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Abstract

Current flow-based generative speech enhancement methods learn curved probability paths
which model a mapping between clean and noisy speech. Despite impressive performance,
the implications of curved probability paths are unknown. Methods such as Schrodinger
bridges focus on curved paths, where time-dependent gradients and variance do not promote
straight paths. Findings in machine learning research suggest that straight paths, such as
conditional flow matching, are easier to train and offer better generalisation. In this paper
we quantify the effect of path straightness on speech enhancement quality. We report
experiments with the Schrodinger bridge, where we show that certain configurations lead
to straighter paths. Conversely, we propose independent conditional flow-matching for
speech enhancement, which models straight paths between noisy and clean speech. We
demonstrate empirically that a time-independent variance has a greater effect on sample
quality than the gradient. Although conditional flow matching improves several speech
quality metrics, it requires multiple inference steps. We rectify this with a one-step solution
by inferring the trained flow-based model as if it was directly predictive. Our work suggests
that straighter time-independent probability paths improve generative speech enhancement
over curved time-dependent paths.

Keywords: speech enhancement, conditional flow matching, neural ordinary differential
equations

1. Introduction

Understanding what people say in noisy environments, such as a crowded café, is tricky for
computers. Suppressing background noise in speech recordings, known as speech enhance-
ment (SE), is a task that has seen many proposed solutions involving flow-based generative
methods. These methods solve SE by estimating the distribution of clean speech, which can
be conditionally sampled from given noisy speech input (Richter et al., 2025). The clean
distribution is estimated with continuous normalising flows (CNF), models that learn a map-
ping between two distributions with a neural ordinary differential equation (ODE) (Chen
et al., 2018). Neural ODEs are ODEs parameterised with a neural network to estimate a ve-
locity field that pushes samples from a source to a target distribution, enabling a continuous
mapping that can be computed with ODE solvers. The SE problem is particularly well-
suited to CNFs because samples of source-target pairs are similar: the source sample is the
target with added noise and potentially reverberation. There are many methods for training
CNFs: diffusion models (DMs) (Sohl-Dickstein et al., 2015; Song et al., 2021), Schrédinger
bridges (SBs) (Chen et al., 2021; De Bortoli et al., 2021; Wang et al., 2021), and flow match-
ing (FM) (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2022; Tong et al., 2024). DM
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Figure 1: SB and ICFM learn a Gaussian probability path between distributions. SB is
sublinear with time-varying variance that starts and ends at 0. ICFM is linear with constant
variance.

and SB have received attention as powerful SE methods (Juki¢ et al., 2024; Richter et al.,
2025, 2023), with FM being less explored at the time of writing. The methods for training
CNF's described above define a Gaussian probability path which interpolates between a pair
of distributions; each method is identifiable by its probability path and source distribution
(with the consistent target distribution being clean speech; Figure 1). For example, SB
defines a path that solves the SB problem between the exact noisy and clean speech distri-
butions (elaborated in Section 2.2). This path is typically time-dependent, where “time”
describes progress along the path between the pair of distributions, and where the ODE
is a function of time. Since the SB path interpolates the exact data, the ODE is accurate
and does not require numerous ODE steps, yielding practical inference speed. Despite the
strong modelling power of SB, time-dependent gradients and variance can cause curved
paths. Many works in the machine learning (ML) literature suggest that straight paths are
preferred over curves because they are easier to train and experience less ODE sampling
errors (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2022; Tong et al., 2024), giving
rise of FM. The goal of FM is to induce straight paths by relaxing constraints on probability
path design to any velocity field (flow) that interpolates source- and target-distributions.
This relaxation allows various straighter paths to be chosen, such as an optimal transport
displacement interpolant (McCann, 1997). This formulation produces straight paths with
time-independent velocity, resulting in faster training and ODE inference, and higher sam-
ple quality (Lipman et al., 2023, 2024). The intuition behind this is that straighter paths are
easier to sample with ODE solvers, and fewer curves demand less modelling power from the
neural ODE. However, the originally proposed FM is not well-suited for data-to-data tasks
such as SE because it considers paths from the standard normal distribution, not empirical
data such as the noisy speech distribution. To relax this, independent conditional flow-
matching (ICEFM) generalises FM to the independent coupling of two general distributions,
e.g. a path between paired data (Tong et al., 2024). Although SB produces state-of-the-art
results for SE, it is unknown if its time-dependent and potentially curved path could be
improved by using straighter paths. Further, time-independent models such as ICFM have
not been proposed for direct SE, although there has been work on ICFM from audio-visual
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embeddings for SE (Jung et al., 2024). Concurrent to our work, FM with time-varying
variance has been adapted to the SE task in FlowSE (Lee et al., 2025), and an alternative
time-varying FM set-up with modifications for improved one-step performance has also been
proposed (Korostik et al., 2025). Although these two works are relevant, neither explores
time-independent variance. In light of this, we explore the impact of time-dependence on
the probability path for SE by comparing SB to ICFM (Figure 1). We show that although
certain configurations of SB ensue time-independent gradients, a time-independent variance
is not supported. To identify the significance of time-independent gradient and variance
on sample quality, we propose Schrédinger bridge with static variance (SB-SV),
a model whose gradient is equal to SB but with time-independent variance. As
an example of a model which, by design, has time-independent paths, we propose and
evaluate a novel formulation of independent conditional flow-matching (ICFM)
for SE. We find that speech quality metrics increase when introducing SB-SV, which are
then further improved with ICFM. These observations suggest that time independence is
important for high sample quality. We also evaluate the link between the number of ODE
steps and speech quality. SB is robust to one-step ODE inference, but our proposed models
require thirty steps to achieve the best results. We rectify this by proposing a simple ap-
proach for one-step inference with direct data prediction (DDP) of clean speech
from noisy speech input. We find samples from DDP to be on par, if not surpass, those
produced by ODEs.

