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Abstract

For I,n € N we define tonal partition algebra P! over Z[§]. We construct
modules {A,}, for P! over Z[6], and hence over any integral domain con-
taining Z[d] (such as C[d]), that pass to a complete set of irreducible modules
over the field of fractions. We show that P! is semisimple there. That is,
we construct for the tonal partition algebras a modular system in the sense
of Brauer [6]. Using a ‘geometrical’ index set for the A-modules, we give an
order with respect to which the decomposition matrix over C (with § € C*) is
upper-unitriangular. We establish several crucial properties of the A-modules.
These include a tower property, with respect to n, in the sense of Green [22,
§6] and Cox et al [9]; contravariant forms with respect to a natural involutive
antiautomorphism; a highest weight category property; and branching rules.

Keywords— Finite dimensional algebras, diagram algebras, partition algebra,
highest weight category, decomposition matrix.

1 Introduction

The partition category is a key paradigm in many areas of representation theory and
physics. In particular, for example, it can be regarded as a topological quantum field
theory (TQFT) on the one hand; and on the other as controlling the representation
theory of all symmetric groups taken together (see for example [46, 13, 40, 28] and
references therein). The partition category paradigm is often easier to work with
than general TQFTs — in particular its representation theory over the complex



qlg’ =

gxg=19

Figure 1: Schematic of composition in category P using graphs to represent parti-
tions (see Appendix A for details).

field is well understood [38]. From this perspective the ramified partition category
[42] can play the role of an extended TQFT (confer for example [48, 51, 7] and
references therein). The ‘tonal’ version discussed in this paper is a corresponding
generalisation from the algebraic side. As such its representation theory is interesting
to understand, including the non-semisimple cases. The aim here is to investigate the
non-semisimple structure of the tonal partition algebras over suitable quotient fields
of the natural ground ring, from a geometric perspective (cf. [46]). An obstruction
to this has been the greater complexity of the ‘modular setup’ of the tonal compared
to the ordinary case. In this paper we solve this technical problem.

Fix K a commutative ring and 6 € K. Let Pg denote the set of set parti-
tions of a set S. The partition category B (as defined in [37]) is a K-linear cat-
egory: the objects of B are finite sets; and the hom-set Homgy(S,T) has K-basis
Psur. (A schematic for the d-dependent category composition is in Figure 1. De-
tails are recalled in §A.) The full subcategory on objects of form n = {1,2,...,n}
is a skeleton in ‘P, denoted P. In the notation for a category in which C =
(objects, arrows, composition) we summarize the category P as P = (Ng, KPpjm, *).

The category P has many interesting subcategories, such as the Brauer and
Temperley—Lieb categories [5, 53, 37, 40, 35]. Here we study subcategories chosen
to serve as testbeds for questions in geometrical representation theory (in the sense
arising for example in [10, 41, 16, 15]).



Consider a part p; € p € Pg . Define
ker(p;) = |piN S| — |ps NT). (1)

For | € N part p; is said to be [-tone if ker(p;) = 0 mod.l. A partition is said to
be I-tone if every part is [-tone. It is routine to show (see e.g. (3) in §2) that the
category composition in P closes on the span of the subsets PlﬂlJm of [-tone partitions.

Thus for each | € N we have a subcategory of P, denoted P':

Pl = (N()v KPlﬂUm’ *)
There is also a corresponding subcategory of non-crossing partitions, denoted 7.
Together we call these tonal partition categories.

For 6 = m € N the partition algebra itself is Schur—Weyl dual to the ‘left’
symmetric group Ss [36, 27, 39]. That is, the Potts/tensor action of P [36, §8.2]
is dual to the diagonal action of symmetric group S5 on Y®" where Y is the \ =
(0 —1,1) Young module. Neither action is faithful in general. Let A denote the set
of all integer partitions, A* = A\ {0} and

A = [MFi)

denote the set of integer partitions of i. The natural index sets for simple modules
for S,,. Let r : A* — A denote the map that removes the first part (i.e. removes
the first row in the corresponding Young diagram). Fixing m, the duality-induced
connection between the index sets is

r: A(CS,,) — A(P,) 2)

for sufficiently large n (that CS,, acts faithfully) [20, 39]. This has a useful geomet-
rical realisation — see [46].

In case K = C the K-algebras Homp: (S, S) are isomorphic to subalgebras of
the partition algebra studied by Tanabe [52], Kosuda [31, 32, 33] and Orellana
[49]. Tanabe showed that the Schur-Weyl duality between the symmetric group S,,
and the partition algebra P,(§) with 6 = m € N generalises to a duality between
various reflection groups and partition algebras. Kosuda then studied the complex
semisimple representation theory of these algebras in the generic case (of 6 € C) and
in certain cases relevant for duality [31, 32]. Orellana also studied the representation
theory from the duality perspective [49] (together with an elegant parallel study of
the ‘coloured’ partition algebras).

In the general case of the original S,,/P, duality (just as for classical Gl,,/S,
duality) the partition algebra does not act faithfully on tensor space. Indeed it



clearly acts semisimply when K = C, but it is not generally a semisimple algebra.
The way that the tensor space action ‘sits inside’ the full algebra P, is (representation
theoretically) rather interesting [45, 47|, and relates nicely to the geometric-linkage
approach to geometric representation theory [26, 46]. Here the aim is to investigate
the lift of this geometric approach to the [-tone cases. To this end we construct a
corresponding tower of m-modular systems, in the sense of [6, 12, 22, 3, 9, 41].

For our modular system we need first a construction for ordinary irreducible
representations over a suitable ‘ordinary’ ground field. In fact we construct modules
directly over an integral ground ring — we do this over Z[d], but the domain of
complex polynomials over the indeterminate § will be adequate for our immediate
purposes — and show that they pass by base change to ordinary irreducibles (over
the field of fractions). To do this we construct contravariant forms with respect to
a natural involutive antiautomorphism; and determine cases where they are non-
degenerate. We show that the algebra is semisimple in these cases. We then show
that the corresponding decomposition matrix has a unitriangular property with
respect to a suitable (partial) order. (To achieve this we must establish a suitable
partial order.) To verify that our order has the required properties we proceed by
showing that a certain quotient algebra A, is semisimple over C. NB (Nota bene),
This last step is an addition to the steps needed in the classical P, and B,, (Brauer
algebra) cases. It fulfills our requirements, but it also presents some interesting new
features in the representation theory, as we shall elucidate in §7.

Overview: The integral part of the modular tower representation theory of P!
follows the same steps as for P, in [37, 38]. However it is more complex in the
detail. The general representation theoretic machinery is collected in §4. In §2 we
define the algebra. In §3, §5 we construct a poset of ideals (in P, this is a chain)
with relatively small sections ‘controlled” by symmetric groups. In §6 we give a
polar decomposition of partitions in an algebra basis that facilitates construction of
standard module bases. In §7 we construct our ‘standard” modules and cv forms. In
§9.1-9.2 we study the algebra that is the top section in a natural tower structure, and
hence derive the unitriangularity theorem. In §11 we give restriction rules for our
standard modules. Relating these to induction rules, one has potential analogues
of the powerful translation functors of Lie theory [26] (to complete this picture and
hence connect to Kazhdan-Lusztig Theory, cf. [41], we need a linkage principle -
this will be discussed elsewhere).

The main Theorems here are as follows.
Theorem 7.3, which shows that P!, = W!P!W! for suitable W' € P!. This tells
us that the module category of P!, fully embeds in that of P!, by a ‘globalisation’
functor. This in turn tells us that we can determine the structure of these module
categories iteratively on n. To this end we construct canonical modules in each n
that are well-behaved under globalisation — ‘standard” modules.
Theorem 9.6, Theorem 9.7 which show that each P! gives a modular system.

4
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Figure 2: A partition picture (for partition {{1’,4’,1},{2/,3/,3},{2}}) drawn in
different orientations.

ker=3
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Figure 3: Examples of partitions (here drawn left-to-right) and parts with kernel
numbers.

Theorem 9.4: upper-triangularity of the standard module decomposition matrix.
Theorem 10.5: that if k = C and § # 0 then P! — mod is a highest weight category.
Theorem 11.3: branching rules.

Remark: Here we use the term tone as the generalisation to general [ of the
notion of parity for congruence mod.2. (Kosuda’s name of ‘modular party algebra’
also sounds harmonious, but does not quite fit our purpose.)

2 Tonal partition categories and algebras

Let P = (Ng, P(n,m),*) denote the usual partition category over a given commu-
tative ring K, with parameter § € K [38]. This is a skeleton in 8 obtained by
restricting to objects n = {1,2,...,n}. Thus P(n,m) = KP,,,, where P, ,, is the set
of set partitions of n Um/ (with n = {1,2,...,n}, m' = {1,2/,....m'}).

We draw pictures of partitions in P,, ,, as for example in Fig.2 and 3. Fig.3 also
shows the kernel count as in (1). Composition is as in Fig.1.

Write ® for the usual monoidal composition in the category P.

Write P, for the usual partition algebra P, = P(n,n), and P,, = P,,,, for the
basis of partitions.

Write P!, . C Py, for the subset of I-tone partitions.



(2.1) THEOREM. (cf. [52, 33]) Fiz | € N. The restriction of category P to the span
of l-tonal partitions defines a monoidal subcategory, the tonal partition category P'.
(Hence defining the tonal partition algebras P. = P'(n,n).)

Proof. Consider the product of composable partitions p,p’ in P. Note (e.g. from
§A) that in the definition of the product pp’ one first forms the concatenation p|p/,
then discards the ‘middle’ vertices to form pp’. Thus whenever a part (pp’); is formed
in composition the process is that (in some number of instances) two vertices, one
in some ran(p;) = p; Nm’ and one in some cora(p};) = p; Nm, are identified and then
discarded from some union of parts. Thus

ker((pp');) = ) ker(n) (3)

— sum over parts from p, p’ involved in (pp’); (cf. Fig.3). Thus if the incoming parts
are all [-tone (ker divisible by [), then the new part is again [-tone.
For the monoidal property note that if a, b are [-tone then so is a ® b. O

(2.2) For [ € N define
Vo= {{1,2,..,1,1',2),.I'}} e

Consider Fig.4. Define u = (¥, @ = A2 € P,. Note that b! = 1;, b> = a, and for
[ > 1 we have bl = A12A%._AF1! ¢ p,. Fixing n, define U = e\ as the partition
depicted in Fig.4. We have

U=u X 1n—2
For p € P, ,, write p* for the ‘flip’ image in P,,,, (given by i <> ' in p) [37].
(2.3) A set partition is even if all its parts are of even order. For example, all the
partitions depicted in Fig.4 are even except for 6§"). Write E,, for the set of even
partitions in P,. Note that E, = P2. Write E,, for P2.
(2.4) For given [ let w denote the unique partition in P'(l,0); and w* € PY(0,1).
Let v denote specifically the unique partition in P?(2,0) and v* the unique partition
in P?(0,2). Let o, denote the unique elementary transposition in P(2,2). Then
E := P? is generated as a linear monoidal category by 1;, v, v*, o1 and a.

