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ABSTRACT

Diffusion models have attracted a lot of attention in recent years.
These models view speech generation as a continuous-time process.
For efficient training, this process is typically restricted to additive
Gaussian noising, which is limiting. For inference, the time is typi-
cally discretized, leading to the mismatch between continuous train-
ing and discrete sampling conditions. Recently proposed discrete-
time processes, on the other hand, usually do not have these lim-
itations, may require substantially fewer inference steps, and are
fully consistent between training/inference conditions. This paper
explores some diffusion-like discrete-time processes and proposes
some new variants. These include processes applying additive Gaus-
sian noise, multiplicative Gaussian noise, blurring noise and a mix-
ture of blurring and Gaussian noises. The experimental results sug-
gest that discrete-time processes offer comparable subjective and
objective speech quality to their widely popular continuous coun-
terpart, with more efficient and consistent training and inference
schemas.

Index Terms— diffusion models, flow matching, iterative pro-
cess, speech synthesis

1. INTRODUCTION

Diffusion and diffusion-like models have recently garnered signif-
icant attention in the areas of image [1], language [2]], and speech
generation [3]]. A diffusion model consists of both a noising and a
denoising process, forming a data trajectory between clean data and
fully corrupted, noisy, data. One of the most popular diffusion mod-
els (DM) is the score-based generative model [4], where scores are
derivatives of log-likelihoods of noised data in a continuous-time ¢
space. These scores are at the core of stochastic differential equa-
tions (SDEs) that describe how to denoise noised data into clean
data [1]. Another popular diffusion-like model is the flow match-
ing model (FM) [5]. The core idea behind FM is to learn a velocity
field that describes a probability path between a source distribution
and a target distribution. This probability path defines the data tra-
jectory over a continuous-time, and the velocity field corresponds
to the time derivative of this trajectory. Flow matching [6] general-
izes diffusion models by interpreting the data trajectories generated
through the noising process — modeled by SDEs in diffusion mod-
els — as probability paths between source and target distributions.
These two models are similar in that they both perform a noising
process in a continuous-time space in training and generate samples
using discretized differential equation solvers [S]. During inference,
these models start from a fully corrupted data/initial sample and it-
eratively refine it to obtain a clean sample.

Thanks to Mattias Cross from University of Sheffield for answering
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Despite their successful application to text-to-speech (TTS) [7,
8||, the majority of these works [4] 18] only choose additive Gaussian
noise as a noising method. This choice implicitly assumes that the
noised data are locally well-modelled by isotropic Gaussians, which
have covariance matrices proportional to the identity matrix. How-
ever, the covariance matrix of the data, such as the Mel spectrogram,
is non-isotropic and depends on the underlying signal energy. Un-
fortunately, a more complex noising process can render core compo-
nents — scores (in DM) and velocity fields (in FM) —analytically
unsolvable, which is limiting, thus making training intractable. In
addition, DM and FM training and inference methods are inconsis-
tent. Training is performed in a continuous-time space, whereas in-
ference is performed in a discrete-time space as continuous-time in-
ference would require an infinite number of inference steps. Another
discrepancy between training and inference in score-based genera-
tive models [4] is that the initial sample for inference is assumed to
be drawn from the forward noising process at a time step approach-
ing infinity, but during training, the model is never exposed to these
extreme time steps.

In contrast, diffusion-like models that have a fully discrete train-
ing and inference process have not been evaluated for TTS. Like
DMs and FMs, they have an iterative refinement process during
inference. Unlike DMs and FMs, they preserve the consistency
between training and inference by performing both processes in
discrete-time space n and by using exactly the data exposed in
training as the initial sample during inference. In addition, more
diverse noise types, for example, multiplicative Gaussian noise, can
be explored with these models. Unlike in DM or FM cases, no sub-
stantial changes are needed. The application of such discrete-time
models in speech synthesis has lagged behind that in image genera-
tion, where blurring [9]], snowification [10], and noise mixture [11]
have been explored. This paper aims to address this gap by explor-
ing discrete-time diffusion-like models with the following noising
methods:

* Additive Gaussian noise. This allows comparison between
fully discrete and partially discretized processes.

* Multiplicative Gaussian noise. While it is commonly used
to model signal-dependent variability in natural systems [[12|
13], it is underexplored in DM and FM. Compared with com-
monly used additive Gaussian noise, it has a non-isotropic co-
variance matrix. Because real-world data’s covariance matrix
is highly likely non-uniform, multiplicative Gaussian noise
might generalize better for real-world data, such as speech.

