

1 **Hofbauer cells in pregnancies complicated by gestational diabetes mellitus and**
2 **pathological fetal growth.**

3 Georgia Fakonti¹, Georgia Mappa², Nicolas Orsi², Eleanor M. Scott¹, Beth Holder^{3*},
4 Karen Forbes^{1*}

5 ¹Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds,
6 Leeds, United Kingdom

7 ²Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United
8 Kingdom

9 ³Institute of Reproductive Biology, Imperial College London, London, United Kingdom

10 *corresponding authors

11 **Abstract**

12 **Problem:** Gestational diabetes mellitus (GDM) increases the risk of large-for-
13 gestational-age (LGA) birth and long-term cardiometabolic complications in offspring,
14 particularly in males. These outcomes are associated with altered placental
15 vascularisation, but the underlying mechanisms remain poorly defined. Hofbauer cells
16 (HBCs) are fetal-origin macrophages located in the villous stroma with established
17 roles in immune regulation and vascularisation.

18 **Method of Study:** This study investigated whether HBC abundance and phenotype
19 are associated with fetal growth, fetal sex and placental vascularisation in term
20 placentae from non-GDM and GDM pregnancies. Pan-macrophage (CD14, CD68),
21 HBC-enriched (FOLR2, VSIG4), M1 (CD86), and M2 (CD163, MRC1) markers were
22 assessed by RT-qPCR and quantitative immunohistochemistry.

23 **Results:** In both non-GDM and GDM placentae, all markers, except CD86 were
24 detected, supporting an M2-like HBC phenotype. In GDM placentae, the number of
25 pan-macrophage (CD68), HBC-enriched (FOLR2), and M2-associated (CD163,
26 MRC1) cells were reduced in terminal villi compared with non-GDM controls ($p<0.05$;
27 $n=9$ non-GDM; $n=9$ GDM), indicating reduced HBC abundance without phenotypic
28 switching. Reduced expression of HBC-enriched (FOLR2, VSIG4) and M2-associated
29 (CD163) transcripts supported these findings($p<0.05$; $n=18$ non-GDM and $n=19$
30 GDM). No further differences were observed following stratification by fetal growth or
31 sex. HBC-related gene expression correlated positively with the endothelial marker
32 PECAM1/CD31, in both non-GDM and GDM placentae ($r \geq 0.5$, $p<0.05$)

33 **Conclusions:** HBCs abundance is reduced in GDM placentae independently of fetal
34 growth or sex, whilst HBC phenotype is preserved. Reduced HBC abundance may
35 contribute to placental vascular alterations that are characteristic of GDM.

36

37 **Keywords:** Gestational diabetes mellitus, GDM, placenta, macrophages, Hofbauer
38 cells, LGA

39

40 **1. Introduction**

41 Diabetes in pregnancy is considered a high-risk condition for both mother and
42 offspring. Pregnant women with diabetes, either pre-existing or arising during
43 pregnancy, known as gestational diabetes mellitus (GDM), have an increased risk of
44 pregnancy complications. These include complications related to birth outcome
45 (stillbirth, miscarriage, preterm birth) and offspring health (later development of
46 obesity, diabetes, and cardiovascular diseases) (Clement et al., 2024; Ye et al., 2022).
47 Diabetes in pregnancy is also associated with impaired fetal cardiac function and

48 structure, suggesting that cardiovascular diseases may be initiated at early stages of
49 fetal development (Depla et al., 2021; Mahadevan et al., 2023). Babies born to
50 mothers with diabetes have high risk of pathological fetal growth and are often large
51 for gestational age (LGA; >90th centile), rather than appropriate for gestational age
52 (AGA) (Bommarito et al., 2023; Murray and Reynolds, 2020). This can lead to several
53 early-life and long-term complications, such as obesity and metabolic conditions, with
54 male offspring at particularly high risk (Li et al., 2017; Nielsen et al., 2012). Despite
55 these well-established clinical associations, the placental immune mechanisms linking
56 maternal diabetes to abnormal fetal growth and adverse pregnancy outcomes remain
57 poorly defined.

58 Several theories on the origin of fetal growth complications in diabetes have been
59 proposed, including the impact of maternal hyperglycaemia and fetal hyperinsulinemia
60 (Leach et al., 2009), with even subtle glucose changes during pregnancy reported to
61 impact growth (Law et al., 2015; Scott et al., 2022). However, the placental molecular
62 and cellular mechanisms that drive the increased risk of pregnancy complications and
63 LGA offspring remain largely unknown. Research increasingly supports the
64 Developmental Origins of Health and Disease (DOHaD) hypothesis, suggesting that
65 adult disease risk may be programmed during early development (Lacagnina, 2019).
66 Adverse *in utero* conditions can shape fetal development through long-lasting
67 programming effects, including on immune development and function (Chen et al.,
68 2016). This positions pregnancy as a critical window during which placental
69 dysfunction may influence both short-and long-term outcomes.

70 Situated at the interface between the maternal and fetal circulations, the placenta is
71 highly sensitive to changes in the maternal environment. Within the placental villous
72 tree, terminal villi are the primary site of maternal-fetal exchange (Erlich et al., 2019),

73 due to their minimal diffusion distance between maternal and fetal blood. This close
74 proximity may render terminal villi particularly vulnerable to metabolic and
75 inflammatory alterations associated with GDM (Byford et al., 2021; Owen et al., 2024).
76 Indeed, GDM placentae exhibit alterations in placental inflammatory mediators, villous
77 maturity, placental vasculature (such as reduced branching and increased capillary
78 density), and extracellular matrix (Kang et al., 2022; Lu et al., 2022; Radaelli et al.,
79 2003). However, the mechanisms driving these changes and their relation to fetal
80 growth in GDM remain elusive.

81 Hofbauer cells (HBCs)- fetal-origin macrophages, are abundant within terminal villi and
82 are well placed to mediate alterations associated with pathological fetal growth. HBCs
83 play established roles in immune regulation (Fakonti et al., 2022), tissue growth, and
84 remodelling (Reyes and Golos, 2018; Seval et al., 2007), and interact closely with
85 mesenchymal and endothelial cells to influence villous development (Ingman et al.,
86 2010). Given their involvement in inflammation and remodelling, alterations in HBC
87 abundance or phenotype could plausibly contribute to placental dysfunction and
88 abnormal fetal growth in GDM. GDM is characterised by a chronic low-grade
89 inflammatory state, which may exacerbate placental metabolic and vascular
90 dysfunction (Di Simone et al., 2008, 2006; Mallardo et al., 2021). However, HBC
91 abundance and phenotype in terminal villi and their potential role in pathological fetal
92 growth in GDM remain poorly defined.

93 Macrophages are often categorised into classically-activated (M1; pro-inflammatory)
94 and alternatively-activated (M2; anti-inflammatory/tissue-remodelling) phenotypes.
95 Their polarisation from M0 depends on environmental signals that induce expression
96 of different markers (e.g. M1:CD80, CD86 and M2: MRC1, CD163) and secretion of
97 distinct cytokines. Although, this classification is oversimplified and there are many

98 subtypes beyond the M1/M2 dichotomy, HBCs seem to maintain an anti-
99 inflammatory/tissue remodelling phenotype even in the presence of infection and are
100 considered to maintain a M2 phenotype in diabetes (Fakonti et al., 2022; Schliefsteiner
101 et al., 2017). In this study we quantified the abundance of HBCs in terminal villi and
102 assessed the expression of pan-macrophage (CD14, CD68), HBC-enriched (FOLR2
103 and VSIG4) (Thomas et al., 2020), M1 (CD86), and M2 (CD163 and MRC1) markers
104 placentas from non-GDM and GDM pregnancies with AGA or LGA infants. We further
105 examined whether HBC abundance or phenotype was associated with fetal sex or
106 markers of villous vascularisation.

107

108 **2. Materials and methods**

109 **2.1 Patient groups**

110 All research was conducted following ethical approval from North West Regional
111 Ethics Committee (08/H1010/55+5) and London Riverside Research Ethics
112 Committee under the REC reference number 18/LO/0067 and IRAS project ID
113 234385. Pregnant women were recruited following written informed consent at Leeds
114 Teaching Hospitals Trust or Manchester University NHS Foundation Trust. Placentae
115 from term (\geq 37 weeks of gestation, live births) singleton uncomplicated pregnancies
116 and pregnancies complicated by GDM with and without pathological fetal growth were
117 studied. GDM was diagnosed by routine oral glucose tolerance test and fetal growth
118 was calculated by estimating the fetal percentile using the World Health Organization
119 growth calculator (“Fetal Growth Calculator,” n.d.; Kiserud et al., 2018). Babies born \geq
120 90th centile were classified as LGA, and all $>$ 10th and $<$ 90th centile were classified as
121 AGA. The human tissue processing, data curation and analysis were conducted in
122 accordance with Declaration of Helsinki guidelines, General Data Protection

123 Regulation, and Human Tissue Act. Two independent patient cohorts were utilised for
124 RT-qPCR and immunohistochemistry studies.

125

126 **2.2 Tissue processing**

127 Placental tissue was collected within 30-60 minutes of delivery. Fetal membranes and
128 cord were removed, and the trimmed placenta was weighed. Three full thickness
129 portions, approximately 2cm³, were taken at random from the centre, edge and middle
130 regions of the placenta and washed in phosphate buffered saline (PBS). For
131 immunohistochemistry experiments, a full-thickness sample (~1cm³) was dissected,
132 washed in PBS, fixed in 10% neutral buffered formalin (HT501128, Sigma-Aldrich),
133 and embedded in paraffin. For RNA analyses, the chorionic and basal plate were
134 removed before each portion was dissected further into ~0.25cm³ pieces which were
135 refrigerated in RNAlater® overnight, snap frozen, and transferred to -80°C for future
136 RNA extraction.

137

138 **2.3 Immunohistochemistry**

139 Tissue sections (5μm) were mounted on poly-L-lysine coated slides and then heated
140 to 60°C for 20min, followed by incubation in HistoClear (NAT1330D2, SLS) for
141 deparaffinization, and rehydration by passing through graded ethanol baths. Heat-
142 induced antigen retrieval was performed using sodium citrate (0.01M, pH 6.0, 2x5min)
143 followed by quenching endogenous peroxidase activity by incubating for 15min with
144 3% hydrogen peroxide. Slides were washed with Tris Buffered Saline (TBS) (0.02M
145 Trisma Base, 0.15M NaCl, pH=7.4, 2x5min) and blocked with bovine serum albumin
146 (5% in TBS) for 1h. Sections were incubated overnight at 4°C with primary antibody
147 or IgG control (**Table 1**), then washed and incubated with biotinylated secondary

148 antibody for 1h at room temperature (**Table 1**). After further TBS washes, avidin
149 peroxidase was applied (A3151, Sigma-Aldrich) (0.02µM in high salt TBS; 0.005M
150 Trisma Base, 0.3M NaCl) for 30min. ImmPACT DB EqV substrate kit, peroxidase (SK-
151 4103, Vector lab) used for detection with haematoxylin (1092530500, Merck)
152 counterstaining. Slides were dehydrated, cleared in HistoClear and mounted in DPX
153 (Thermo Fisher Scientific). To confirm that the absence of staining (CD86) in
154 placental tissue was due to antigen absence and not procedure, positive controls
155 (human myometrium) were used.

156 Microphotographs obtained using Zeiss Axioscan Z1 slide scanner (20x
157 magnification). Analysis was performed semi-automated and blinded to any clinical
158 data in QuPath (Bankhead et al., 2017). Colour deconvolution was applied to obtain
159 single stained-haematoxylin only images to minimise the risk of selection bias.
160 Terminal villi (17/image) were selected based on consistent morphological criteria,
161 such as the size as they are typically smaller than intermediate and stem villi with
162 numerus capillaries and minimal dilation distance from the syncytiotrophoblast layer,
163 with similar total area between groups (**Supplementary Figure 1-4**). A border was
164 manually drawn around each villi, cells within the villus stroma, but outside of the fetal
165 vessels were counted, and data were normalised to villous area (mm²) using
166 standardised QuPath pipelines (Bankhead et al., 2017).

167

168 **2.4 RNA extraction, cDNA synthesis, and quantitative reverse transcription PCR
(RT-qPCR)**

170 Total RNA was extracted from 0.25g of placenta tissue using the mirVanaTM miRNA
171 isolation kit (AM1561, Thermo Fisher Scientific) according to the manufacturer's
172 guidelines for frozen tissue and purified with the RNA clean and concentrator-5 kit

173 (R1013, Zymo Research), including DNase I treatment before RNA clean-up
174 according to manufacturer's instructions. The concentration and quality of the eluted
175 RNA was measured with a NanoDrop ND-1000 Spectrophotometer. RNA (100ng) was
176 converted to cDNA using the AffinityScript cDNA Synthesis Kit (200436, Agilent)
177 following the manufacturer's instructions. Controls with no reverse transcriptase and
178 no template were also prepared. RT-qPCR was performed using qPCR Brilliant III
179 SYBR MM with ROX kit (600882, Agilent) and gene specific primers (Integrated DNA
180 Technologies) (**Table 2**) following the manufacturer's instructions using LightCycler96
181 (Roche) with the following parameters: 1 cycle (3min/95°C), 40 cycles (20 sec/95°C,
182 20sec/primer-specific annealing temperature). A melting curve was included by
183 incubating the samples at 95°C for 1min, followed by incubation at 55 °C for 30 sec.
184 The temperature was then increased to 95°C, ramping at 0.2°C/cycle. For each plate,
185 an interplate calibrator sample was included. All samples were run in duplicates (Ct
186 difference between duplicates <0.5) and the $\Delta\Delta C_t$ method was used to analyse the
187 data.

