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ABSTRACT

Nearly half of the world’s languages are endangered. Speech tech-
nologies such as Automatic Speech Recognition (ASR) are central to
revival efforts, yet most languages remain unsupported because stan-
dard pipelines expect utterance-level supervised data. Speech data
often exist for endangered languages but rarely match these formats.
Manx Gaelic (∼2,200 speakers), for example, has had transcribed
speech since 1948, yet remains unsupported by modern systems. In
this paper, we explore how little data, and in what form, is needed
to build ASR for critically endangered languages. We show that a
short-form pronunciation resource is a viable alternative, and that 40
minutes of such data produces usable ASR for Manx (<50% WER).
We replicate our approach, applying it to Cornish (∼600 speakers),
another critically endangered language. Results show that the barrier
to entry, in quantity and form, is far lower than previously thought,
giving hope to endangered language communities that cannot afford
to meet the requirements arbitrarily imposed upon them.

Index Terms— low-resource, critically-endangered, automatic
speech recognition

1. INTRODUCTION

More than 1,400 languages already have fewer than 1,000 speakers.
At one loss every two weeks, these would disappear in roughly
54 years. Reversing this trend depends on community effort to
strengthen transmission, expand learning opportunities, and raise
visibility. Automatic Speech Recognition (ASR) has been shown to
be central to these efforts [1], making oral archives more accessible
to learners, educators, and researchers. Yet many endangered lan-
guages remain unsupported because they lack what is believed to
be the necessary resource; an utterance-level corpus of segmented
speech–text pairs (5–15 s clips with per-segment transcripts). Nev-
ertheless, developing speech technology for these languages remains
one of the most pressing areas of research.

By contrast, endangered language communities tend to create
transcribed speech in two different formats. The first we refer to as
short-form; isolated word or brief-phrase recordings, typically up to
5 seconds long. For example, Forvo [2] is a crowdsourced pronun-
ciation resource spanning 430+ languages, substantially more than
modern multilingual speech datasets [3–5]. The second is contin-
uous recordings that run for minutes or even hours, such as radio
broadcasts, interviews, and folklore (henceforth long-form). In both
cases, transcription text may be verbatim, but is often interspersed
with translations, explanations, and other meta language. These “in-
the-wild” data exist because they meet the most immediate needs of

*Additional long-form speech-transcription is segmented and used to re-
fine our models.

the community. One could argue that the challenge for speech tech-
nology is to adapt to such resources, rather than asking communities
to build datasets whose immediate value to them is uncertain.

Languages with small speaker populations, such as Manx and
Cornish, are often termed low-resource, as though the challenge
were simply a lack of data. Consequently, speech technologies for
low-resource languages tend to rely on crowdsourced utterance-level
datasets [5, 6] and untold amounts of compute poured into massive
pretrained models [7]. However, these requirements are not always
feasible for endangered language communities, particularly for the
smallest speaker populations whose languages are continually un-
represented in modern multilingual speech datasets and benchmarks,
such as FLEURS [4], and CommonVoice [5].

Prior work in this area has explored extremely low-resource sce-
narios, such as the IARPA BABEL program, which used as little as
three hours of manually aligned and segmented telephone speech [8,
9] to build ASR. Although unsupervised learning and zero- or few-
shot adaptation have pushed requirements lower [10–12], success of-
ten depends on similarity to languages seen during pre-training. [13].
In contrast, NLP research often alleviates supervision requirements
in low-speaker settings by leveraging rudimentary resources com-
mon to many languages. For instance, bilingual dictionaries have
proven highly effective in machine translation, both as the primary
source of supervision [14] and as components integrated directly into
model architectures [15]. Similarly, MTOB (Machine Translation
from One Book) is a benchmark that asks large language models to
translate Kalamang (∼200 speakers) by reading a single grammar
book [16]. To the best of our knowledge, no one has explored using
such rudimentary resources for ASR.