* Blurring noise is an example of fully deterministic noise. Us-
ing blurring as a noising process examines the need for any
randomness in diffusion-like models in speech synthesis.

* A mixture of blurring and Gaussian noise. This mixture of
noise is explored for leveraging the structured dependencies
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of the deterministic noising process and stochastic variability
in the stochastic process [11].

The rest of the paper is organized as follows: Section 2] presents
the preliminaries of this work, and SectionE]describes different nois-
ing processes, training, and inference methods explored in this work.
Section[d] presents and discusses the experimental results. Section 3]
provides the conclusion.

2. PRELIMINARIES

2.1. Continuous-time diffusion-like models

In continuous-time DMs [4]], noised data at each time step can be ob-
tained in closed form without simulation. Clean data can be recov-
ered by integrating the score function over a discretized stochastic
differential equation (SDE) [1]], which also has a corresponding non-
stochastic formulation as an ordinary differential equation (ODE).
Models can be trained to predict score [4]], noise [14], or a mixture
of clean data and noise [[15]]. In all these models, scores are either
directly predicted [4] or computed [14} [15], and then used by dis-
cretized SDE or probability-flow ODE samplers for denoising.

FM learns a time dependent velocity field that describes a prob-
ability path between a source distribution and a target distribution.
By viewing sample from source distribution as clean data and sam-
ple from target distribution as fully corrupted data, moving along the
velocity field can be regarded as noising/denoising process. Infer-
ence in FM can be performed by numerically integrating the velocity
field from the target (fully corrupted) distribution back to the source
(clean) distribution. The common methods for defining the velocity
field in flow matching model are optimal transport conditional flow
matching (OT-CEM) [16] and rectified flows [17]. Both methods de-
fine a straight path between clean data X and fully corrupted data
X. In particular, a data trajectory between X, and X; in rectified
flows is given by

X, = (1 — )Xo + Xy, (1)

where ¢ belongs to [0, 1]. Both methods have also been successfully
applied to speech synthesis [18} 18 |19} 20]. Interestingly, although
they predict a velocity field, the clean data can be computed through
the deterministic link between velocity fields and clean data at any
denoising step rather than just the terminal value ¢ = 0. For instance,
in rectified flow [[17], X can be computed by simply subtracting the
predicted velocity field at any time ¢ from X ;. Thus any such noise
prediction network could be viewed as a clean data prediction net-
work rather than a noise prediction network as commonly described
in the literature.

2.2. Discrete-time diffusion-like models

Interestingly, the popularity of diffusion models started from a
discrete-time diffusion model — denoising diffusion probabilistic
model (DDPM) [1} 21]] rather than continuous. DDPMs are Markov
chains that progressively add Gaussian noise by transitioning from
the start state, n = 1, to the end state, n = T'. The noise added at
discrete-time index m is predicted and used to compose an inverse
Markov chain. Given noised data in state n, the inverse Markov
chain is used to predict less noised data in state n — 1. Although
DDPMs could achieve high-fidelity results [1], sampling typically
requires simulating a Markov chain for many (thousands of) steps.
While DDPM states are Markov, they generally do not need to be
Markov. Non-Markovian noising and denoising processes have been
shown to lead to more efficient models [22]], capable of reducing

the number of inference steps to 100s rather than 1000s. Deter-
ministic Markov chains, implemented through deterministic noising
processes such as blurring, have been explored in image process-
ing [10]], but their application in speech synthesis remains largely
underexplored.

3. METHOD

This section presents noising, training and inference methods used
in this work. Four noising processes are explored for the first time in
a discrete-time diffusion-like model in speech synthesis.

3.1. Noising process

In all noising processes, the corrupted data X,, in step m can be
calculated directly without simulation by

noising(Xo, U,n) =X,, ne€{0,1,2,...,N}, 2)
where X is clean data, U = Ejy(c) is the text embedding, where ¢
is the input text. Although this restricts the range of possible nois-
ing methods, it provides an efficient training approach similar to the
continuous-time methods of DM and FM.

3.1.1. Additive Gaussian noise

Two types of additive Gaussian noising processes are explored.

In the first additive Gaussian noising process, a discretized
noising process adapted from a popular model Grad-TTS [7] is em-
ployed.

