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Abstract

For l, n ∈ N we define tonal partition algebra P ln over Z[δ]. We construct
modules {∆µ}µ for P ln over Z[δ], and hence over any integral domain con-
taining Z[δ] (such as C[δ]), that pass to a complete set of irreducible modules
over the field of fractions. We show that P ln is semisimple there. That is,
we construct for the tonal partition algebras a modular system in the sense
of Brauer [6]. Using a ‘geometrical’ index set for the ∆-modules, we give an
order with respect to which the decomposition matrix over C (with δ ∈ C×) is
upper-unitriangular. We establish several crucial properties of the ∆-modules.
These include a tower property, with respect to n, in the sense of Green [22,
§6] and Cox et al [9]; contravariant forms with respect to a natural involutive
antiautomorphism; a highest weight category property; and branching rules.

Keywords— Finite dimensional algebras, diagram algebras, partition algebra,
highest weight category, decomposition matrix.

1 Introduction

The partition category is a key paradigm in many areas of representation theory and
physics. In particular, for example, it can be regarded as a topological quantum field
theory (TQFT) on the one hand; and on the other as controlling the representation
theory of all symmetric groups taken together (see for example [46, 13, 40, 28] and
references therein). The partition category paradigm is often easier to work with
than general TQFTs — in particular its representation theory over the complex
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Figure 1: Schematic of composition in category P using graphs to represent parti-
tions (see Appendix A for details).

field is well understood [38]. From this perspective the ramified partition category
[42] can play the role of an extended TQFT (confer for example [48, 51, 7] and
references therein). The ‘tonal’ version discussed in this paper is a corresponding
generalisation from the algebraic side. As such its representation theory is interesting
to understand, including the non-semisimple cases. The aim here is to investigate the
non-semisimple structure of the tonal partition algebras over suitable quotient fields
of the natural ground ring, from a geometric perspective (cf. [46]). An obstruction
to this has been the greater complexity of the ‘modular setup’ of the tonal compared
to the ordinary case. In this paper we solve this technical problem.

Fix K a commutative ring and δ ∈ K. Let PS denote the set of set parti-
tions of a set S. The partition category P (as defined in [37]) is a K-linear cat-
egory: the objects of P are finite sets; and the hom-set HomP(S, T ) has K-basis
PStT . (A schematic for the δ-dependent category composition is in Figure 1. De-
tails are recalled in §A.) The full subcategory on objects of form n = {1, 2, ..., n}
is a skeleton in P, denoted P . In the notation for a category in which C =
(objects, arrows, composition) we summarize the category P as P = (N0, KPntm, ∗).

The category P has many interesting subcategories, such as the Brauer and
Temperley–Lieb categories [5, 53, 37, 40, 35]. Here we study subcategories chosen
to serve as testbeds for questions in geometrical representation theory (in the sense
arising for example in [10, 41, 16, 15]).
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Consider a part pi ∈ p ∈ PStT . Define

ker(pi) = |pi ∩ S| − |pi ∩ T |. (1)

For l ∈ N part pi is said to be l-tone if ker(pi) ≡ 0 mod.l. A partition is said to
be l-tone if every part is l-tone. It is routine to show (see e.g. (3) in §2) that the
category composition in P closes on the span of the subsets Plntm of l-tone partitions.

Thus for each l ∈ N we have a subcategory of P , denoted P l:

P l = (N0, KPlntm, ∗)

There is also a corresponding subcategory of non-crossing partitions, denoted T l.
Together we call these tonal partition categories.

For δ = m ∈ N the partition algebra itself is Schur–Weyl dual to the ‘left’
symmetric group Sδ [36, 27, 39]. That is, the Potts/tensor action of P [36, §8.2]
is dual to the diagonal action of symmetric group Sδ on Y ⊗n, where Y is the λ =
(δ − 1, 1) Young module. Neither action is faithful in general. Let Λ denote the set
of all integer partitions, Λ∗ = Λ \ {∅} and

Λi = {λ ` i}

denote the set of integer partitions of i. The natural index sets for simple modules
over C are Λ(Pn) = ti=0,1,..,nΛi for the partition algebra Pn and Λ(CSm) = Λm

for Sm. Let r : Λ∗ → Λ denote the map that removes the first part (i.e. removes
the first row in the corresponding Young diagram). Fixing m, the duality-induced
connection between the index sets is

r : Λ(CSm) ↪→ Λ(Pn) (2)

for sufficiently large n (that CSm acts faithfully) [20, 39]. This has a useful geomet-
rical realisation — see [46].

In case K = C the K-algebras HomPl(S, S) are isomorphic to subalgebras of
the partition algebra studied by Tanabe [52], Kosuda [31, 32, 33] and Orellana
[49]. Tanabe showed that the Schur-Weyl duality between the symmetric group Sm
and the partition algebra Pn(δ) with δ = m ∈ N generalises to a duality between
various reflection groups and partition algebras. Kosuda then studied the complex
semisimple representation theory of these algebras in the generic case (of δ ∈ C) and
in certain cases relevant for duality [31, 32]. Orellana also studied the representation
theory from the duality perspective [49] (together with an elegant parallel study of
the ‘coloured’ partition algebras).

In the general case of the original Sm/Pn duality (just as for classical Glm/Sn
duality) the partition algebra does not act faithfully on tensor space. Indeed it
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clearly acts semisimply when K = C, but it is not generally a semisimple algebra.
The way that the tensor space action ‘sits inside’ the full algebra Pn is (representation
theoretically) rather interesting [45, 47], and relates nicely to the geometric-linkage
approach to geometric representation theory [26, 46]. Here the aim is to investigate
the lift of this geometric approach to the l-tone cases. To this end we construct a
corresponding tower of π-modular systems, in the sense of [6, 12, 22, 3, 9, 41].

For our modular system we need first a construction for ordinary irreducible
representations over a suitable ‘ordinary’ ground field. In fact we construct modules
directly over an integral ground ring — we do this over Z[δ], but the domain of
complex polynomials over the indeterminate δ will be adequate for our immediate
purposes — and show that they pass by base change to ordinary irreducibles (over
the field of fractions). To do this we construct contravariant forms with respect to
a natural involutive antiautomorphism; and determine cases where they are non-
degenerate. We show that the algebra is semisimple in these cases. We then show
that the corresponding decomposition matrix has a unitriangular property with
respect to a suitable (partial) order. (To achieve this we must establish a suitable
partial order.) To verify that our order has the required properties we proceed by
showing that a certain quotient algebra Aln is semisimple over C. NB (Nota bene),
This last step is an addition to the steps needed in the classical Pn and Bn (Brauer
algebra) cases. It fulfills our requirements, but it also presents some interesting new
features in the representation theory, as we shall elucidate in §7.

Overview: The integral part of the modular tower representation theory of P l
n

follows the same steps as for Pn in [37, 38]. However it is more complex in the
detail. The general representation theoretic machinery is collected in §4. In §2 we
define the algebra. In §3, §5 we construct a poset of ideals (in Pn this is a chain)
with relatively small sections ‘controlled’ by symmetric groups. In §6 we give a
polar decomposition of partitions in an algebra basis that facilitates construction of
standard module bases. In §7 we construct our ‘standard’ modules and cv forms. In
§9.1-9.2 we study the algebra that is the top section in a natural tower structure, and
hence derive the unitriangularity theorem. In §11 we give restriction rules for our
standard modules. Relating these to induction rules, one has potential analogues
of the powerful translation functors of Lie theory [26] (to complete this picture and
hence connect to Kazhdan-Lusztig Theory, cf. [41], we need a linkage principle -
this will be discussed elsewhere).

The main Theorems here are as follows.
Theorem 7.3, which shows that P l

n−l
∼= W lP l

nW
l for suitable W l ∈ P l

n. This tells
us that the module category of P l

n−l fully embeds in that of P l
n, by a ‘globalisation’

functor. This in turn tells us that we can determine the structure of these module
categories iteratively on n. To this end we construct canonical modules in each n
that are well-behaved under globalisation — ‘standard’ modules.
Theorem 9.6, Theorem 9.7 which show that each P l

n gives a modular system.
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Figure 2: A partition picture (for partition {{1′, 4′, 1}, {2′, 3′, 3}, {2}}) drawn in
different orientations.
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Figure 3: Examples of partitions (here drawn left-to-right) and parts with kernel
numbers.

Theorem 9.4: upper-triangularity of the standard module decomposition matrix.
Theorem 10.5: that if k = C and δ 6= 0 then P l

n− mod is a highest weight category.
Theorem 11.3: branching rules.

Remark: Here we use the term tone as the generalisation to general l of the
notion of parity for congruence mod.2. (Kosuda’s name of ‘modular party algebra’
also sounds harmonious, but does not quite fit our purpose.)

2 Tonal partition categories and algebras

Let P = (N0,P(n,m), ∗) denote the usual partition category over a given commu-
tative ring K, with parameter δ ∈ K [38]. This is a skeleton in P obtained by
restricting to objects n = {1, 2, ..., n}. Thus P(n,m) = KPn,m where Pn,m is the set
of set partitions of n ∪m′ (with n = {1, 2, ..., n}, m′ = {1′, 2′, ...,m′}).

We draw pictures of partitions in Pn,m as for example in Fig.2 and 3. Fig.3 also
shows the kernel count as in (1). Composition is as in Fig.1.

Write ⊗ for the usual monoidal composition in the category P .
Write Pn for the usual partition algebra Pn = P(n, n), and Pn = Pn,n for the

basis of partitions.
Write Pln,m ⊂ Pn,m for the subset of l-tone partitions.

5



(2.1) Theorem. (cf. [52, 33]) Fix l ∈ N. The restriction of category P to the span
of l-tonal partitions defines a monoidal subcategory, the tonal partition category P l.
(Hence defining the tonal partition algebras P l

n = P l(n, n).)

Proof. Consider the product of composable partitions p, p′ in P . Note (e.g. from
§A) that in the definition of the product pp′ one first forms the concatenation p|p′,
then discards the ‘middle’ vertices to form pp′. Thus whenever a part (pp′)i is formed
in composition the process is that (in some number of instances) two vertices, one
in some ran(pi) = pi∩m′ and one in some cora(p′j) = p′j ∩m, are identified and then
discarded from some union of parts. Thus

ker((pp′)i) =
∑
π

ker(π) (3)

— sum over parts from p, p′ involved in (pp′)i (cf. Fig.3). Thus if the incoming parts
are all l-tone (ker divisible by l), then the new part is again l-tone.

For the monoidal property note that if a, b are l-tone then so is a⊗ b.
(2.2) For l ∈ N define

bl = {{1, 2, .., l, 1′, 2,′ , ..l′}} ∈ Pl

Consider Fig.4. Define u = e
(2)
1 , a = A12 ∈ P2. Note that b1 = 11, b2 = a, and for

l > 1 we have bl = A12A23...Al−1 l ∈ Pl. Fixing n, define U = e
(n)
1 as the partition

depicted in Fig.4. We have
U = u⊗ 1n−2

For p ∈ Pn,m write p? for the ‘flip’ image in Pm,n (given by i↔ i′ in p) [37].

(2.3) A set partition is even if all its parts are of even order. For example, all the

partitions depicted in Fig.4 are even except for ε
(n)
i . Write En for the set of even

partitions in Pn. Note that En = P2
n. Write En for P 2

n .

(2.4) For given l let w denote the unique partition in P l(l, 0); and w? ∈ P l(0, l).
Let v denote specifically the unique partition in P2(2, 0) and v∗ the unique partition
in P2(0, 2). Let σ1 denote the unique elementary transposition in P(2, 2). Then
E := P2 is generated as a linear monoidal category by 11, v, v?, σ1 and a.

(2.5) Recall the ‘flip’ antiisomorphism of Pn, denoted p 7→ pop (given by p 7→ p? on
partitions). This fixes the subset P l

n, so that P l
n is isomorphic to its opposite.