In this work, we ask What are the minimum requirements for de-
veloping ASR for critically endangered languages? and Can short
and long-form resources substitute for an utterance-level speech cor-
pus? We address these questions with a series of experiments and
make the following contributions:

i) We present the first ASR systems for two critically endan-
gered languages, Manx and Cornish.

ii) We show how 40 minutes of short-form speech can produce
ASR (<50% WER) for endangered languages.

iii) With just 8 minutes of short-form speech, we train an initial
ASR that can automatically segment long-form recordings for
further ASR refinement.

iv) We achieve usable transcription technology (<25% WER)
with 40 additional minutes of segments.

v) We create the first utterance-level speech corpora for Manx
(18 hours) and Cornish (39 hours).

The rest of this paper is organised as follows. Section 2 dis-
cuss the background of this paper, section 3 presents a guide to data
preparation, section 4 model devlopment and results, and section 5
concludes our findings.
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2. BACKGROUND

2.1. End-to-end (E2E) Models

Fine-tuning end-to-end (E2E) models has emerged as the dominant
paradigm for extending speech technologies to low-resource lan-
guages. Meta’s MMS claims ’coverage’ of 1,000+ languages [7].
They define ‘coverage’ as the share of languages whose in-domain
test sets achieve <5% CER under a single model trained on New
Testament readings across 1,107 languages (MMS-lab). Broad-
domain ASR is shown only for a smaller subset of 102 languages.
MMS is just one example of approaches that rely on extensive pre-
training followed by fine-tuning. However, these methods come
with broader downsides. Firstly, fine-tuning requires utterance-
level speech data, which most endangered languages do not have.
Secondly, popular fine-tuning toolkits like HuggingFace Transform-
ers [17], limit control over model tuning to basic hyperparameters
(e.g., learning rate, batch size), thus ignoring the benefits one could
gain from finer-grained controls, such as incorporating specialised
lexicons and external language models. Whilst it is possible to
extend the standard recipes with these capabilities, doing so is
difficult for non-experts. Lastly, fine-tuning E2E models is com-
monly believed to lead to state-of-the-art results universally, but this
assumption does not hold for many low-resource languages [18].

2.2. Hidden Markov Models (HMMs)

In contrast, Hidden Markov Model (HMM) systems could be far
more data and compute-efficient [19]. For ASR tasks they are typi-
cally paired with a Gaussian mixture model (GMM) or a deep neural
network (DNN). Their modularity requires finer-grained control over
components such as acoustic modelling, pronunciation lexicons and
language models, the latter of which enable greater integration of
linguistic knowledge via web-based text data [20] (news, Wikipedia,
digitised books), which are often more abundant than speech data
for written languages. However, these systems are often regarded
as difficult to use, with the dominant implementation in the Kaldi
toolkit [21] demanding significant expertise and engineering effort.
They too require utterance-level speech data, and while their mod-
ularity remedies some of the shortcomings of E2E modeling, their
degree of success is often language-specific [22], depending heav-
ily on the availability of linguistic resources like lexicons and text
corpora.

2.3. Community Efforts for Speech Technology

Both paradigms inadvertently leave behind endangered languages;
utterance-level speech–text corpora are rare to non-existent, and
small speaker communities have limited capacity to produce them.
However, hope resides in the fervour and sustained commitment
that these communities have for their respective languages. Manx,
for instance, has made a remarkable recovery from near extinction,
growing its speaker base from just a few hundred in the 1960s to
around 2,200 today. In the process, they have made public over 300
hours of educational material, podcasts, and recorded interviews.
Similarly, Cornish revival efforts have rekindled an active speaker
base of around 600, and prospective learners benefit from a variety
of audible educational resources and media. Many remaining endan-
gered languages likely have similar resources, and few–if any–have
utterance-level recordings. A truly universal speech technology
would make the most of these efforts and convert them into tools
that serve the immediate needs of each community.