The rest of this paper outlines the SB method along with our proposed SB-SV and
ICFM for SE, including our DDP inference in Section 2. Section 3 details experiments.
Finally, the results are presented with a discussion in Section 4.

2. Flow-based models for speech enhancement
2.1. General definition

In generative SE, flow-based models are defined as models that learn a marginal path p;
between a prior p; and the clean speech distribution py. A Gaussian probability path p;
that satisfies these boundaries can be defined by

pe(xe|x0,y) = No(xe; 1y (%0, Y), 02, 1) | (1)

where x; € C? is the process state at time ¢ € [0, 1] and y € C? is a noisy speech sample, and
X0 ~ po is clean speech; C? is the complex short-time Fourier transform (STFT) domain.
The prior p;, mean p,, and variance U,QQ are not arbitrary and must be defined during
model design (later described in Equations (4), (7) and (11)). For example, score-based
generative models for speech enhancement (SGMSE) (Welker et al., 2022) and independent
conditional flow-matching (ICFM) define p; as a Gaussian distribution centred around y,
and SB defines p; as the exact noisy data distribution with samples y. When computing
the path p; on new data, the clean speech xq is unknown, leaving p; intractable. Flow-based
models aim to train a neural ODE to estimate p; without requiring xq. This is achieved
by training a neural network Fy to predict the gradient of p;. For a given discretisation
schedule (ty = 1,tn_1,...,t9 = 0) with N steps, the neural ODE sampler is

th_l - anxtn + anG(thay7 tn) + cny, XtN =Yy (2)
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Figure 2: SB is defined by k£ and ¢. The parameter k defines the base of the interpolation
weight, and ¢ the variance scale (4). SB is most linear when k = 0.99

where a,, by, and ¢, are determined according to the designed path (1), shown in Equa-
tions (6), (8) and (10) below. The rest of this section outlines examples of the variety of
paths possible with this framework, specifically paths of varying straightness.