188

189 **2.5 Statistical analysis**

190 Data distribution was assessed using the Shapiro-Wilk test. Continuous variables with
191 normal distribution are shown as mean \pm standard deviation (SD) and analysed by
192 unpaired t-test (two-tailed) or one-way ANOVA followed by Tukey's post-hoc test
193 (equal SD) or Brown-Forsythe and Welch ANOVA followed by Dunnett T3 post-hoc
194 test (non-equal SD). Continuous variables that were not normally distributed are
195 presented as median (q1, q3) and were assessed using Mann-Whitney (two-tailed) or
196 Kruskal-Wallis with Dunn's post-hoc test. Categorical variables are presented as
197 absolute and relative frequencies (%) and analysed by Fisher-exact or Chi-squared

198 tests. The interaction between diabetes and fetal growth, or fetal sex was assessed
199 by two-way ANOVA. When data was not normally distributed, data were transformed
200 using natural logarithm (ln). Data was considered statistically significant when $p<0.05$.
201 Analysis was performed using GraphPad (v.10.3.1) and correlation matrix was created
202 using the corrplot package in R (v.4.3.1).

203 **3. Results**

204 **3.1 Expression levels and phenotype of HBCs in GDM placentae**

205 GDM and non-GDM participants were comparable with respect to maternal age, parity,
206 smoking status, booking BMI, fetal sex and gestational age at delivery for both RT-
207 qPCR and immunohistochemistry analyses (**Table 3**). Pan macrophage (M0; CD68),
208 M2-associated (MRC1, CD163) and HBC-enriched (FOLR2) markers were detected
209 at both the transcript (**Figure 1A-C**) and protein (**Figure 2A-D**) levels in placental
210 villous tissue from both non-GDM and GDM pregnancies. The M1-associated marker
211 CD86, was undetectable in human placental tissue in either group (**Figure 2E**) despite
212 robust expression in human uterine tissue used as a positive control (**Figure 2F**).
213 At the transcript level, no differences were detected in the pan-macrophage markers
214 CD14 ($p=0.77$) or CD68 ($p=0.10$) expression between groups (**Figure 1A**). In contrast,
215 IHC revealed a significant reduction in the number of CD68 +ve cells, per villous area
216 (mm^2) in GDM placentae compared with non-GDM (non-GDM: 522 ± 178 , GDM: 337
217 ± 119 ; $p<0.01$) (**Figure 2A**).

218 Expression of the HBC-enriched markers FOLR2 and VSIG4 was reduced at the
219 mRNA levels in GDM placentae (both $p=0.03$; **Figure 1C**), accompanied by fewer
220 HBCs (FOLR2+ cells) per villous area (non-GDM: 1223 ± 5883 cells/ mm^2 ; GDM:
221 750 ± 427 cells/ mm^2 ; $p=0.03$; **Figure 2D**). Similarly, CD163 mRNA expression was

222 lower in GDM placentas ($p=0.01$; **Figure 1B**), with a corresponding reduction in the
223 number of CD163+ cells (non-GDM: 1122 ± 268 cells/mm 2 ; GDM: 857 ± 291
224 cells/mm 2 ; $p=0.03$; **Figure 2B**). Although MRC1 transcript levels was not different
225 between groups (**Figure 1B**), the number of MRC1+ cells was significantly reduced
226 in GDM placentae (non-GDM: 881 ± 267 cells/mm 2 ; GDM: 430 ± 242 cells/mm 2 ;
227 $p<0.001$; **Figure 2C**), potentially suggesting alterations in post transcriptional control
228 of MRC1.

229

230 **3.2 Effect of GDM and pathological fetal growth on HBC number and phenotype**
231 To determine whether changes in HBC abundance or phenotype were associated with
232 pathological fetal growth, samples were stratified based by birthweight category (AGA
233 compared to LGA) **Supplementary Table 1-2**). No differences in pan-macrophage,
234 HBC-enriched, M1 or M2 -associated markers were observed between AGA and LGA
235 groups in either non-GDM or GDM placentae (**Figure 3**).

236

237 **3.3 Fetal sex differences in HBC number and phenotype**

238 Given reported sex differences in perinatal outcomes (Hu et al., 2020; Retnakaran and
239 Shah, 2015) and placental immune responses (Pantazi et al., 2022), data were
240 stratified by fetal-sex (**Supplementary Tables 3 & 4**). No sex-specific differences
241 were detected in transcript or abundance of pan-macrophage- or HBC-enriched
242 markers in non-GDM or GDM placentae (**Figure 3A & B**), indicating that the observed
243 alterations associated with GDM were not sex-dependent.

244

245 **3.4 Correlation of HBCs and placental vascular markers**

246 HBCs exhibit an M2 phenotype, and display close proximity to placental vasculature
247 (**Figure 4A**). As PECAM1/CD31 expression was previously shown to be reduced in
248 GDM compared to non-GDM placentae (Byford et al., 2025), we assessed
249 associations between PECAM1 mRNA expression and HBC-related markers (**Figure**
250 **4B-C**). In non-GDM placentae, PECAM1 expression correlated positively with CD163
251 ($r=0.62$; $p\leq0.01$), VSIG4 ($r=0.61$; $p\leq0.01$) and FOLR2 ($r=0.58$; $p<0.05$) (**Figure 4B**).
252 Similar associations were observed in GDM placentae for PECAM1 with FOLR2;
253 ($r=0.51$; $p<0.05$) and CD163 ($r=0.57$; $p<0.05$) (**Figure 4C**). Correlation matrices further
254 revealed strong positive relationships between macrophage- and HBC-enriched
255 markers in both non-GDM ($r\geq0.5$, $r\leq0.86$, $p<0.05$) and GDM placentae ($r\geq0.75$, $r\leq0.89$;
256 $p\leq0.001$) (**Figure 4B-C**).

257

258 **4. Discussion**

259 This study investigated HBC numbers and phenotype in term placentae from non-
260 GDM and GDM pregnancies, exploring their associations with LGA, fetal sex, and
261 placental vascularisation. We demonstrate that HBC, abundance but not phenotype,
262 is reduced in term placentae from pregnancies complicated by GDM. The consistency
263 of our findings at both the transcript and protein level across two independent cohorts
264 strengthens confidence that GDM alters fetal macrophage presence within the villous
265 tree. Importantly, these changes were independent of fetal growth status or fetal sex,
266 indicating that reduced HBC abundance is a fundamental placental consequence of
267 GDM rather than an adaptive response to fetal overgrowth, and is unlikely to contribute
268 to LGA development.

269 The observed decrease in the number of HBCs in terminal villi of GDM placentae
270 aligns with a previous studies showing a reduction in FOLR2 gene expression in GDM
271 placental lysates (Alur et al., 2021), although it contrasts with other studies showing
272 increased gene expression of macrophage genes and a higher number of HBCs in
273 placentae from GDM placentae (Dairi et al., 2020; Kerby et al., 2021; Mrizak et al.,
274 2014; Yu et al., 2013). These discrepancies could arise from variations in demographic
275 characteristics among participants (Koru-Sengul et al., 2016; Nandy et al., 2011),
276 however, it is more likely that they arise from methodological differences. Earlier
277 studies quantified HBCs across whole sections without controlling for villous subtype
278 or villous area or villous type-factors that can strongly influence cell density. We
279 focused on terminal villi as they are more likely to be highly influenced by components
280 of the maternal circulation. By restricting our analysis to morphologically matched
281 terminal villi and normalising to villous area, we minimised sampling bias and obtained
282 a more accurate and anatomically meaningful measure of HBC abundance. This
283 methodological clarity likely explains the more coherent patterns observed across our
284 datasets. The overall reduction in HBC-enriched gene expression and HBC number
285 suggests a disruption in fetal macrophage presence that could influence villous
286 immune homeostasis.

287 Consistent with previous literature, our study found no evidence of M1 polarisation.
288 M1 markers were undetectable in the placenta villous tree, whereas M2 macrophage
289 markers were consistently detected at both mRNA and protein level, supporting the
290 concept that HBCs exhibit an M2 anti-inflammatory, tissue-remodelling phenotype
291 even in the context of metabolic stress (Schliefsteiner et al., 2017; Zhang et al., 2022).
292 The preserved M2-like phenotype may reflect intrinsic fetal programming to protect the
293 developing fetus from an excessive inflammatory environment that is potentially

294 mediated by epigenetic regulation of M1 and M2 genes (Kim et al., 2012). It is likely
295 that a reduction in HBCs is associated with functional impacts in GDM placentae that
296 are associated with M2 phenotype macrophages. Although we investigated HBCs in
297 third trimester, their roles in early pregnancy may be distinct (Yoshida et al., 2025) and
298 potentially pivotal in influencing the placental vasculature and fetal growth (Thomas et
299 al., 2020). While GDM is typically diagnosed at 24-28 weeks, studying pregnancies
300 affected by pregestational diabetes could provide insight into how early metabolic
301 disturbances influence HBCs.

302 The placenta is a highly vascular organ and changes in placental vascular
303 development in GDM placentae have been reported (Huynh et al., 2015). HBCs are
304 anatomically positioned to influence villous angiogenesis, and their M2-like phenotype
305 is compatible with pro-angiogenic and tissue remodelling roles. We observed strong
306 positive correlations between HBC-enriched markers and the endothelial marker
307 PECAM1/CD31 in both groups, consistent with earlier reports that HBCs can release
308 angiogenic factors which assist endothelial network formation (Loegl et al., 2016).
309 However, these relationships are correlative. Term placentae represent the end of
310 gestation and do not permit inference regarding earlier developmental periods when
311 angiogenic pathways are most active. Whilst one study in first trimester placentae,
312 also reported a positive correlation between the number of vascular structures and
313 HBCs (Seval et al., 2007), this correlation does not show causation, and further
314 functional studies are needed to investigate this.

315 Macrophages are essential for preventing infection and HBCs have been shown to
316 respond to inflammatory stimuli (Pantazi et al., 2022). If HBCs act in this manner, the
317 observed reduction in HBC numbers in GDM placentae could potentially contribute to

318 an increased risk of fetal infection. Hyperglycaemia is known to impair innate immune
319 responses outside pregnancy, by enhancing macrophage pro-inflammatory cytokine
320 secretion and diminishing their phagocytic and pathogen-fighting abilities (Jafar et al.,
321 2016). Notably, a reduction in HBC numbers is also observed in conditions like
322 chorioamnionitis (Vinnars et al., 2010) and severe preeclampsia (Tang et al., 2013),
323 which are associated with a higher risk of infection and neurodevelopmental *sequelae*
324 in neonates (Beck et al., 2021; Rorman et al., 2020). Consistent with this notion, infants
325 of GDM mothers are more likely to experience infectious morbidity (Zolotareva et al.,
326 2022). Therefore, preserving both the quantity and anti-inflammatory properties of
327 HBCs in GDM is likely vital for protecting the fetus and ensuring long-term offspring
328 health. Although there has been some investigation into the role of HBCs in infection
329 in normal pregnancies (Fakonti et al., 2022), studies specifically examining HBC
330 responses to infection in GDM are lacking.

331 Despite these interesting findings, this study has some limitations. Because tissue was
332 obtained from archived collections, the numbers of available samples, particularly for
333 immunohistochemistry, remained modest. Moreover, glucose control data were not
334 available, preventing assessment of the influence of glycaemic severity on HBCs.
335 Finally, our work focused on HBC gene expression and abundance, rather than
336 functional roles, and mechanistic implications cannot be inferred from these data.
337 Functional studies across gestation are required to determine the biological
338 significance of reduced HBC abundance.

339 In summary, our findings indicate that GDM is associated with reduced HBC
340 abundance in terminal villi while preserving their M2-like phenotype. These alterations
341 may contribute to the broader alterations in placental villous homeostasis observed in

342 GDM. Further mechanistic studies are needed to determine the developmental timing
343 and functional impact of these changes.

344 **Acknowledgements**

345 GF is funded by a Leeds Doctoral Scholarship from University of Leeds. This work is
346 supported by a Bioscientifica Trust Grant (GF) and grants from UK Research and
347 Innovation (UKRI) and Medical Research Council (MR/R023166/1 and
348 MR/Y003659/1). We thank the participants who donated their placentae, and staff in
349 the delivery units that assisted with placentae collections. We gratefully acknowledge
350 the Bio-imaging facility at University of Leeds, especially Dr Sally Boxall and Dr Ruth
351 Hughes, for their support with slide scanner image acquisition.