(2.5) Recall the ‘flip’ antiisomorphism of P,, denoted p — p° (given by p — p* on
partitions). This fixes the subset P!, so that P! is isomorphic to its opposite.

Note that the symmetric group S, is a subgroup of P, that is also in P!, and that
the restriction of the flip antiautomorphism to this subgroup is the usual g — g=*
antiautomorphism.

(2.6) Let w,, € S, denote the order reversing (Coxeter longest word) element —
an involution. Recall the lateral-flip endofunctor on P given on partitions p € Py, ,
by p — p = w,pw,. This takes a partition to its mirror image. Note that the
endofunctor fixes P!, and indeed P..
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Figure 4: Special elements in the partition algebra P,.

3 Basic properties of the algebra P!

Here we develop an analogue of the propagating ideals of P, as in [37, §6.1].

3.1 Set partitions: Co-: parts and propagating numbers

(3.1) Recall that, for any n, we write # : P, — Ny for the map taking a partition
p € P, to the number of propagating parts in p. Note that a product of partitions
in P is a scalar times a partition. The map # extends to apply to a product of
partitions in the obvious way. Recall the ‘bottleneck principle’:

(3.2) LEMMA. [37, §6.1] For p,p’ € P,, we have #(pp’) < #(p). ]

(3.3) Fix [. For p € P! a propagating part s € p is co-i if the restriction of s to one
‘side’ of the underlying set (the set n say) is of order congruent to ¢ mod.l. (Note
that the definition is independent of the choice of side in case p in PL but not in
general in P,,.)

Define #° : P — Ny so that #'(p) is the number of co-i propagating parts.
Define propagating vector

# (p) = (#'(p), # ), #°(p), ... #'(p))

Example: For [ =3, #(1,,) = (n,0,0).
Consider p € P,,. Then pA'? is a partition similar to p but with the parts contain-
ing vertices 1’,2" combined. Thus if vertices 1’,2’ intersect at most one propagating

part in p € PL then #~(pAl?) = #~(p).



3.2 The index set 4" and corresponding partitions

For [ € N and m = (my,my,...,m;) € Z' define ry, = 22:1 im;. For given [ and n,
define
={mecN, : (n—rm)/l € No}
For m € +"" define a set partition

™ = ap = (@5,(0)°™) @ (ww) ! (4)

n

Note that a™ € P,,. For example
U

TN
(L AR 4

(44,2)
Aoy =

LR IR e e'aN
Thus if ¢ is invertible then a™ is a (not necessarily normalised) idempotent in P,.
If m # 0, so that a)* has at least one propagating part, we also define for each a}*
a partition b, obtained from ™ by combining the last (‘rightmost’) propagating
part with all the non-propagating parts. Thus:

AV g
4,4,2

Note that b is idempotent in P, (for any ¢). Also

b a™p™ = b™ and a®bta™ = a™ (5)
For example
gV g
S35
44,2) (4,4,.2);(4,4,2
P —




3.3 Poset structure on "
(3.4) Fix [. Define V C 7! as follows. Define v;; for 1 <@ < j<I[by

vi; = (0,0,...,0,_1 ,0,...,0, =1,0,...,0, —1,0,...,0) € Z
~— ~~ —~~
1+ J i
where the index i+ j is understood mod.l. Note that the entry —1 can appear before
Lif i+ j <. Then V = {v;;};;. In particular

v = (0,0,...,0, 1 ,0,...,0, =2 ,0,...,0) and vy = (0,0,..,0,—1)
Note that there are a total of @ + 1 of these vectors in V.

Define a poset structure on 4" by m > m’ if m’ — m lies in the nonnegative
integral span of V. For example (9,0,0) > (7,1,0) since —(9,0,0) + (7,1,0) =
<_27 17 O) = V11.

Note that (n,0,0,...,0) is the unique top element in 4*" for any I. The Hasse
diagrams in the cases [ = 2,3 are indicated in Fig.5. See also Fig.6.

(3.5) Note that every element of 4*" is in the positive cone of (n,0,0,...,0) with
respect to the subset V' = {v1,v12,...,0y}. Thus 4" includes an [-dimensional
lattice (in the crystal lattice sense). The subset V' is manifestly a basis for the
underlying R’ containing Z'. It follows that none of the remaining vectors in V
are R-linearly independent of V’. However we claim they are positive-integrally
independent. Typically for every three sides in a cube in 7" then there is an
element in V' \ V'’ that is the main diagonal in this cube. For example with [ = 3

V11 + Vo2 = V12 + V13

That is to say, ves = v12 + v13 — v11, & non-positive combination of basis elements.
This example of vy corresponds to the dashed lines in Fig.5.

(3.6) Note from (3.4) that ¥/~ < 4" As in Fig.7, consider the subset of 4"
hl == {meq" |m« (n—1,0,0,.,0)} (6)

We have " = hl 44"~ Note that no element of 4*"~! lies above any element of
hl in the poset (", <).

We discuss combinatorics of 4" in [1].



Figure 5: Hasse diagram for inclusion poset for ideals Pla™P! in cases [ = 2 (left)

and [ = 3 (right). Vertex m corresponds to ideal Pla™P!.

3.4 Ideals generated by the a™ elements

(3.7) Note that
# (a™) =m
Fix [. Define the subset P™ C P! by

Py ={p € P[# (p) =m}
(3.8) Fix [ and n and define partition W in P!, by

W =W = (wu)® 1,
NB W' e S,at00--00 8 Example:

(3.9) LEMMA. [52] ForleN, Pl = (S, A2 W),
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Figure 6: Hasse diagram for inclusion poset for ideals P a™P! in case | = 3, for
n =4,5,...,9. Vertex m corresponds to ideal P.a™P!.

Figure 7: Schematic of the set h!, i.e. ¥4 with the poset ideal generated by (n —

n’

1,0,0,..) removed. (This case is hj.)

11



(3.10) LEMMA. (I) The element a™ € P! lies in the ideal PLa™ P! if and only if
m < m’ in~". (II) For p,p’ € PL we have #~(pp') < # (p).

Proof. (I) (‘if” part): If m — m’ = v;; then, up to a permutation, ¢™ can be ob-
tained from @™ by joining a co-i and a co-j propagating part together using some

Al g™~ g™ AM ) or cutting a propagating ‘line’ using W'

(‘only if” part): Consider p € P! and the change #~ (p) ~ #~ (ap) for a € S, {1, A2, W'}S,,.
The vector can only be changed by such an a as follows. (1) by combining propa-
gating parts (for example a € {AY},;; or a = W' and p is as in the following case

ol

with | = 3: Wip = ); or (2) cutting the propagating line in a co — [ part.

But p ~ ap (or pa) for any a is a sequence of such ‘local’ changes by Lemma 3.9.
(IT) follows by the same argument. O

(3.11) LEMMA. (1) The set | |, <, P™ s a basis for the ideal P'a™P!. (II) The
partitions p in the ideal P'a™P. and not in any ideal P'a™ P! with m’ < m are

precisely the subset PI*.

Proof. This follows from Lem.3.10. Note that elements of P}* are elements of S,,a™S,
and elements obtained from these by binding a non-propagating part to a propagat-
ing one. O

(3.12) LEMMA. Fiz .

(1) Every element p of P, containing a part p; with cora(p;) > | or ran(p;) > 1 lies
in the ideal PLW P!.

(2) Every element of P, containing a non-propagating part lies in the ideal PLW P!,
(3) Fizn. For any m, if ry, = n then a™ ¢ PLWPL.

Proof. (1) Suppose |cora(p;)| > [ or |[ran(p;)| > [. Then there is a partition p’ € P,
differing from p only in that [ elements of p; are in an isolated non-propagating part.
Partition p evidently lies in the ideal generated by p’. Now use (2).

(2) A non-propagating part p; in p € PL necessarily has order at least [. Then
there is a partition W’ group-conjugate to W such that one of its non-propagating
parts exactly meets a subset of p; in composition, whereupon pW’ = p or W'p = p.
(If the order is exactly [ the argument is slightly modified.)

(3) By Lem.3.10, noting that W € S,a=t0.0--01g . O

(3.13) For given n,l and m € 4™ define the ideal

™= %" Pla™Pl

m’/<m

(3.14) LEMMA. If m’ # m € 4" then a™ Pla™ C I<™,

12



Proof. Note that a™ Pla™ has a basis of partitions. By 3.11 every partition lies in
a unique highest ideal of form Pla™" P!. In particular p € a™ P!a™ lies in or below
Pla™ P! but since m’ * m it must be below. ]

4 Representation theory generalities

Lemma 3.14 means that P! has what we call the ‘core’ property. From this property
many representation theoretic properties follow quite generally. Here we collect the
general arguments.

4.1 Preliminaries: Green’s idempotent reciprocity

(4.1) THEOREM. [Green localisation theorem, [22, §6.2]| Let k be a field, let A be
a k-algebra, and e € A idempotent. Let A(A), A(eAe) and A(A/AeA) be index sets
for classes of simple modules of the indicated algebras. Then there is a bijection

A(A) 3 A(ede) U A(A/AeA)

O

Fix an index set A(A), and aset { M) : A € A(A)} that is a complete set of simples

up to isomorphism. Let us write A.(A) for the subset of A(A) such that A € A.(A)

implies e M), # 0 [2, 22]. The map M +— eM is a bijection from {M, : A € A.(A)} to

a complete set of simples for eAe. Thus we may take A(eAe) = A.(A). Meanwhile

{My : X € A(A) \ Ac(A)} is a complete set for A/AeA. This gives a natural
identification

A(A) = A(eAe) U A(A/AeA) (9)

(4.2) Let k be a field. Given a finite-dimensional k-algebra A, a simple module L
and a module M, then [M : L] denotes the composition multiplicity of L in M.