Note that the symmetric group Sn is a subgroup of Pn that is also in P l
n, and that

the restriction of the flip antiautomorphism to this subgroup is the usual g 7→ g−1

antiautomorphism.

(2.6) Let wn ∈ Sn denote the order reversing (Coxeter longest word) element —
an involution. Recall the lateral-flip endofunctor on P given on partitions p ∈ Pm,n
by p 7→ p̄ = wmpwn. This takes a partition to its mirror image. Note that the
endofunctor fixes P l, and indeed P l

n.
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Figure 4: Special elements in the partition algebra Pn.

3 Basic properties of the algebra P l
n

Here we develop an analogue of the propagating ideals of Pn as in [37, §6.1].

3.1 Set partitions: Co-i parts and propagating numbers

(3.1) Recall that, for any n, we write # : Pn → N0 for the map taking a partition
p ∈ Pn to the number of propagating parts in p. Note that a product of partitions
in P is a scalar times a partition. The map # extends to apply to a product of
partitions in the obvious way. Recall the ‘bottleneck principle’:

(3.2) Lemma. [37, §6.1] For p, p′ ∈ Pn we have #(pp′) ≤ #(p).

(3.3) Fix l. For p ∈ Pln a propagating part s ∈ p is co-i if the restriction of s to one
‘side’ of the underlying set (the set n say) is of order congruent to i mod.l. (Note
that the definition is independent of the choice of side in case p in Pln but not in
general in Pn.)

Define #i : Pln → N0 so that #i(p) is the number of co-i propagating parts.
Define propagating vector

#−(p) = (#1(p), #2(p),#3(p), ...,#l(p))

Example: For l = 3, #−(1n) = (n, 0, 0).
Consider p ∈ Pn. Then pA12 is a partition similar to p but with the parts contain-

ing vertices 1′, 2′ combined. Thus if vertices 1′, 2′ intersect at most one propagating
part in p ∈ Pln then #−(pA12) = #−(p).
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3.2 The index set γl,n and corresponding partitions

For l ∈ N and m = (m1,m2, ...,ml) ∈ Zl define rm =
∑l

i=1 imi. For given l and n,
define

γl,n = {m ∈ Nl
0 : (n− rm)/l ∈ N0}

For m ∈ γl,n define a set partition

am := amn =
(
⊗1
i=l(b

i)⊗mi
)
⊗ (ww?)(n−rm)/l (4)

Note that am ∈ Pn. For example

a
(4,4)
16 =

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

.

a
(4,4,2)
24 =

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb b b b b b

b b b b b b

bb b

b b

.

Thus if δ is invertible then am is a (not necessarily normalised) idempotent in Pn.
If m 6= 0, so that amn has at least one propagating part, we also define for each amn

a partition bmn , obtained from amn by combining the last (‘rightmost’) propagating
part with all the non-propagating parts. Thus:

b
(4,4,2)
24 =

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb b b b b b

b b b b b b

bb b

b b

.

Note that bmn is idempotent in Pn (for any δ). Also

bmambm = bm and ambmam = am (5)

For example

b
(4,4,2)
24 a

(4,4,2)
24 b

(4,4,2)
24 =

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb b b b b b

b b b b b b

bb b

b b

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb b b b b b

b b b b b b

bb b

b b

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb b b b b b

b b b b b b

bb b

b b

.
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3.3 Poset structure on γl,n

(3.4) Fix l. Define V ⊂ Zl as follows. Define vij for 1 ≤ i ≤ j ≤ l by

vij = (0, 0, ..., 0, 1︸︷︷︸
i+j

, 0, ..., 0, −1︸︷︷︸
j

, 0, ..., 0, −1︸︷︷︸
i

, 0, ..., 0) ∈ Zl

where the index i+j is understood mod.l. Note that the entry −1 can appear before
1 if i+ j < l. Then V = {vij}i,j. In particular

vii = (0, 0, ..., 0, 1︸︷︷︸
2i

, 0, ..., 0, −2︸︷︷︸
i

, 0, ..., 0) and vll = (0, 0, .., 0,−1)

Note that there are a total of l(l−1)
2

+ 1 of these vectors in V .
Define a poset structure on γl,n by m ≥ m′ if m′ −m lies in the nonnegative

integral span of V . For example (9, 0, 0) > (7, 1, 0) since −(9, 0, 0) + (7, 1, 0) =
(−2, 1, 0) = v11.

Note that (n, 0, 0, ..., 0) is the unique top element in γl,n for any l. The Hasse
diagrams in the cases l = 2, 3 are indicated in Fig.5. See also Fig.6.

(3.5) Note that every element of γl,n is in the positive cone of (n, 0, 0, ..., 0) with
respect to the subset V ′ = {v11, v12, ..., v1l}. Thus γl,n includes an l-dimensional
lattice (in the crystal lattice sense). The subset V ′ is manifestly a basis for the
underlying Rl containing Zl. It follows that none of the remaining vectors in V
are R-linearly independent of V ′. However we claim they are positive-integrally
independent. Typically for every three sides in a cube in γl,n then there is an
element in V \ V ′ that is the main diagonal in this cube. For example with l = 3

v11 + v22 = v12 + v13

That is to say, v22 = v12 + v13 − v11, a non-positive combination of basis elements.
This example of v22 corresponds to the dashed lines in Fig.5.

(3.6) Note from (3.4) that γl,n−l ↪→ γl,n. As in Fig.7, consider the subset of γl,n

hln := {m ∈ γl,n |m 6≤ (n− l, 0, 0, .., 0)} (6)

We have γl,n = hln t γl,n−l. Note that no element of γl,n−l lies above any element of
hln in the poset (γl,n, <).

We discuss combinatorics of γl,n in [1].
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n,0,0
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(7,1,0)
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(3,3,0)

(1,4,0)

(0,3,1)

(6,0,0)

(6,0,1)

(3,0,0)

(0,0,0)

(0,0,3)

(0,0,2)

(0,0,1)

(4,1,1)

(3,0,2)

Figure 5: Hasse diagram for inclusion poset for ideals P l
na

mP l
n in cases l = 2 (left)

and l = 3 (right). Vertex m corresponds to ideal P l
na

mP l
n.

3.4 Ideals generated by the am elements

(3.7) Note that
#−(am) = m

Fix l. Define the subset Pmn ⊂ Pln by

Pmn = {p ∈ Pln|#−(p) = m} (7)

(3.8) Fix l and n and define partition W in Pln by

W = W l := (ww?)⊗ 1n−l (8)

NB W l ∈ Sna
(n−l,0,0,...,0)Sn. Example:

W 3 =

We will also use an ‘idempotent version’ W l
b = Al l+1 W l Al l+1:

W 3
b =

(3.9) Lemma. [52] For l ∈ N, P l
n = 〈Sn,A12,W l〉.
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n = 4 n = 5 n = 6

n = 7 n = 8 n = 9

Figure 6: Hasse diagram for inclusion poset for ideals P l
na

mP l
n in case l = 3, for

n = 4, 5, ..., 9. Vertex m corresponds to ideal P l
na

mP l
n.

(9,0,0)

(7,1,0)

(5,2,0)

(3,3,0)

(1,4,0)

(0,3,1)

(6,0,0)

(6,0,1)

(3,0,0)

(0,0,0)

Figure 7: Schematic of the set hln, i.e. γl,n with the poset ideal generated by (n −
l, 0, 0, ..) removed. (This case is h3

9.)
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(3.10) Lemma. (I) The element am ∈ P l
n lies in the ideal P l

na
m′P l

n if and only if
m ≤m′ in γl,n. (II) For p, p′ ∈ Pln we have #−(pp′) ≤ #−(p).

Proof. (I) (‘if’ part): If m −m′ = vij then, up to a permutation, am can be ob-
tained from am

′
by joining a co-i and a co-j propagating part together using some

Agh: am
′
; am

′
Agh, or cutting a propagating ‘line’ using W l.

(‘only if’ part): Consider p ∈ Pln and the change #−(p) ; #−(ap) for a ∈ Sn{1,A12,W l}Sn.
The vector can only be changed by such an a as follows. (1) by combining propa-
gating parts (for example a ∈ {Aij}ij; or a = W l and p is as in the following case

with l = 3: W lp = ); or (2) cutting the propagating line in a co− l part.

But p ; ap (or pa) for any a is a sequence of such ‘local’ changes by Lemma 3.9.
(II) follows by the same argument.

(3.11) Lemma. (I) The set
⊔

m′≤m Pm
′

n is a basis for the ideal P l
na

mP l
n. (II) The

partitions p in the ideal P l
na

mP l
n and not in any ideal P l

na
m′P l

n with m′ < m are
precisely the subset Pmn .

Proof. This follows from Lem.3.10. Note that elements of Pmn are elements of Sna
mSn

and elements obtained from these by binding a non-propagating part to a propagat-
ing one.

(3.12) Lemma. Fix l.
(1) Every element p of Pln containing a part pi with cora(pi) > l or ran(pi) > l lies
in the ideal P l

nWP l
n.

(2) Every element of Pln containing a non-propagating part lies in the ideal P l
nWP l

n.
(3) Fix n. For any m, if rm = n then am 6∈ P l

nWP l
n.

Proof. (1) Suppose |cora(pi)| > l or |ran(pi)| > l. Then there is a partition p′ ∈ Pln
differing from p only in that l elements of pi are in an isolated non-propagating part.
Partition p evidently lies in the ideal generated by p′. Now use (2).

(2) A non-propagating part pi in p ∈ Pln necessarily has order at least l. Then
there is a partition W ′ group-conjugate to W such that one of its non-propagating
parts exactly meets a subset of pi in composition, whereupon pW ′ = p or W ′p = p.
(If the order is exactly l the argument is slightly modified.)

(3) By Lem.3.10, noting that W ∈ Sna(n−l,0,0,...,0)Sn.

(3.13) For given n, l and m ∈ γl,n define the ideal

I<m =
∑

m′<m

P l
na

m′P l
n

(3.14) Lemma. If m′ 6≥m ∈ γl,n then am
′
P l
na

m ⊂ I<m.

12



Proof. Note that am
′
P l
na

m has a basis of partitions. By 3.11 every partition lies in
a unique highest ideal of form P l

na
m′′P l

n. In particular p ∈ am′P l
na

m lies in or below
P l
na

mP l
n, but since m′ 6≥m it must be below.

4 Representation theory generalities

Lemma 3.14 means that P l
n has what we call the ‘core’ property. From this property

many representation theoretic properties follow quite generally. Here we collect the
general arguments.

4.1 Preliminaries: Green’s idempotent reciprocity

(4.1) Theorem. [Green localisation theorem, [22, §6.2]] Let k be a field, let A be
a k-algebra, and e ∈ A idempotent. Let Λ(A),Λ(eAe) and Λ(A/AeA) be index sets
for classes of simple modules of the indicated algebras. Then there is a bijection

Λ(A)
∼→ Λ(eAe) t Λ(A/AeA)

Fix an index set Λ(A), and a set {Mλ : λ ∈ Λ(A)} that is a complete set of simples
up to isomorphism. Let us write Λe(A) for the subset of Λ(A) such that λ ∈ Λe(A)
implies eMλ 6= 0 [2, 22]. The map M 7→ eM is a bijection from {Mλ : λ ∈ Λe(A)} to
a complete set of simples for eAe. Thus we may take Λ(eAe) = Λe(A). Meanwhile
{Mλ : λ ∈ Λ(A) \ Λe(A)} is a complete set for A/AeA. This gives a natural
identification

Λ(A) = Λ(eAe) t Λ(A/AeA) (9)

(4.2) Let k be a field. Given a finite-dimensional k-algebra A, a simple module L
and a module M , then [M : L] denotes the composition multiplicity of L in M .