352 **Data availability**

353 All data underlying the results are available as part of the article and no additional
354 source data are required.

355 **References**

356

357 Alur, V., Raju, V., Vastrand, B., Tengli, A., Vastrand, C., Kotturshetti, S., 2021.
358 Integrated bioinformatics analysis reveals novel key biomarkers and potential
359 candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 41.
360 <https://doi.org/10.1042/BSR20210617>
361 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G.,
362 Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James,
363 J.A., Salto-Tellez, M., Hamilton, P.W., 2017. QuPath: Open source software for

364 digital pathology image analysis. *Scientific Reports* 2017 7:1 7, 1–7.
365 <https://doi.org/10.1038/s41598-017-17204-5>

366 Beck, C., Gallagher, K., Taylor, L.A., Goldstein, J.A., Mithal, L.B., Gernand,
367 A.D., 2021. Chorioamnionitis and Risk for Maternal and Neonatal Sepsis: A
368 Systematic Review and Meta-analysis. *Obstetrics and gynecology* 137, 1007.
369 <https://doi.org/10.1097/AOG.0000000000004377>

370 Bommarito, P.A., Cantonwine, D.E., Stevens, D.R., Welch, B.M., Davalos, A.D.,
371 Zhao, S., McElrath, T.F., Ferguson, K.K., 2023. Fetal growth trajectories of
372 babies born large-for-gestational-age in the LIFE CODES Fetal Growth Study.
373 *Am J Obstet Gynecol* 228, 340.e1. <https://doi.org/10.1016/J.AJOG.2022.10.006>

374 Byford, A., Baird-Rayner, C., Forbes, K., 2021. Don't sugar coat it: the effects of
375 gestational diabetes on the placental vasculature. *Biochem (Lond)* 43, 34–39.
376 https://doi.org/10.1042/BIO_2021_117

377 Byford, A.R., Fakonti, G., Shao, Z., Soni, S., Earle, S.L., Bajarwan, M., Morley,
378 L.C., Holder, B., Scott, E.M., Forbes, K., 2025. Endothelial-to-mesenchymal
379 transition in the fetoplacental macrovasculature and microvasculature in
380 pregnancies complicated by gestational diabetes. *J Physiol* 1–21.
381 <https://doi.org/10.1113/JP287931>

382 Chen, T., Liu, H.X., Yan, H.Y., Wu, D.M., Ping, J., 2016. Developmental origins
383 of inflammatory and immune diseases. *Mol Hum Reprod* 22, 858.
384 <https://doi.org/10.1093/MOLEHR/GAW036>

385 Clement, N.S., Abul, A., Farrelly, R., Murphy, H.R., Forbes, K., Simpson, N.A.B.,
386 Scott, E.M., 2024. Pregnancy outcomes in type 2 diabetes: a systematic review
387 and meta-analysis. *Am J Obstet Gynecol*.
388 <https://doi.org/10.1016/J.AJOG.2024.11.026>

389 Dairi, A.S., Himayda, A.S.A., Moulana, A.A.R., Bukhari, H.S.H., Hakeem, I.M.,
390 Elbarrany, W.G.E.A.E., 2020. The Effect of Gestational Diabetes Mellitus on the
391 Chorionic Villi of Human Placenta Among Saudi Arabian Mothers: A Quantitative
392 and Comparative Study. *Cureus* 12. <https://doi.org/10.7759/CUREUS.11130>

393 Depla, A.L., De Wit, L., Steenhuis, T.J., Slieker, M.G., Voormolen, D.N.,
394 Scheffer, P.G., De Heus, R., Van Rijn, B.B., Bekker, M.N., 2021. Effect of
395 maternal diabetes on fetal heart function on echocardiography: systematic
396 review and meta-analysis. *Ultrasound Obstet Gynecol* 57, 539–550.
397 <https://doi.org/10.1002/UOG.22163>

398 Di Simone, N., Di Nicuolo, F., Marzioni, D., Castellucci, M., Sanguinetti, M.,
399 D'Lpollo, S., Caruso, A., 2008. Resistin modulates glucose uptake and
400 glucose transporter-1 (GLUT-1) expression in trophoblast cells. *J Cell Mol Med*
401 13, 388. <https://doi.org/10.1111/J.1582-4934.2008.00337.X>

402 Di Simone, N., Di Nicuolo, F., Sanguinetti, M., Castellani, R., D'Asta, M.,
403 Caforio, L., Caruso, A., 2006. Resistin regulates human choriocarcinoma cell
404 invasive behaviour and endothelial cell angiogenic processes. *J Endocrinol* 189,
405 691–699. <https://doi.org/10.1677/JOE.1.06610>

406 Erlich, A., Pearce, P., Mayo, R.P., Jensen, O.E., Chernyavsky, I.L., 2019.
407 Physical and geometric determinants of transport in fetoplacental microvascular
408 networks. *Sci Adv* 5.
409 https://doi.org/10.1126/SCIADV.AAV6326/SUPPL_FILE/AAV6326_SM.PDF

410 Fakonti, G., Pantazi, P., Bokun, V., Holder, B., 2022. Placental Macrophage
411 (Hofbauer Cell) Responses to Infection During Pregnancy: A Systematic
412 Scoping Review. *Front Immunol* 12, 1–20.
413 <https://doi.org/10.3389/fimmu.2021.756035>

414 Fetal Growth Calculator [WWW Document], n.d. URL
415 <https://srhr.org/fetalgrowthcalculator/#/> (accessed 9.17.24).

416 Hu, J., Ge, Z., Xu, Q., Shen, S., Wang, Y., Zhu, D., Bi, Y., 2020. Influence of
417 fetal sex on perinatal outcomes in women with gestational diabetes mellitus.
418 Diabetes Metab Res Rev 36, e3245. <https://doi.org/10.1002/DMRR.3245>

419 Huynh, J., Dawson, D., Roberts, D., Bentley-Lewis, R., 2015. A SYSTEMATIC
420 REVIEW OF PLACENTAL PATHOLOGY IN MATERNAL DIABETES
421 MELLITUS. Placenta 36, 101.
422 <https://doi.org/10.1016/J.PLACENTA.2014.11.021>

423 Ingman, K., Cookson, V.J.K.W., Jones, C.J.P., Aplin, J.D., 2010.
424 Characterisation of Hofbauer Cells in First and Second Trimester Placenta:
425 Incidence, Phenotype, Survival in vitro and Motility. Placenta 31, 535–544.
426 <https://doi.org/10.1016/J.PLACENTA.2010.03.003>

427 Jafar, N., Edriss, H., Nugent, K., 2016. The Effect of Short-Term Hyperglycemia
428 on the Innate Immune System. Am J Med Sci 351, 201–211.
429 <https://doi.org/10.1016/J.AMJMS.2015.11.011>

430 Kang, Y.E., Yi, H.S., Yeo, M.K., Kim, J.T., Park, D., Jung, Y., Kim, O.S., Lee,
431 S.E., Kim, J.M., Joung, K.H., Lee, J.H., Ku, B.J., Lee, M., Kim, H.J., 2022.
432 Increased Pro-Inflammatory T Cells, Senescent T Cells, and Immune-Check
433 Point Molecules in the Placentas of Patients With Gestational Diabetes Mellitus.
434 J Korean Med Sci 37. <https://doi.org/10.3346/JKMS.2022.37.E338>

435 Kerby, A., Shingleton, D., Batra, G., Sharps, M.C., Baker, B.C., Heazell, A.E.P.,
436 2021. Placental morphology and cellular characteristics in stillbirths in women
437 with diabetes and unexplained stillbirths. Arch Pathol Lab Med 145, 82–89.
438 <https://doi.org/10.5858/arpa.2019-0524-OA>

439 Kim, S.Y., Romero, R., Tarca, A.L., Bhatti, G., Kim, C.J., Lee, J., Elsey, A.,
440 Than, N.G., Chaiworapongsa, T., Hassan, S.S., Kang, G.H., Kim, J.S., 2012.
441 Methylome of Fetal and Maternal Monocytes and Macrophages at the Feto-
442 Maternal Interface. *Am J Reprod Immunol* 68, 8. <https://doi.org/10.1111/J.1600-0897.2012.01108.X>
443
444 Kiserud, T., Benachi, A., Hecher, K., Perez, R.G., Carvalho, J., Piaggio, G.,
445 Platt, L.D., 2018. The World Health Organization fetal growth charts: concept,
446 findings, interpretation, and application. *Am J Obstet Gynecol* 218, S619–S629.
447 <https://doi.org/10.1016/J.AJOG.2017.12.010>
448 Koru-Sengul, T., Santander, A.M., Miao, F., Sanchez, L.G., Jorda, M., Glück, S.,
449 Ince, T.A., Nadji, M., Chen, Z., Penichet, M.L., Cleary, M.P., Torroella-Kouri, M.,
450 2016. Breast cancers from black women exhibit higher numbers of
451 immunosuppressive macrophages with proliferative activity and of crown-like
452 structures associated with lower survival compared to non-black Latinas and
453 Caucasians. *Breast Cancer Res Treat* 158, 113. <https://doi.org/10.1007/S10549-016-3847-3>
454
455 Lacagnina, S., 2019. The Developmental Origins of Health and Disease
456 (DOHaD). *Am J Lifestyle Med* 14, 47.
457 <https://doi.org/10.1177/1559827619879694>
458 Law, G.R., Ellison, G.T.H., Secher, A.L., Damm, P., Mathiesen, E.R., Temple,
459 R., Murphy, H.R., Scott, E.M., 2015. Analysis of Continuous Glucose Monitoring
460 in Pregnant Women With Diabetes: Distinct Temporal Patterns of Glucose
461 Associated With Large-for-Gestational-Age Infants. *Diabetes Care* 38, 1319–
462 1325. <https://doi.org/10.2337/DC15-0070>

463 Leach, L., Taylor, A., Sciota, F., 2009. Vascular dysfunction in the diabetic
464 placenta: Causes and consequences. *J Anat* 215, 69–76.
465 <https://doi.org/10.1111/j.1469-7580.2009.01098.x>

466 Li, S., Zhu, Y., Yeung, E., Chavarro, J.E., Yuan, C., Field, A.E., Missmer, S.A.,
467 Mills, J.L., Hu, F.B., Zhang, C., 2017. Offspring risk of obesity in childhood,
468 adolescence and adulthood in relation to gestational diabetes mellitus: a sex-
469 specific association. *Int J Epidemiol* 46, 1533–1541.
470 <https://doi.org/10.1093/IJE/DYX151>

471 Loegl, J., Hiden, U., Nussbaumer, E., Schliefsteiner, C., Cvitic, S., Lang, I.,
472 Wadsack, C., Huppertz, B., Desoye, G., 2016. Hofbauer cells of M2a, M2b and
473 M2c polarization may regulate feto-placental angiogenesis. *Reproduction* 152,
474 447–455. <https://doi.org/10.1530/REP-16-0159>

475 Lu, S., Wang, J., Kakongoma, N., Hua, W., Xu, J., Wang, Y., He, S., Gu, H., Shi,
476 J., Hu, W., 2022. DNA methylation and expression profiles of placenta and
477 umbilical cord blood reveal the characteristics of gestational diabetes mellitus
478 patients and offspring. *Clin Epigenetics* 14, 1–16.
479 <https://doi.org/10.1186/S13148-022-01289-5/FIGURES/4>

480 Mahadevan, A., Tipler, A., Jones, H., 2023. Shared developmental pathways of
481 the placenta and fetal heart. *Placenta* 141, 35–42.
482 <https://doi.org/10.1016/J.PLACENTA.2022.12.006>

483 Mallardo, M., Ferraro, S., Daniele, A., Nigro, E., 2021. GDM-complicated
484 pregnancies: focus on adipokines. *Mol Biol Rep* 48, 8171–8180.
485 <https://doi.org/10.1007/S11033-021-06785-0>

486 Mrizak, I., Grissa, O., Henault, B., Fekih, M., Bouslema, A., Boumaiza, I.,
487 Zaouali, M., Tabka, Z., Khan, N.A., 2014. Placental infiltration of inflammatory

488 markers in gestational diabetic women. *Gen Physiol Biophys* 33, 169–176.

489 https://doi.org/10.4149/GPB_2013075

490 Murray, S.R., Reynolds, R.M., 2020. Short- and long-term outcomes of

491 gestational diabetes and its treatment on fetal development. *Prenat Diagn* 40,

492 1085–1091. <https://doi.org/10.1002/PD.5768>

493 Nandy, D., Janardhanan, R., Mukhopadhyay, D., Basu, A., 2011. Effect of

494 Hyperglycemia on Human Monocyte Activation. *J Investig Med* 59, 661.

495 <https://doi.org/10.231/JIM.0B013E31820EE432>

496 Nielsen, G.L., Dethlefsen, C., Lundbye-Christensen, S., Pedersen, J.F.,

497 Mølsted-Pedersen, L., Gillman, M.W., 2012. Adiposity in 277 young adult male

498 offspring of women with diabetes compared with controls: A Danish population-

499 based cohort study. *Acta Obstet Gynecol Scand* 91, 838.

500 <https://doi.org/10.1111/J.1600-0412.2012.01413.X>

501 Owen, M.D., Kennedy, M.G., Quilang, R.C., Scott, E.M., Forbes, K., 2024. The

502 role of microRNAs in pregnancies complicated by maternal diabetes. *Clin Sci*

503 138, 1179–1207. <https://doi.org/10.1042/CS20230681>

504 Pantazi, P., Kaforou, M., Tang, Z., Abrahams, V.M., McArdle, A., Guller, S.,

505 Holder, B., 2022. Placental macrophage responses to viral and bacterial ligands

506 and the influence of fetal sex. *iScience* 25, 105653.