X, = ([ P N ds) Ute 300 Bsdsx,
+ / V/Bs e [ P du gy 3)
0

where W, is a Brownian motion (BM), which is integrated over
time and evaluated at discrete-time step n, s is a linearly increas-
ing function with respect to s. Discretizing the noising process in
this model allows comparison between fully discrete and partially
discretized processes. In the following, this adapted system is called
‘Grad-TTS-DT (discrete-time)’.

In the second additive Gaussian noising process, a straight
path between clean data and corrupted data is explored

X, = (1= )Xo + 1-(e1 + U), @)
where ¢, ~ N(0,0°I) and ¢ is a hyperparameter. This system
can be regarded as a discretized version of the rectified flow 7]
or discrete-time flow matching. In a continuous noising process,
straight paths are believed to be preferred [17] because they corre-
spond to deterministic couplings that do not increase transport cost
under convex cost functions. This motivates exploring straight paths
in a discrete-time space. A straight path is also applied in the follow-
ing noising method. In the following, this system is called ‘RFAG
(rectified flow with additive Gaussian noise)’.

3.1.2. Multiplicative Gaussian noise
In this case, additive Gaussian noise €; + U in is replaced with

multiplicative noise €2 - U, where ez ~ N (I, O'ZI), and

X, = (1- %)XM—%(@-U). )



The denoising process in this case starts with a multiplication be-
tween Gaussian noise and the prior. Multiplicative Gaussian noise is
commonly used to model signal-dependent variability in natural sys-
tems, such as biological vision [23], auditory perception [24], and
sensor imaging [25]. Compared with linear diffusion paths of ad-
ditive Gaussian noising process, multiplicative Gaussian introduces
non-linear distortions. This leads to richer and more varied transfor-
mations potentially leading to more diverse and expressive outputs.
In the following, this system is called ‘RFMG (rectified flow with
multiplicative Gaussian noise)’.

3.1.3. Blurring noise

The blurring process is performed by applying a heat equation [9]
blurring(Xo, n) = V exp(An)V ' X, (6)

where n € {0,1,2,..., N}, VT is the cosine basis projection ma-
trix [9)]. A is a negative matrix with the same shape (W, H) as Xy

2 +;I'—22),wherez‘ —0,...,W—1and
7 =0,...,H — 1. This operation smooths/averages out X in the

noised samples

and ); ; given by —7? (

X, = (1- %)blurring(an) + %U. )
This noising process is fully deterministic. Deterministic noising
methods leverage structured dependencies between localized spec-
trotemporal features and global spectral patterns to enhance signal
representation. In the following, this system is called *Blurring’.

3.1.4. Mixture of blurring and Gaussian noises

The mixture noise is drawn from a Gaussian distribution whose
mean is the blurring noise (7)

. . . 1
mixture_noise(Xo, n) ~ N (blurring(Xo, n), 5(—A) oI), 8
where A is the same as the negative matrix in the blurring pro-
cess (6). The constant value % is chosen based on the best results
achieved in a related image generation work [11]]. This mixture noise
is applied to X to yield noised samples as follows

X, =(1- %)mixture,noise(xo,n) + %U. )

This noising process [11]] mixes blurring (6) and Gaussian noise. Al-
though blurring can exploit the structured dependencies, it disregards
the role of noise (randomness) in structuring the data manifold [26].
Therefore, the above process takes advantage of the deterministic
and stochastic noising processes by controlling blurring and noise
jointly. In the following, this system is called ‘Mixture’.

3.2. Training

The discrete-time diffusion-like models in this work are implemen-
tation following Grad-TTS [7]. In particular, the Monotonic Align-
ment Search (MAS) method followed by [27] is used to train a dura-
tion predictor. The duration predictor is part of a text encoder which
produces prior U = Ey(c). Using this prior, a discrete-time training
process is applied to the decoder.

The decoder is a non-causal residual convolutional network Rg
adapted from Grad-TTS. The adaptation includes the removal of
continuous-time embeddings and the prediction of clean data instead
of scores. As is discussed in Section 2] the majority of diffusion-like

models can be viewed as predicting the clean data. Also, predict-
ing clean data directly is more consistent [28] than predicting noise
in different time steps and it generalizes across all noise levels. The
training aims to minimize the mean square error (MSE) between pre-
dicted X, and clean data Xo.