(4.3) For A an algebra then A−mod denotes its category of left-modules. Given an
idempotent e in an algebra A we define, as usual [38, 22], a functor

Ge : eAe−mod → A−mod

by Ge(M) = Ae⊗eAeM . Define functors

Fe : A−mod → eAe−mod

Le : mod− A → mod− eAe

by Fe(N) = eN and Le(N) = Ne. We have the following standard properties (see
e.g. [22, 2, 41]).
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(4.4) Theorem. Let algebra A and idempotent e ∈ A be as above.
(I) Functor Ge is left-adjoint to Fe; and a right-inverse to Fe.
(II) Functor Ge is right-exact; and Fe is exact.
(III) Functor Ge preserves projectivity and indecomposability.
(IV) Functor Ge preserves simple head.
(V) For L a simple module eL is a simple eAe-module or 0 and if eL 6= 0 then

[eM : eL] = [M : L]

4.2 Algebras with the core property

(4.5) Let k be a commutative ring. Let A be a unital k-algebra, with unit 1. Let
γ = (γ,<) be a finite poset and eα ∈ A an idempotent for each α ∈ γ. Let

I<α =
∑
β<α

AeβA

(so I<α = 0 if α is a lowest element) and (for later use)

Aα = A/I<α.

The poset γ together with the map e− : γ → A is called a core for A if (AI):
eαAeα′ ⊆ I<α for all α′ 6≥ α; (AII): 1 lies in the image of e−.

(4.6) Theorem. Suppose δ invertible in K. Then the pair (γl,n, a−) gives a core for
P l
n.

Proof. Comparing (4.5) with (3.14) we see that (γl,n, a−) is a core for P l
n up to

renormalisation of the a− elements as idempotents.

(4.7) Suppose now that k in (4.5) is a field and A is finite-dimensional with simple
index set Λ(A). Note the natural inclusion Λ(Aα) ↪→ Λ(A) giving the (classes of)
simple modules M of A such that eβM = 0 for β < α.

By eαA
α we understand eα to act on Aα in the natural way, i.e. as eα + I<α. By

Green’s theorem (4.1) and the construction then we take Λ(eαA
αeα) ↪→ Λ(A) (via

Λ(eαA
αeα) ↪→ Λ(Aα) ↪→ Λ(A)) to index classes of simple modules of A such that

eβM = 0 if β < α and eαM 6= 0.

(4.8) Lemma. Let A be an algebra over a field with simple index set Λ(A). If algebra
A has a core (γ, e−) then Λ(A) = ∪α∈γΛ(eαA

αeα).
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Proof. Consider the classes indexed by Λ(eαA
αeα) as in (4.7). There may be other

simples with eαM 6= 0, but they have eβM 6= 0 for some β < α, and so are ‘counted’
in some lower Λ(eβA

βeβ) — noting that minimal elements ω ∈ γ finally exhaust
simples with eωM 6= 0. Thus the union includes all simples with eαM 6= 0.

But now since 1 ∈ γ (by axiom AII) the union includes all simples in Λ(A) where
1M 6= 0, which is all.

(4.9) Remark/caveat: Note that every algebra has a ‘core’ for every poset with a
unique minimal element (call it ⊥), simply by the constant mapping eα = 1. But
all but one Λ(eαA

αeα) is empty in this case (and our Theorem 4.10 below is trivial).
Confer [18, 8, 14, 21] for certain ‘tighter’ axiomatizations (and indeed cf. for example
[23, 4, 17] and references therein for interesting related axiomatizations).

In order for the core formalism to have significant utility, we will need something
further like BH reciprocity, as we discuss shortly.

(4.10) Theorem. Let A be an algebra over a field with simple index set Λ(A). If
algebra A has a core (γ, e−) then

Λ(A) = tα∈γΛ(eαA
αeα) (10)

Proof. Noting Lem.4.8 it remains to prove disjointness. For α ∈ γ let Λα :=
Λ(eαA

αeα). Recall the natural embedding Λα ↪→ Λ(Aα) ↪→ Λ(A). Simple mod-
ules M of A coming from the subset Λα (if any) obey eαM 6= 0 (AeαM = M) by
(4.1)/(4.7). But now consider eα′M . Either α′ 6> α and so eα′M = 0 by axiom
(AI), so M 6∼= Mµ, µ ∈ Λα′ (for which Aeα′Mµ = Mµ); or α′ > α so α 6> α′ and
eαN = 0 for all N = Nµ, µ ∈ Λα′ , while Aeα′N = N so M 6∼= N .

4.3 iγ-modules over a core

(4.11) Let A be an algebra over a field with index set Λ(A), and core (γ, e−) as
above. Let d−c : Λ(A) → γ be the map taking µ ∈ Λ(A) to the part α = dµc
to which it belongs in (10). For each α ∈ γ suppose {Sαµ : µ ∈ Λα} to be a
corresponding set of simple modules of eαA

αeα.
For each of the algebras eαA

αeα we have a corresponding G-functor (as in (4.3)).
In particular this lifts the set of simple modules to a set of Aα-modules, and hence
A-modules. Thus for each µ ∈ Λ(A) we have an A-module

iγµ = GeαS
α
µ (11)

for α = dµc denoting the appropriate α. Let iγ = {iγµ | µ ∈ Λ(A)}.
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(4.12) Lemma. Let A be an algebra with index set Λ(A), and core (γ, e−) as above.
Let {iγµ : µ ∈ Λ(A)} be as in (11). (In particular this supposes fixed the various
sets {Sαµ : µ ∈ Λα}.) We have the following:
(I) The modules iγµ have simple heads, denoted Lµ; and their heads are exactly a
complete set of simple A-modules.
(II) If iγµ has a simple factor Lν below the head then edµcLν = 0.
(III) Suppose A possesses an involutive antiautomorphism a 7→ a? and hence a
contravariant duality M 7→ M o [22], so the socle of (iγµ)o is Loµ. If edµc = e?dµc
then edµcL

o
µ 6= 0, so either Loµ does not appear in iγµ and there is no module map

iγµ → (iγµ)o; or Loµ = Lµ, and there is exactly one module map iγµ → (iγµ)o up to
scalars, with image Lµ.

Proof. (I) By Theorem 4.4(IV) and (the proof of) Theorem 4.10.
(II) Follows from Theorem 4.4(V).
(III) If aM 6= 0 then a?M o 6= 0.

(4.13) Lemma. Let A be an algebra with core (γ, e−) as above. Let dγµx := [iγµ : Lx].
Then dγ

µµ
= 1 and if µ 6= x and dγ

µx
6= 0 then dµc < dxc.

That is to say, let <′ be any total order on Λ(A) in which dµc < dxc in γ implies
µ <′ x. Then the matrix of Dγ

A := (dγµx) with respect to <′ is upper-unitriangular.

Proof. Let µ, x ∈ Λ(A) with x 6= µ. First note that dγ
µµ
6= 0 by Lemma 4.12(I).

Lemma 4.12(II) then implies dγ
µµ

= 1.
It remains to show that if dγ

µx
6= 0 then dµc < dxc. If dγ

µx
6= 0 then edxciγµ 6= 0.

Hence by axiom (AI) of the definition of core we have dµc ≤ dxc. Note that again
by Lemma 4.12(II) we have edµcLx = 0. Hence we cannot have dxc = dµc otherwise
we would get edµcLx 6= 0. Therefore dµc < dxc.
(4.14) In general iγ modules are not particularly useful, for computing the Cartan
decomposition matrix for example. Below we discuss conditions under which they
become useful.

4.4 Modular systems and pivotal sets

(4.15) Consider an algebra A over a field with simple modules Lµ, µ ∈ Λ(A) and
indecomposable projective covers Pµ, µ ∈ Λ(A). Suppose we have another set D
of A-modules Dµ, µ ∈ Λ ⊇ Λ(A), that span the Grothendieck group. Suppose in
particular that there is an expression for the characters of the projective modules P
in terms of D, with coefficients denoted (P : Dµ). We say A has the BH reciprocity
property (as in Brauer–Humphreys) if

[Dµ : Lν ] = (Pν : Dµ) (12)

In particular we say D is a pivotal set for the BH property.
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If D gives a basis for the Grothendieck group we call this strong BH property.

(4.16) A Brauer modular system [3] for a k-algebra A is a triple of commutative
rings (K,K0, k) where K is an integral domain, K0 the field of fractions, and k
the quotient by some maximal ideal, with the following properties. Firstly there
is an ‘integral’ version AK of A over K, and A itself is obtained by base change,
A = k ⊗K AK , and is split. Secondly the base change instead to K0, the ‘ordinary’
version, is split semisimple.

(4.17) A BH module for a Brauer modular system is the image of a simple module
of K0 ⊗K AK under an integral lift to AK followed by the base change to k.

There may be many such lifts in general. But a set of BH modules that is the
image of a complete set of ordinary simples is called complete.

(4.18) A sufficient condition for the BH property, with pivotal set ∆, is that the
set ∆ is a complete set of BH modules. (See e.g. [3, Prop.1.9.6].)

4.5 Modular core property and highest weight categories

In this section we define the (strong) modular core property for algebras and show
that it implies a highest weight category.

(4.19) A modular core is an algebra A and a triple of rings (K,K0, k) as in (4.16)
giving a Brauer modular system for A (thus A = k⊗K AK) together with core data
(γ, e−) giving a core for AK .
A strong modular core is a modular core that is strong modular, i.e. the simple
modules over k and K0 have the same index set.

(4.20) Remark. In the classical modular theory for finite groups one finds the in-
tegral representations (that will be reduced mod. the prime defining k) as lattices
inside the simples of the rational case. In diagram algebras suitable integral rep-
resentations can generally be constructed directly (by the good basis properties of
such algebras). Nonetheless their base changes to the rational case are the simples
of that case. In other words it is the index set for simples in the rational case that
labels the ‘Brauer/Specht modules’.

This means there are some ‘carts and horses’ (hypotheses and conclusions) that
must be placed carefully in the right order!

(4.21) Note that if (K,K0, k) is such a triple of rings then the core property over
K will base change to the field cases.

In particular then consider the algebra A0 = K0 ⊗K AK . This is now split
semisimple by hypothesis. We have

Λ(A0) = tα∈γΛ(eα(A0)αeα)
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by Th.4.10. An idempotent subalgebra of a quotient of a semisimple algebra is
semisimple so in this scenario eα(A0)αeα is semisimple. For each α ∈ γ let us write
{Ŝαµ | µ ∈ Λ0

α} for a complete set of simples of eα(A0)αeα.
Caveat: Given a modular core there is no reason to suppose that we are able to

construct such a set directly.
In this case the corresponding collection of sets of iγ-modules (here specifically

denoted îγ to distinguish from the other base rings) as in (11) give, by Lemma 4.12,
a complete set of simples for A0.

Working now over K, we have the various algebras eα(AK)αeα. We call a col-
lection of sets of K-algebra modules ‘podular’ if the appropriate embedding Geα−
followed by base change to K0 takes them to a complete set of simples as above.
Note in particular then that this collection may be indexed in the same way:
S = {{Sαµ | µ ∈ Λ0

α} | α ∈ γ}.
(This is the same as to say that the base change of the podular set gives a collection
of sets {{Ŝαµ | µ ∈ Λ0

α} | α ∈ γ}.)
(4.22) We now have a collection of AK-modules

ǐγ =
⋃
α∈γ

{ǐγµ | µ ∈ Λ0
α}

obtained by applying the appropriate Geα− functors to the collection S.
As already noted, this collection passes by base change to K0 to the îγ-modules.
This collection ǐγ passes by the other base change to k to a set of A-modules īγ.
Once again Lemma 4.12 applies. Note also that these are a complete set of BH
modules, thus they are a pivotal set.

(4.23) Remark. Note that the implication of semisimplicity flows in one direction
only, so the īγ modules are not simple in general.

(4.24) We recall the definition of highest weight category from [29] (the original
reference is [8, Definition 3.1] but we use an equivalent definition stated in [29] as it
fits our purpose).

Let A be a finite dimensional algebra over a field k. Fix a complete set of pairwise
non-isomorphic simple A-modules {Sλ | λ ∈ Λ(A)}. Let E be a partial order on
the index set Λ(A). The category A−mod is a highest weight category with respect
to E if for each λ ∈ Λ(A) there exists a left A-module ∆/λ, called standard module,
such that

1. There exists a surjective morphism θλ : ∆/λ → Sλ, such that if Sµ is a compo-
sition factor of the ker(θλ) then µ / λ.