507 <https://doi.org/10.1016/J.ISCI.2022.105653>

508 Radaelli, T., Varastehpour, A., Catalano, P., Hauguel-De Mouzon, S., 2003.

509 Gestational diabetes induces placental genes for chronic stress and

510 inflammatory pathways. *Diabetes* 52, 2951–2958.

511 <https://doi.org/10.2337/DIABETES.52.12.2951>

512 Retnakaran, R., Shah, B.R., 2015. Fetal Sex and the Natural History of Maternal
513 Risk of Diabetes During and After Pregnancy. *J Clin Endocrinol Metab* 100,
514 2574–2580. <https://doi.org/10.1210/JC.2015-1763>

515 Reyes, L., Golos, T.G., 2018. Hofbauer Cells: Their Role in Healthy and
516 Complicated Pregnancy. *Front Immunol* 9, 2628.
517 <https://doi.org/10.3389/fimmu.2018.02628>

518 Rorman, E., Freud, A., Wainstock, T., Sheiner, E., 2020. Maternal preeclampsia
519 and long-term infectious morbidity in the offspring – A population based cohort
520 analysis. *Pregnancy Hypertens* 21, 30–34.
521 <https://doi.org/10.1016/J.PREGHY.2020.04.010>

522 Schliefsteiner, C., Peinhaupt, M., Kopp, S., Lögl, J., Lang-Olip, I., Hiden, U.,
523 Heinemann, A., Desoye, G., Wadsack, C., 2017. Human Placental Hofbauer
524 Cells Maintain an Anti-inflammatory M2 Phenotype despite the Presence of
525 Gestational Diabetes Mellitus. *Front Immunol* 8.
526 <https://doi.org/10.3389/FIMMU.2017.00888>

527 Scott, E.M., Murphy, H.R., Kristensen, K.H., Feig, D.S., Kjolhede, K., Englund-
528 Ogge, L., Berntorp, K.E., Law, G.R., 2022. Continuous Glucose Monitoring
529 Metrics and Birth Weight: Informing Management of Type 1 Diabetes
530 Throughout Pregnancy. *Diabetes Care* 45, 1724–1734.
531 <https://doi.org/10.2337/DC22-0078>

532 Seval, Y., Korgun, E.T., Demir, R., 2007. Hofbauer Cells in Early Human
533 Placenta: Possible Implications in Vasculogenesis and Angiogenesis. *Placenta*
534 28, 841–845. <https://doi.org/10.1016/j.placenta.2007.01.010>

535 Tang, Z., Buhimschi, I.A., Buhimschi, C.S., Tadesse, S., Norwitz, E., Niven-
536 Fairchild, T., Huang, S.T.J., Guller, S., 2013. Decreased Levels of Folate

537 Receptor- β and Reduced Numbers of Fetal Macrophages (Hofbauer Cells) in
538 Placentas from Pregnancies with Severe Pre-Eclampsia. American Journal of
539 Reproductive Immunology 70, 104–115. <https://doi.org/10.1111/AJI.12112>
540 Thomas, J., Appios, A., Zhao, X., Dutkiewicz, R., Donde, M., Lee, Colin, Naidu,
541 P., Lee, Christopher, Cerveira, J., Liu, B., Ginhoux, F., Burton, G., Hamilton,
542 R.S., Moffett, A., Sharkey, A., McGovern, N., 2020. Phenotypic and functional
543 characterisation of first trimester human placental macrophages, Hofbauer cells.
544 Journal of Experimental Medicine 218, 1–17.
545 <https://doi.org/10.1101/2020.09.03.279919>
546 Vinnars, M.T.N., Rindsjö, E., Ghazi, S., Sundberg, A., Papadogiannakis, N.,
547 2010. The number of CD68(+) (Hofbauer) cells is decreased in placentas with
548 chorioamnionitis and with advancing gestational age. Pediatr Dev Pathol 13,
549 300–304. <https://doi.org/10.2350/09-03-0632-OA.1>
550 Ye, W., Luo, C., Huang, J., Li, C., Liu, Z., Liu, F., 2022. Gestational diabetes
551 mellitus and adverse pregnancy outcomes: systematic review and meta-
552 analysis. BMJ 377. <https://doi.org/10.1136/BMJ-2021-067946>
553 Yoshida, N., Appios, A., Li, Q., Hutton, J.P., Wood, G., Potts, M.,
554 Aleksandrowicz, J., Barrozo, E.R., Dover, F., Anderson, H., Stephens, K., Aye,
555 I.L.M.H., Thomas, J.R., Schenk, H.C.M., Bourke, A.M., Aiken, C.E., Moffett, A.,
556 Sharkey, A., Protasio, A. V., Aagaard, K.M., Edgar, J.R., Chung, B.Y.W.,
557 McGovern, N., 2025. Interactions between placental Hofbauer cells and L.
558 monocytes change throughout gestation. Sci Immunol 10, 3066.
559 <https://doi.org/10.1126/SCIENCEIMMUNOL.ADQ3066>
560 Yu, J., Zhou, Y., Gui, J., Li, A.Z., Su, X.L., Feng, L., 2013. Assessment of the
561 number and function of macrophages in the placenta of gestational diabetes

562 mellitus patients. *J Huazhong Univ Sci Technolog Med Sci* 33, 725–729.

563 <https://doi.org/10.1007/S11596-013-1187-7>

564 Zhang, M., Cui, D., Yang, H., 2022. The Distributional Characteristics of M2

565 Macrophages in the Placental Chorionic Villi are Altered Among the Term

566 Pregnant Women With Uncontrolled Type 2 Diabetes Mellitus. *Front Immunol*

567 13, 1005. <https://doi.org/10.3389/FIMMU.2022.837391/BIBTEX>

568 Zolotareva, V., Sheiner, E., Sergienko, R., Wainstock, T., 2022. Gestational

569 Diabetes Mellitus and Offspring Infectious Morbidities- A Sibling Analysis. *Am J*

570 *Obstet Gynecol* 226, S588–S589. <https://doi.org/10.1016/j.ajog.2021.11.972>

571

572

573 **Tables**574 **Table 1: Antibodies used in immunohistochemistry experiments.**

575

Primary antibodies			
Target	Host species	Final concentration	Manufacturer (catalogue number) (clone number) (RRID number)
CD163	Rabbit	0.96 µg/ml	Abcam (ab182422) (EPR19518) (RRID: AB_2753196)
CD68	Rabbit	0.79 µg/ml	Abcam (ab213363) (EPR20545) (RRID:AB_2801637)
CD86	Mouse	2 µg/ml	Abcam (ab220188) (C86/1146) (-)
MRC1	Mouse	0.2 µg/ml	Proteintech (60143-1-Ig) (2A6A10) (RRID:AB_2144924)
Secondary antibodies and IgG control			
Antibody	Host species	Dilution	Manufacturer (catalogue number) (clone number) (RRID number)
Biotinylated anti mouse IgG	Goat	5 µg/ml	AAT Bioquest (16729) (-) (-)
Biotinylated anti rabbit IgG	Swine	2.55 µg/ml	Dako (E0353) (-) (RRID:AB_2737292)
Rabbit IgG control	Rabbit	Relative to primary antibody	Vector Laboratories (I-1000) (-) (RRID:AB_2336355)

576

577

Table 2: List of primers for target and housekeeping genes.

Target gene	Direction	Sequence (5'->3')	Annealing temperature (°C)
CD68	Forward	CGAGCATCATTCTTCACCAAGCT	60
	Reverse	ATGAGAGGCAGCAAGATGGACC	
CD14	Forward	CTGGAACAGGTGCCTAAAGGAC	60
	Reverse	GTCCAGTGTCAAGTTATCCACC	
CD163	Forward	CGGTCTCTGTGATTGTAACCAG	55
	Reverse	TACTATGCTTCCCCATCCATC	
MRC1	Forward	GACGTGGCTGTGGATAAATAAC	55
	Reverse	CAGAAGACGCATGTAAAGCTAC	
FOLR2	Forward	CCTGTACCGAAGACAGAGGC	60
	Reverse	GAGCTGAACCTCCGTTGCT	
VSIG4	Forward	AGAGAGTGTAAACAGGACCTT	55
	Reverse	GTCACGTAGAAAGATGGTGA	
PECAM1 (CD31)	Forward	GCTGAGTCTCACAAAGATCTAGGA	57
	Reverse	ATCTGCTTCCACGGCATCA	
Housekeeping gene	Direction	Sequence (5'->3')	Annealing temperature (°C)
YWHAZ	Forward	ACTTTGGTACATTGTGGCTTCAA	55
	Reverse	CCGCCAGGACAAACCAAGTAT	
GUSB	Forward	GTCTGCGGCATTGTCGG	55
	Reverse	CACACGATGGCATAGGAATGG	
RPLP0	Forward	AGCCCAGAACACTGGTCTC	55
	Reverse	ACTCAGGATTCAATGGTGCC	

Table 3: Demographics of placental samples with/without GDM included in the RT-qPCR and immunohistochemistry experiments.

RT-qPCR			Immunohistochemistry				
	Non-GDM (n=18)	GDM (n=19)	p-value		Non-GDM (n=13)	GDM (n=12)	p-value
Maternal age (years)¹	29.8 ± 5.26	32.5 ± 4.05	0.09	Maternal age (years)¹	31.3 ± 5.59	29.8 ± 6.81	0.56
Booking BMI (kg/m²)¹	29.1 ± 8.66	30.4 ± 5.86 ^a	0.61	Booking BMI (kg/m²)³	28.2 (27.3 30.2)	33.8 (29.4, 35.5) ^c	0.06
Ethnicity²	0.12			Ethnicity²	0.32		
White	13 (72.2)	9 (47.4)		White	11 (84.6)	6 (50.0)	
Black	1 (5.6)	0 (0.0)		Black	0 (0.0)	1 (8.3)	
Asian	4 (22.2)	7 (36.8)		Asian	1 (7.7)	3 (25.0)	
Other	0 (0.0)	3 (15.8)		Other	1 (7.7)	2 (16.7)	
Smoking status²	0.23			Smoking status²	0.21		
QDP	1 (5.6)	0 (0.0)		Ex-smoker	4 (30.8)	0 (0.0)	
Non-smoker	16 (88.9)	19 (100.0)		Non-smoker	7 (53.8)	9 (75.0)	
Smoker	1 (5.6)	0 (0.0)		Smoker	1 (7.7)	1 (8.3)	
				Unknown	1 (7.7)	2 (16.7)	
Gestational age (days)¹	274.2 ± 6.93	270.9 ± 6.32 ^b	0.15	Gestational age (days)³	275 (273, 277)	274 (272, 277)	0.51
Parity²	0.55			Parity²	0.25		
0	5 (27.8)	4 (21.1)		0	2 (15.4)	5 (41.7)	
1	6 (33.3)	7 (36.8)		1	5 (38.4)	6 (50.0)	
2	5 (27.8)	3 (15.8)		2	4 (30.8)	1 (8.3)	
3	2 (11.1)	2 (10.5)		3	1 (7.7)	0 (0.0)	
≥4	0 (0.0)	3 (15.8)		≥4	1 (7.7)	0 (0.0)	
Mode of delivery²	0.12			Mode of delivery²	0.122		
SVD	6 (33.3)	4 (21.1)		SVD	0 (0.0)	2 (16.7)	
VD-ind	0 (0.0)	2 (10.5)		CS-el	13 (100.0)	10 (83.3)	
CS-el	11 (61.1)	8 (42.1)					
CS-em	0 (0.0)	4 (21.2)					
Unknown	1 (5.6)	1 (5.2)					
Placental weight (g)¹	622.2 ± 140.5 ^b	664.6 ± 250	0.54	Placental weight (g)¹	562 ± 131 ^d	758 ± 239	0.02
Birthweight (g)¹	3816 ± 479.8	3725 ± 612.6	0.62	Birthweight (g)¹	3715 ± 566	3840 ± 409	0.53
Fetal: placental weight ratio³	6.1 (4.7, 6.9) ^b	5.6 (4.9, 6.8)	0.16	Fetal: placental weight ratio³	6.9 (6.0, 7.5) ^d	4.6 (4.3, 6.5)	0.01
Fetal sex²	>0.99			Fetal sex²	0.43		
Male	10 (55.6)	9 (47.4)		Male	9 (69.2)	6 (50.0)	
Female	8 (44.4)	9 (47.4)		Female	4 (30.8)	6 (50.0)	
Unknown	0 (0.0)	1 (5.2)					

¹mean ± standard deviation, ²frequency (%), ³median (q1, q2), ^an=18, ^bn=17, ^cn=10, ^dn=15, QDP; quit during pregnancy, SVD; spontaneous vaginal delivery, VD-ind; induced vaginal delivery, CS-el; elective caesarean section, CS-em; emergency caesarean section. Statistical significance at the 0.05 level.