2.2. Schrédinger bridge with variance exploding diffusion coefficient (SB-VE)

The SB problem originally considers a group of particles that we assume to move via Brow-
nian motion, with position distribution observations p, and p, at times 0 and 1 respectively
(Schrodinger, 1932; Léonard, 2013). Then, imagine an unexpected (rare) event occurs
such that our observation at time 1 differs substantially from what would be predicted by
Brownian motion. The SB problem lies in finding the most likely path between our two
observations that adheres most to Brownian motion. Formally, SB is defined as finding
the probability path p between boundaries p, and p, that minimises the Kullback-Leibler
divergence Dk, w.r.t. a pre-specified Brownian reference pyef

min Dy (p,pref)  st. Po = Pa,P1 = py (3)

PEP0,1]

where P 1] is the space of all probability paths between ¢ = [0,1]. Many works in the ML
community use the SB problem to model exact distribution-to-distribution processes that
flow similarly to diffusion (De Bortoli et al., 2021; Chen et al., 2021; Vargas, 2021). The
diffusion-based SGMSE uses Brownian motion, but a prior mismatch is introduced because
the noisy speech distribution cannot be accurately represented by Brownian motion (Lay
et al. (2023). Therefore, SB approaches for SE (Jukié¢ et al., 2024; Wang et al., 2024)
allow a DM to be trained that respects the boundary conditions between noisy and clean
speech distributions. To solve the SB-problem, one can use a closed-form solution between
Gaussian measures, such as py and p; (Bunne et al., 2023). We follow prior works (Juki¢
et al., 2024; Richter et al., 2025) and solve the SB problem between noisy and clean speech
data with a stochastic differential equation with a variance-exploding diffusion coefficient
(Song et al., 2021) as a Brownian reference

2 2 2 2t
_ O Oy 2 2 Oy 2 _ c(k —1)
(X0, y) = (1—0%) X0+U?Ya Ox; = Ot ( —U%>7 O *7210{;]{7 . (4)

The hyperparameters ¢ and k change the shape of the probability path. Figure 2 shows
2

how these values affect the interpolation weight % and the variance 0,2(0. Typical values are
1

4
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k = 2.6 and ¢ = 0.4 (Juki¢ et al., 2024), which results in sub-linear interpolation between
the data boundaries with exponentially increasing variance satisfying 0,2(0 = ‘7>2<1 = 0. It can
be seen that the gradient and variance of this path are time-dependent, but the gradient
becomes more linear as k — 1 (Figure 2). As stated in Section 2.1, clean data samples xq
are unknown during inference, which motivates training a neural network Fy to estimate
the clean data given the current sample along the probability path

ACDP = ||F9(Xt7Yat) - XOH%v (5)

where y and x¢ are sampled from paired data, ¢ ~ U[0,1], and x; ~ p¢(x¢|x0,y). This
data prediction allows the gradient of p; to be indirectly calculated and sampled with an
SB ODE defined by Juki¢ et al. (2024) as

L SRS Sy Oty Oty 10tn 1 _ 1/, Ot Oty 1 Otn 1
an = > n="5 |04, ~ v = 5 Oy T ~ ,
0t,0t, 0'1 Ot O'l Ot,

(6)

where 6; = 01 — 0;. The above allows us to predict clean speech from noisy speech by
solving the SB ODE (2). Not only are the gradient and variance time-dependent, but the
ODE solver is also time-dependent.

n

2.3. Independent conditional flow-matching (ICFM)

ML research suggests that FM is a good form of flow-based model because straight paths
are easier to learn and result in fewer ODE errors, improving sample quality (Liu et al.,
2022; Albergo et al., 2023; Lipman et al., 2023). Here, we outline our first proposed model
as a method to train ICFM for the SE task. As described in Section 1, ICFM is a generalisa-
tion of FM which considers the optimal path between independently coupled distributions.
This is generally defined as McCann’s interpolation (McCann, 1997), which we write as a
probability path for SE

wi(x0,y) = (1 —t)xg + ty, ait = c, (7)

where ¢ is a hyperparameter controlling variance. As seen in the SB probability path (4),
the clean speech sample xq is yet again unknown during inference, requiring a model trained
with the data prediction loss (5). A trained neural data predictor can then be used as a
neural ODE (6) with the following coefficients

a, =1, b, = Cp = ——. (8)

N’ N

Compared to the SB, the gradient and variance of the ICFM probability path (xg —y and
c respectively) do not depend on ¢; the path is straight (time-independent). Contrary to
SB, which uses a data prediction loss, we can directly learn the gradient of the probability
path with an FM loss

,CFM = HFQ(Xt,y,t) - (XO - Y)H%a (9)

which can be sampled with

cn = 0. (10)
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It can be shown that ICFM is a path between a Gaussian convolution over the exact
data boundaries (proposition 3.3 from Tong et al. (2024)), contradicting the exact data
interpolation SB provides. This means there is added variance (noise) to the boundaries,
which may cause inaccurate predictions but may also help with regularisation.