2. Let Pλ be the projective cover of Sλ. There exists a surjective morphism
ϑλ : Pλ → ∆/λ such that the kernel of ϑλ is filtered by modules ∆/µ with λ / µ.
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(4.25) Lemma. Let A be a k-algebra with a core (γ, e−). Let iγ = {iγµ : µ ∈ Λ(A)}
be the set of i-modules of A for the core (γ, e−) (in the sense of Equation 11).
Suppose the set iγ filters projectives and is a pivotal set for the strong BH property.
Now let ≺ be any order on Λ(A) in which dµc < dxc in γ implies x ≺ µ. Then the
category A-mod is a highest weight category (HWC) with respect to ≺, with iγ as
the set of standard modules.

Proof. For Axiom 1 note from Lemma 4.12(I) that there is a map θλ; and from
Lemma 4.13 that [ker(θλ) : Lµ] = 0 unless dλc < dµc, hence µ ≺ λ. For Axiom 2,
let Pλ be an indecomposable projective module of A, then by the assumptions there
is a filtration

0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mk = Pλ

of Pλ by iγµ-modules. We have Pλ/Mk−1 ' iγλ, since the iγ-modules are pairwise
non-isomorphic and their heads form a complete set of simple modules of A. By
the strong BH basis property the multiplicities in the filtrations are uniquely defined,
and coincide with the character definition of (Pλ : iγµ). Thus (Pλ : iγµ) = [iγµ : Sλ]
by the strong BH property. Hence, if (Mk−1 : iγµ) 6= 0 then Lemma 4.13 implies
that λ ≺ µ.

(4.26) Theorem. Let A be a k-algebra. Suppose:
(I) A is a strong modular core algebra with modular system (K,K0, k) and core
(γ, e−). Let īγ be the set of iγ-modules of the k-algebra A for the core (γ, e−),
obtained by base change as in 4.22. Let ≺ be any order on Λ(A) in which dµc < dxc
in γ implies x ≺ µ.
(II) the set īγ filters projective A-modules.
Then A-mod is a HWC with respect to ≺, with īγ as the set of standard modules.

Proof. By 4.22 the set īγ is pivotal set for the BH property. Now apply Lemma 4.25.

5 Simple index theorem for P l
n

5.1 The quotient algebras Pm
n of P l

n

(5.1) Define quotient algebra

Pm
n = P l

n/I
<m
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Schematically:

m

I

(n,0)

(5.2) By am ∈ Pm
n we understand the element of which am is a representative (and

similarly for bm).

(5.3) Lemma. The ideal Pm
n a

mPm
n in Pm

n has basis Pmn .

Proof. This follows from Lem.3.11 and the construction.

(5.4) For m ∈ γl,n define
Sm = ×li=1Smi (13)

For ρ = (ρ1, ρ2, ..., ρl) ∈ Sm, define waρ = wρ ∈ P l
n as the image of ρ realised on the

propagating lines in am as follows. Here is an example for l = 2:

wρ =

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

(14)

— we put ρ1 on the co-1 propagating lines (the second interior box of lines in the
example) in the natural way; ρ2 on the co-2 lines (the first interior box in the
example); and so on.

(5.5) For m 6= 0 we define wbρ ∈ P l
n analogously to wρ, but realised on the propa-

gating lines of bm. We may similarly define wabρ on the propagating lines of ambm;
and wbaρ analogously. Note that

wbρw
b
ρ′ = wbρρ′ , waρw

ba
ρ′ = waρρ′ (15)

and so on.

(5.6) Consider partitions of form q = ampam, as illustrated in figure 8. (Partitions
of form q = bmpbm are directly similar.) Note that the number of co-i parts of q
cannot be greater than that of am for any i, unless this is the result of two or more
propagating parts coming together, such that i′ + i′′ ≡ i mod. l (or

∑
j ij ≡ i).
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b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

b b b b b b b b b b b b b bbbb b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

b b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

b b b b b b b b b b b b b bbbb b b b b b b bb b

b b b b b b b b b b b b b b b b

bbbbbb

Figure 8: Partitions illustrating amPm
n a

m in case l = 2.

Now cf. (3.4) and the definition of Pm
n . Thus for example the first element in the

figure, q1 = amp1a
m say, is in I<m and hence zero in Pm

n by the quotient. To see
this explicitly consider #−(q1), and in particular #−(q1)1. We may follow down the
leftmost co-1 part from the top am factor. If this meets a co-i > 1 part from the
lower am (as here) then, by the pigeonhole principle, the number of propagating
parts decreases.

The second example is essentially a ‘permutation’ of form wσ (in this case up to
factors of δ). Note then that only permutations within each of the l group factors
are possible, if we work in the Pm

n quotient.

(5.7) Lemma. Let K be a commutative ring, and δ ∈ K. Fix l and n, and m ∈
γl,n \ {0}. Then we have the following.
(bI) The map from Sm to P l

n given by σ 7→ wbσ has image in bmP l
nb

m.
(bII) Idempotent subalgebra bmPm

n b
m in Pm

n has basis {[wbσ] = wbσ + I<m | σ ∈ Sm}.
(bII’) The map σ 7→ [wbσ] defines a map from Sm to the basis in bmPm

n b
m that is a

group isomorphism.
(bIII) This map gives an algebra isomorphism

bmPm
n b

m ∼= KSm.

Proof. (bI) Note that wbσ ∈ P l
n and bmwbσb

m = wbσ. (bII) Noting (5), this follows
essentially from Lemma 3.10 and the pigeonhole principle, as in (5.6) (replacing am

with bm). (bII’) This follows from (bII) and (15). (bIII) Follows from (bII) and
(bII’).

(5.8) Note that by the same argument the idempotent subalgebras bmPm
n a

m, amPm
n b

m,
and amPm

n a
m are all isomorphic to KSm (except that the ‘aa’ case requires δ to be

a unit).
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(5.9) Theorem. Suppose K is a field with δ 6= 0. Then we have simple index set
Λ(P l

n) = tm∈γl,nΛ(KSm).

Proof. Noting Theorem 4.6, now apply Th.(4.10) and substitute using (5.7) and
(5.8).

(5.10) Remark. There is a straightforward strengthening of Th.5.9 to the case δ = 0
in most cases. We omit this for brevity.

5.2 Aside on symmetric groups and Specht modules

In light of Lem.5.7 et seq., it is useful to recall some properties of the group algebra
KSm (as defined in (13); for example KSm = K(Sn−2i×Si) in case m = (n−2i, i)).
We focus for brevity in this exposition on the case l = 2. The generalisation is
straightforward.

(5.11) Define Λi = {λ ` i}, the set of integer partitions; and

Λm = ×li=1Λmi = Λm1 × Λm2 × ...× Λml

(5.12) Here an element e in a k-algebra S (k some commutative ring) is ‘preidem-
potent’ if ee = ce for some c ∈ k. If c a unit then e may be renormalised as an
idempotent. ‘Primitivity’ of e ∈ S means that ewe = cwe for some cw ∈ k for all
w ∈ S.

(5.13) Recall (cf. [24] and [11, §43], say) that for each λ = (λ1, λ2, ..., λl) ∈ Λm

there exists a primitive preidempotent

eλ = eλ = e′λ1e
′′
λ2 ... (16)

in ZSm (primes indicate belonging to different factors) such that the left ideal

Spλ = KSm eλ

is a Specht module for l = 1 and hence a generalised Specht module otherwise.
In our case we may choose e = eλ so that e = eop, as in (2.5) (this follows from

one of the well-known constructions for preidempotents in ZSn [25]).

(5.14) For definiteness we have in mind a tableau-labelled basis

bλ = bλ1 × bλ2 × ...

for Spλ. This is a basis encoded as l-tuples of standard sequences such as b(3,1) =
{1112, 1121, 1211}. The details of the corresponding explicit basis contruction can
be found for example in [24], but the full details will not be needed here.
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(5.15) Returning to (5.12), suppose algebra S has a k-linear map op : S → S, written
s 7→ sop, that is an involutive antiautomorphism. Suppose primitive preidempotent
e = eop. This then allows us to define a k-bilinear form (−,−)e on Se as follows: for
se, s′e ∈ Se we have

(se)ops′e = esops′e = csops′ e. (17)

Now set (se, s′e)e = csops′ . Note that for a ∈ S we have (se, as′e)e = csopas′ =
c(aops)ops′ = (aopse, s′e)e. That is, the form is contravariant with respect to op [22].

(5.16) This form is useful in studying the corresponding S-module morphism from
Se to its contravariant dual [22]. Note that the choice of e is not unique in our
ideal construction M = Se, and although Se does not depend on the choice (up
to isomorphism) the form does depend on it by an overall factor. Thus the form is
not canonical on M . However for symmetric groups there is a good choice of form,
due to James, that encodes representation theory within a very useful organisational
scheme [24]. Over fields of char.0 the constant c is always a unit and these subtleties
can be ignored, as we will see in §9.1.

6 Polar decomposition of partitions in Pln

We describe a version for P l
n of the Pn polar decomposition [37, p79-80].

(6.1) Let m ∈ γl,n. Let Bm denote the natural ‘diagram’ basis of Pm
n a

m (i.e. the
basis of certain partitions p ∈ P l

na
m where p is understood to mean p+ I<m). Next

we describe Bm. Note that the left ideal Pm
n a

m has a natural right action of Sm

upon it (see e.g. Lem.5.7 and (5.8)). Indeed it is a free right KSm-module. It
follows that we may partition Bm into orbits of the right action of Sm.

(6.2) The basis Bm consists of elements p representable in the following form.
(1) The restriction of p to the ‘top’ (unprimed) subset of vertices consists of:
for each i = 0, l− 1, l− 2, ..., 1, mi co-i parts that belong to propagating parts; and
some further number of co-0 non-propagating parts.
The restriction of p to the ‘bottom’ (primed) subset of vertices consists of:
for each i, mi order-i parts that belong to propagating parts; and (n− rm)/l further
order-l non-propagating parts.
(2) The propagating connection from top to bottom for a propagating part may be
drawn as a line from the first (lowest numbered) vertex of the part on the top to
the first on the bottom.

(6.3) We say that p ∈ Bm is relatively non-crossing if, for each i, the co-i propagating
lines in the representation above are pairwise non-crossing.

23



An example of a relatively non-crossing partition (in case l = 2) is given by:

The isolated loops in this picture can be ignored (we assume δ 6= 0 here for simplicity)
or replaced with a suitable ‘meander’. They are drawn to demonstrate that the
element lies in Pm

n a
m (here in case m = (m0,m1) = (4, 4)).

(6.4) Lemma. Let m ∈ γl,n. Each orbit of the right Sm action on basis Bm of Pm
n a

m

as in (6.1) contains a unique representative element with the relative non-crossing
property. Let Tm denote the relative non-crossing transversal. Then

Bm = {pw | p ∈ Tm; w ∈ Sm}

where w acts in the natural way. In particular Tm is a kSm- basis of the free right
kSm-module Pm

n a
m.

(6.5) It will be apparent that any partition p in Pmn (as defined in (7)) can be written
in a generalisation of the usual partition algebra polar decomposition. That is, we
have the following.

(6.6) Lemma. Each p ∈ Pmn can be written in a factored form as

p = awσb

where a is relatively non-crossing (as in (6.3)), i.e. a ∈ Tm; wσ = (w1, w2, ...)
is as in (14); and b is a flipped relatively non-crossing partition (b? ∈ Tm). The
factorisation in this form is unique.

(6.7) It is convenient to denote the decomposition by

p 7→ |p〉 w(p) 〈p| (18)

7 Basic integral representation theory of P l
n

Here we aim to construct a modular system for P l
n based on analogues of Specht

modules.
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(n,0) (n,0)

Figure 9: (a) Schematic for �-sectioning the γl,n poset (l = 2). (b) Schematics for
comparing Jm(i) (below blue line) with I<m(i+1) (below red line).