590 **Figure legends**

591

592 **Figure 1: Gene expression of HBC- and macrophage- enriched markers in non-
593 GDM and GDM human placental tissue.**

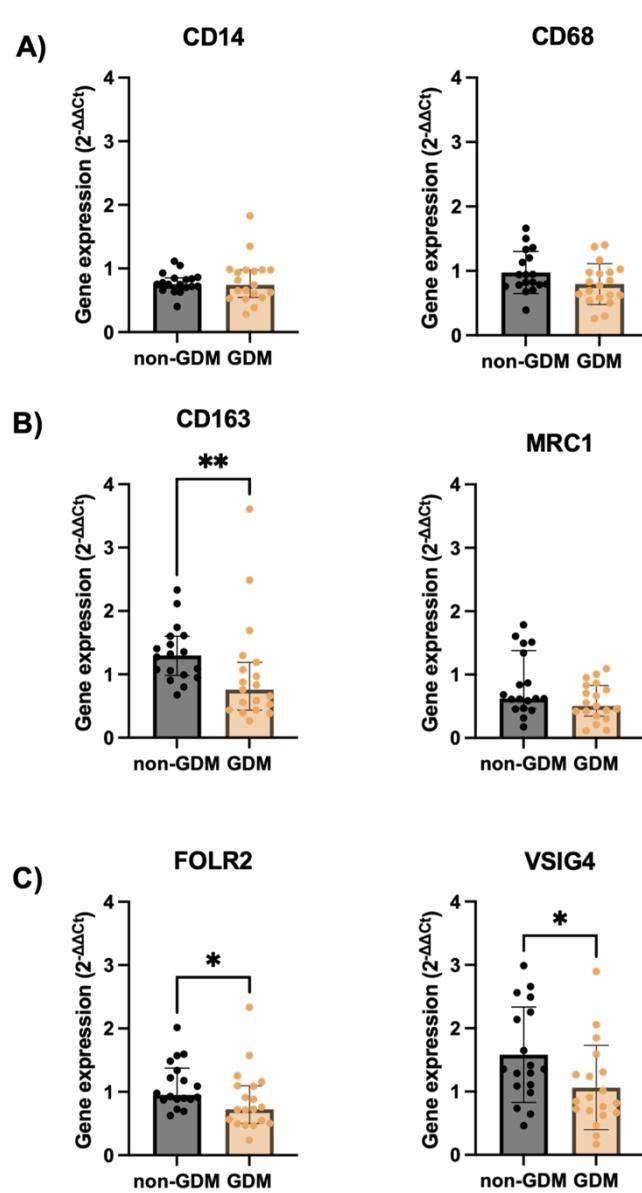
594 *Gene expression of the (A) pan-macrophage- (CD14 and CD68), (B) M2- (CD163 and
595 MRC1), and (C) HBC-enriched (FOLR2 and VSIG4) markers. Data presented as
596 median with interquartile range and analysed by Mann-Whitney test (two-tailed)
597 (CD14; p-value=0.77, CD163; p-value=0.01, MRC1; p-value=0.12, FOLR2; p-
598 value=0.03) or mean with SD and analysed by unpaired t-test (two-tailed) (CD68; p-
599 value=0.10, VSIG4; p-value=0.03). Non-GDM (n=18) and GDM (n=19). p-value
600 <0.05*, ≤0.01**. Expression was normalised to the average of YWHAZ, RPLP0, and
601 GUSB.*

602 **Figure 2: Immunohistochemistry analysis of placental tissue from non-GDM
603 and GDM pregnancies.**

604 *HBCs positive for (A) the pan-macrophage (CD68), (B-C) M2 (CD163, MRC1), and
605 (D) HBC-enriched (FOLR2) markers were identified in different locations within the
606 chorionic villi of the placenta in both non-GDM and GDM pregnancies. Negative
607 controls (secondary antibody only or IgG controls were used). (E) HBCs were
608 negative for the M1 marker CD86. (F) Human uterine samples were used as a
609 positive control (CD86 staining on the left and negative control on the right). Scale
610 bar: 50μm. Non-GDM (n=13) and GDM (n=12). Bold indicates statistical significance
611 at the 0.05 level, p-value <0.05*, p-value ≤0.01**, p-value ≤0.001***.*

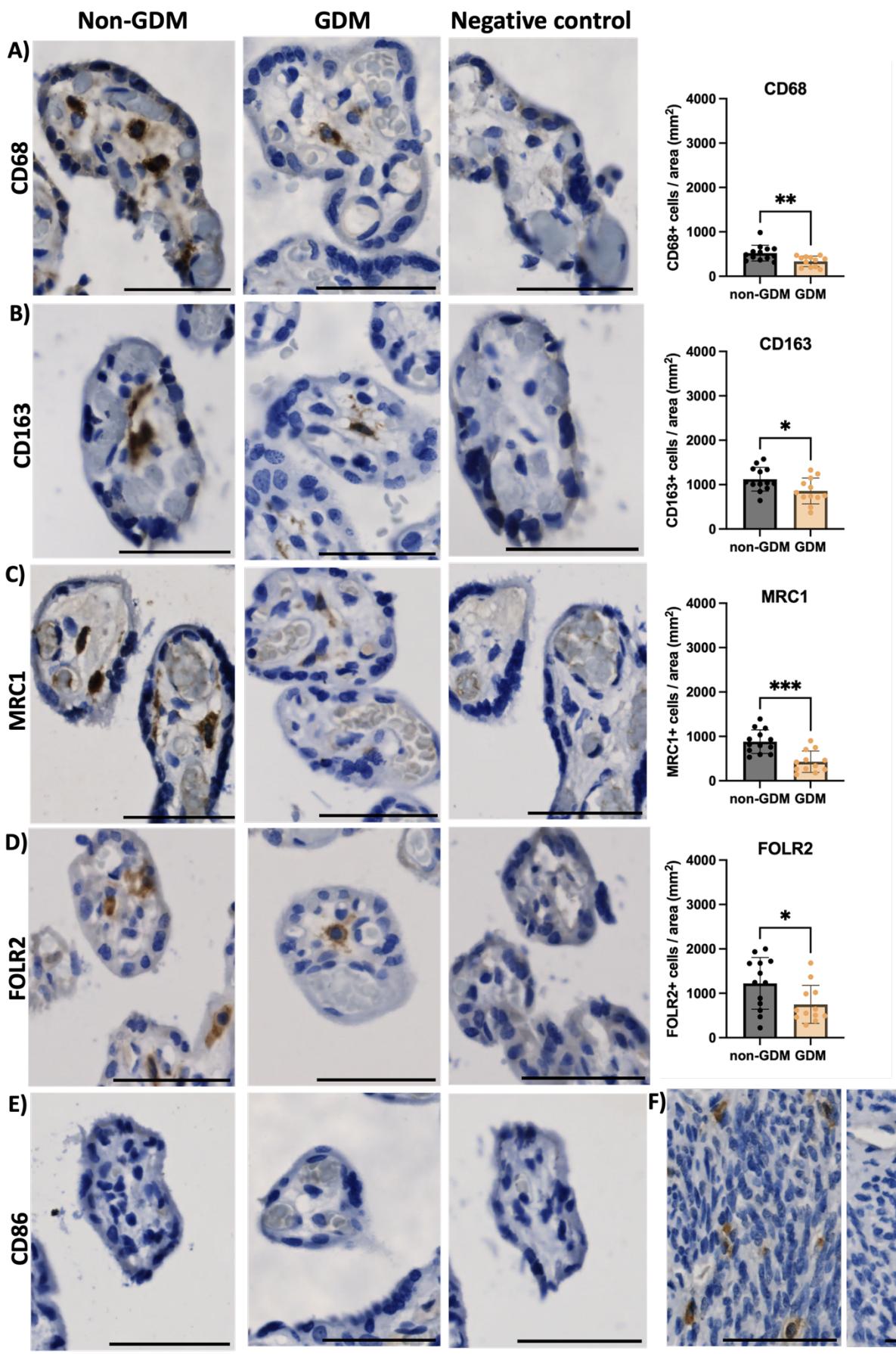
612 **Figure 3: mRNA expression of HBC- and macrophage- enriched markers and**
613 **immunohistochemistry analysis of placental tissue classified by pathological**
614 **fetal growth or sex and diabetes status.**

615 *(A) Data presented as mean with SD and analysed by two-way ANOVA, with results*
616 *displayed in tables. Expression is normalised to YWHAZ, GUSB, and RPLP0*
617 *expression. Non-GDM/AGA (n=8), non-GDM/LGA (n=8), GDM/AGA (n=11), and*
618 *GDM/LGA (n=8), non-GDM/Female (n=6), non-GDM/male (n=6), GDM/female (n=6),*
619 *and GDM/male (n=6). (B) Analysis of positive cells per surface area between non-*
620 *GDM and GDM samples classified by fetal growth and by fetal sex. Data presented as*
621 *mean with SD and analysed using two-way ANOVA. Non-GDM/AGA (n=9), non-*
622 *GDM/LGA (n=8), GDM/AGA (n=6), and GDM/LGA (n=6), non-GDM/female (n=4),*
623 *non-GDM/male (n=4), GDM/female (n=4), and GDM/male (n=4). AGA: appropriate*
624 *for gestational age, LGA: large for gestational age. Bold indicates statistical*
625 *significance at the 0.05 level, p-value <0.05*, p-value ≤0.01**, p-value ≤0.001***.*

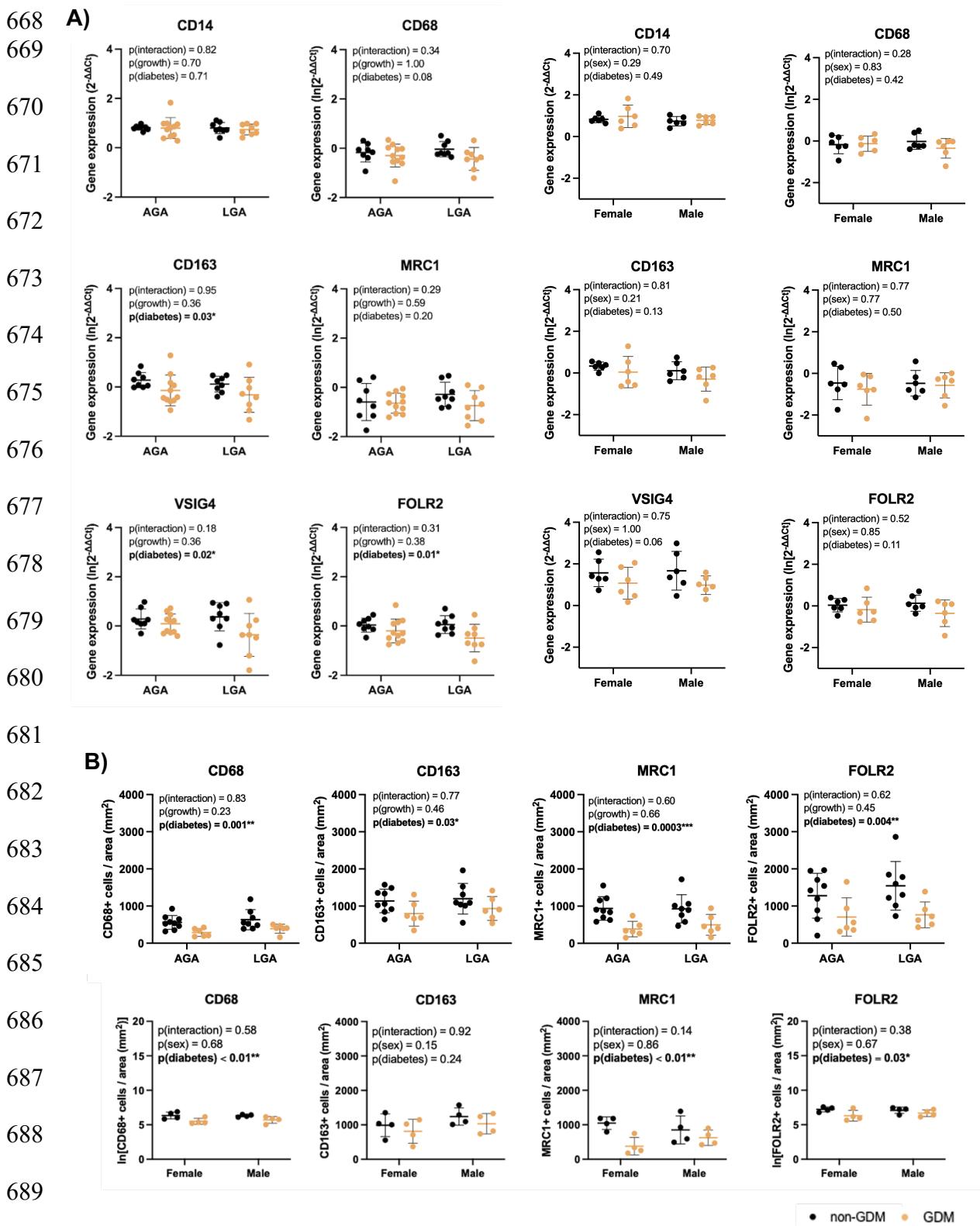

626

627 **Figure 4: HBCs in placental vascular development.**

628 *(A) HBCs are found in different locations within the chorionic villi of the placenta in*
629 *both normal and GDM placentae. Representative image from GDM placenta*
630 *using the pan-macrophage marker CD68 (same observations were also made*
631 *in non-GDM placentae and with staining for FOLR2, MRC1, and CD163). Red*
632 *arrows indicate areas presented in detail (right) Scale bar: 100μm and details*
633 *scale bar: 10μm. BV: blood vessel. (B-C) Correlation matrix of the gene*
634 *expression of pan-macrophage (CD14, CD68), M2 (CD163, MRC1), HBC-*
635 *enriched markers with the expression of vascular marker, CD31 (also known*
636 *as PECAM1). Numeric value in each square represents the Pearson's*

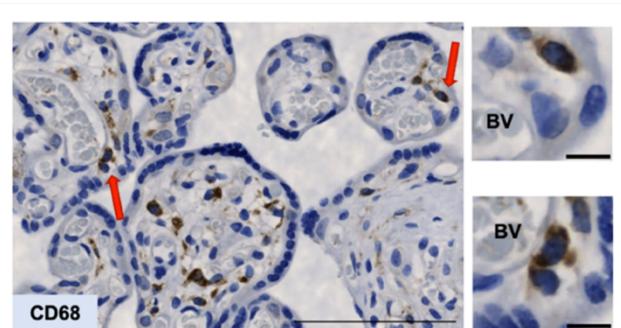

637 correlation coefficient (colour and numeric value between -1; orange to 1; blue)
 638 for (B) non-GDM samples ($n=17$) and (C) GDM samples ($n=18$). Significant
 639 correlation is represented with red asterisks within each square p -value $<0.05^*$,
 640 $\leq 0.01^{**}$, $\leq 0.001^{***}$.

