0.0147 0.0153 / 0.0142 0.0195 / 0.0188

Dataset 2 0.0111 / 0.0098 0.0066 / 0.0057 0.0064 / 0.0054

Dataset 3 0.0104 / 0.0087 0.0073 / 0.0065 0.0116 / 0.0103

the strongest generalization in the late-life stage, consistent
with its superior performance across the full-life range.

Data efficiency was evaluated on Dataset 2 by analyzing
how estimation errors varied as the number of training batteries
increased from three to seven. For each target battery, models
were trained using a moving window of consecutive cells (for
example, batteries 1–2–3, then 2–3–4, and so on), and algo-
rithms were tested on the remaining cells. This process was
repeated eight times, matching the total number of batteries in
the dataset. The average error across all repetitions was then
calculated to represent the error associated with each training-
set size. Fig. 16 shows that the GPR-EKF maintains stable
accuracy, exhibiting only a minor decline when trained on
fewer batteries. The EKF similarly displays limited sensitivity
to the number of training batteries. In contrast, the LSTM-
EKF requires larger datasets to approach the same accuracy
as the GPR-EKF.

The robustness of the GPR-EKF to intermittent measure-
ment availability was evaluated, as shown in Fig. 17. This
experiment simulated a practical BMS scenario where HI
measurements are not consistently accessible. Battery 8 from
Dataset 2 was selected, and an 80% probability of measure-
ment availability was applied at each update step during the
CCCV charging process. Estimation accuracy was measured
using RMSE and MAE. With full HI availability, the GPR-
EKF achieved 0.0062 RMSE and 0.0045 MAE. These er-
rors increased to 0.0091 and 0.0063, respectively, when HI
measurements were intermittently unavailable. The estimator
maintained stability and quickly reconverged once updates
resumed, indicating strong resilience to missing HI data.

The impact of uncertainty-aware modeling in the GPR-EKF
was evaluated by comparing its RMSE in SoH estimation to
that of a version employing the same fixed process and mea-
surement variances as the EKF. Fig. 18 shows that including
uncertainty-aware modeling reduces the RMSE for Batteries
51, 52, and 54. For Batteries 53 and 55, the performance
is comparable to the fixed-variances version. These findings
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Fig. 17. SoH estimation results for Battery 8, comparing regular measure-
ment updates (blue) with prediction-only updates applied during intervals of
measurement unavailability (red).

Fig. 18. Impact of uncertainty-aware modeling in the GPR-EKF on Dataset
3. The red bars represent the uncertainty-aware implementation, whereas the
blue bars represent the fixed-variance implementation.

indicate that, by maintaining consistently lower or similar
estimation errors across all tested batteries, uncertainty-aware
modeling enhances the robustness of the GPR-EKF.

Across all methods, the computational cost remains largely
unchanged because the core EKF steps are identical. On a
system with an Intel® Core™ i7-1165G7 CPU at 2.80 GHz
and 16 GB RAM, running MATLAB R2024b, the GPR-EKF
achieved an average update time of 0.094 ms, demonstrating
its lightweight computational demand. However, the GPR-
EKF method leads to a higher onboard memory demand. In
the EKF, only polynomial coefficients are stored, whereas
the GPR-EKF retains complete trained models. For Dataset
1 (1586 samples), the prediction and measurement models
occupy 4.31 MB and 4.28 MB, respectively. For Dataset 2
(520 samples), these decrease to 459 KB and 443 KB, and
for Dataset 3 (389 samples), to 315 KB and 304 KB. The
results confirm that memory cost scales with dataset size, with
only limited influence on GPR-EKF performance, as shown
in Fig. 16. Thus, the dataset size should be chosen to balance
estimation accuracy and memory cost.

The results conclusively demonstrate the superior accuracy,
generalization capability, and robustness of GPR-EKF. Its
uncertainty-aware modeling approach enhances its robustness
to irregular and unpredictable battery degradation, positioning
it advantageously for practical integration into safety-critical
applications such as electric vehicles and portable electronics.

IV. CONCLUSION AND FUTURE WORK

This study introduces an adaptive EKF-based framework
for SoH estimation for LIBs. The method utilizes EFC counts
within the state transition model while employing the normal-
ized peak magnitude of the IC curve as the HI within the
measurement model. Polynomial models serve as initial base-
lines, subsequently enhanced through integration of GPR to
incorporate model uncertainty and adaptability. In addition, the
LSTM-EKF algorithm is implemented to provide a benchmark
against the GPR-EKF.

Validation conducted with three publicly available datasets
via leave-one-battery-out analysis confirms that the GPR-EKF
has the lowest average RMSE on Datasets 1–2 and comparable
performance to the EKF on Dataset 3. In all datasets, GPR-
EKF outperforms the LSTM-EKF, reflecting better gener-
alization and responsiveness to abrupt SoH changes. The
enhanced performance of GPR-EKF is attributed to its non-
parametric flexibility and probabilistic modeling framework,
enabling dynamic adjustment of error covariance through
explicit uncertainty quantification. Consequently, GPR-EKF
exhibits improved robustness to shifts in degradation patterns
and measurement noise.

Future research will investigate the impact of multi-step
CC fast-charging protocols on the SoH estimation accuracy
and explore sensor fusion approaches integrating multiple
HI methodologies using real-world electric vehicle datasets.
These developments aim to increase the applicability of the
proposed method to different CC charging protocols and
further capture capacity- and resistance-based degradation
mechanisms, augmenting the robustness and adaptability of
the proposed estimation framework.
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