(7.1) Recall that any poset can be refined to a total order. Let (γl,n,�) be a total
order refining (γl,n, >) (e.g. as indicated by Fig.9). Let us define

Jm =
∑

m′�m

P l
na

m′P l
n, J�m =

∑
m′�m

P l
na

m′P l
n

For convenience define m(1),m(2), ... as the elements of γl,n in the total order so

Jm(1) ⊂ Jm(2) ⊂ Jm(3) ⊂ ... ⊂ J(n,0,0,...,0) = P l
n

(7.2) Lemma. Write P = P l
n for a moment. We have an isomorphism of bimodules

Jm(i+1)/Jm(i)
∼= Pam(i+1)P/I<m(i+1). (19)

Proof: We have

Jm(i+1)/Jm(i) =
Pam(i+1)P + Pam(i)P + ...

Pam(i)P + Pam(i−1)P + ...

∼= Pam(i+1)P

Pam(i+1)P ∩ (Pam(i)P + Pam(i−1)P + ...)
=

Pam(i+1)P

Pam(i+1)P ∩ Jm(i)
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by the second isomorphism theorem. Thus we may consider the ‘numerators’ in (19)
to be the same, up to isomorphism; and compare the ‘denominators’ (the submodules
that are quotiented by). The argument proceeds in two steps.
(I) For any order � refining > we have that m(i+1) >m implies m(i+1)�m. But
for any total order this implies m(i) �m. Thus Jm(i) ⊃ I<m(i+1). (Cf. Fig.9(b).)
(II) Consider the denominator in the third expression. In particular consider
Pam(i+1)P ∩ Pam(j)P for j = i, i − 1, .... By Lemma 3.11 every partition p lies in
a unique highest ideal of the form PamP , and there is a basis of partitions. Since
m(j) 6≥m(i+ 1) we have (cf. (3.14)) that

Pam(i+1)P ∩ Pam(j)P ⊆ I<m(i+1) (j ≤ i)

Combining with the inequality in the other direction from (I), noting that Pam(i+1)P ⊃
I<m(i+1), we see that

Jm(i+1)/Jm(i)
∼= Pam(i+1)P

I<m(i+1)
= Pm(i+1)am(i+1)Pm(i+1)

7.1 Globalisation functors and quotient algebras Al
n

Note that a partition of a set S determines a partition of a subset S ′ by restriction.
In particular an element p of Pn determines an element p|[1,n−l] of Pn−l by restricting
to the first n − l pairs of elements ‘top and bottom’. Similarly p|[l+1,n] restricts
to the last n − l pairs. (Again this determines an element of Pn−l in the obvious
way.) Note in particular for n > l that the restriction p|[l+1,n] of a partition p in
W l
bP

l
nW

l
b removes l top elements from the same part and l bottom elements from the

same part, and hence p|[1,n−l] lies in P l
n−l. A similar property holds on restricting

W lP l
nW

l, or indeed W l
bP

l
nW

l
b (using (2.6)), and so on. Given one of these cases, let

us write ιW for this restriction map. Schematically (W 3 case):

−→ =

(7.3) Theorem. Fix l. For n > l the maps ιW give isomorphisms of algebras:

W l
bP

l
nW

l
b
∼= P l

n−l and W l
bP

l
nW

l
b
∼= P l

n−l.
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Similarly for n ≥ l we have the (not necessarily unital) algebra isomorphisms
W lP l

nW
l ∼= δP l

n−l. and W lP l
nW

l ∼= δP l
n−l.

Proof. Exactly analogous to the Pn case as in [37]. Schematically (W 3 case), consider
the figure above.

(7.4) As in (4.3) we define ‘short’ functors

GW : W l
bP

l
nW

l
b −mod → P l

n −mod

and FW . And similarly (for δ invertible) GW : W l
bP

l
nW

l
b −mod → P l

n −mod. By
Theorem 7.3 we will consider these as functors between P l

n−l −mod and P l
n −mod.

(7.5) Fix l. Define the quotient algebra

Aln = P l
n/W

l
bP

l
n = P l

n/P
l
nW

lP l
n = P l

n/P
l
nW

l
bP

l
n.

(7.6) Example: In case l = 1, A1
n = kSn.

(7.7) Lemma. There is a basis for Aln consisting of partitions in which every part is
propagating with cora(pi) = ran(pi) and no part has |cora(pi)| > l or |ran(pi)| > l.

Proof. By Lem.3.12.

(7.8) Let H l
n denote the subset of idempotents am with m ∈ hln.

Let Pl−n ⊂ Pln denote the subset of l-tone partitions of form ShT , where S, T are
permutations and h ∈ H l

n. That is, Pl−n is the set of l-tone partitions having parts
with at most l elements per row, and all parts propagating.

Note from Lem.3.10 the following.

(7.9) Lemma. Fix l. Algebra Aln has basis the subset Pl−n .

(7.10) An element of Pl−n is partially characterised by the restricted partition of the
upper (resp. lower) row into parts of size l, l− 1, ..., 1. We say that an ordered pair
(a, b) ∈ Pln are compatible if, considering the rows that meet in composition ab, every
part from a (resp. b) is a union of parts from b (resp. a).

Note that ab ≡ 0 in Aln unless compatible.

In case l > n there can be no non-propagating part in a partition in Pln. In this
case P l

n coincides with Kosuda’s party algebra [32]. We will be interested, though,
in general n for each fixed l.
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7.2 Long functors from KSm −mod

(7.11) Note from Lem.5.7 and (5.8) that Pm
n a

m is a right KSm module. (The case
m = 0, δ = 0 can be included by identifying KS0 with the ground ring.)

Now for given m ∈ γl,n define the long functor

Ga : KSm −mod → Pm
n −mod

by GaM = Pm
n a

m ⊗KSm M.

Here we want to recall the isomorphism between GaM and Pm
n a

mM that holds
whenM is a left ideal, so that standard modules inherit the properties from both con-
structions. Noting the invariant basis number (IBN) property we write rankK(M)
for the basis number of a free K-module with finite basis.

(7.12) Lemma. Let A be a finite rank K-algebra, M be an A-module with K-basis
B, and F be a right free A-module of finite rank with A-basis T . Then
(I) T ⊗B = {t⊗ b | t ∈ T ; b ∈ B} is a basis of F ⊗AM.
If in addition M is a left ideal then
(II) TB = {tb | t ∈ T ; b ∈ B} is a K-basis of FM.
(III) The map µ : T ⊗ B → TB given by t ⊗ b 7→ tb lifts to a well-defined K-
module isomorphism µ : F ⊗A M → FM . If F is an A′-A-bimodule then µ is an
isomorphism of left A′-modules.

Proof. (I) The A-basis property says F = ⊕t∈T tA where each tA is a copy of the
right regular A-module. Thus F ⊗A M = (⊕t∈T tA) ⊗A M = ⊕t∈T (tA ⊗A M) by
tensor-distributivity (see e.g. [11, §12]) and hence F ⊗A M = ⊕t∈T t ⊗ M since
A⊗A AM ∼= M . Thus rankK(F ⊗AM) = |T |.|B|. Furthermore if G is a K-basis of
A then F has K-basis TG, so {tg ⊗ b : t ∈ T , g ∈ G, b ∈ B} spans F ⊗AM . But
ta ⊗ b = t ⊗ ab so, fixing t, the set {t ⊗ b : b ∈ B} spans the same K-module as
{ta ⊗ b : a ∈ A, b ∈ B}. Thus T ⊗ B spans F ⊗A M . Since |T ⊗ B| = |T |.|B| we
are done.
(II) We may compare for example with [34, 4.12]. The set FM is a K-module, so
FM = ⊕ttAM is a direct sum of K-modules - specifically AM = M is a K-module
and t is a formal symbol. Thus FM = ⊕ttM is a formal direct sum of copies of M .
Since M is itself K-free, we have a formal direct sum of formal direct sums.
(III) Well-definedness follows from the balanced map property of tensor products.
The map is surjective by construction, and hence an isomorphism by IBN. Commu-
tativity of the map with the algebra action is also by construction.

7.3 Standard/Specht modules

(7.13) Fix n and l. For m ∈ γl,n and µ = (µ1, µ2, ..., µl) ∈ Λm we may define the

µ-‘Specht’ module of P l
n as the module obtained by applying the functor Ga in (7.11)
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to the µ-Specht module Spµ of kSm:

∆µ = GaSpµ (20)

(see §5.2 for details of Spµ). Note that this is a P l
n-module since it is a Pm

n -module.

Define Λ0(P l
n) = ∪m∈γl,nΛm and let ∆l,n = {∆µ | µ ∈ Λ0(P l

n)}.
(7.14) Lemma. For k = C and δ 6= 0 the set {Lµ = head ∆µ}µ∈Λ0(P ln) is a complete
set of simple modules.

Proof. Compare Th.5.9(I) with Lem.4.12(I) and (7.13).

(7.15) Let m ∈ γl,n and µ ∈ Λm, and eµ =
∏

i e
i
µi as in (16). Define

Snµ = Pm
n a

m
n w

ba
eµ

where eµ thus acts as in (14 - 15).

(7.16) Lemma. Let bµ be a basis of µ-Specht module Spµ of KSm (cf. 5.14, [24]);

and Tm be a non-crossing transversal in Pm
n as defined in Lemma 6.4. Then

B
µ

Sp := { pwbaω | p ∈ Tm, ω ∈ bµ}

is a basis of Snµ .

Proof. By 6.4 the set Tm is a KSm-basis of Pmam. Now in Lemma 7.12 part II let
A = KSm, M = Spµ and F = Pm

n a
m to obtain the result.

(7.17) Example. Fig.10 shows a diagrammatic realisation of the basis for S4
((2),∅).

The box labeled + denotes the Z-linear combination corresponding to the preidem-
potent e(2) = 1− σ1 ∈ ZS2. Note cf. [37] that this diagram calculus is well defined.
So far, then, the pictures give combinations of partitions — but then finally these
partitions are understood to represent the classes in the module of which they are
representative.

(7.18) Lemma. (I) For m ∈ hln and µ ∈ Λm, FWSnµ = 0. (II) For m ∈ γl,n−l and

µ ∈ Λm, FWSnµ = WSnµ ∼= Sn−lµ . (Here we assume for simplicity that δ 6= 0.)

Proof. (I) Here WPm
n = 0. (II) Note that for x ∈ I<m

n−l then x ⊗ ww? ∈ I<m
n .

Considering the bases one finds that b 7→ b ⊗ ww? (with b of form d + I<m
n−l ) gives

rise to an injection Sn−lµ → WSnµ . The image is fixed by W so FWSnµ contains Sn−lµ

as a submodule. We observe complementarily that the map WP l
nW → P l

n−l (here

NB the standing assumption) takes p ∈ Pmn to p′ ∈ Pmn−l. Indeed WP l
nW ∩ Pmn =

Pmn−l⊗ww?. Furthermore by construction each element of WSnµ is a subset of WP l
nW
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+ + + + + +

+ + + +

Figure 10: Diagrams for the basis for S4
((2),∅). See main text.

+ + + + + +

+ + + +

Figure 11: Action of W on the basis for S4
((2),∅).
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(to see this consider e.g. Fig.11), so we can apply x↔ x⊗ww?. On the other hand
we know by Lemma 3.10(II) that whenever the propagating index is changed it is
reduced. Thus the image of the injection is also spanning.
(To see this less formally, from the example — Fig.11 — one can see the following
types of cases for Wd for d ∈ B

µ

Sp: (1) last l vertices already connected in d; (2)
propagating lines are at most permuted; (3) the propagating index is reduced.)

(7.19) Lemma. We have an isomorphism of P l
n-modules: ∆µ

∼= Snµ .