2.4. Schrédinger bridge with static variance (SB-SV)

Up to this point, we have discussed two approaches for straighter paths: a special case of
SB-VE has straighter gradients (k = 0.99), and ICFM additionally has time-independent
variance. Neither has solely time-independent variance, leading to our second proposed
model: Schrodinger bridge with static variance (SB-SV). SB-SV is an example of a path
with a time-dependent gradient from (4) with a time-independent variance from (7). We
define the SB-SV path as

o? o?
(0, y) = (1 - ) o+ Ly, o =c (11)
o7 07
where oy is defined as the same as in (4). SB-SV is trained with the data prediction loss
(5) and sampled with the SB ODE (6). Since 02, never reaches zero at the boundaries,
it no longer satisfies the boundary conditions of the SB problem, so it must be seen as a
modified SB model whose mean solves the SB problem, but its variance does not. Trading
exact data interpolation for time-independent variance may lead to a model that is easier
to sample, but risks both a prior and target distribution mismatch due to the variance
assigned at the boundaries of the probability path. Although a static variance promotes
straighter paths, the variance added to the target distribution may increase the number of
ODE steps required to overcome the error introduced by the variance. The impacts of this
prior mismatch and added variance are reported later in Section 4.

2.5. Inference with direct data prediction (DDP)

To avoid such multi-step inference with ODE solvers, we propose a formula that exploits the
data predictive properties of flow-based models to extract the clean speech data xg directly
from noisy input y. Given that models trained with the data prediction loss (5) predict
data, clean speech can be sampled in one step with

Xp = F@()’?Y: 1)7 (12)

and models trained with FM (7) predict a gradient towards clean data (x9 —y), so we add
y to the model output

x0 = Fy(y,y,1) +y. (13)

The above formulae provide a one-step method for clean speech prediction that does not
require ODE solvers for all ¢.

3. Experimental Setup

To survey the advantages of straighter probability paths, we investigate time-independent
gradients and variance. We evaluate our proposed methods, SB-SV (Section 2.4), ICFM
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(Section 2.3), and baseline SB-VE (Section 2.2). SB-VE and SB-SV have time-dependent
gradient and time-independent variance, respectively, and their gradients straighten as
k — 1. Specifically, we train SB-VE and SB-SV with k£ = 2.6 and k = 0.99 to compare
the significance of a straighter gradient. Then, we employ ICFM with both DP (5) and FM
(9) loss. As stated in Section 2.3, ICFM has both time-independent gradient and variance,
promoting straighter paths. For inference, we use the Euler method as an ODE solver,
ranging from 1 to 50 steps, and compare with our proposed DDP method (Section 2.5).

3.1. Metrics

Standard practice measures speech quality with intrusive and non-intrusive metrics. For
intrusive SE metrics, we measure PESQ (Rix et al., 2001) for predicting speech quality,
ESTOI (Jensen and Taal, 2016) as a measure of speech intelligibility and scale invariant
signal-to-distortion ratio (SI-SDR) (Le Roux et al., 2019) measured in dB. We also measure
non-intrusive metrics that predict quality from the predicted clean speech alone. Firstly,
we compute the common metric DNSMOS (Reddy et al., 2021),! which employs a neural
network trained on human ratings (mean opinion score (MOS)). Secondly, we use WhiSQA,
a non-intrusive MOS prediction network shown to correlate well with human judgment
(Close et al., 2024, 2025).2 All of the above metrics score higher for better quality speech.

3.2. Model, baseline, and data

Following Juki¢ et al. (2024), we train all models until validation SI-SDR converges, then
choose the checkpoint with the best validation PESQ. Unless stated, we run ODE samplers
for 50 steps, with batch size 8 and the same STFT settings as Richter et al. (2025).