Table 1. Summary of Manx (gv) and Cornish (kw) data.
Set Lang. Source Domain Sp. Style #Speakers Dur. (mins)

Short-form data
A gv Learnmanx Education Careful >10 102.13
B gv Forvo Education Careful >10 15.95
C kw Forvo Education Careful 9 8.5

Long-form data
D gv Learnmanx Education Careful >10 183.68
E gv Clilstore Religion Read 2 288.97
F gv YouTube Interview Conv. >10 261.81
G gv Learnmanx Literary Read 1 237.30
H kw Skeulantavas Literary Read 1 2581.84

3. DATA PREPARATION

3.1. Short- and Long-form Speech

To follow our approach, collect short-form speech and text files
where the text corresponds exactly to the word or phrase spoken.
Audio will typically be ≤ 2 seconds in length, and while longer clips
are acceptable, the likelihood of a verbatim match tends to decline
with duration. Any non-verbatim transcripts should be filtered out
but kept aside for later steps. For sourcing these data, community
“spoken dictionaries” and pronunciation sites are useful. Forvo [2]
has these for 430+ languages, and whilst valuable, this remains but
a fraction of the world’s ∼7,000 languages. They do, however,
support crowdsourced additions to their collections. Failing this, we
estimate it would take a few hours to collect a few hundred verbatim
word or phrase clips with a prompt list and a microphone. For total
duration and number of files, we show that as little as 8.5 minutes
(433 files) can be effective. Our spoken dictionary collections for
Manx and Cornish are summarised by the top block of Table 1.

The second stage of our approach involves creating new speech
segments (utterance-level) from long-form speech recordings (≥ 30
seconds). Verbatim transcriptions of professional quality are pre-
ferred but not strictly required. So long as some portion of the text
matches parts of the audio, new segments can be created. Gather as
many recordings as possible that have accompanying text, whether
in captions, descriptions, subtitles, or external documents. Choose
sources that match your intended use. If the goal is to create us-
able transcription technology (<25% WER) for read-speech (audio-
book style) recordings, then prioritise that data as domain-matched
training usually gives the biggest gains. For a more general-purpose
ASR, prioritise a mix of domains and speaking styles. In proceeding
experiments, we investigate the amount of long-form data needed
to adapt models to selected domains. The data we collect and use
to build Manx and Cornish ASR come from publicly available web
sources 1 2 and are summarised in the bottom block of Table 1.

3.2. Text Data

For written languages, web-based text data are often more plenti-
ful than speech. For instance, bible.com has translations of the
Bible in 2,300+ languages. Leveraging text data like these can sub-
stantially improve ASR by direct decoding or rescoring with exter-
nal language models (LMs). Here we outline a simple approach to
leveraging 4.8 million Manx words derived from web-based sources

1Manx speech sources: learnmanx.com, clilstore.eu,
youtube.com/@learnmanx,@ManxNationalHeritage

2Cornish speech sources: forvo.com/languages/kw/,
skeulantavas.com/audio, youtube.com/@Wikitongues



Table 2. Summary of test sets.
# Lang. Domain Sp. Style #Speakers #Utts. Dur. (mins)
T1 gv Education Careful >10 341 16.95
T2 gv Religion Read 2 278 16.67
T3 gv Interview Conv. >10 279 16.03
T4 kw Podcast Read 1 131 14.60
T5 kw Interview Conv. 1 37 5.18

3. After collection, we derive a 72k list of Manx words by extract-
ing and filtering a frequency-based wordlist from our text data and
supplement rare words using a Manx dictionary [23]. The resulting
out-of-vocabularly (OOV) rate was 1.66% across all Manx test sets.
In the experiments that follow, we assess per domain how much gain
a general LM trained on a mix of domains can provide when applied
to ASR models (4.2). For unwritten languages or languages where
little to no text data is available, this stage is impractical. To simu-
late this case, for Cornish we use only the paired transcription text
(no web text), and for Manx we report runs where the external LM
is disabled.