(4.3) For A an algebra then A—mod denotes its category of left-modules. Given an
idempotent e in an algebra A we define, as usual [38, 22], a functor

G, :eAe —mod — A —mod
by G.(M) = Ae @ca. M. Define functors

F.:A—mod — edAe— mod
L,:mod—A — mod — eAe

by F.(N) = eN and L.(N) = Ne. We have the following standard properties (see
e.g. [22, 2, 41)).

13



(4.4) THEOREM. Let algebra A and idempotent e € A be as above.

(I) Functor G, is left-adjoint to F,; and a right-inverse to F.

(II) Functor G. is right-exact; and F, is exact.

(I11) Functor G, preserves projectivity and indecomposability.

(IV) Functor G, preserves simple head.

(V) For L a simple module eL is a simple eAe-module or 0 and if eL # 0 then

eM :el] = [M: L]

4.2 Algebras with the core property

(4.5) Let k be a commutative ring. Let A be a unital k-algebra, with unit 1. Let
v = (7, <) be a finite poset and e, € A an idempotent for each a € . Let

[<a = ZAGﬁA

B<a

(so I=* =0 if « is a lowest element) and (for later use)
A% = AT

The poset 7 together with the map e_ : v — A is called a core for A if (Al):
eqley C 1< for all o/ 2 «; (AII): 1 lies in the image of e_.

(4.6) THEOREM. Suppose & invertible in K. Then the pair ("™, a~) gives a core for
P

Proof. Comparing (4.5) with (3.14) we see that (y"",a™) is a core for P! up to
renormalisation of the a~ elements as idempotents. O

(4.7) Suppose now that k in (4.5) is a field and A is finite-dimensional with simple
index set A(A). Note the natural inclusion A(A%*) — A(A) giving the (classes of)
simple modules M of A such that egM = 0 for 5 < a.

By e, A® we understand e, to act on A® in the natural way, i.e. as e, + [<*. By
Green’s theorem (4.1) and the construction then we take A(e,A%,) — A(A) (via
AleqgA%,) — A(A*) — A(A)) to index classes of simple modules of A such that
egM =0if 8 < o and e, M # 0.

(4.8) LEMMA. Let A be an algebra over a field with simple index set A(A). If algebra
A has a core (7, e_) then A(A) = UyerAeaA%,).

14



Proof. Consider the classes indexed by A(e,A%,) as in (4.7). There may be other
simples with e, M # 0, but they have egM # 0 for some 3 < «, and so are ‘counted’
in some lower A(egAPes) — noting that minimal elements w € « finally exhaust
simples with e, M # 0. Thus the union includes all simples with e, M ## 0.

But now since 1 € v (by axiom AII) the union includes all simples in A(A) where
1M # 0, which is all. O

(4.9) Remark/caveat: Note that every algebra has a ‘core’ for every poset with a
unique minimal element (call it L), simply by the constant mapping e, = 1. But
all but one A(e, A%, ) is empty in this case (and our Theorem 4.10 below is trivial).
Confer [18, 8, 14, 21] for certain ‘tighter’ axiomatizations (and indeed cf. for example
[23, 4, 17] and references therein for interesting related axiomatizations).

In order for the core formalism to have significant utility, we will need something
further like BH reciprocity, as we discuss shortly.

(4.10) THEOREM. Let A be an algebra over a field with simple index set A(A). If
algebra A has a core (vy,e_) then

A(A) = UgerAeaA%,) (10)

Proof. Noting Lem.4.8 it remains to prove disjointness. For o € ~ let A, =
A(eqA%e,). Recall the natural embedding A, — A(A%) — A(A). Simple mod-
ules M of A coming from the subset A, (if any) obey e, M # 0 (Ae, M = M) by
(4.1)/(4.7). But now consider e,/ M. Either o # a and so e, M = 0 by axiom
(AI), so M 2 M,, p € Ay (for which Aey M, = M,); or ¢/ > o so o # o and
eoN =0forall N =N,, u € Ay, while Aey N = N so M 2 N. O

4.3 -modules over a core

(4.11) Let A be an algebra over a field with index set A(A), and core (v,e_) as
above. Let [—| : A(A) — v be the map taking u € A(A) to the part @ = [p]
to which it belongs in (10). For each a € 7 suppose {S; : pu € Ay} to be a
corresponding set of simple modules of e, A%,
For each of the algebras e, A%, we have a corresponding G-functor (as in (4.3)).
In particular this lifts the set of simple modules to a set of A“-modules, and hence
A-modules. Thus for each u € A(A) we have an A-module
J, =G5S, (11)

€Eq W

for a = [ denoting the appropriate a. Let 2 = {J), | u € A(A)}.
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(4.12) LEMMA. Let A be an algebra with index set A(A), and core (y,e_) as above.
Let {3, : p € A(A)} be as in (11). (In particular this supposes fired the various
sets {5+ € Ao}.) We have the following:

(1) The modules J), have simple heads, denoted L,; and their heads are exactly a
complete set of simple A-modules.

(11) If 3, has a simple factor L, below the head then ef, L, = 0.

(III) Suppose A possesses an involutive antiautomorphism a +— a* and hence a
contravariant duality M — M? [22], so the socle of (T},)° is L. If ey = €,
then er, L5, # 0, so either L, does not appear in :17 and there 23 no module map
J - (JL)"; or Lo = Ly, and there is ezactly one module map 3, — (3,)° up to
scalars, with image L,.

Proof. (I) By Theorem 4.4(IV) and (the proof of) Theorem 4.10.
(IT) Follows from Theorem 4.4(V).
(III) If aM # 0 then a*M° # 0. O

(4.13) LEMMA. Let A be an algebra with core (7y,e_) as above. Letd), = [, : L,].
Then d! =1 and if p# x and d) # 0 then [p] < [x].

That is to say, let <’ be any total order on A(A) in which [u] < [z] in v implies
p <" x. Then the matrix of D) := (d),) with respect to <’ is upper-unitriangular.

Proof. Let p,x € A(A) with « # p. First note that d7 # 0 by Lemma 4.12(I).
Lemma 4.12(II) then implies d7 = 1.

It remains to show that if d"* # 0 then [u| < [z]. If d7 # 0 then ef, 3, # 0.
Hence by axiom (Al) of the definition of core we have [1] < [x]. Note that again
by Lemma 4.12(II) we have e[, L, = 0. Hence we cannot have [z | = [p] otherwise
we would get er,) L, # 0. Therefore [u] < [z]. O

(4.14) In general ' modules are not particularly useful, for computing the Cartan
decomposition matrix for example. Below we discuss conditions under which they
become useful.

4.4 Modular systems and pivotal sets

(4.15) Consider an algebra A over a field with simple modules L,, u € A(A) and
indecomposable projective covers P,, € A(A). Suppose we have another set D
of A-modules D,, p € A O A(A), that span the Grothendieck group. Suppose in
particular that there is an expression for the characters of the projective modules P
in terms of D, with coefficients denoted (P : D,,). We say A has the BH reciprocity
property (as in Brauer-Humphreys) if

D,:L,)=(P,:D,) (12)

In particular we say D is a pivotal set for the BH property.
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If D gives a basis for the Grothendieck group we call this strong BH property.

(4.16) A Brauer modular system [3] for a k-algebra A is a triple of commutative
rings (K, Ko, k) where K is an integral domain, K the field of fractions, and k
the quotient by some maximal ideal, with the following properties. Firstly there
is an ‘integral’ version AX of A over K, and A itself is obtained by base change,
A =k ®x AKX and is split. Secondly the base change instead to Ky, the ‘ordinary’
version, is split semisimple.

(4.17) A BH module for a Brauer modular system is the image of a simple module
of Ky ®x AX under an integral lift to AX followed by the base change to k.

There may be many such lifts in general. But a set of BH modules that is the
image of a complete set of ordinary simples is called complete.

(4.18) A sufficient condition for the BH property, with pivotal set A, is that the
set A is a complete set of BH modules. (See e.g. [3, Prop.1.9.6].)

4.5 Modular core property and highest weight categories

In this section we define the (strong) modular core property for algebras and show
that it implies a highest weight category.

(4.19) A modular core is an algebra A and a triple of rings (K, Ko, k) as in (4.16)
giving a Brauer modular system for A (thus A = k @ AX) together with core data
(v, e_) giving a core for AK.

A strong modular core is a modular core that is strong modular, i.e. the simple
modules over k and K° have the same index set.

(4.20) Remark. In the classical modular theory for finite groups one finds the in-
tegral representations (that will be reduced mod. the prime defining k) as lattices
inside the simples of the rational case. In diagram algebras suitable integral rep-
resentations can generally be constructed directly (by the good basis properties of
such algebras). Nonetheless their base changes to the rational case are the simples
of that case. In other words it is the index set for simples in the rational case that
labels the ‘Brauer/Specht modules’.

This means there are some ‘carts and horses’ (hypotheses and conclusions) that
must be placed carefully in the right order!

(4.21) Note that if (K, Ko, k) is such a triple of rings then the core property over
K will base change to the field cases.

In particular then consider the algebra A° = Ky ®x AX. This is now split
semisimple by hypothesis. We have

A(A?) = UaeyAlea(A")€a)

17



by Th.4.10. An idempotent subalgebra of a quotient of a semisimple algebra is
semisimple so in this scenario e,(A%)%e, is semisimple. For each o € v let us write
{Sff | n € A%} for a complete set of simples of e, (A%)%¢,.

Caveat: Given a modular core there is no reason to suppose that we are able to
construct such a set directly.

In this case the corresponding collection of sets of J'-modules (here specifically
denoted J to distinguish from the other base rings) as in (11) give, by Lemma 4.12,
a complete set of simples for A°.

Working now over K, we have the various algebras e,(A%)%,. We call a col-
lection of sets of K-algebra modules ‘podular’ if the appropriate embedding G, —
followed by base change to K takes them to a complete set of simples as above.
Note in particular then that this collection may be indexed in the same way:
S = {{Sz | pe A2} |acr)

(This is the same as to say that the base change of the podular set gives a collection
of sets {{9 [n e A)} [aen}.)

(4.22) We now have a collection of A¥-modules

j:U{ju“LGAg}

acy

obtained by applying the appropriate G.,— functors to the collection S.

As already noted, this collection passes by base change to Ky to the Tr-modules.
This collection 2 passes by the other base change to k to a set of A-modules .
Once again Lemma 4.12 applies. Note also that these are a complete set of BH
modules, thus they are a pivotal set.

(4.23) Remark. Note that the implication of semisimplicity flows in one direction
only, so the ¥ modules are not simple in general.