Proof. By 6.1 the P l
n − kSm bimodule Pm

n a
m is free as right KSm-module. Now in

Lemma 7.12 part III let F be Pm
n a

m and M be the left ideal µ-Specht module Spµ
to obtain the desired isomorphism. In particular the basis of ∆µ of form

B
µ

∆ = {p⊗
m
w | p ∈ Tm, w ∈ bµ}

(Lemma 7.12(I); we write ⊗
m

here to distinguish from the other types of tensor

product in this Section) is taken element-wise to B
µ

Sp.

(7.20) Lemma. Let δ 6= 0 and k = C. Let m ∈ γl,n. As a left P l
n-module the

quotient Pm
n a

mPm
n is a direct sum of ∆-modules.

Proof. By Lemma 6.4 we have the following isomorphism of left P l
n-modules

Pm
n a

mPm
n =

⊕
p∈Tm

Pm
n a

mp? '
⊕
Tm

Pm
n a

m (21)

where p? is as defined in 2.5. Furthermore Lemma 7.19 implies that

Pm
n a

m ' Pm
n a

m ⊗kSm kSm '
⊕
µ∈Λm

(
Pm
n a

meµ

)dim(Spµ)

(22)

as a P l
n-module.

(7.21) Comparing 3.11, 6.6 and (22) we see that

dim(P l
n) =

∑
µ∈Λ(P ln)

dim(∆µ)2 (23)

(cf. a cellular basis of P l
n in the sense of [21]).

(7.22) Lemma. Suppose k = C and δ 6= 0. Recall the simple P l
n-modules Lµ =

head Snµ from (7.14). The modules {Snµ : µ ∈ Λ(P l
n)} have a lower-unitriangular

decomposition matrix ([Snµ : Lν ])µ,ν∈Λ(P ln) with respect to any order ≺ on Λ(P l
n) in

which m <m′ implies ν ≺ µ for µ ∈ Λm and ν ∈ Λm′.
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Proof. By Theorem 5.9 the pair (γl,n, a−) is a core of P l
n. When k = C for each

µ ∈ Λm the µ-Specht module Spµ is simple as CSm-module. By Equation 20 and

Lemma 7.19 the set of modules {Snµ | µ ∈ Λ(P l
n)} are the corresponding long Ga-

functor ∆-modules as in Equation 11. Now the result follows from Lemma 4.13.

8 Globalisation of standard modules

In this section we study the effect of the GW functor on standard modules. That
is we study the P l

n-module GW Snµ . This is particularly interesting because the

non-trivial core property leads to some new departures from the partition algebra
argument. The main result is Proposition 8.3 below.

(8.1) Recalling Tm, let Tm
n denote the set of representative relative-non-crossing

partitions p rather than the classes p+ I<m.

(8.2) NB our convention is that if R is a ring and S a set then RS generally denotes
the free R-module with basis S. However if S is given as a subset of an R-module
M then RS means the R-span of S in M .

(8.3) Proposition. Let m ∈ γln−l and µ ∈ Λm. Applying GW from (7.4), consider

the subset of GW Sn−lµ given by B
µ

G = {t ⊗
n−l
amn−lw

ba
ω | t ∈ Tm

n , ω ∈ bµ} where we use

⊗
n−l

for the GW tensor product. Then B
µ

G is a basis of GW Sn−lµ and

Snµ ∼= GW Sn−lµ .

Proof. Note from the construction that P l
nWSnµ = Snµ . By Lemma 7.18 GW Sn−lµ

∼=
P l
nW ⊗

n−l
WSnµ . For the latter form we have a multiplication map p ⊗ s 7→ ps to

P l
nWSnµ = Snµ . This gives a surjective P l

n-module homomorphism. Since |Bµ

G| =

|Bµ

Sp| it is enough to show that B
µ

G is spanning. The basis B
µ

Sp gives

Snµ = Pm
n a

m
n w

ba
eµ = K{twbaω | t ∈ Tm

n ; ω ∈ bµ} (24)

This holds for any n but, as indicated here the non-crossing transversal Tm
n in Pm

n a
m
n

of course depends on n. Applying GW to the case with n replaced by n− l we have

GW Sn−lµ = P l
nW ⊗

n−l
Sn−lµ = K{P l

nW ⊗
n−l
twbaω | t ∈ Tm

n−l; ω ∈ bµ} (25)

= K{dW ⊗
n−l
twbaω | d ∈ Pln; t ∈ Tm

n−l; ω ∈ bµ}
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Let us ‘move’ t through the tensor product in (25):

= K{dW ((t+ I<m
n−l )⊗ 1l) ⊗

n−l
amn−lw

ba
ω | d ∈ Pln; t ∈ Tm

n−l; ω ∈ bµ}

= K{d(t⊗ ww∗) ⊗
n−l
amn−lw

ba
ω | d ∈ Pln; t ∈ Tm

n−l;ω ∈ bµ} (26)

Note the recasting of t. We can omit the +I<m
n−l since it does not affect the element.

We aim to show that this is spanned by terms of form t ⊗
n−l
amn−lw

ba
ω where t ∈ Tm

n .

Note that we may assume the module is generated by elements of the given form.
We proceed as follows. Consider the action of the generators from 4.9 on an element
of the claimed spanning set. Let d be such a generator and consider first the ‘factor’
dt in dt⊗

n−l
amn−lw

ba
ω . Noting Lemma 3.10(II) there are two ways in which dt might pass

out of the relative noncrossing transversal: either (A) it has a component with lower
propagating index, i.e. a component in I<m; or (B) a relative crossing is introduced.

In Case (A): by definition such a component of dt is spanned by elements of
the form sam

′
n q with m′ < m. Indeed since m ∈ γln−l we have t ∝ tW and so

dt is spanned by elements of the form sam
′

n q(1n−l ⊗ ww?). Since am
′

n = am
′

n−l ⊗ ww?
= (am

′

n−l⊗1l)(1n−l⊗ww?) this becomes s(am
′

n−l⊗1l)(1n−l⊗ww?)q(1n−l⊗ww?). Noting
that

(1n−l ⊗ ww?)q(1n−l ⊗ ww?) ∝ q|[1,n−l] ⊗ ww?,
we see that dt ∝ s((am

′

n−lq|[1,n−l])⊗ ww?). But

((am
′

n−lq|[1,n−l])⊗ ww?) ⊗
n−l
amn−lw

ba
ω ∝ (am

′

n−l ⊗ ww?) ⊗
n−l

(am
′

n−lq|[1,n−l])amn−lwbaω = 0

so dt ⊗
n−l
amn−lw

ba
ω = 0.

In Case (B): by the kSm-freeness property (Lemma 6.4) such a crossing may be
factored out and passed through the tensor product.

Thus neither case takes us out of the span, and we are done.

We conclude this section with a remark on our working assumptions.

(8.4) Consider bases as in the proof of Lemma 7.19, noting that GWGamn−l
∼= Gamn .

That is, P l
nW

l⊗P ln−l P
m
n−la

m
n−l
∼= Pm

n a
m
n , since amn−l⊗ww? = amn by (4). At this point

the case m = 0, δ = 0 has extra interest.
Note that we cannot apply P l

nW
l
b ⊗P ln−l − to S0

µ since W l
b requires n > l. In

this case we could attempt to use W l instead. This works straightforwardly if δ
is a unit. But if δ = 0 then the setup is slightly but interestingly different. Of
course our mechanism for making Pm

l a
m
l a right P l

0 module does not work. And W l

is not normalisable as an idempotent (although the functor given by allowing P l
n−l

to act on the right of P l
nW

l
b by restriction is still well defined). It is an interesting

exercise to see what happens if we simply allow P l
0
∼= K to act as K. In that case

we are comparing GWGamn−l
with the direct long functor Gamn . We will leave this for

a separate work.
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1 12 1 12

1 12 1 12

1 12

1 1 2

1 1 2 1 1 2

1 12

1 12 1 12

1 1 2 1 12

1 121 1 2

1 1 2 1 1 2

1 1 2

1 1 2

1 12

1 1 2

1 1 2

1 12 1 12 1 12 1 12 1 12

1 12 1 1 2 1 12 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

1 12 1 12

1 2 1 1 1 2

1 1 2 1 1 2

1 2 1 1 1 2

1 12 1 12

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

1 12 1 1 2 1 12 1 1 2 1 2 1 1 1 2

1 2 1 1 2 1

1 12

1 2 1

1 1 2

1 1 2 1 1 2

1 12

1 1 2

1 1 2

1 2 1 1 1 2 1 2 1

1 2 1

1 12

1 2 1

1 12

1 2 1

1 2 1

1 2 1

1 12

1 21 1 12

1 12

1 12

1 12

1 12

1 12

1 2 1

Figure 12: Example partial gram matrix calculation. The table shows part of the
case n = 5, (λ1, λ2) = ((2, 1), ∅). We use the tableaux basis for (2, 1): {112, 121}
[24].

9 Properties of standard modules

9.1 Standard module contravariant form

(9.1) Lemma. There is a contravariant form (−,−)e on each Snµ defined by(
xameµ

)op
yameµ =

(
eµ

)op
amxopy(ameµ) (27)

=
(
eµ

)op
(amxopyam)(eµ) = (x, y)e a

meµ

Proof. (For (9.1) and (9.2) we have a direct generalisation of the usual partition al-
gebra argument as in, for example, [38].) Note that we are working in Pm

n . The well-
definedness of the form follows from the construction as in (5.15), using Lemma 5.7
and primitivity at the last step.

Examples: See Fig.12 and 13.

(9.2) Lemma. For k = Z[δ] the determinant of the gram matrix of the form (, )e on
Snµ (µ ∈ Λ(P l

n)) is nonzero.
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0
0

0 0 1

00

1

1

0 0

0

=0 0

0

Figure 13: (a) Here we have λ1 = ∅ and λ2 = (2) or (12) in the box (the picture is
effectively the same in each case). (b) S5

((2,1),(1)) is 20-dimensional. The top left-hand

corner of the gram matrix is shown. Here we have λ1 = (2, 1) in the long box, with
a choice of idempotent from kS3 such that e and σ1e span kS3e.

Proof. First organise the basis into blocks according to Lemma 7.16 — i.e. each
block has a fixed non-crossing partition p, with only the permutation group module
basis part w varying. See Fig.12. Note: (QI) If we work for the moment over Q[δ]
(as it will be clear that we can in investigating the nonzero property) then kSm is
(split) semisimple [24] and we may use a basis for the permutation group part in
which the gram matrix of this part is diagonal. We could, for example, use tableau
bases [24], as in (5.14), as illustrated in the figure. The numerical details of this part
of the construction will not be needed here.

For any given choice of ordered basis we arrive at the gram matrix, denoted Gn
µ.

In our ((2, 1), ∅) example we have

Gn
((2,1),∅) =


δG G G′ G′′ G G ...
G δG G ... G G ...
G′ ... ... ... 0 0 ...
... ... ...


where the entries shown are the block submatrices.

In every row of the gram matrix proper, every entry is a polynomial in δ, indeed
an integer multiple of a power of δ. The diagonal entry of the basis element pw
(say — cf. Lem.7.16 and its proof), determined by (woppop)pw = wop(popp)w, is a
nonzero polynomial whose degree is not exceeded by any other entry. The degree is
the same through a given block; and there is at least one row where the block of the
diagonal has strictly the highest of all degrees in the row. NB, In case µ ∈ m ∈ hln
all entries are constant, but all the off-diagonal blocks are zero by the I<m quotient.
Finally, by (QI) the blocks on the block-diagonal are diagonal. Combining these we
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see that the gram matrix has full rank for indeterminate δ. Thus the determinant
is a nonzero polynomial in δ.

(9.3) Proposition. (I) The standard modules Sµ with µ ∈ tm∈hlnΛm are Aln-

modules. (II) Over k = C every such Sµ is simple; and Aln is semisimple.

Proof. (I) WSµ = 0 iff |µ| ∈ hln. (II) The contravariant form is non-degenerate here.
Indeed, by the compatibility condition (7.10), (x, y) is only non-zero if ‘row-parts’
match, whereupon the gram matrix consists of blocks corresponding to matches.
Within these blocks the entries are the same as for the gram matrices for the (product
of) symmetric groups — which gram matrices are of full rank over C [24]. Finally,
by (7.14) we have completeness and pairwise nonisomorphism.