The neural estimator Fy employs the NCSN++ architecture (Song et al., 2021) using
the same parameterisation described in Richter et al. (2023). All experiments use the time-
domain auxiliary loss (Jukié et al., 2024). We release our code and speech samples,® which
build off the repository from Richter et al. (2025). As a baseline, we use SB-VE (Juki¢ et al.,
2024) trained with our settings above. We train and test all experiments on the Voicebank-
Demand (VB-DMD) dataset (Valentini-Botinhao et al., 2016), a common benchmark for
SE containing clean speech recordings from 28 speakers with added background noise, e.g.
café, traffic. We use speakers p226 and p287 for validation. Non-intrusive evaluation of the
clean speech yields 3.53 DNSMOS and 4.53 WhiSQA.

4. Results and discussion

Our results are displayed in Table 1. Our proposed straighter paths SB-SV (Section 2.4)
and ICFM (Section 2.3) suggest improved speech quality across all metrics over the curved
SB-VE (Section 2.2). Interestingly, there is no apparent benefit of using SB-SV or SB-VE
with a more linear path (k = 0.99). In fact, PESQ and WhiSQA decrease when using
SB-SV with £ = 0.99. However, compared to SB-SV, the results show that using an exact
linear gradient with static variance with ICFM produces higher quality samples. Using

1. https://github.com/microsoft/DNS-Challenge/tree/master/ DNSMOS
2. https://github.com/leto19/WhiSQA
3. https://github.com/Mattias421/cfmse
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Path  Loss Inference k c ‘ PESQ ESTOI SI-SDR DNSMOS WhiSQA
Noisy - - - - Lo 079 84 3.05 3.11
SB-VE DP ODE 26 04 | 292 087 193 3.56 146
SB-VE DP ODE 099 0375| 292 088 195 3.56 447
SB-SV DP ODE 26 0.5 | 298 088 194 3.58 451
SBSV DP ODE 099 01 | 28 088 195 3.58 447 WhiSQA
ICFM DP ODE - 01 | 298 088 201 3.59 449 PE———
ICFM FM ODE - 01 | 291 08 203  3.60 450 g
SB-VE DP DDP 26 04 | 292 087 194 3.55 145 o
SBSV DP DDP 26 015 | 298 088 199 3.58 450 2BV k0,99
SB-SV DP DDP 099 01 | 299 088 200 3.57 4.50 o ICFMDP
ICFM DP DDP - 01 | 305 08 202 3.58 451 L
ICFM FM DDP - 01 | 300 088 204 359 4.51 § Taer R I T 505

N N

Table 1: Mean speech quality metrics on VB-DMD
of our SB-SV and ICFM with FM loss and DDP
inference over SB-VE (Juki¢ et al., 2024) baseline.
k = 0.99 induces straightness and c scales variance.

Figure 3: Comparing the baseline SB-
VE with proposed models over various
ODE steps N.

ICFM with the FM loss has a marginal improvement over DP. This difference in training
objectives suggests that direct gradient estimation is more suitable for ICFM. Together,
these findings support the idea that straighter paths are more suitable for flow-based SE,
specifically by introducing time-independent variance. Figure 3 shows how the number of
ODE steps affects the performance of various model types from Table 1. Although SB-VE
performs better at 1 ODE step, ICFM requires 20 steps to outperform SB-VE. SB-SV has
a similar trend to ICFM, suggesting that static variance reduces performance when using
fewer ODE steps. We speculate that models with static variance might perform worse
with one-step ODEs because they don’t exactly interpolate the data (7), unlike SB-VE
(4). On average, the samples of DDP are either comparable to or of improved quality over
those predicted with 50 ODE steps. Further, possible ODE errors in SB-SV k& = 0.99 are
circumvented by DDP. Our proposed ICFM with FM loss reports the highest PESQ and
SI-SDR. The results suggest that, although trained for ODE solvers, flow-based models
have prominent predictive properties. Another reason ICFM performs well here could be
attributed to variance at the boundaries, alleviating potential overfitting caused by exact
interpolation.

5. Conclusion

This paper views the time-independence of path gradient and variance as an analogue for
straightness. We assessed the impact of probability path straightness on flow-based model
performance for SE. By comparing SB-VE with SB-SV, we observed greater improvement
with time-independent variance over gradient, but overall found that speech quality metrics
were greater improved by using ICFM, which fixes both gradient and variance. However,
fixing variance degraded ODE solver performance, but this can be circumvented by directly
predicting the data at inference.
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