(4.24) We recall the definition of highest weight category from [29] (the original
reference is [8, Definition 3.1] but we use an equivalent definition stated in [29] as it
fits our purpose).

Let A be a finite dimensional algebra over a field k. Fix a complete set of pairwise
non-isomorphic simple A-modules {Sy | A € A(A)}. Let < be a partial order on
the index set A(A). The category A —mod is a highest weight category with respect
to < if for each A € A(A) there exists a left A-module A,, called standard module,
such that

1. There exists a surjective morphism 6y : &, — S, such that if S, is a compo-
sition factor of the ker(f,) then p<\.

2. Let Py be the projective cover of S). There exists a surjective morphism
Ux 1 Py — A, such that the kernel of 9, is filtered by modules A, with A< p.
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(4.25) LEMMA. Let A be a k-algebra with a core (y,e_). Let ' ={3J, : p € A(A)}
be the set of d-modules of A for the core (v,e_) (in the sense of Equation 11).
Suppose the set 2 filters projectives and is a pivotal set for the strong BH property.
Now let < be any order on A(A) in which [p] < [x| in v implies x < p. Then the
category A-mod is a highest weight category (HWC) with respect to <, with 3 as
the set of standard modules.

Proof. For Axiom 1 note from Lemma 4.12(I) that there is a map 6,; and from
Lemma 4.13 that [ker(6)) : L,] = 0 unless [A] < [p], hence p < A. For Axiom 2,
let Py be an indecomposable projective module of A, then by the assumptions there
is a filtration

0C M CMC---C M, =P,

of Py by J,-modules. We have P/M;_; ~ J), since the J'-modules are pairwise
non-isomorphic and their heads form a complete set of simple modules of A. By
the strong BH basis property the multiplicities in the filtrations are uniquely defined,
and coincide with the character definition of (Py:J),). Thus (Py:3),) = [3J), : S)]
by the strong BH property.  Hence, if (M, : 3),) # 0 then Lemma 4.13 implies
that A < p. O

(4.26) THEOREM. Let A be a k-algebra. Suppose:

(I) A is a strong modular core algebra with modular system (K, Ky, k) and core
(v,e_). Let 2 be the set of J-modules of the k-algebra A for the core (v,e_),
obtained by base change as in 4.22. Let < be any order on A(A) in which [pu]| < [x]
mn 7y implies x < L.

(II) the set 2 filters projective A-modules.

Then A-mod is a HWC with respect to <, with 2 as the set of standard modules.

Proof. By 4.22 the set 2 is pivotal set for the BH property. Now apply Lemma 4.25.
O

5 Simple index theorem for P'

5.1 The quotient algebras P™ of P!

(5.1) Define quotient algebra

P = Py
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Schematically:

(n.0)

(5.2) By a™ € P™ we understand the element of which a™ is a representative (and
similarly for b™).

(5.3) LEMMA. The ideal P™a™P™ in P™ has basis P2.
Proof. This follows from Lem.3.11 and the construction. O]

(5.4) For m € 7" define
Sm = Xi:lsmi (13)

a __

For p = (p1, p2; .-, o) € Sm, define w§ = w, € P! as the image of p realised on the
propagating lines in a™ as follows. Here is an example for [ = 2:

I i i B R O Bt

Wy = (14)
[ A R N W B B0 AP

— we put p; on the co-1 propagating lines (the second interior box of lines in the
example) in the natural way; ps on the co-2 lines (the first interior box in the
example); and so on.

(5.5) For m # 0 we define wf, € P! analogously to w,, but realised on the propa-
gating lines of b™. We may similarly define wgb on the propagating lines of a™b™;
and wg“ analogously. Note that

= wiw = w?, (15)

w pp’ PP pp

b b
pWp
and so on.

(5.6) Consider partitions of form ¢ = a™pa™, as illustrated in figure 8. (Partitions
of form ¢ = b™pb™ are directly similar.) Note that the number of co-i parts of ¢
cannot be greater than that of a™ for any ¢, unless this is the result of two or more

=

propagating parts coming together, such that i’ + " = i mod. [ (or Zj i; = 1).
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U uUw

o dN e N

Figure 8: Partitions illustrating a™ P?a™ in case [ = 2.

Now cf. (3.4) and the definition of P™. Thus for example the first element in the
figure, ¢; = a™pia™ say, is in I<™ and hence zero in P™ by the quotient. To see
this explicitly consider #~ (¢1), and in particular #~(¢;)1. We may follow down the
leftmost co-1 part from the top a™ factor. If this meets a co-¢ > 1 part from the
lower ™ (as here) then, by the pigeonhole principle, the number of propagating
parts decreases.

The second example is essentially a ‘permutation’ of form w, (in this case up to
factors of §). Note then that only permutations within each of the | group factors
are possible, if we work in the P quotient.

(5.7) LEMMA. Let K be a commutative ring, and 6 € K. Fizl and n, and m €
A\ {0}. Then we have the following.

(bI) The map from Sm to P. given by o + w? has image in b™ PLp™.

(bII) Idempotent subalgebra Y™ P™b™ in P™ has basis {[w’] = w? +1<™ | 0 € Sp}.
(bII’) The map o — [wb] defines a map from Sm to the basis in b™P™b™ that is a
group isomorphism.

(bIII) This map gives an algebra isomorphism

PP o KS,

Proof. (bl) Note that w® € P! and v™wbb™ = w?. (bIl) Noting (5), this follows
essentially from Lemma 3.10 and the pigeonhole principle, as in (5.6) (replacing a™
with o™). (bII') This follows from (bII) and (15). (bIII) Follows from (blI) and
(bIT’). O
(5.8) Note that by the same argument the idempotent subalgebras o™ P™a™, a™ P™b™,
and a™ P™a™ are all isomorphic to K Sy, (except that the ‘aa’ case requires § to be
a unit).
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(5.9) THEOREM. Suppose K is a field with 6 # 0. Then we have simple index set
A(PL) = Upeyin A(K Spn).

Proof. Noting Theorem 4.6, now apply Th.(4.10) and substitute using (5.7) and
(5.8). O

(5.10) Remark. There is a straightforward strengthening of Th.5.9 to the case 6 =0
in most cases. We omit this for brevity.

5.2 Aside on symmetric groups and Specht modules

In light of Lem.5.7 et seq., it is useful to recall some properties of the group algebra
K Sp (as defined in (13); for example K Sy, = K(S,—2; X 5;) in case m = (n—2i,1)).
We focus for brevity in this exposition on the case | = 2. The generalisation is
straightforward.

(5.11) Define A; = {\ F i}, the set of integer partitions; and

1
Am = XA, = Ay XAy, X0 XA,

(5.12) Here an element e in a k-algebra S (k some commutative ring) is ‘preidem-
potent’ if ee = ce for some ¢ € k. If ¢ a unit then e may be renormalised as an
idempotent. ‘Primitivity’ of e € S means that ewe = ¢,e for some ¢, € k for all
weS.

(5.13) Recall (cf. [24] and [11, §43], say) that for each A = (AL, A2 .. A) € Ay,

there exists a primitive preidempotent
ey = ey = €e\ieya... (16)
in ZSm (primes indicate belonging to different factors) such that the left ideal
Spy, = KSm e

is a Specht module for [ = 1 and hence a generalised Specht module otherwise.
In our case we may choose e = e, so that e = e, as in (2.5) (this follows from
one of the well-known constructions for preidempotents in ZS,, [25]).

(5.14) For definiteness we have in mind a tableau-labelled basis
b)\ = b)\l X b)\Q X ...

for Sp,. This is a basis encoded as [-tuples of standard sequences such as b 1) =
{1112,1121,1211}. The details of the corresponding explicit basis contruction can
be found for example in [24], but the full details will not be needed here.
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(5.15) Returning to (5.12), suppose algebra S has a k-linear map op : S — S, written
s — sP_ that is an involutive antiautomorphism. Suppose primitive preidempotent
e = €. This then allows us to define a k-bilinear form (—, —). on Se as follows: for
se,s'e € Se we have

(se)Ps’e = esPs'e = cgong €. (17)

Now set (se,s’e). = csors. Note that for a € S we have (se,as’e). = Csopgy =
Claorsyors = (aPse, s'e).. That is, the form is contravariant with respect to op [22].

(5.16) This form is useful in studying the corresponding S-module morphism from
Se to its contravariant dual [22]. Note that the choice of e is not unique in our
ideal construction M = Se, and although Se does not depend on the choice (up
to isomorphism) the form does depend on it by an overall factor. Thus the form is
not canonical on M. However for symmetric groups there is a good choice of form,
due to James, that encodes representation theory within a very useful organisational
scheme [24]. Over fields of char.0 the constant ¢ is always a unit and these subtleties
can be ignored, as we will see in §9.1.

6 Polar decomposition of partitions in P,

We describe a version for P! of the P, polar decomposition [37, p79-80].

(6.1) Let m € "™, Let B™ denote the natural ‘diagram’ basis of P™a™ (i.e. the
basis of certain partitions p € Pla™ where p is understood to mean p + I<™). Next
we describe B™. Note that the left ideal P™a™ has a natural right action of Sy,
upon it (see e.g. Lem.5.7 and (5.8)). Indeed it is a free right KSp,-module. It
follows that we may partition B™ into orbits of the right action of Sy,.

(6.2) The basis B™ consists of elements p representable in the following form.

(1) The restriction of p to the ‘top’ (unprimed) subset of vertices consists of:

for each i = 0,1 — 1,1 — 2,...,1, m; co-i parts that belong to propagating parts; and
some further number of co-0 non-propagating parts.

The restriction of p to the ‘bottom’ (primed) subset of vertices consists of:

for each ¢, m; order-i parts that belong to propagating parts; and (n —ry,)/l further
order-/ non-propagating parts.

(2) The propagating connection from top to bottom for a propagating part may be
drawn as a line from the first (lowest numbered) vertex of the part on the top to
the first on the bottom.

(6.3) We say that p € B™ is relatively non-crossing if, for each i, the co-i propagating
lines in the representation above are pairwise non-crossing.
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An example of a relatively non-crossing partition (in case [ = 2) is given by:

AR W G Wo

The isolated loops in this picture can be ignored (we assume § # 0 here for simplicity)
or replaced with a suitable ‘meander’. They are drawn to demonstrate that the
element lies in P™a™ (here in case m = (mg, my) = (4,4)).