L"clean,data = MSE(RG(F(XOa E@ (C), n)? E@(C)) ) XO) . (10)

The training alternates between alignment optimization (by finding
alignment using MAS and optimizing Len) and total loss optimiza-
tion (by OptimiZing £dur + Ecnc + »Cc]can,data)’ where ‘Cdur and »Ccnc are
losses in the neural network Ejy(c) adopted from Glow-TTS [27]
and Grad-TTS [4].

3.3. Inference

The inference process is presented in Algorithm [I]and is applied to
all systems except the system with blurring noise whose inference
process applying Algorithm [2] follows [10]. Compared with Algo-
rithm [T} Algorithm [2]is better for smooth/differentiated noising be-
cause it corrects restoration errors using a first-order approximation
of the smooth degradation process [10]. Corrupt(Ey(c), N) in Al-
gorithm [2] is a function that provides fully corrupted data / initial
sample to start inference.

Algorithm 1: First Sampling Method

Input: Input text c
X n < Corrupt(Ep(c), N);
forn=N,N—-1,...,1do

Xo + Ro(Xn, Eo(c));

X,,_1 + noising(Xo, Eg(c),n — 1);
Return X,

Algorithm 2: Second Sampling Method

Input: Input text ¢
X n ¢+ Corrupt(Fy(c), N);
forn=N,N—-1,...,1do

Xo — RQ(Xn7 EG(C));

X, 1 = X,, — noising(Xo, Eg(c),n)

+ noising(Xo, Es(c),n — 1)’

4. EXPERIMENTS

The dataset used in this work is LJspeech [29] which contains ap-
proximately 13,100 clips totaling 24 hours of American English fe-
male voice recordings sampled at 22.05kHz. We follow [4]] and split
the data into training (around 12,000 clips), validation (around 100
clips), test (around 500 clips) set. 30 randomly selected texts from
test set are used for Mean Opinion Score (MOS) evaluation.

Our work follows the pipeline of Grad-TTS, which includes an
encoder Ejy(c), a decoder Ry (., Fg(c)), and a fixed HIFI-GAN [30]
vocoder. Each of our systems is trained by using an encoder Fy(c)
checkpoint from Grad-TTS, and training the decoder from scratch
for 500 epochs with a frozen encoder. Then, the encoder is un-
frozen and trained for another 100 epochs. The baseline model
uses a checkpoint provided by Grad-TTS with either 5 or 10 infer-
ence steps [[7]. Specifically, Grad-TTS is a score-based model which
learns scores and integrates the score over a discretized SDE for in-
ference. On the other hand, our implemented models are non-score



based, where clean data is predicted (Section[3.2) and used to refine
the result (Algorithm [T} Algorithm [ in each iterative step during
inference (Section @) The training and inference conditions are
consistent in our models, meaning there is no discretization error.

4.1. Objective evaluation

MCD, log fo, UTMOSv2 [31] are used as objective metrics. The
objective evaluation is performed on the whole test set. The evalu-
ation result is presented in table[T} where o represents the standard
deviation of additive Gaussian noise @) and multiplicative Gaussian
noise (3) during noising process. The initial evaluation is conducted
on results produced using 10 inference steps.

Table 1: Objective evaluation for the whole test set (10 steps)

Systems MCD | log fo | UTMOSvV2 1
Baseline 571+0.46 0.33+£0.08 4.03£0.22
Grad-TTS-DT 5.53+£0.52 0.31£0.08 3.95£0.21
RFAG (0 =0.2) 555+0.55 0.32+£0.08 3.96+0.23
RFAG (0 =04) 543+0.56 0.32+0.09 3.86+0.22
RFAG (0 =0.6) 5.49+0.52 0.31+0.08 3.86+0.22
RFMG (0 =0.2) 5.65+0.51 0.32+0.07 3.92+0.21
RFMG (0 =0.4) 5.63+0.50 0.324+0.07 3.94+0.23
RFMG (0 =0.6) 5.62+0.50 0.32+0.08 3.87+0.22
Blurring 552+0.54 0.30+£0.08 3.71+0.25
Mixture 5.58£0.50 0.30£0.08 3.87£0.22