3.3. Test Sets

In order to evaluate HMM and E2E modeling techniques, it was nec-
essary to produce test sets, summarised by Table 2. For Manx, we
selected recordings from three distinct domains and speaking styles:
enunciated careful speech from educational recordings intended for
learners, traditional read-speech of religious texts, and spontaneous
conversational speech from interview recordings. Recordings were
randomly selected until their total length met or exceeded 15 min-
utes. We then cut each recording into timestamped audio intervals
and matched each to its transcript line via Label Studio [24]). A
similar approach was taken for Cornish but for two test sets; a read-
speech test from the same distribution as our training data and an
out-of-domain spontaneous speech test (5 minutes) from a Youtube
interview.

3.4. Preprocessing

We converted all audio to a common format of 16-bit PCM, single-
channel WAV, with a sampling rate of 16 kHz. We normalised
all text, including transcription and unstructured text, by convert-
ing to uppercase and standardising whitespace. All punctuation
was removed, except for intra-word hyphens and apostrophes (e.g.
mother-in-law) to preserve lexical meaning. We replaced diacritic
markers with their canonical variants (e.g., Ç→C; É→E; Ñ→N).
Numerals from 0–30 were expanded to their word forms using
language-specific number lists from omniglot.com, which cov-
ers 2,246 languages. In some cases, a single transcription document
covered multiple recordings. While not strictly necessary, we man-
ually split these to enforce a one-to-one mapping between each
long-form recording and its transcription to improve the chances of
successful segmentation.

To use our long-form audio, we must first convert them into
utterance-length segments. To do this, we use the Kaldi tooklit [21]
and follow the forced alignment pipeline presented in LibriSpeech
[25] with two changes. Firstly, we adopt a Unicode graphemic lex-
icon [26] as, like most other languages, Manx and Cornish do not

3Manx text sources: manxradio.com, learnmanx.com,
corpus.gaelg.im, gv.wikipedia.org, culturevannin.im

Table 3. %WERs for Manx source comparison of training sets with
different formats, speaker diversity, and quantity.
Quantity Sets Source Format #Speakers T1 T2 T3

16 mins

A Learnmanx short-form >10 53.88 79.26 85.96
B Forvo short-form >10 97.44 96.19 99.30
D, E, F multi utterance-level >10 53.15 62.18 79.79
G Learnmanx utterance-level 1 75.92 85.39 97.56

102 mins
A Learnmanx short-form >10 42.73 73.80 81.11
D, E, F multi utterance-level >10 34.94 37.89 59.31
G Learnmanx utterance-level 1 79.37 87.48 97.79

have a phonemic pronunciation dictionary. Secondly, instead of us-
ing a pre-built acoustic model, we train a monophone4 GMM–HMM
on our short-form speech (Manx 102 mins, Cornish 8 mins) which
is then used to bootstrap Viterbi forced alignment [27] of the long-
form audio. We had an alignment success rate between 70-80%
for both systems. Substantially lower than this may point to miss-
ing/incomplete transcripts which require revision. Using our align-
ments, we train a triphone model. The Smith–Waterman alignment
and segmentation steps remain the same as in LibriSpeech [25].

4. EXPERIMENTS

We begin by establishing baselines for short-form and utterance-
level Manx data to investigate source diversity, form, and quantity.
Building on this, we ask how little supervision is needed to achieve
usable transcription technology (<25% WER), with and without ex-
ternal LMs. Finally, we extend our approach to Cornish to assess
generality to other endangered languages when text is scarce.

4.1. Source Comparison

Setup – Using the LibriSpeech recipes from the Kaldi toolkit [21],
we train a single GMM–HMM baseline with speaker-adaptive trans-
forms5. During decoding, we use a word-based four-gram language
model trained on 4.8M Manx words, using the wordlist described
in 3.2. These remain constant and evaluation is carried out on the
same three test sets (T1–T3). We then vary data format (short- vs.
utterance-level), speaker diversity (>10 vs. 1), and quantity (16
vs. 102 mins). At 16 minutes, we compare random samples of
single- and multi-speaker utterance-level data with short-form sets
from LearnManx and Forvo, the latter included because its clips are
shorter on average and its speaker and lexical diversity are lower (de-
spite >10 speakers, 1 speaker accounts for most of this data). At 102
minutes, we further compare single- and multi-speaker utterance-
level data with the whole LearnManx short-form set.