(6.4) LEMMA. Let m € 4™, Each orbit of the right Sy, action on basis B™ of P™a™
as in (6.1) contains a unique representative element with the relative non-crossing
property. Let T™ denote the relative non-crossing transversal. Then

B™ ={pw|peT™; we Sm}

where w acts in the natural way. In particular T™ is a kSm- basis of the free right
kSm-module P™a™. ]

(6.5) It will be apparent that any partition p in P™ (as defined in (7)) can be written
in a generalisation of the usual partition algebra polar decomposition. That is, we
have the following.

(6.6) LEMMA. Each p € P2 can be written in a factored form as
p = awysb
where a is relatively non-crossing (as in (6.3)), i.e. a € T™; w, = (wy,wsy,...)

is as in (14); and b is a flipped relatively non-crossing partition (b* € T™). The
factorisation in this form is unique. ]

(6.7) Tt is convenient to denote the decomposition by

p = |p) w(p) (p| (18)

7 Basic integral representation theory of P!

Here we aim to construct a modular system for P! based on analogues of Specht
modules.
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Figure 9: (a) Schematic for >-sectioning the " poset (I = 2). (b) Schematics for
comparing Jui) (below blue line) with 7<™(*+1 (below red line).

(7.1) Recall that any poset can be refined to a total order. Let (v",1>) be a total
order refining (7", >) (e.g. as indicated by Fig.9). Let us define

Jm =Y Pla™P), Jam= Y Pla™ P!

m’<m m’<\m
For convenience define m(1),m(2), ... as the elements of '™ in the total order so

Jm(l) C Jm(g) C Jm(g) C ... C J(n,O,O,...,O) = P,ll

(7.2) LEMMA. Write P = P! for a moment. We have an isomorphism of bimodules

Jm(i+1)/Jm(i) ~ Pam(i+1)P/I<m(i+1). (19)

Proof: We have

_ PamttHIP 4 pemOp
~ Pam@OP 4 Pgmi-Hp 4

Im@i+1)/ Im()

Pam(iJrl)P Pam(i+1)P
— PamGt) P (Pam@P 4 PemG-DP +.)  PamtDP N
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by the second isomorphism theorem. Thus we may consider the ‘numerators’ in (19)
to be the same, up to isomorphism; and compare the ‘denominators’ (the submodules
that are quotiented by). The argument proceeds in two steps.

(I) For any order > refining > we have that m(:+1) > m implies m(i+1)>m. But
for any total order this implies m(i) > m. Thus Jm@ D I<™HD. (Cf. Fig.9(b).)
(IT) Consider the denominator in the third expression. In particular consider
Pa™t)p A Pe™UP for j =i,i—1,.... By Lemma 3.11 every partition p lies in
a unique highest ideal of the form Pa™P, and there is a basis of partitions. Since
m(j) 2 m(i + 1) we have (cf. (3.14)) that

Pam(i+1)P N Pam(j)P C ]<m(i+1) (] < ’l)

Combining with the inequality in the other direction from (I), noting that Pa™(+) P >
I<m(+1) e see that

Pam+) p

Im(it1)/ Im() = T = p(i+1) ym(i+1) pm(i+1)

7.1 Globalisation functors and quotient algebras Al

Note that a partition of a set S determines a partition of a subset S’ by restriction.
In particular an element p of P,, determines an element p|j; ,,—y of P,_; by restricting
to the first n — [ pairs of elements ‘top and bottom’. Similarly pl|yiq,) restricts
to the last n — [ pairs. (Again this determines an element of P,_; in the obvious
way.) Note in particular for n > [ that the restriction p|yiq, of a partition p in
W{P.W{ removes [ top elements from the same part and [ bottom elements from the
same part, and hence pl;j,—y lies in P)_,. A similar property holds on restricting

WIPLW or indeed WlfPéWbl (using (2.6)), and so on. Given one of these cases, let
us write ¢ty for this restriction map. Schematically (W? case):

(7.3) THEOREM. Fiz l. Forn > [ the maps vy give isomorphisms of algebras:
WiPWi= P!, and WPW]=P_,
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Similarly for n > 1 we have the (not necessarily unital) algebra isomorphisms
WPWwt~ 6P . and WIPLWEx= P! .

Proof. Exactly analogous to the P, case as in [37]. Schematically (172 case), consider
the figure above. O
(7.4) As in (4.3) we define ‘short’ functors

Gy - WéPfLWé —mod — P! —mod
and Fy. And similarly (for ¢ invertible) Gy : W/ PLW} —mod — P! —mod. By

Theorem 7.3 we will consider these as functors between P! ; —mod and P! —mod.

(7.5) Fix [. Define the quotient algebra
A, = PP, = PUPIWIEL = PL/PIWLEL

7.6) Example: In case | =1, Al = kS,,.
( p n

(7.7) LEMMA. There is a basis for Al consisting of partitions in which every part is
propagating with cora(p;) = ran(p;) and no part has |cora(p;)| > | or [ran(p;)| > [.

Proof. By Lem.3.12. [

(7.8) Let H! denote the subset of idempotents a™ with m € hl .

Let P.= C P!, denote the subset of [-tone partitions of form ShT, where S, T are
permutations and h € H!. That is, P.~ is the set of [-tone partitions having parts
with at most [ elements per row, and all parts propagating.

Note from Lem.3.10 the following.

(7.9) LEMMA. Fiz l. Algebra Al has basis the subset P\ O

(7.10) An element of P.~ is partially characterised by the restricted partition of the
upper (resp. lower) row into parts of size [,{ — 1, ..., 1. We say that an ordered pair
(a,b) € P are compatible if, considering the rows that meet in composition ab, every
part from a (resp. b) is a union of parts from b (resp. a).

Note that ab = 0 in Al unless compatible.

In case [ > n there can be no non-propagating part in a partition in P! . In this
case P! coincides with Kosuda’s party algebra [32]. We will be interested, though,
in general n for each fixed I.
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7.2 Long functors from KS), —mod

(7.11) Note from Lem.5.7 and (5.8) that P™a™ is a right K'Sy, module. (The case
m = 0, 0 = 0 can be included by identifying K Sy with the ground ring.)
Now for given m € 7*" define the long functor

Gy : KSy —mod — P —mod
by GaM - PTanCLm ®K5m M.

Here we want to recall the isomorphism between G,M and P*a™M that holds
when M is a left ideal, so that standard modules inherit the properties from both con-
structions. Noting the invariant basis number (IBN) property we write ranky (M)
for the basis number of a free K-module with finite basis.

(7.12) LEMMA. Let A be a finite rank K-algebra, M be an A-module with K-basis
B, and F be a right free A-module of finite rank with A-basis T. Then

() T@B={tb|teT;bec B} is a basis of F @4 M.

If in addition M is a left ideal then

(II) TB ={tb |t € T;b € B} is a K-basis of FM.

(II1) The map p : T ® B — TB given by t @ b — tb lifts to a well-defined K-
module isomorphism p: F @4 M — FM. If F is an A’-A-bimodule then u is an
isomorphism of left A'-modules.

Proof. (I) The A-basis property says ' = @;ertA where each tA is a copy of the
right regular A-module. Thus F ®4 M = (PiertA) @4 M = Ber(tA @4 M) by
tensor-distributivity (see e.g. [11, §12]) and hence F' ®4 M = @ert ® M since
A®4 aM = M. Thus rankx(F ®4 M) = |T|.|B|. Furthermore if G is a K-basis of
A then F has K-basis TG, so {tg®@0b : teT, g€ G, b€ B} spans FF @4 M. But
ta®b=t® ab so, fixing ¢, the set {t ® b : b € B} spans the same K-module as
{ta®@b : a € Abe B}. Thus T'® B spans FF ®4 M. Since |T'® B| = |T|.|B| we
are done.

(II) We may compare for example with [34, 4.12]. The set F'M is a K-module, so
FM = &;tAM is a direct sum of K-modules - specifically AM = M is a K-module
and ¢ is a formal symbol. Thus FM = &,;tM is a formal direct sum of copies of M.
Since M is itself K-free, we have a formal direct sum of formal direct sums.

(IIT) Well-definedness follows from the balanced map property of tensor products.
The map is surjective by construction, and hence an isomorphism by IBN. Commu-
tativity of the map with the algebra action is also by construction. O]

7.3 Standard/Specht modules

(7.13) Fix n and I. For m € 4"" and p = (u', 12, ..., ') € Am we may define the
p~*Specht” module of P! as the module obtained by applying the functor G, in (7.11)
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to the p-Specht module Sp,, of kSp:
A, = G.Sp, (20)

(see §5.2 for details of Sp,). Note that this is a Pl-module since it is a P™-module.
Define Ag(P)) = UpeyinAm and let AP = {A, | € Ao(P))}.

(7.14) LEMMA. For k = C and § # 0 the set {L, = head A} engpy) 78 a complete
set of simple modules. -

Proof. Compare Th.5.9(I) with Lem.4.12(I) and (7.13). O
(7.15) Let m € v*" and pt € Ay, and e, = []; €!; as in (16). Define

n __ m_m_ ba
S, = Blaywg

where e, thus acts as in (14 - 15).

(7.16) LEMMA. Let b, be a basis of p-Specht module Sp, of KSm (cf. 5.14, [24]);
and T™ be a non-crossing transversal in P™ as defined in Lemma 6.4. Then

BSEp = {puw®|peT™, w € b}
is a basis of S};.

Proof. By 6.4 the set T™ is a K Sy,-basis of P™a™. Now in Lemma 7.12 part II let
A= KSmn, M =8p, and I' = P*a™ to obtain the result. O

(7.17) Example. Fig.10 shows a diagrammatic realisation of the basis for 8&2)7@).
The box labeled 4 denotes the Z-linear combination corresponding to the preidem-
potent ey =1 — o1 € ZS,. Note cf. [37] that this diagram calculus is well defined.
So far, then, the pictures give combinations of partitions — but then finally these
partitions are understood to represent the classes in the module of which they are
representative.

(7.18) LEMMA. (I) For m € h!, and t € Am, FpS) =0. (1) For m € 4"~ and
HE Am, FWSE = WSE = Sg_l. (Here we assume for simplicity that § # 0.)

Proof. (I) Here WP™ = 0. (II) Note that for z € I=™ then z ® ww* € [ ™.
Considering the bases one finds that b — b ® ww* (with b of form d + I™) gives
rise to an injection Sfj‘l — WS;L. The image is fixed by W so FyS,, contains Sﬁ_l
as a submodule. We observe complementarily that the map WP.W — P!, (here
NB the standing assumption) takes p € P™ to p’ € P™,. Indeed WP.W NP™ =
P, @ww*. Furthermore by construction each element of WSZ} is a subset of WPLW
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(to see this consider e.g. Fig.11), so we can apply z <> 2 @ ww*. On the other hand
we know by Lemma 3.10(II) that whenever the propagating index is changed it is
reduced. Thus the image of the injection is also spanning.