9.2 Standard module decomposition matrix properties

(9.4) Theorem. Suppose k = C and δ 6= 0. Recall the simple P l
n-modules Lµ =

head Snµ from (7.14). The modules {Snµ : µ ∈ Λ(P l
n)} have an upper-unitriangular

decomposition matrix ([Snµ : Lν ])µ,ν∈Λ(P ln) with respect any order (Λ(P l
n),�) in which

µ ≺ ν if r|µ| < r|ν|.

Proof. This follows from Proposition 8.3, Proposition 9.3 and the construction using
Lem.4.12 and Th.5.9.

(9.5) Example: If r|µ| = n then Snµ = Lµ (since there is no ν ∈ Λ(P l
n) with r|ν| > n).

Meanwhile (S0 : L0) = 1 and no other composition factor is precluded for S0 by this
Theorem (and indeed none can be without specifying δ).

(9.6) Theorem. Consider k = C and δ ∈ C. Each module Sµ is simple for all but
finitely many values of δ.

Proof. By (4.12) it is enough to show that there is a nondegenerate contravariant
form on each module (if one of these modules is isomorphic to its contravariant dual
then it contains the dual of the head L in the socle; but if these are not the same
module then they are not isomorphic, by the unitriangular property Th.9.4; and by
completeness there is another such module with head Lo and socle L, contradicting
upper-triangularity). Now note Lem.9.2.

(9.7) Theorem. Consider k = C and δ ∈ C∗. For all but finitely many values of δ:
(I) The set {Sµ | µ ∈ Λ(P l

n)} is a complete set of simple modules of P l
n; (II) P l

n is
semisimple.

Proof. (I) These modules are (sufficiently often) simple by Th.9.6. By 7.14 it is
a complete set. By the embedding property using the functors F,G there are no
duplicates (pairwise isomorphisms) in the set.
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(Alternatively we may argue using the dimension count (23) and either the com-
pleteness or the pairwise nonisomorphism.)
(II) follows from (I) and (23).

(9.8) By Theorem 9.7 and the construction we have, over C, a modular system for
each δ (see e.g. [3, §1.9]). Specifically we may take K = C[x] for the integral ground
ring; the field of fractions K0 as the ordinary case; and C with x evaluated at δ as
the modular case. Thus we have Brauer–Humphreys reciprocity:

(Pλ : Sµ) = [Sµ : Lλ] (28)

where (Pλ : Sµ) denotes the ‘composition multiplicity’ of Sµ in Pλ (as usual this
makes strict sense over the rational field via an idempotent lift, and as a multiplicity
in the Grothendieck group in general).

In particular if Lλ is a composition factor of Sµ then Sµ is a filtration factor of
Pλ.

10 On quasi-heredity

Here we prove, in Theorem 10.5, that the P l
n module categories are highest weight

categories (in the sense of Cline, Parshall and Scott [8]) when δ 6= 0 and k = C.
Given Theorem 4.26, Theorem 9.4 and so on, it is enough to show that projective
modules are filtered by ∆-modules. We do this next. Recall the following.

General Lemmas

(10.1) Lemma. [41] (I) Let A be an algebra, M an A-module and S, T sets of
A-modules. If M has an S-filtration and every N ∈ S has a T -filtration then M has
a T -filtration.

(10.2) Lemma. Let A be an algebra, f an idempotent, and M a bimodule. Then
there are left-module maps Mf → M given by inclusion; and M → Mf given by
m 7→ mf . Indeed the sequence

0→Mf →M →M(1− f)→ 0

is short-exact and split.

(10.3) Lemma. Let A be a finite-dimenional algebra and suppose 0 ⊂ J1 ⊂ J2 ⊂
... ⊂ Jk = A is a filtration by ideals. Let X be the set of indecomposable summands
of all the left-modules Ji/Ji−1 up to isomorphism. Then every projective left-module
of A is filtered by X.
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Proof. It is enough to show for indecomposable projectives, and hence for modules of
form Af where f is idempotent. For such a module we have a (possibly degenerate)
filtration 0 ⊆ J1f ⊆ J2f ⊆ ... ⊆ Jkf = Af by assumption. Suppose M ⊃ N are
A-bimodules. We claim that there is a left-A-module map (M/N)f → Mf/Nf
given by {mf + n : n ∈ N} 7→ {mf + nf : n ∈ N} (i.e. act on the set elementwise
by f on the right), and that this is a left-A-module isomorphism. To see this note
that (i) the image lies in Mf/Nf ; (ii) this gives a vector space isomorphism; (iii)
it is a left-A-module morphism (the map uses the action on the right which, by the
bimodule property commutes with the action on the left).

Thus in particular (Ji/Ji−1)f ∼= Jif/Ji−1f , so there is a sectioning of Af with
sections isomorphic to modules (Ji/Ji−1)f . By Lemma 10.2 (Ji/Ji−1)f is a sum of
(some) direct summands of an indecomposable direct summand decomposition of
Ji/Ji−1. And by the Krull–Schmidt Theorem for modules, and our working assump-
tions, every such decomposition is a sum from X. The Lemma now follows routinely
using (10.1), since a direct sum has a filtration by its summands.

10.1 Quasiheredity/HWC for the tonal algebras

(10.4) Lemma. For δ 6= 0, the indecomposable projective P l
n-modules are filtered by

the set ∆l,n of ∆-modules (as in (7.13)).

Proof. Consider the ideal chain from (7.1). The sections are as in Lemma 7.2. By
Equations (21) and (22) these are sums of certain modules, and by (7.19) these
modules are ∆-modules. Now use Lemma 10.3.

(10.5) Theorem. If k = C and δ 6= 0 then P l
n −mod is a highest weight category

with respect to any order ≺ on Λ(P l
n) in which m < m′ implies ν ≺ µ for µ ∈ Λm

and ν ∈ Λm′, with the set of standard modules {∆µ | µ ∈ Λ(P l
n)}.

Proof. We will use Th. 4.26. We thus require to show (I) strong modular core; (II)
projective filtration.
(I) ConsiderK to be the localisation of C[δ] at δ, i.e. the ring of Laurent polynomials.
Note by Theorem 4.6 that the pair (γl,n, a−) is a core of P l

n over K. We take K0 to be
the extension C(δ). Then the system is strong modular by Theorem 9.7. Note that
our localisation does not prohibit base change to k as required (but does prohibit
δ = 0).
(II) By Equation 20 the set of modules {∆µ | µ ∈ Λ0(P l

n)} are the corresponding

iγ-modules. By Lemma 10.4 the indecomposable projectives of P l
n are filtered by

the ∆-modules.
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µ λ µ λ µ λ

Figure 14: Restricted action on basis elements: cases (1-3). The undecorated box
represents the action of the given inclusion P 2

n−1 ↪→ P 2
n on the element.

11 Standard branching rules for P l
n ↪→ P l

n+1

Consider the algebra inclusion P l
n ↪→ P l

n+1 given by d 7→ 11 ⊗ d (or equivalently
d 7→ d ⊗ 11). We give here the ‘standard-module branching rule’ associated to the
corresponding tower of algebras.

In the generic/semisimple case this is the simple branching rule — the edge
rule for the Bratteli diagram, and is given by Kosuda for example in [33]. In the
semisimple case the restriction of a simple modules is a direct sum of simple modules.
In our case we cannot expect this. We will need to make some preparations.

Here we write M = M1 + M2, or say M = +imiMi, if module M has a fil-
tration by a set {Mi}, with the indicated multiplicities. This notation does not
give the filtration series order. (In general there may be a filtration with different
multiplicities, but not, say, if the set is a basis for the Grothendieck group.)

We may write Sm−εj for the subgroup of Sm in which factor Smj is replaced by
Smj−1.

We first deal with the case l = 2, i.e. En = P 2
n , then, more briefly, with the

general case.

11.1 The case P 2
n = En ↪→ En+1

(11.1) Set µ = (λ, µ). Consider the set B
µ

Sp of basis diagrams of S(λ,µ). (Because
of the eλ and eµ in the construction these ‘diagrams’ are linear combinations of
partitions in general, but the well-definedness of the following manipulations will be
clear.) We may organise the set B

µ

Sp into four subsets B
µ

Sp(i), i = 1, 2, 3, 4, containing
diagrams in which the first vertex is:
(1) a ‘propagating singleton’ (Fig.14 (1));
(2) part of a co-2 part (Fig.14 (2));
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(3) part of a propagating part of higher odd half-order (Fig.14 (3));
(4) part of a non-propagating part (necessarily of even order).

For example, for S3
((1),0) we have BSp(2) = ∅,

BSp(3) = { }; BSp(1) = { }; and BSp(4) = { , }.

(11.2) Consider the action of 11 ⊗ En on Sn+1
µ .

(I) Since the action of 11 ⊗ En is ‘trivial’ on the first vertex, and so cannot change
the propagating singleton property, it closes on the B(1) part of the basis for Sn+1

µ .

(II) The B(2) part is also closed — the co-2 property at the first vertex can only
be changed in principle by combining with a co-1 part, but this gives 0 by the I<m

quotient.
(III) On the other hand B(3) is not closed in general, as illustrated by the example:

which takes q ∈ B(3) into B(1).

(IV) Notice however that the subspace spanned by

ASp := ti=1,2,3BSp(i) (29)

is a 11 ⊗ En-submodule.

(11.3) Theorem. Let resn : En+1−mod→ En−mod denote the natural restriction
corresponding to the inclusion En ↪→ En+1 given by d 7→ 11 ⊗ d. Then resnS(λ,µ)

has a filtration by standard/Specht modules (as defined in 7.15). The multiplicities
are given as follows. Firstly we have a short exact sequence of En-modules

0→ kASp → resnSn+1
(λ,µ) → kBSp(4)→ 0 (30)

where ASp is the subset of Sn+1
(λ,µ) defined in (29). Then

kASp = +i S(λ−ei,µ) + +i,jS(λ−ej ,µ+ei) + +i,jS(λ+ej ,µ−ei)

and
kBSp(4) =+i S(λ+ei,µ)

where sums over λ− ei, say, denote sums over all ways of removing a box from the
Young diagram of λ.

Proof. Firstly (30) follows from (11.2). For the filtration factors, we consider the
action of the subalgebra En on each of the B

µ

Sp(i) in turn.

Case (1): Here we see from Fig.14(1) that the propagating singleton can essen-
tially be ignored. Each basis element pw (as in (7.16)) is then like a basis element
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of +iS(λ−ei,µ). In particular the ‘inflation’ factor associated to the λ label is the re-
striction of the Specht module of S|λ| to S|λ|−1. One then uses the usual symmetric
group restriction rule (valid even integrally [50]):

res
S|λ|
S|λ|−1

Spλ = +i Spλ−ei

At the level of bases recall from (5.14) that bλ is the set of sequence that are perms
of 1112233... (say) satisfying the tableau condition. Such a perm still satisfies the
condition on removing the last ‘letter’ i say, leaving a basis element in bλ−ei .

We thus have
+i Sn(λ−ei,µ) ↪→ resnSn+1

(λ,µ)

as an injection of P 2
n -modules; and a bijection⊔

i

B
(λ−ei,µ)
Sp

∼−→ B
(λ,µ)
Sp (1) (31)

The map, on an element pw (as in Lem.6.4), is to add a string starting on the left,
then passing over to the box labelled λ − ei and hence to the part of w that is a
tableaux sequence for λ− ei, then add i to this sequence.

Case (2): Here we can see from the figure that (as far as the restricted action is
concerned) the number of propagating even-half-order components effectively goes
down by 1 and the number of propagating odd-half-order components goes up by
1. Broadly analogously to the previous case we then have a symmetric group factor
with an induction (rather than restriction) on λ, and a restriction on µ.