641 **Figure 1**

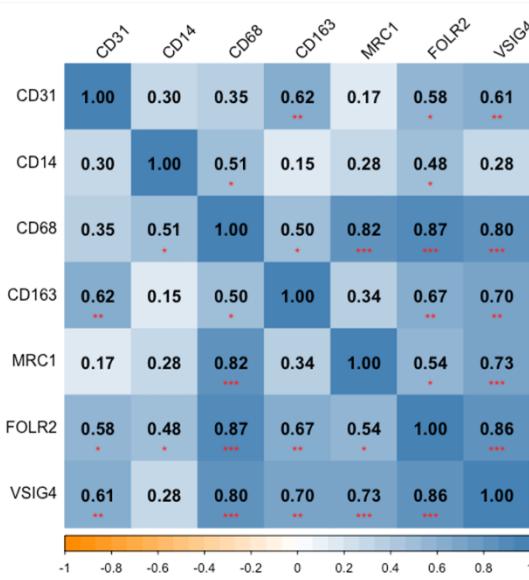


663 **Figure 2**

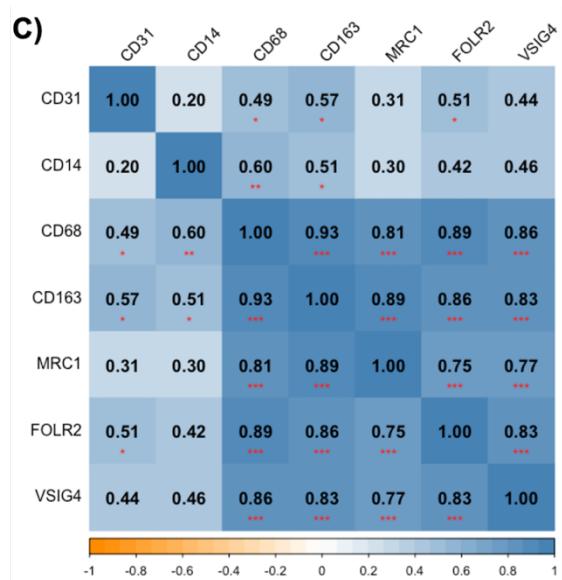
664



667 **Figure 3**



693 **Figure 4**


A)

B)

C)

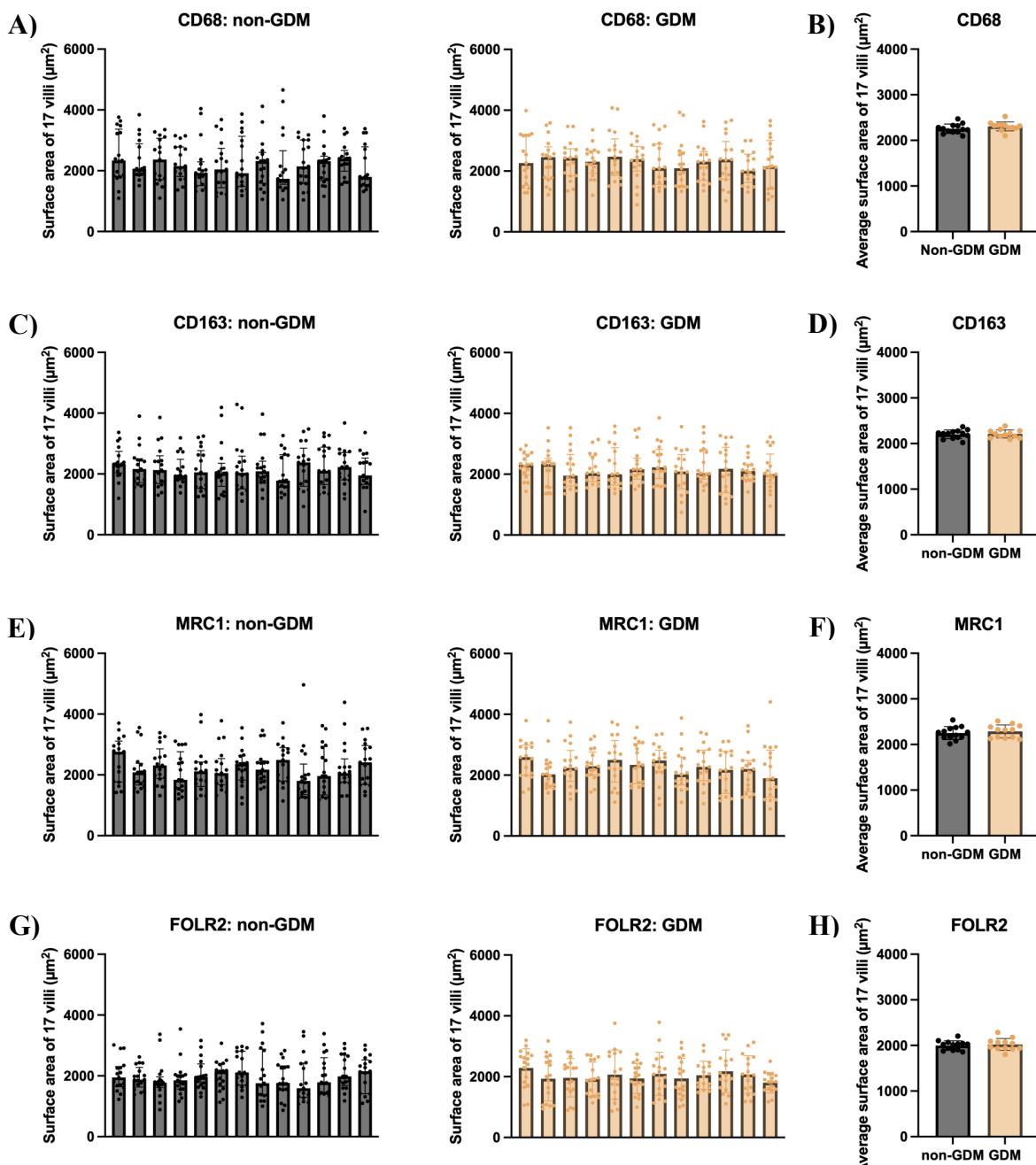
694
695

696

697

698

699


700

701

702

703

704

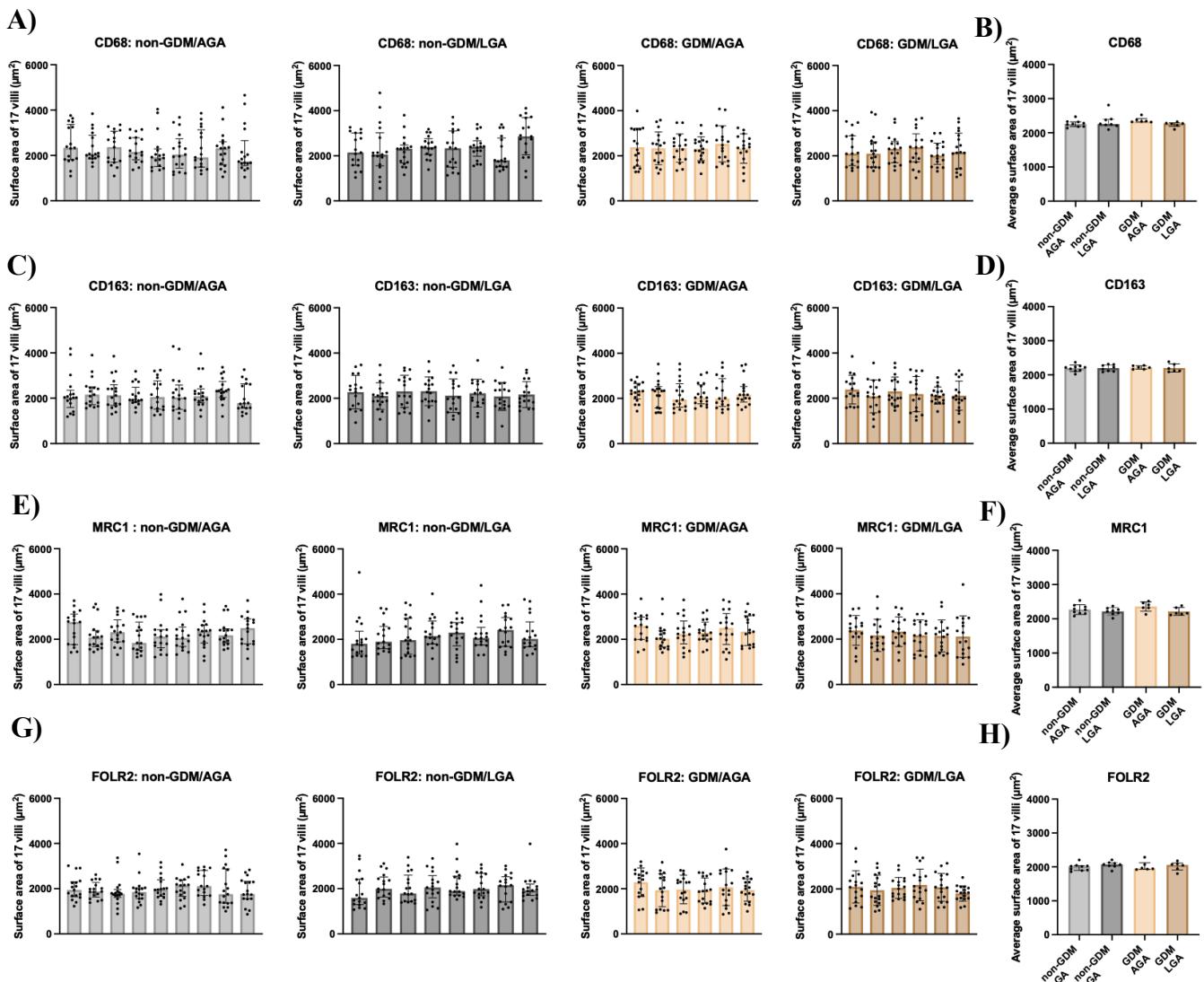
705 **Supplementary materials**706
707 **Supplementary Figure 1: Comparable villous surface areas between participants in**
708 **the non-GDM and GDM groups.**

709 *(A-H) The selected surface area of 17 villi per sample was comparable across samples within the non-*
710 *GDM and GDM group and average area for each participant was comparable across the two groups.*
711 **(A)** For CD68 analysis, data are presented as median with interquartile range and analysed by Kruskal-
712 *Wallis with Dunn's post hoc test (non-GDM; $p=0.85$, GDM; 0.98) and (B) for average area comparison,*
713 *data presented as mean with SD and analysed by unpaired t-test (two-tailed) (CD68; $p=0.21$).* **(C)** For
714 *CD163 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis*
715 *with Dunn's post hoc test (non-GDM; $p=0.97$, GDM; $p=0.98$) and (D) for average area comparison, data*
716 *are presented as mean with SD and analysed by unpaired t-test (two-tailed) (CD163; $p=0.85$).* **(E)** For
717 *MRC1 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis*
718 *with Dunn's post hoc test (non-GDM; $p=0.50$, GDM; $p=0.59$) and (F) for average area comparison, data*
719 *are presented as mean with SD and analysed by unpaired t-test (two-tailed) (MRC1; $p=0.52$).* **(G)** For
720 *FOLR2 analysis of non-GDM samples, data are presented as median with interquartile range and*
721 *analysed by Kruskal-Wallis with Dunn's post hoc test ($p=0.79$) and for GDM samples as mean with SD*

722 and analysed by one-way ANOVA with Tukey post hoc test ($p=0.74$) and (H) for average area
 723 comparison, data are presented as mean with SD and analysed by unpaired t-test (two-tailed) ($p=0.66$).
 724 (A,C,E,G) Each bar represents a different sample and dots represent surface area of villi (μm^2). Non-
 725 GDM ($n=13$) and GDM ($n=12$).