(To see this less formally, from the example — Fig.11 — one can see the following
types of cases for Wd for d € BSHP: (1) last [ vertices already connected in d; (2)
propagating lines are at most permuted; (3) the propagating index is reduced.) [

7.19) LEMMA. We have an isomorphism of P! -modules: A, = S".
n n = p

Proof. By 6.1 the P! — kSy, bimodule P™a™ is free as right K Sy,-module. Now in
Lemma 7.12 part III let ' be P"a™ and M be the left ideal p-Specht module Sp,

to obtain the desired isomorphism. In particular the basis of A, of form
By ={p@w|peT™web,}

(Lemma 7.12(I); we write ® here to distinguish from the other types of tensor

product in this Section) is taken element-wise to Bsﬁp. ]

(7.20) LEMMA. Let § # 0 and k = C. Let m € ", As a left P.-module the
quotient P*a™P™ is a direct sum of A-modules.

Proof. By Lemma 6.4 we have the following isomorphism of left P!-modules
PMa™p™ = @ PMa™p* ~ @ PMa™ (21)
peT™ Tm

where p* is as defined in 2.5. Furthermore Lemma 7.19 implies that

PMa™ ~ P™a™ s, kSm =~ @ (P;‘ameg Amieey) (22)
WPEAm
as a Pl-module. ]
(7.21) Comparing 3.11, 6.6 and (22) we see that
dim(P)) = ) dim(A,)? (23)

(cf. a cellular basis of P! in the sense of [21]).

(7.22) LEMMA. Suppose k = C and § # 0. Recall the simple P.-modules L, =
head 87 from (7.14). The modules {S;' : p € A(P))} have a lower-unitriangular
decomposition matriz ([Sh: LZDM,ZEA(;JL) with respect to any order < on A(P') in
which m < m’ implies v < p for pp € A and v € Apy.
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Proof. By Theorem 5.9 the pair (7" a~) is a core of P.. When k = C for each
# € A the p-Specht module Sp, is simple as CSy-module. By Equation 20 and
Lemma 7.19 the set of modules (SZ | € A(P])} are the corresponding long G,-
functor A-modules as in Equation 11. Now the result follows from Lemma 4.13. [J

8 Globalisation of standard modules

In this section we study the effect of the Gy functor on standard modules. That
is we study the P!-module Gyr S);. This is particularly interesting because the
non-trivial core property leads to some new departures from the partition algebra
argument. The main result is Proposition 8.3 below.

(8.1) Recalling 7™, let T™ denote the set of representative relative-non-crossing
partitions p rather than the classes p + <™.

(8.2) NB our convention is that if R is a ring and S a set then RS generally denotes
the free R-module with basis S. However if S is given as a subset of an R-module
M then RS means the R-span of S in M.

(8.3) PROPOSITION. Let m € 4%, and p € Ay, Applying Gy from (7.4), consider
the subset of Gy Sﬁ”*l given by B& = {t @ a™ wl |t € T™ w € b,} where we use

n

® for the Gy tensor product. Then B is a basis of Gy Sy and

n—l

n o~ n—I
Sl = Gy S

Proof. Note from the construction that PAW«SLL = §);. By Lemma 7.18 Gy S ' =
1T o T on . NI -

PW g I/VSﬁ . For the latter form we have a multiplication map p ® s — ps to

PIWS? = Si. This gives a surjective P/-module homomorphism. Since |Bg| =

\Bsﬁp\ it is enough to show that B% is spanning. The basis ng gives

St = PPaPwl = K{tul® |t € T™; w € b,} (24)

This holds for any n but, as indicated here the non-crossing transversal 7)* in P*a;*
of course depends on n. Applying Gy to the case with n replaced by n — [ we have

Gw S ' =PW @8 = K{P,W @ tw) |t € T}*); w € b} (25)
Ll n—l = n—l -

= K{dW @ tw? |d€P; t € T™,; w € b,}
n—l -
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Let us ‘move’ ¢ through the tensor product in (25):
=K{dW((t+ I oL) @ w |deP; te T web,}
n—l =

n—U0»

= K{dt®ww") @ a™w™ |deP; te T™ ;web,) (26)
n—l =

n—10

Note the recasting of t. We can omit the +I™ since it does not affect the element.
We aim to show that this is spanned by terms of form ¢ ® a™ ,w?® where t € T™.
n—l

Note that we may assume the module is generated by elements of the given form.
We proceed as follows. Consider the action of the generators from 4.9 on an element
of the claimed spanning set. Let d be such a generator and consider first the ‘factor’
dt in dt @ a™ ;wP®. Noting Lemma 3.10(IT) there are two ways in which dt might pass

n—l

out of the relative noncrossing transversal: either (A) it has a component with lower
propagating index, i.e. a component in I<™; or (B) a relative crossing is introduced.

In Case (A): by definition such a component of dt is spanned by elements of
the form sa™ ¢ with m’ < m. Indeed since m € 4. , we have ¢ oc tW and so
dt is spanned by elements of the form sa™¢(1, ; ® ww*). Since a™ = a™, ® ww*
= (a™,®1;)(1,_;@ww*) this becomes s(a™,®1;)(1,_;@uww*)q(1,_;@ww*). Noting
that

(1 @ ww*)q(l— @ ww*) o< q|pn—y ® ww*,
we see that df o< s((a™,q](1,0—y) ® ww*). But
((a5214lp.n-n) ® wa) ® at iy oc (apt; @ ww*) © (antqlpn-y)anwl =0

n—l
so dt @ a™ wl = 0.
n—l

In Case (B): by the kSpy-freeness property (Lemma 6.4) such a crossing may be
factored out and passed through the tensor product.
Thus neither case takes us out of the span, and we are done. O

We conclude this section with a remark on our working assumptions.

(8.4) Consider bases as in the proof of Lemma 7.19, noting that GywGem = Gam.
That is, PLW! ®pt_ Pjapt, = PPap, since ap’, @ ww* = ay* by (4). At this point

n n—l — *n “n
the case m = 0, = 0 has extra interest.

Note that we cannot apply PLW] ® p_, — to 82 since W} requires n > [. In

this case we could attempt to use W' instead. This works straightforwardly if §
is a unit. But if 6 = 0 then the setup is slightly but interestingly different. Of
course our mechanism for making P™a™ a right P} module does not work. And W'
is not normalisable as an idempotent (although the functor given by allowing P! _,
to act on the right of P!W]/ by restriction is still well defined). It is an interesting
exercise to see what happens if we simply allow P! 2 K to act as K. In that case
we are comparing GWGQZI_l with the direct long functor Gm. We will leave this for
a separate work.
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Figure 12: Example partial gram matrix calculation. The table shows part of the
case n = 5, (A, A?) = ((2,1),0). We use the tableaux basis for (2,1): {112,121}
[24].

9 Properties of standard modules

9.1 Standard module contravariant form

(9.1) LEMMA. There is a contravariant form (=, —). on each S defined by

op op
(rme)” ey = (e amsmtamey o

= (e)” @y e) = (5,9). a™e,

Proof. (For (9.1) and (9.2) we have a direct generalisation of the usual partition al-

gebra argument as in, for example, [38].) Note that we are working in P™. The well-

definedness of the form follows from the construction as in (5.15), using Lemma 5.7

and primitivity at the last step. O
Examples: See Fig.12 and 13.

(9.2) LEMMA. For k = Z[0] the determinant of the gram matrixz of the form (,). on
S? (u € A(P})) is nonzero.
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Figure 13: (a) Here we have A\! = () and A\? = (2) or (1?) in the box (the picture is
effectively the same in each case). (b) 8(5(271)7(1)) is 20-dimensional. The top left-hand
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corner of the gram matrix is shown. Here we have A' = (2, 1) in the long box, with
a choice of idempotent from kS3 such that e and oqe span kSse.

Proof. First organise the basis into blocks according to Lemma 7.16 — i.e. each
block has a fixed non-crossing partition p, with only the permutation group module
basis part w varying. See Fig.12. Note: (QI) If we work for the moment over Q[J]
(as it will be clear that we can in investigating the nonzero property) then kSy, is
(split) semisimple [24] and we may use a basis for the permutation group part in
which the gram matrix of this part is diagonal. We could, for example, use tableau
bases [24], as in (5.14), as illustrated in the figure. The numerical details of this part
of the construction will not be needed here.

For any given choice of ordered basis we arrive at the gram matrix, denoted G7;.

In our ((2,1),0) example we have

0G| G |GG |GG
an - G |G |G| .. |GG
((2,1),0) — G’ 01]0

where the entries shown are the block submatrices.

In every row of the gram matrix proper, every entry is a polynomial in ¢, indeed
an integer multiple of a power of §. The diagonal entry of the basis element pw
(say — cf. Lem.7.16 and its proof), determined by (wp°)pw = w(pp)w, is a
nonzero polynomial whose degree is not exceeded by any other entry. The degree is
the same through a given block; and there is at least one row where the block of the
diagonal has strictly the highest of all degrees in the row. NB, In case u € m € hl,
all entries are constant, but all the off-diagonal blocks are zero by the I<™ quotient.
Finally, by (QI) the blocks on the block-diagonal are diagonal. Combining these we
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see that the gram matrix has full rank for indeterminate 6. Thus the determinant
is a nonzero polynomial in 4. m

(9.3) PROPOSITION. (I) The standard modules S, with g € Upep A are Al-

modules. (IT) Over k = C every such S, is simple; and Al is semisimple.

Proof. (I) WS, = 0iff |u| € kL. (II) The contravariant form is non-degenerate here.
Indeed, by the compatibility condition (7.10), (z,%) is only non-zero if ‘row-parts’
match, whereupon the gram matrix consists of blocks corresponding to matches.
Within these blocks the entries are the same as for the gram matrices for the (product
of) symmetric groups — which gram matrices are of full rank over C [24]. Finally,
by (7.14) we have completeness and pairwise nonisomorphism. O

9.2 Standard module decomposition matrix properties

(9.4) THEOREM. Suppose k = C and § # 0. Recall the simple P!-modules L, =

n no. l g 0
head S} from (7.14). The modules {S}; : p € A(P,)} have an upper-unitriangular
decomposition matriz ([S}} : L)), yenpty with respect any order (A(P}), <) in which
14 <v if?“w < Tyl

Proof. This follows from Proposition 8.3, Proposition 9.3 and the construction using
Lem.4.12 and Th.5.9. O]

(9.5) Example: If r|,| = n then S} = L, (since there is no v € A(P}) with r,| > n).
Meanwhile (S : Lg) = 1 and no other composition factor is precluded for Sy by this
Theorem (and indeed none can be without specifying §).