It will be convenient to have a small complete example to refer to:

︸ ︷︷ ︸
B

(1,1)
Sp (2)

︸ ︷︷ ︸
B

(1,1)
Sp (1)

BSp(3) = ∅, BSp(4) = ∅

We consider this Sn+1
(1,1) in case n = 2 as a P l

n module (N.B. l = 2). In this case if we

quotient by the BSp(1) submodule, which is isomorphic to S(0,1), then the quotient
module is already the sum of Specht modules S((2),0) +S((12),0). (But we can consider
how this is realised. We see from (11.2)(II) that we cannot leave the BSp(2) part.)

Case (3): Here the number of odd lines goes down and the number of even lines
goes up. In the language of the previous cases we have an induction on one factor
and a restriction on another.
(However, this time the construction, (11.2)(II), does not preclude a non-split ex-
tension. And indeed the extension is non-split in general. To see this consider the
example in (11.6) below.)
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Case (4): Here the number of even propagating lines stays the same and the num-
ber of odd lines goes up by 1. Thus we may put the basis elements in correspondence
with an induction in the odd position. This gives⊔

i

B
(λ+ei,µ)
Sp

∼−→ B
(λ,µ)
Sp (4) (32)

Now compare with the final summand in the identity in the Theorem.
In this case note that the subset does not span a submodule. The quotient in

the definition of the module with respect to the γ order has a slightly different effect
here (just as in the corresponding classical Pn problem [37]). It will be convenient
to articulate the argument using an example.

An example of a basis element of Sn+1
µ in case 4 is: q =

µ λ

. We

consider the action of the 11⊗P l
n subalgebra as indicated by the following schematic:

µ λ

. For example we have, for any completion of the acting partition

as indicated here

µ λ

≡ 0 by the I<m quotient. On the other hand the

following has completions for which

µ λ

6≡ 0, such as

µ λ

.

This is not 0, but lies in B
µ

Sp(1). But if q were a basis element of Sn(λ+ei,µ) under

the isomorphism (32) then such an element of P l
n would act as 0. In order to get

our filtration here, therefore, we will quotient by a submodule containing B
µ

Sp(1).

Finally consider actions like this:

µ λ

. Again this is non-zero, lying in

B
µ

Sp(2), but should be 0 in this factor of the restriction. To see that this requirement
is satisfied note the position of B(4) in (30).
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∅, ∅

, ∅

∅, ∅

, ∅

∅, ∅

∅, , ∅ , ∅

∅, , ∅ , ∅

, , ∅ , ∅ , ∅

, ∅

∅, ∅, , , , ∅ , ∅· · ·

Figure 15: Standard En-module restriction diagram (complete up to n = 3, partial
up to n = 5).

∅, ∅

, ∅

∅, ∅

, ∅

∅, ∅

∅, , ∅ , ∅

, ∅ , ∅

, , ∅ , ∅ , ∅

, ∅

1 1 1

4 3 1 2

4 7 10 10

1

31

1

1

1

∅,

Figure 16: Standard module restriction diagram with dimensions.

43



(11.4) Here is a schematic illustrating restriction in general position:

λ+ ei, µ− ej λ+ ei, µ λ+ ei, µ+ ej

λ, µ− ej λ, µ

OO

��

gg

''

λ, µ+ ej

λ− ei, µ− ej λ− ei, µ λ− ei, µ+ ej

(11.5) It follows from (11.3) that the Bratteli diagram takes the form in Fig.15. It
also follows that the ‘even Bell numbers’ (cf. e.g. [1]) have an intriguing expression
as a sum of squares — a generalised Robinson–Schensted correspondence [30, 44].
See Fig.16.

11.2 Examples: applications of modularity

(11.6) Example. By Theorem 11.3 we have the following short exact sequences of
P 2

3 -modules

0→ S3
((1),0) + S3

((1),(1)) → res3(S4
((2),0))→ S3

((3),0) ⊕ S3
((2,1),0) → 0 (33)

0→ S3
((1),(0)) → res3(S4

((0),(1)))→ S3
((1),(1)) → 0. (34)

Let us consider the case k = C and δ = 1. One can see from Fig.16 that P 2
2

is semisimple in this case, so that S2
((2),0) is simple-projective. It follows that

res3(S4
((2),0)) is projective. To see this note the following.

(11.7) Lemma. In case l = 2 we have the identification of functors ind− ≡
resGW−.

Proof. We may essentially use the usual Pn argument as for example in [37] or [38].
The extra requirement is to check that the l = 2 constraint is preserved by these
manipulations. For this the key point is the alternative characterisation of P 2 as the
subset of partitions of even order (as in (2.3)). It follows that P 2

n+1W
∼= P 2(n+2, n)

as k-space. Furthermore the even property is invariant under the disk isomorphism
[39, Appendix] P (n,m) → P (n − 1,m + 1), so P 2(n,m) → P 2(n − 1,m + 1). It
follows that

Pn+1P
2
n+2W Pn

∼= Pn+1P
2
n+1Pn

The result now follows by unpacking the various definitions.

(11.8) Since GWSnµ = Sn+2
µ , by (8.3), and induction preserves projectivity we see

that resSn+2
µ = resGWSnµ = indSnµ is projective when Snµ is projective.
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Now by (11.3) and (7.14) we see that resSλ,µ, when projective, contains at least
each Pλ+ei,µ (the indecomposable projective cover of Lλ+ei,µ). So in our case (33)
the restriction contains P((3),0) and P((2,1),0).

(11.9) Continuing with (11.6), elementary linear algebra shows that when δ = 1

S((1),0) = L((1),0) + L((1),(1)). (35)

The argument is as follows. Firstly, inspection of the gram matrix shows that the
socle has dimension 3. Secondly the ideal generated by a((1),(1)) acts as 0 on Sλ,0 for
λ ` 3, but the subspace of S((1),0) on which the ideal generated by a((1),(1)) acts as 0
is easily seen to be empty:(

α1 + α2 + α3 + α4

)
= α3 + (α1 + α2 + α4)

so the subspace has α3 = 0 (and α1 = α2 = 0 by symmetry, and hence α4 = 0).
Meanwhile, we see from (9.3) that all the Sλ,µ except S((1),0) are simple. Thus

in fact S((3),0) and S((21),0) are simple-projective and the big sequence in (33) does
split. But then by (28) and (35) the restriction includes

P((1),(1)) = S((1),0) + S((1),(1)), (36)

so S((1),0) + S((1),(1)) in (33) does not split.

By (11.8) we have that res3(S4
((0),(1))) is also projective. Indeed it contains

P((1),(1)). So by (36) res3(S4
((0),(1))) = P((1),(1)) and (34) is non-split.

11.3 General l

Let λ = (λ1, λ2, · · · , λl) ` m ∈ γl,n+1 be a multi-partition. For 1 ≤ j ≤ l we define
addj(λ) to be the set of all multi-partitions obtained from λ by adding an addable
box to the Young diagram of λj, and remj(λ) to be the set of all multi-partitions
obtained from λ by removing a removable box from the Young diagram of λj.

(11.10) Theorem. Let resn : P l
n+1 − mod → P l

n − mod denote the natural re-
striction corresponding to the inclusion P l

n ↪→ P l
n+1 given by d 7→ 1 ⊗ d. For

λ = (λ1, λ2, · · · , λl) ` m ∈ γl,n+1 the module resn(Sn+1
λ ) has a filtration by stan-

dard/Specht modules. Specifically there is a short exact sequence of P l
n-modules

0→ kASp → resn(Sn+1
λ )→+µ∈addl−1(λ)Snµ → 0 (37)

Where kASp =+µ∈addi(remi+1(λ))
1≤i≤l−1

Snµ + +µ∈addl(rem1(λ))Snµ + +µ∈rem1(λ)Snµ .
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Proof. We organise the set Bλ
Sp of basis diagrams of Sn+1

λ into l+ 2 subsets denoted

Bλ
sp(i), i = 1, 2, · · · , l, l′, 0, containing diagrams in which the first vertex is:

1. a “propagating singleton”. This subset is denoted by Bλ
sp(1).

2. part of a co-i propagating part, for i = 2, · · · , l. This subset is denoted by
Bλ

sp(i).

3. part of a co-1 propagating part p with |cora(p)| > l. This subset is denoted
by Bλ

sp(l′).

4. part of a non-propagating part. This subset is denoted by Bλ
sp(0).

We proceed organisationally as for Theorem 11.3.
Case 1. This is similar to Theorem 11.3. Here the factor associated to λ1 is

the restriction of the Specht module S|λ1| to S|λ1|−1, and this gives the submodule

+µ∈rem1(λ)Snµ in (37).

Case 2. Here b ∈ Bλ
sp(i) passes on restriction to one fewer co-i line and one more

co-(i − 1) line (a mild generalisation of the l = 2 case). Hence we have restriction
of the factor S|λi| and induction in the factor S|λi−1|. This case gives the submodule

+µ∈addi−1(remi(λ))Snµ of resn(Sn+1
λ ) in (37), for each i = 2, · · · , l.

Case 3. Here we remove from co-1 and add to co-l. Hence we have induction
in the factor S|λl| and restriction in the factor S|λ1|. This gives the submodule

+µ∈addl(rem1(λ))Snµ of resn(Sn+1
λ ) in (37).

Case 4. Here we add to co-(l − 1). Hence we have induction in the factor
S|λl−1|. By the argument we have in the proof of Theorem 11.3 Case 4 the factor

+µ∈addl−1(λ)Snµ is not necessarily a submodule of resn(Sn+1
λ ). This leads to position

of +µ∈addl−1(λ)Snµ in (37).

12 The fusion χ-functor

In this paper we have developed tonal analogues of most of the tools used classically
to determine the representation theory of the ordinary partition algebra [38]. The
remaining key ingredient to develop is a tonal analogue of the alcove geometrics.
We address this problem elsewhere. Finally in this paper however, we determine a
small but interesting part of the representation theory of the En cases, by a striking
localisation functor.

Suppose n even and define

eπ = a⊗n/2 = A12A34...An−1 n

(12.1) Proposition. eπEneπ ∼= Pn/2
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Proof. Consider the picture:

It will be evident that inserting En into the box defines a map to Pn/2. It is straight-
forward to check that the map is surjective.

It follows that Pn/2-mod fully embeds in En-mod, and hence that En is non-
semisimple whenever Pn/2 is non-semisimple. The structure of Pn is given in [38].
Thus we have determined another (small but interesting) part of the structure of En.
In particular we may deduce that non-negative integer δ values are non-semisimple
for sufficienly large n. (Confer for example [43], [19].)
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Appendix

A Partition category composition

For S a set let PS denote the set of set partitions of S. Let n := {1, 2, .., n} and
n′ := {1′, 2′, .., n′} and so on; and Pn,m := Pn∪m′ .

Given a graph g = (V,E) then π(g) ∈ PV denotes the partition according to
connected components of g. Given a graph g = (V,E) with V ⊇ n ∪ m′ then
πnm(g) ∈ Pn,m denotes the partition according to connected components of g.

Given graphs g = (V,E), g′ = (V ′, E ′) then graph

g.g′ = (V ∪ V ′, E t E ′)

Given a graph g with V = n ∪m′ and a graph g′ with V ′ = m ∪ l′ then

g|g′ = g+.g
′
− (38)

where graph g+ = (V+, E+) is g with vertices i′ (i ∈ m) replaced by i′′; and graph
g′− is g′ with vertices i ∈ m replaced by i′′ (so V+ ∩ V ′− = m′′).

A connected component of g|g′ is internal if it intersects neither n or l′. Define
c(g|g′) as the number of internal components. Define

∗ : Pn,m × Pm,l → kPn,l

as follows. For p ∈ Pn,m pick any graph with π(g) = p; and similarly for p′ ∈ Pm,l.
Then

p ∗ p′ = δc(g|g
′)πnl(g|g′)

(A.1) Theorem. [37] The composition ∗ is well-defined and, extended k-linearly,
makes kPn,n an associative unital algebra; and (kPn,m)n,m∈N0

a k-linear category.
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