726 **Supplementary Table 1: Demographics of placental samples with/without GDM and**
 727 **pathological fetal growth used for the RT-qPCR experiments.**

	Non-GDM AGA (n=8)	Non-GDM LGA (n=8)	GDM AGA (n=11)	GDM LGA (n=8)	p-value
Maternal age (years)¹	28.4± 6.97	31.8± 3.73	33.9± 4.95	34.9± 4.42	0.07
Booking BMI (kg/m²)²	29.3 (22.4, 36.9)	25.5 (20.8, 40.5)	29.0 (26.5, 36.6)	33.4 (30.0, 35.2) ^a	0.78
Ethnicity³					0.42
White	7 (87.5)	6 (75.0)	4 (36.4)	5 (62.5)	
Black	0 (0.0)	1 (12.5)	1 (9.0)	0 (0.0)	
Asian	1 (12.5)	1 (12.5)	5 (45.5)	2 (25.0)	
Other	0 (0.0)	0 (0.0)	1 (9.0)	1 (12.5)	
Smoking status³					0.14
QDP	1 (12.5)	0 (0.0)	0 (0.0)	0 (0.0)	
Non-smoker	6 (75.0)	8 (100.0)	11 (100.0)	8 (100.0)	
Smoker	1 (12.5)	0 (0.0)	0 (0.0)	0 (0.0)	
Gestational age (days)²	272.5 (271.0, 276.8)	269.5 (266.5, 274.0)	268.0 (266.0, 270.0)	271.5 (267.5, 274.0) ^b	0.09
Parity³					0.55
0	1 (12.5)	2 (25.0)	1 (9.0)	1 (12.5)	
1	3 (37.5)	3 (37.5)	4 (36.4)	4 (50.0)	
2	2 (25.0)	3 (37.5)	3 (27.3)	0 (0.0)	
3	2 (25.0)	0 (0.0)	3 (27.3)	1 (12.5)	
≥4	0 (0.0)	0 (0.0)	0 (0.0)	2 (25.0)	
Mode of delivery³					0.13
SVD	1 (12.5)	2 (25.0)	4 (36.4)	0 (0.0)	
VD-ind	0 (0.0)	0 (0.0)	2 (18.2)	0 (0.0)	
CS-el	6 (75.0)	6 (75.0)	4 (36.4)	4 (50.0)	
CS-em	0 (0.0)	0 (0.0)	1 (9.0)	2 (25.0)	
Unknown	1 (12.5)	0 (0.0)	0 (0.0)	2 (25.0)	
Placental weight (g)¹	533.3 ± 84.51 ^a	700.0 ± 121.6	556.1 ± 134.4	838.7 ± 305.9 ^a	0.01^c
Birthweight (g)¹	3372 ± 175.7	4103 ± 359.4	3333 ± 302.9	4359 ± 349.1	<0.001^d
Fetal sex³					0.47
Male	5 (62.5)	3 (37.5)	5 (45.4)	3 (37.5)	
Female	3 (37.5)	5 (62.5)	6 (54.6)	3 (37.5)	
Unknown	0 (0.0)	0 (0.0)	0 (0.0)	2 (25.0)	
Fetal: placental weight ratio²	6.1 (5.6, 7.1) ^a	6.1 (5.1, 6.5)	6.1 (5.4, 7.1)	5.1 (4.6, 5.3) ^a	0.19
Fetal percentile²	47.30 (35.30, 58.48)	94.45 (91.23, 97.50)	43.90 (38.90, 83.20)	97.50 (96.08, 97.50) ^b	<0.001^e

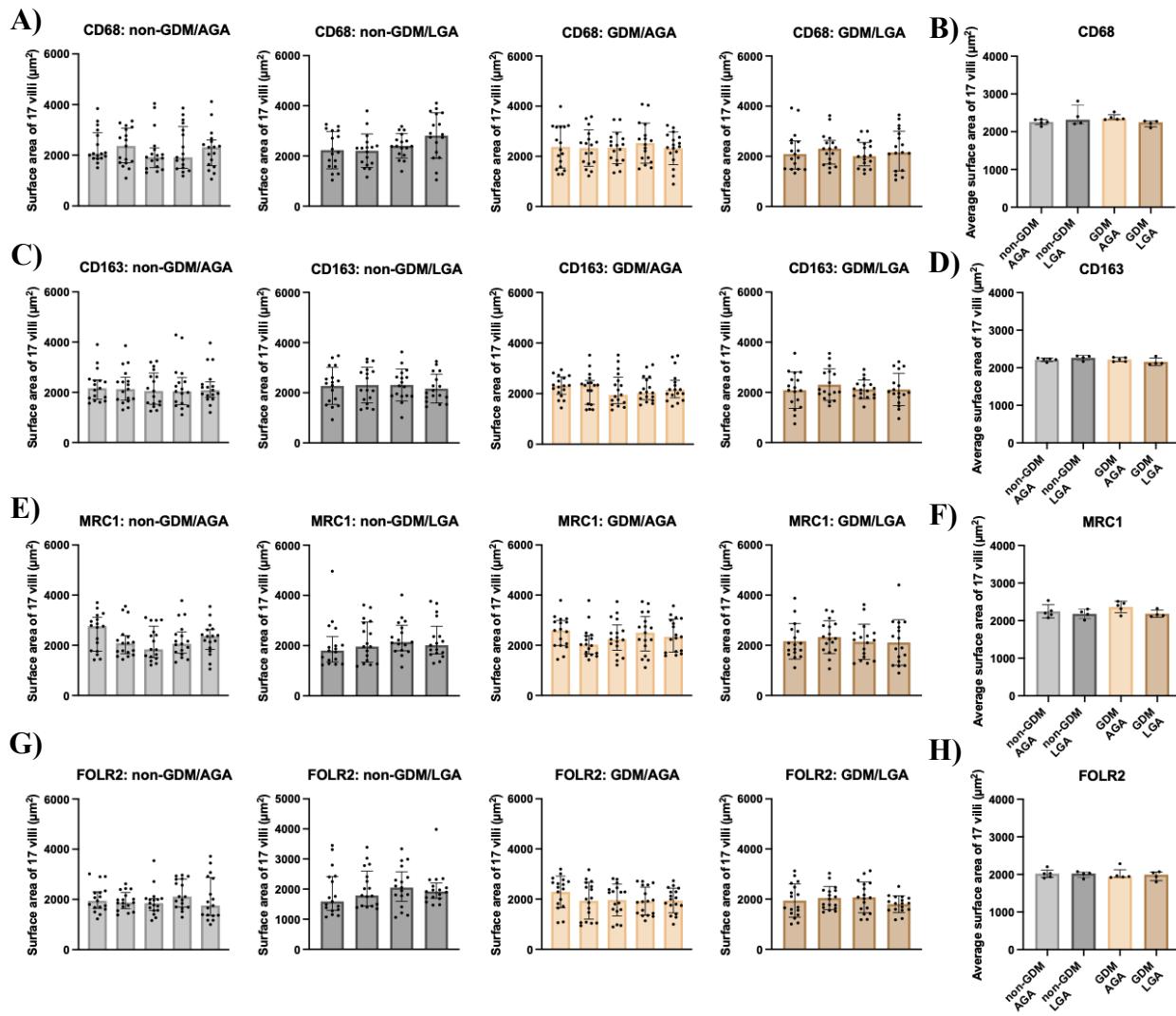

728 729 ¹mean ± standard deviation, ²median (q1, q3), ³frequency (%), ^an=7, ^bn=6, QDP; quite during pregnancy, SVD; spontaneous vaginal delivery, VD-ind;
 induced vaginal delivery, CS-el; elective caesarean section, CS-em; emergency caesarean section. Bold indicates statistical significance at the 0.05

730 level, adjusted p-value <0.05*, ≤0.01 **, ≤0.001***, ^a(GDM/AGA vs. GDM/LGA **), ^b(non-GDM/AGA vs. non-GDM/LGA **, GDM/AGA vs. GDM/LGA ***) ^c(non-GDM/AGA vs. non-GDM/LGA **, GDM/AGA vs. GDM/LGA **).

731
732
733 **Supplementary Table 2: Demographics of placental samples with/without GDM and**
734 **pathological fetal growth used for the immunohistochemistry experiments.**

	Non-GDM AGA (n=9)	Non-GDM LGA (n=8)	GDM AGA (n=6)	GDM LGA (n=6)	p-value
Maternal age (years) ¹	30.7 ± 5.74	33.6 ± 4.72	29.0 ± 6.57	30.7 ± 7.55	0.55
Booking BMI (kg/m ²) ¹	30.4 ± 4.35	24.1 ± 2.9	32.5 ± 3.4	33 ± 4.54 ^a	0.001^c
Ethnicity²					0.29
White	8 (88.9)	6 (75.0)	3 (50.0)	3 (50.0)	
Black	0 (0.0)	0 (0.0)	1 (16.7)	0 (0.0)	
Asian	1 (11.1)	0 (0.0)	1 (16.7)	2 (33.3)	
Other	0 (0.0)	2 (25.0)	1 (16.7)	1 (16.7)	
Smoking status²					0.46
Ex-smoker					
Non-smoker	3 (33.3)	1 (12.5)	0 (0.0)	0 (0.0)	
Smoker	4 (44.4)	7 (87.5)	5 (83.3)	4 (66.7)	
Unknown	1 (11.1)	0 (0.0)	0 (0.0)	1 (16.7)	
	1 (11.1)	0 (0.0)	1 (16.7)	1 (16.7)	
Gestational age (days) ³	274 (273, 277)	276 (273, 285.8)	273.5 (270, 276.5)	274.5 (270.3, 277)	0.70
Parity²					0.42
0	1 (11.1)	3 (37.5)	3 (50.0)	2 (33.3)	
1	2 (22.2)	4 (50.0)	2 (33.3)	4 (66.7)	
2	4 (44.4)	1 (12.5)	1 (16.7)	0 (0.0)	
3	1 (11.1)	0 (0.0)	0 (0.0)	0 (0.0)	
≥4	1 (11.1)	0 (0.0)	0 (0.0)	0 (0.0)	
Mode of delivery²					0.32
NVD					
CS-el	0 (0.0) 9 (100.0)	0 (0.0) 8 (100.0)	1 (16.7) 5 (83.3)	1 (16.7) 5 (83.3)	
Placental weight (g)¹	544 ± 142 ^d	642 ± 159	661 ± 180	856 ± 266	0.05
Birthweight (g)¹	3455 ± 369	4238 ± 361	3563 ± 340	4118 ± 259	<0.001^e
Fetal sex³					0.34
Male	7 (77.8)	4 (50.0)	2 (33.3)	4 (66.7)	
Female	2 (22.2)	4 (50.0)	4 (66.7)	2 (33.3)	
Fetal: placental weight ratio¹	6.8 ± 1.7 ^d	6.9 ± 1.3	5.8 ± 2.1	5.2 ± 1.6	0.21
Fetal percentile³	55.2 (21.4, 75.9)	96.9 (91.1, 97.5)	62.8 (38.6, 86.2)	94.7 (91.1, 97.5)	<0.001^f

735
736 ¹mean ± standard deviation, ²frequency (%), ³median (q1, q2), ^an=4, ^bn=2, ^c(non-GDM/AGA vs. non-GDM/LGA ** & non-GDM/LGA vs GDM/LGA **),
737 NVD; normal vaginal delivery, CS-el; elective caesarean section, ^dn=7, ^e(non-GDM/AGA vs. non-GDM/LGA *** & GDM/AGA vs. GDM/LGA*), ^f(non-
738 GDM/AGA vs. non-GDM/LGA ** & GDM/AGA vs. GDM/LGA*). Bold indicates statistical significance at the 0.05 level, adjusted p-value <0.05*,
≤0.01 **, ≤0.001***.



739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

Supplementary Figure 2: Comparable villous surface areas between participants in the non-GDM and GDM groups with AGA and LGA offspring, and among the four study groups.

(A-H) The selected surface area of 17 villi per sample was comparable across samples within the same group and between the average values for each participant across the four groups. **(A)** For CD68 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.82$, non-GDM/LGA; $p=0.23$, GDM/LGA; $p=0.98$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (GDM/AGA; $p=0.95$). **(B)** Analysis of the average surface area of 17 villi per sample between groups was performed using Kruskal-Wallis with Dunn's post hoc test and data are presented as median with interquartile range ($p=0.12$). **(C)** For CD163 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.78$, GDM/AGA; $p=0.94$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/LGA; $p=0.93$, GDM/LGA; $p=0.71$). **(D)** Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.97$). **(E)** For MRC1 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.58$, non-GDM/LGA; $p=0.63$, GDM/AGA; $p=0.55$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (GDM/LGA; $p=0.84$). **(F)** Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.17$). **(G)** For FOLR2 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.75$, non-GDM/LGA; $p=0.74$), mean with SD and analysed by one-way ANOVA with Tukey post hoc test (GDM/AGA; $p=0.55$), or mean with SD and analysed by

764 Brown-Forsythe and Welch ANOVA test with Dunnett T3 post hoc test (GDM/LGA; $p=0.10$). (H) Analysis
765 of the average surface area of 17 villi per sample between groups was performed using Kruskal-Wallis
766 with Dunn's post hoc test and data are presented as median with interquartile range ($p=0.33$). Each bar
767 represents a different sample and dots represent surface area of villi (μm^2). Non-GDM/AGA ($n=9$), non-
768 GDM/LGA ($n=8$), GDM/AGA ($n=6$), and GDM/LGA ($n=6$).