(9.6) THEOREM. Consider k = C and § € C. Each module S, is simple for all but
finitely many values of §.

Proof. By (4.12) it is enough to show that there is a nondegenerate contravariant
form on each module (if one of these modules is isomorphic to its contravariant dual
then it contains the dual of the head L in the socle; but if these are not the same
module then they are not isomorphic, by the unitriangular property Th.9.4; and by
completeness there is another such module with head L° and socle L, contradicting
upper-triangularity). Now note Lem.9.2. L]

(9.7) THEOREM. Consider k = C and § € C*. For all but finitely many values of §:
(I) The set {S, | p € A(P))} is a complete set of simple modules of P,; (II) Py is
semistmple.

Proof. (I) These modules are (sufficiently often) simple by Th.9.6. By 7.14 it is
a complete set. By the embedding property using the functors F,G there are no
duplicates (pairwise isomorphisms) in the set.
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(Alternatively we may argue using the dimension count (23) and either the com-
pleteness or the pairwise nonisomorphism.)

(IT) follows from (I) and (23). O

(9.8) By Theorem 9.7 and the construction we have, over C, a modular system for
each 0 (see e.g. [3, §1.9]). Specifically we may take K = C|z] for the integral ground
ring; the field of fractions K as the ordinary case; and C with x evaluated at § as
the modular case. Thus we have Brauer-Humphreys reciprocity:

(Px:Sy) = [Su: Lo (28)

where (Py : S,) denotes the ‘composition multiplicity’ of S, in Py (as usual this
makes strict sense over the rational field via an idempotent lift, and as a multiplicity
in the Grothendieck group in general).

In particular if Ly is a composition factor of S, then S, is a filtration factor of
P)\.

10 On quasi-heredity

Here we prove, in Theorem 10.5, that the P! module categories are highest weight
categories (in the sense of Cline, Parshall and Scott [8]) when 6 # 0 and k = C.
Given Theorem 4.26, Theorem 9.4 and so on, it is enough to show that projective
modules are filtered by A-modules. We do this next. Recall the following.

General Lemmas

(10.1) LEMMA. [41] (I) Let A be an algebra, M an A-module and S, T" sets of
A-modules. If M has an S-filtration and every N € S has a T-filtration then M has
a T-filtration.

(10.2) LEMMA. Let A be an algebra, f an idempotent, and M a bimodule. Then
there are left-module maps M f — M given by inclusion; and M — M f given by
m +— mf. Indeed the sequence

O—->Mf—->M-—->M1-f)—0

18 short-exact and split.

(10.3) LEMMA. Let A be a finite-dimenional algebra and suppose 0 C J; C Jo C
. CJ = A s a filtration by ideals. Let X be the set of indecomposable summands

of all the left-modules J;/J;_1 up to isomorphism. Then every projective left-module
of A is filtered by X.
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Proof. Tt is enough to show for indecomposable projectives, and hence for modules of
form Af where f is idempotent. For such a module we have a (possibly degenerate)
filtration 0 C J;f C Jof C ... C Jf = Af by assumption. Suppose M D N are
A-bimodules. We claim that there is a left-A-module map (M/N)f — Mf/Nf
given by {mf+mn:ne N} — {mf+nf:ne N} (ie act on the set elementwise
by f on the right), and that this is a left-A-module isomorphism. To see this note
that (i) the image lies in M f/N f; (ii) this gives a vector space isomorphism; (iii)
it is a left- A-module morphism (the map uses the action on the right which, by the
bimodule property commutes with the action on the left).

Thus in particular (J;/J;—1)f = J;f/Ji—1f, so there is a sectioning of Af with
sections isomorphic to modules (J;/J;—1)f. By Lemma 10.2 (J;/J;—1)f is a sum of
(some) direct summands of an indecomposable direct summand decomposition of
Ji/Ji—1. And by the Krull-Schmidt Theorem for modules, and our working assump-
tions, every such decomposition is a sum from X. The Lemma now follows routinely
using (10.1), since a direct sum has a filtration by its summands. O]

10.1 Quasiheredity/HWC for the tonal algebras

(10.4) LEMMA. For § # 0, the indecomposable projective PL-modules are filtered by
the set Ab™ of A-modules (as in (7.13)).

Proof. Consider the ideal chain from (7.1). The sections are as in Lemma 7.2. By
Equations (21) and (22) these are sums of certain modules, and by (7.19) these
modules are A-modules. Now use Lemma 10.3. O

(10.5) THEOREM. If k = C and 6 # 0 then P\ —mod s a highest weight category
with respect to any order < on A(P') in which m < m’ implies v < p for p € Ay
and v € Apy, with the set of standard modules {A, | p € A(P})}.

Proof. We will use Th. 4.26. We thus require to show (I) strong modular core; (II)
projective filtration.

(I) Consider K to be the localisation of C[d] at §, i.e. the ring of Laurent polynomials.
Note by Theorem 4.6 that the pair (y*", a~) is a core of P! over K. We take Kj to be
the extension C(J). Then the system is strong modular by Theorem 9.7. Note that
our localisation does not prohibit base change to k as required (but does prohibit
d=0).

(II) By Equation 20 the set of modules {A, | € Ag(PL)} are the corresponding
J-modules. By Lemma 10.4 the indecomposable projectives of P! are filtered by
the A-modules. O
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Figure 14: Restricted action on basis elements: cases (1-3). The undecorated box
represents the action of the given inclusion P?_; < P? on the element.

11 Standard branching rules for P! — P! 4

Consider the algebra inclusion P! < P!, given by d — 1; ® d (or equivalently
d+— d® 1y). We give here the ‘standard-module branching rule’ associated to the
corresponding tower of algebras.

In the generic/semisimple case this is the simple branching rule — the edge
rule for the Bratteli diagram, and is given by Kosuda for example in [33]. In the
semisimple case the restriction of a simple modules is a direct sum of simple modules.
In our case we cannot expect this. We will need to make some preparations.

Here we write M = M; 4+ M,, or say M = —|—Z~miMZ~, if module M has a fil-
tration by a set {M;}, with the indicated multiplicities. This notation does not
give the filtration series order. (In general there may be a filtration with different
multiplicities, but not, say, if the set is a basis for the Grothendieck group.)

We may write Sy, for the subgroup of Sy, in which factor S, is replaced by
Smi_1-

"We first deal with the case [ — 2, i.e. E, = P2 then, more briefly, with the
general case.

11.1 The case P? = E, — E,

(11.1) Set p = (A, ). Consider the set Bsﬁp of basis diagrams of S, ). (Because
of the e, and e, in the construction these ‘diagrams’ are linear combinations of
partitions in general, but the well-definedness of the following manipulations will be
clear.) We may organise the set BS%J into four subsets Bsﬁp(i), i =1,2,3,4, containing
diagrams in which the first vertex is:

(1) a ‘propagating singleton’ (Fig.14 (1));

(2) part of a co-2 part (Fig.14 (2));
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(3) part of a propagating part of higher odd half-order (Fig.14 (3));
(4) part of a non-propagating part (necessarily of even order).

For example for S 1),0) We have B (2) 0,

V= P N By —{ | had By —{ ),

(11.2) Consider the action of 1; ® F,, on 8}}“.

(I) Since the action of 1; ® E,, is ‘“trivial’ on the first vertex, and so cannot change
the propagating singleton property, it closes on the B(1) part of the basis for Sﬁ“.

(IT) The B(2) part is also closed — the co-2 property at the first vertex can only
be changed in principle by combining with a co-1 part, but this gives 0 by the /<™
quotient.

(III) On the other hand B(3) is not closed in general, as illustrated by the example:

(IV) Notice however that the subspace spanned by
Agp 1= Uj=123DBsp(1) (29)

is a 1y ® E,-submodule.

(11.3) THEOREM. Let res,, : FE, 1 —mod — E,—mod denote the natural restriction
corresponding to the inclusion E, — E, 1, given by d — 1, @ d. Then res, S )
has a filtration by standard/Specht modules (as defined in 7.15). The multiplicities
are given as follows. Firstly we have a short exact sequence of E,-modules

0 — kAgp — res,S(y,) — kBgp(4) = 0 (30)

where Agp is the subset of S&T;) defined in (29). Then

kASp = +2 S(/\fei,u) + —|_i,j8(/\*6jvu+e¢) + _I_iij(/\+ej7/—L76i)
and
kBsp(4) =+ Sirtenn)

where sums over \ — e;, say, denote sums over all ways of removing a box from the
Young diagram of \.

Proof. Firstly (30) follows from (11.2). For the filtration factors, we consider the
action of the subalgebra E,, on each of the Bsﬁp(i) in turn.

Case (1): Here we see from Fig.14(1) that the propagating singleton can essen-
tially be ignored. Each basis element pw (as in (7.16)) is then like a basis element
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of +iS(r—e, ). In particular the ‘inflation’ factor associated to the A label is the re-
striction of the Specht module of S}y to S|y—;. One then uses the usual symmetric
group restriction rule (valid even integrally [50]):

Sia
resg Spy = TSpy,,

At the level of bases recall from (5.14) that by is the set of sequence that are perms
of 1112233... (say) satisfying the tableau condition. Such a perm still satisfies the
condition on removing the last ‘letter’ ¢ say, leaving a basis element in by_,.
We thus have
n n+1
—h S(,\,ei’#) — reSnS(A )

as an injection of P?-modules; and a bijection

|_| BHTM s BOY (1) (31)

The map, on an element pw (as in Lem.6.4), is to add a string starting on the left,
then passing over to the box labelled A — e; and hence to the part of w that is a
tableaux sequence for A\ — e;, then add 7 to this sequence.

Case (2): Here we can see from the figure that (as far as the restricted action is
concerned) the number of propagating even-half-order components effectively goes
down by 1 and the number of propagating odd-half-order components goes up by
1. Broadly analogously to the previous case we then have a symmetric group factor
with an induction (rather than restriction) on A, and a restriction on pu.