As is shown in tablem discretized baseline (Grad-TTS-DT) per-
forms closely to the baseline, which shows fully discrete process
can achieve comparable results to its partially discretized counter-
parts. Also, there is no significant difference between performance
of DM style additive Gaussian noise (in Grad-TTS-DT) and rectified
flow style additive Gaussian noise (in RFAG) in discrete-time space.
Multiplicative Gaussian noise (in RFMG) performs similarly to ad-
ditive Gaussian noise (in RFAG) in a discretized rectified flow data
trajectory (3) (@). The Mixture system and Blurring system achieved
the best log fo result. The Mixture system’s UTMOSv2 score is sim-
ilar to RFAG’s and RFMG's in certain ¢ range, it is likely that Mix-
ture system can perform better with different ratio between blurring
and noise @) [11]. Blurring’s UTMOSV2 is the lowest, likely due
to blurring smooths critical acoustic details without introducing suf-
ficient randomness or variability, which limits its ability to improve
generalization in speech naturalness prediction.

Table 2: Objective evaluation for the whole test set (5 steps)

Systems MCD | log fo UTMOSvV2 1
Baseline 5.69+0.53 0.344+0.08 3.984+0.22
Grad-TTS-DT 5.52+0.54 0.314+0.08 3.934+0.22
RFAG (0 = 0.2) 5.57+£0.53 0.324+0.08 4.014+0.20
RFAG (0 = 0.4) 5.44+0.52 0.334+0.09 3.88+0.24
RFAG (o = 0.6) 5.51£0.53 0.324+0.08 3.844+0.23
RFMG (0 =0.2) 5.56+0.53 0.33+0.08 3.87+£0.22
RFMG (0 =0.4) 5.55+0.52 0.33+£0.08 3.91+0.24
RFMG (0 =0.6) 5.55+0.52 0.33+0.08 3.86+0.23
Blurring 5.534+0.56 0.31+£0.08 3.66+0.24
Mixture 5.524+0.53 0.31£0.08 3.8740.22

Objective evaluation on results from 5 steps inference is per-
formed to check how our systems generalize to fewer time steps.

Our systems have better MCD and log fo. In the UTMOSv2 evalua-
tion, all systems performed similarly to the baseline and shows good
generalization, except the Blurring system which might lack some
randomness.

4.2. Subjective evaluation

The subjective evaluation is carried out on the Amazon Mechanical
Turk (AMT) platform. 30 randomly selected texts from test set are
used throughout the subjective evaluation. Each system is evaluated
on 30 distinct speech samples, each rated by 20 native speakers. The
ground_truth result is generated by the fixed HIFI-GAN vocoder.

Table 3: Subjective scores for 30 randomly selected speech

Systems MOS 1
Ground truth 4.15
Baseline 4.02
Grad-TTS-DT 4.07

RFAG (o = 0.6) 3.90
RFMG (o = 0.6) 3.89
Blurring 3.86
Mixture 3.86

Ground truth
RFMG (0=0.6)
B RFAG (0=0.6)

200 Grad-TTS-DT
N Baseline
15 B Blurring
Mixture
100
50 I
0 1 2 3 4 5
S

MO:!
Fig. 1: Detailed breakdown of MOS score counts

Count
S

All our systems achieved similar MOS scores to the baseline. It
is also shown by Fig. [I] that, aside from Ground truth system, the
MOS results are distributed similarly across the different MOS lev-
els. In MOS evaluation, Grad-TTS-DT slightly outperformed the
baseline, demonstrating the effectiveness of a fully discrete process
compared with the partially discretized process. In addition, the en-
coder used in our systems is suboptimal and we believe that with
tuning most of our systems could perform better.

5. CONCLUSION

Due to the difficulty of implementing more complex noising pro-
cesses in continuous-time diffusion-like models and the inconsis-
tency between training and inference in these models, this work
proposes discrete-time diffusion-like models. This work presented
discrete-time diffusion-like models with four different noising pro-
cesses. This is the first work to implement multiplicative Gaus-
sian noise in a diffusion-like model, investigate blurring and a com-
bination of blurring with Gaussian noise for speech synthesis us-
ing a diffusion-like model, and examine popular continuous-time
diffusion-like models within a consistent, fully discrete-time frame-
work. The results demonstrate that discrete-time diffusion mod-
els can perform comparably well to a popular continuous diffusion
model. The performance of blurring suggests that randomness might
still be needed for such discrete-time models. Additionally, noising
methods such as multiplicative Gaussian noise, a mixture of blur-
ring and additive Gaussian noise, can have a performance similar to
that of the widely used additive Gaussian noise in speech generation
tasks.
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