769
770
771
772
773

Supplementary Figure 3: Comparable villous surface areas between participants in the non-GDM and GDM groups with AGA and LGA offspring, and among the four study groups in the smaller cohort.

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

(A-H) The selected surface area of 17 villi per sample was comparable across samples within the same group and between the average values for each participant across the four groups. **(A)** For CD68 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.82$, GDM/LGA; $p=0.90$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/LGA; $p=0.06$, GDM/AGA; $p=0.92$). **(B)** Analysis of the average surface area of 17 villi per sample between groups was performed using Kruskal-Wallis with Dunn's post hoc test and data are presented as median with interquartile range ($p=0.07$). **(C)** For CD163 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.95$, GDM/AGA; $p=0.87$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/LGA; $p=0.91$, GDM/LGA; $p=0.71$). **(D)** Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.22$). **(E)** For MRC1 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.39$, non-GDM/LGA; $p=0.31$, GDM/LGA; $p=0.84$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (GDM/AGA; $p=0.44$). **(F)** Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.22$). **(G)** For FOLR2 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/AGA; $p=0.58$, non-GDM/LGA; $p=0.57$), mean with SD and analysed by one-way ANOVA with Tukey post hoc test (GDM/AGA; $p=0.37$), or mean with SD and analysed by Brown-Forsythe and Welch ANOVA test with Dunnett T3 post hoc test (GDM/LGA; $p=0.45$). **(H)** Analysis

795 of the average surface area of 17 villi per sample between groups was performed using Kruskal-Wallis
796 with Dunn's post hoc test and data are presented as median with interquartile range ($p=0.98$). Each bar
797 represents a different sample and dots represent surface area of villi (μm^2).

798
799
800**Supplementary Table 3: Demographics of a subgroup of placental samples with/without GDM categorised by fetal sex in the RT-qPCR experiments.**

	Non-GDM Female (n=6)	Non-GDM Male (n=6)	GDM Female (n=6)	GDM Male (n=6)	p-value
Maternal age (years)¹	31.50± 6.442	28.50± 4.231	31.67± 5.465	31.33± 2.422	0.64
Booking BMI (kg/m²)²	34.17 (22.8, 37.4)	24.53 (21.5, 31.6)	32.80 (27.7, 39.1)	27.25 (23.0, 31.3)	0.38
Ethnicity³					0.76
White	3 (50.0)	4 (66.7)	3 (50.0)	2 (33.3)	
Black	1 (16.7)	0 (0.0)	0 (0.0)	0 (0.0)	
Asian	2 (33.3)	2 (33.3)	2 (33.3)	4 (66.7)	
Other	0 (0.0)	0 (0.0)	1 (16.7)	0 (0.0)	
Smoking status³					0.37
QDP	1 (16.7)	0 (0.0)	0 (0.0)	0 (0.0)	
Non-smoker	5 (83.3)	6 (100)	6 (100.0)	6 (100.0)	
Gestational age (days)²	272.5 (269.5, 280.8)	269.5 (267.5, 278.8)	269.5 (266.0, 281.0)	268.5 (266.8, 275.8)	0.86
Parity³					0.86
0	1 (16.7)	3 (50.0)	2 (33.3)	1 (16.7)	
1	1 (16.7)	1 (16.7)	2 (33.3)	3 (50.0)	
2	2 (33.3)	2 (33.3)	1 (16.7)	1 (16.7)	
3	2 (33.3)	0 (0.0)	1 (16.7)	1 (16.7)	
Mode of delivery³					0.60
SVD	2 (33.3)	2 (33.3)	2 (33.3)	2 (33.3)	
VD-ind	0 (0.0)	0 (0.0)	1 (16.7)	1 (16.7)	
CS-el	4 (66.7)	4 (66.7)	2 (33.3)	1 (16.7)	
CS-em	0 (0.0)	0 (0.0)	1 (16.7)	2 (33.3)	
Placental weight (g)¹	508.8± 68.91	679.2± 168.7	607.1± 130.6	731.8 ± 231.7	0.12
Birthweight (g)¹	3425 ± 268.0	4073 ± 473.6	3454 ± 394.2	3879 ± 709.6	0.08
Fetal: placental weight ratio²	6.6 (6.1, 7.4)	6.2 (4.9, 7.8)	5.7 (5.0, 6.5)	5.2 (4.6, 6.5)	0.15
Fetal percentile²	47.5 (23.0, 70.2)	93.5 (86.2, 96.2)	54.3 (39.5, 81.2)	91.0 (57.0, 94.8)	0.11

¹mean ± standard deviation, ²median (q1, q3), ³frequency (%), QDP; quite during pregnancy, SVD; spontaneous vaginal delivery, VD-ind; induced vaginal delivery, CS-el; elective caesarean section, CS-em; emergency caesarean section. Statistical significance at the 0.05 level.

801
802

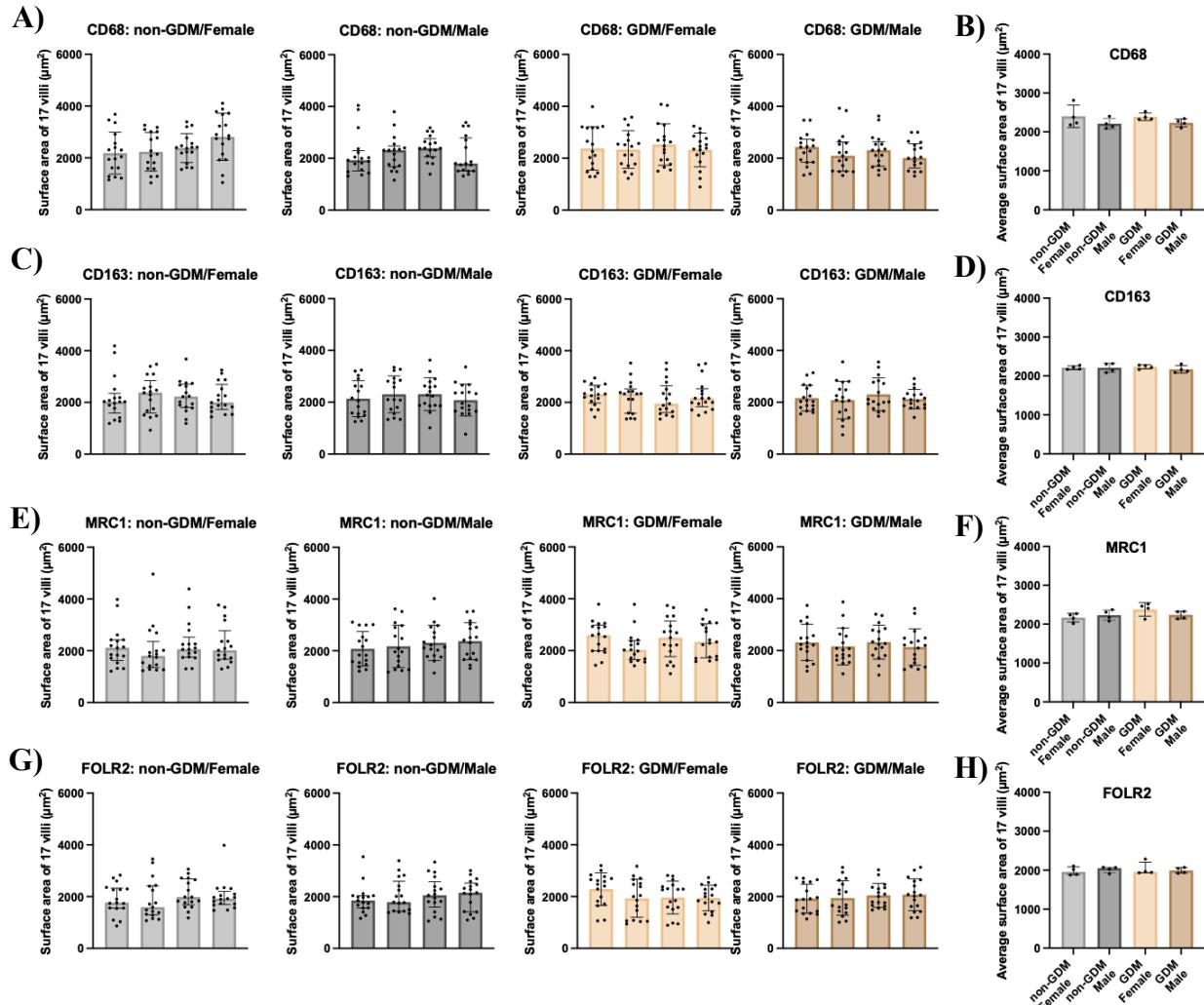
803

804
805
806
807**Supplementary Table 4: Demographics of a subgroup of placental samples with/without GDM categorised by fetal sex in the immunohistochemistry experiments.**

	Non-GDM Female (n=4)	Non-GDM Male (n=4)	GDM Female (n=4)	GDM Male (n=4)	p-value
Maternal age (years)¹	35.3 ± 4.57	32.3 ± 3.10	26.8 ± 5.62	32.0 ± 8.45	0.27
Booking BMI (kg/m²)¹	26.1 ± 3.14	26.4 ± 3.83	31.0 ± 2.96	32.4 ± 3.89	0.05
Ethnicity²					0.11
White	3 (75.0)	4 (100.0)	2 (50.0)	1 (25.0)	
Black	0 (0.0)	0 (0.0)	1 (25.0)	0 (0.0)	
Asian	0 (0.0)	0 (0.0)	0 (0.0)	3 (75.0)	
Other	1 (25.0)	0 (0.0)	1 (25.0)	1 (25.0)	
Smoking status²					0.60
Non-smoker	2 (50.0)	0 (0.0)	0 (0.0)	1 (25.0)	
Ex-smoker	0 (0.0)	1 (25.0)	0 (0.0)	0 (0.0)	
Smoker	0 (0.0)	0 (0.0)	1 (25.0)	0 (0.0)	
Unknown					
Gestational age (days)³	274.5 (273.3, 286.3)	273.0 (266.3, 285.8)	274.0 (271.5, 279.5)	274.0 (268.8, 276.3)	0.91
Parity³					0.32
0	2 (50.0)	0 (0.0)	3 (75.0)	0 (0.0)	
1	1 (25.0)	2 (50.0)	1 (25.0)	3 (75.0)	
2	1 (25.0)	1 (25.0)	0 (0.0)	1 (25.0)	
3	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
≥4	0 (0.0)	1 (25.0)	0 (0.0)	0 (0.0)	
Mode of delivery²					>0.99
NVD	0 (0.0)	0 (0.0)	1 (25.0)	0 (0.0)	
CS-el	4 (100.0)	4 (100.0)	3 (75.0)	4 (100.0)	
Placental weight (g)¹	531 ± 151	589 ± 112	620 ± 212	758 ± 211	0.35
Birthweight (g)¹	4119 ± 510	3838 ± 697	3725 ± 278	3795 ± 455	0.71
Fetal: placental weight ratio³	7.7 (6.7, 9.9)	6.35 (6.0, 7.2)	6.1 (4.8, 8.9)	4.6 (4.3, 7.0)	0.15
Fetal percentile³	94.5 (77.0, 97.5)	90.6 (38.3, 95.9)	84.3 (52.6, 87.9)	91.1 (50.2, 91.6)	0.33

¹mean ± standard deviation, ²frequency (%), ³median (q1, q3), SVD; spontaneous vaginal delivery, CS-el; elective caesarean section. Statistical significance at the 0.05 level.

808
809


810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

Supplementary Figure 4: Comparable villous surface areas between participants in the non-GDM and GDM groups with female and male offspring, and among the four study groups.

(A-H) The selected surface area of 17 villi per sample was comparable across samples within the same group and between the average values for each participant across the four groups. (A) For CD68 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/Male; $p=0.21$, GDM/Male; $p=0.75$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/Female; $p=0.08$, GDM/Female; $p=0.26$). (B) Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.31$). (C) For CD163 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/Female; $p=0.86$, GDM/Female; $p=0.84$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/Male; $p=0.66$, GDM/Male; $p=0.69$). (D) Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.77$). (E) For MRC1 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with Dunn's post hoc test (non-GDM/Female; $p=0.45$, GDM/Female; $p=0.31$) or mean with SD and analysed by one-way ANOVA with Tukey post hoc test (non-GDM/Male; $p=0.64$, GDM/Male; $p=0.79$). (F) Analysis of the average surface area of 17 villi per sample between groups was performed using one-way ANOVA with Tukey post hoc test and data are presented as mean with SD ($p=0.20$). (G) For FOLR2

837 analysis, data are presented as median with interquartile range and analysed by Kruskal-Wallis with
838 Dunn's post hoc test (non-GDM/Female; $p=0.39$, non-GDM/Male; $p=0.67$), or mean with SD and
839 analysed by one-way ANOVA with Tukey post hoc test (GDM/Female; $p=0.30$, GDM/Male; $p=0.84$). (H)
840 Analysis of the average surface area of 17 villi per sample between groups was performed using
841 Kruskal-Wallis with Dunn's post hoc test and data are presented as median with interquartile range
842 ($p=0.86$). (A,C,E,G) Each bar represents a different sample and dots represent surface area of villi
843 (μm^2). Non-GDM/Female ($n=4$), non-GDM/Male ($n=4$), GDM/Female ($n=4$), and GDM/Male ($n=4$).
844
845