It will be convenient to have a small complete example to refer to:

Lo od ﬁ Bl 5ot

B<1 P

SP

We consider this S(”;“ll) in case n = 2 as a P! module (N.B. [ = 2). In this case if we
quotient by the Bgy(1) submodule, which is isomorphic to S 1), then the quotient
module is already the sum of Specht modules S((2),0) +S(12),0)- (But we can consider
how this is realised. We see from (11.2)(II) that We cannot leave the Bsp(2) part.)

Case (3): Here the number of odd lines goes down and the number of even lines
goes up. In the language of the previous cases we have an induction on one factor
and a restriction on another.

(However, this time the construction, (11.2)(II), does not preclude a non-split ex-
tension. And indeed the extension is non-split in general. To see this consider the
example in (11.6) below.)
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Case (4): Here the number of even propagating lines stays the same and the num-
ber of odd lines goes up by 1. Thus we may put the basis elements in correspondence
with an induction in the odd position. This gives

|_|Bék+ei,u) adN B(A’H)(Zl) (32)

P Sp

Now compare with the final summand in the identity in the Theorem.

In this case note that the subset does not span a submodule. The quotient in
the definition of the module with respect to the « order has a slightly different effect
here (just as in the corresponding classical P, problem [37]). It will be convenient
to articulate the argument using an example.

An example of a basis element of SL‘“ in case 4 is: ¢ = |

iy‘éO,suchasi
IS ]

This is not 0, but lies in Bsﬁp(l). But if ¢ were a basis element of Sf),..

the isomorphism (32) then such an element of P! would act as 0. In order to get
our filtration here, therefore, we will quotient by a submodule containing ng(l).

(i

following has completions for which

) under

Finally consider actions like this: ! . Again this is non-zero, lying in

0[]
BSHP(Z), but should be 0 in this factor of the restriction. To see that this requirement
is satisfied note the position of B(4) in (30). O
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0,0

0.0

0,0 0,0 3,0 B,w
0,0 0.0 o, Ep,w @,w

0,0 p,0 .0 B,w 0. @,B muln go o1, E_m
0.0

Figure 15: Standard FE,-module restriction diagram (complete up to n = 3, partial

up to n = 5).
00 ]
\1
.0
1/\1
0.0 o] [CIJ.e H 0
4 1
0.0 0.0 [TT3.0 B],w ﬁv
4
0,0 0.0 [17.0 H 0
31
0.

Figure 16: Standard module restriction diagram with dimensions.
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(11.4) Here is a schematic illustrating restriction in general position:

)\_}—ei)l’b_ej >‘+€i71u >\+6i,ﬂ+6j

\ T

Aau_ej )‘nu )‘7#+€j

|

)\_einu_ej >\_€i7ﬂ’ A_ei’u_l_ej

(11.5) It follows from (11.3) that the Bratteli diagram takes the form in Fig.15. It
also follows that the ‘even Bell numbers’ (cf. e.g. [1]) have an intriguing expression

as a sum of squares — a generalised Robinson—Schensted correspondence [30, 44].
See Fig.16.

11.2 Examples: applications of modularity

(11.6) ExaMPLE. By Theorem 11.3 we have the following short exact sequences of
P}-modules

0 = Siny.0) + Sy — ress(Si)0) = Sie0 @ Sl = 0 (33)

0= i) 0)) = Te83(S((0) 1)) = S{twy.ay = 0 (34)
Let us consider the case & = C and § = 1. One can see from Fig.16 that Py
is semisimple in this case, so that 8(2(2)70) is simple-projective. It follows that
res3(8?(2)70)) is projective. To see this note the following.

(11.7) LEMMA. In case | = 2 we have the identification of functors ind— =
res Gy —.

Proof. We may essentially use the usual P, argument as for example in [37] or [38].
The extra requirement is to check that the [ = 2 constraint is preserved by these
manipulations. For this the key point is the alternative characterisation of P? as the
subset of partitions of even order (as in (2.3)). It follows that PZ,,W = P?*(n+2,n)
as k-space. Furthermore the even property is invariant under the disk isomorphism
[39, Appendix] P(n,m) — P(n —1,m + 1), so P?*(n,m) — P?*(n —1,m +1). Tt
follows that
Pn+1P13+2WPn = Pn+1PT%+1Pn

The result now follows by unpacking the various definitions. O]

(11.8) Since GwS); = S)i™?, by (8.3), and induction preserves projectivity we see
that res S;‘*Q =res Gw§; = ind S, is projective when S} is projective.
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Now by (11.3) and (7.14) we see that res S, ,, when projective, contains at least
each Py, , (the indecomposable projective cover of Ly, ). So in our case (33)
the restriction contains Ps)0) and P(2,1),0)-

(11.9) Continuing with (11.6), elementary linear algebra shows that when 6 = 1
S = Lo + L.w)- (35)

The argument is as follows. Firstly, inspection of the gram matrix shows that the
socle has dimension 3. Secondly the ideal generated by a1 acts as 0 on S o for
A =3, but the subspace of S(1),0) on which the ideal generated by a (1) acts as 0
is easily seen to be empty:

e[V s ey ) = ag 0 (et aa ) P

so the subspace has a3 = 0 (and a; = ay = 0 by symmetry, and hence ay = 0).

Meanwhile, we see from (9.3) that all the Sy, except S(a),) are simple. Thus
in fact S3),0) and S21),0) are simple-projective and the big sequence in (33) does
split. But then by (28) and (35) the restriction includes

Py, = S0 + S),q)), (36)

50 S((1),0) + S(1),1)) in (33) does not split.

By (11.8) we have that res3(8((0)7(1))) is also projective. Indeed it contains
P(a),ay)- So by (36) ress(S(g) ay) = L),y and (34) is non-split.

11.3 General [

Let A = (AL A2 -+ )XY Fm € 44! be a multi-partition. For 1 < j <[ we define
add;()) to be the set of all multi-partitions obtained from A by adding an addable
box to the Young diagram of M, and rem;()\) to be the set of all multi-partitions
obtained from A by removing a removable box from the Young diagram of M.

(11.10) THEOREM. Let res, : P, — mod — P, — mod denote the natural re-

striction corresponding to the inclusion P\ — PZJrl gwen by d — 1 ®d. For
A= NN M) Em e AP the module Tes, (SyTY) has a filtration by stan-
dard/Specht modules. Specifically there is a short exact sequence of P.-modules

0 — kAsp — resn(SXH) — _'_ﬁeaddl,l(A)Sg —0 (37)

Where kASp = —I_uEadd (remiy1 (A S + —I_uEaddl (remq (X S + —l_uEreml S,

e
1<i<l—-1
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Proof. We organise the set BSAP of basis diagrams of Sg“ into [ + 2 subsets denoted
Bs)‘—p(i), i=1,2,---,1,',0, containing diagrams in which the first vertex is:

1. a “propagating singleton”. This subset is denoted by B3 (1).

2. part of a co-t propagating part, for ¢ = 2,--- ,[. This subset is denoted by
B2 (i).
sp

3. part of a co-1 propagating part p with |cora(p)| > [. This subset is denoted
by Bs)‘—p(l’ ).

4. part of a non-propagating part. This subset is denoted by B2 (0).

We proceed organisationally as for Theorem 11.3.
Case 1. This is similar to Theorem 11.3. Here the factor associated to ! is
the restriction of the Specht module S|y1| to S|y 1, and this gives the submodule

F erem ST in (37).

Case 2. Here be B2 5 (1) passes on restriction to one fewer co-i line and one more
co-(i — 1) line (a mild generahsatlon of the | = 2 case). Hence we have restriction
of the factor S|y and induction in the factor Syi-1. This case gives the submodule
—l_,ueaddz L (rems(A) Sy Of resn(S”H) in (37), for each 1 =2,--- |l.

Case 3. Here we remove from co-1 and add to co-l. Hence we have induction
in the factor Sjy and restriction in the factor S)i. This gives the submodule
+,u€addl(rem1 )Sit of res, (S in (37).

Case 4. Here we add to co-(I — 1). Hence we have induction in the factor
Sp-1). By the argument we have in the proof of Theorem 11.3 Case 4 the factor
—I_MEaddl N S is not necessarily a submodule of resn(S”“) This leads to position

Of +H€addl71 A)Sﬁ (37) D

12 The fusion y-functor

In this paper we have developed tonal analogues of most of the tools used classically
to determine the representation theory of the ordinary partition algebra [38]. The
remaining key ingredient to develop is a tonal analogue of the alcove geometrics.
We address this problem elsewhere. Finally in this paper however, we determine a
small but interesting part of the representation theory of the F,, cases, by a striking
localisation functor.

Suppose n even and define

e, = a®n/2 _ A12A34...An_1n

(12.1) PROPOSITION. e, E,e; = P, )5
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Proof. Consider the picture:

It will be evident that inserting F,, into the box defines a map to P, ». It is straight-
forward to check that the map is surjective. O]

It follows that P, /;-mod fully embeds in E,-mod, and hence that E, is non-
semisimple whenever P, /5 is non-semisimple. The structure of P, is given in (38].
Thus we have determined another (small but interesting) part of the structure of E,,.
In particular we may deduce that non-negative integer ¢ values are non-semisimple
for sufficienly large n. (Confer for example [43], [19].)
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Appendix

A Partition category composition

For S a set let Pg denote the set of set partitions of S. Let n := {1,2,..,n} and
n':={1',2,..,n'} and so on; and P, ,, := Puum.

Given a graph g = (V, F) then 7(g) € Py denotes the partition according to
connected components of g. Given a graph g = (V, F) with V2 n U m’ then
Tnm(9) € Pp.m denotes the partition according to connected components of g.

Given graphs g = (V, E), ¢’ = (V', E’) then graph

g9 =VUV EUEFE)
Given a graph g with V' =n Um’ and a graph ¢’ with V' =m U’ then

9ld' = g4+.9" (38)

where graph g, = (V, F,) is g with vertices i’ (i € m) replaced by i”; and graph
g" is g’ with vertices i € m replaced by " (so V, N V' =m").
A connected component of g|g’ is internal if it intersects neither n or . Define

c(glg’) as the number of internal components. Define
* o Pn,m X Pm,l — kpn,l

as follows. For p € P, ,, pick any graph with 7(¢g) = p; and similarly for p’ € P,,;.
Then

D * p’ — 5C(g‘gl)ﬁnz(g|g')

(A.1) THEOREM. [37] The composition * is well-defined and, extended k-linearly,

makes kP, , an associative unital algebra; and (k:Pn,m)n meNg @ k-linear category. [
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