Results – Our 102-minute, multi-speaker utterance-level setting
achieved the best results across all three test set, followed closely
for T1 by the LearnManx spoken dictionary. We suspect this may be
due to some speaker overlap between these sets. Source diversity in
speakers, styles and domains is the the most determining factor; the
single-speaker utterance-level systems were outperformed at both
quantities by the LearnManx spoken dictionary systems, and the
much less diverse Forvo system performed markedly worse than
all others at 16-minutes. Quantity had the least impact, with the
single-speaker system performing worse with more data.

4Training a robust triphone (context-dependent) system at this scale is
challenging mainly due to data sparsity.

5LDA+MLLT, then SAT/fMLLR. Speaker adaptive features are estimated
per utterance in our case because speaker identities are unavailable
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specific domains, assessed across careful, read, and conversational speech test sets. Shaded areas denote the gain from external LM integration
(top vs. bottom line).

4.2. Minimum Supervision Requirements

Setup – Using 5, 10, 20, 40, 80, 102-minute subsets of the short-
form LearnManx set, we train and assess models across our care-
ful, read, and conversational speech test sets. Once the short-form
data are exhausted, we branch each model into three domain-specific
runs. For each branch, we add multi-speaker utterance-level data
from a single domain (careful, read, or conversational) in progres-
sively larger subsets, assessing each against its in-domain test set.
We evaluate two HMM systems—a speaker adaptive GMM–HMM
and a TDNN-F model trained with LF-MMI from scratch (no GMM
bootstrap)—and two E2E models (Wav2Vec 2.0 and Whisper-large-
v3). We fine-tune our pre-trained models according to the Speech-
Brain [28] LibriSpeech recipes (LoRA). To investigate how well
each model leverages text data, we incorporate the LM from the
previous experiment. For the HMMs and wav2vec 2.0, the LM is
integrated directly during decoding, whereas for Whisper it is used
for n-best list rescoring.

Results – From the spoken-dictionary data alone (Figure 1), only
the GMM–HMM (with LM) and Whisper generalise meaningfully
to careful speech (<50% WER). The GMM-HMM was the most
impressive here, achieving <50% WER on careful speech after just
40 minutes of short-form data. Adding domain-matched utterances
drives clear specialisation. Whisper finishes best on careful (14.66%
WER) and conversational (31.30% WER) speech, but is overtaken
on read speech by the DNN-HMM with external LM integration
(16.41% WER). The shaded areas for each show that our LM con-
tributes most to the HMMs, typically ∼20 absolute WER points
(largest on read/conversational), whereas it resulted in 2 point av-
erage gain for wav2vec 2.0 in direct decoding mode and none for
Whisper in n-best list rescoring mode.

4.3. Cornish

Setup – Guided by these findings, we apply a similar approach to
Cornish using 8.5 minutes of short-form data from Forvo. Despite
the issues with this source highlighted in 4.1, we are able to use it to
perform the same alignment process described in 3.4. As a result, we
create a 39 hour speech corpus from the long-form Cornish resources

in Table 1. These involve only one speaker, which we expect to be
detrimental to generalisation, however no other long-form resources
are available at this time. To simulate a scenario where text resources
are scarce, we neglect the use of an external LM and instead fine-
tune whisper-large-v3 on this corpus. Evaluation is performed on a
14-minute in-domain read speech set (T4) and a short out-of-domain
interview-style recording (T5).

Results – Our Whisper system achieves an in-domain test set per-
formance of 7.72% WER (1.65% CER) which passes Meta’s MMS
threshold of ”coverage” [7]. However, it also achieves 72.55%
WER (34.17% CER) on the out-of-domain test, indicating severe
domain and speaker mismatch. We suspect that this discrepancy
comes mainly from the fact that the 39 hour corpus used for train-
ing all comes from a single speaker. However, research from the
IARPA BABEL program shows that ASR systems with out-of-
domain WERs of ∼70% are still useful for tasks such as Keyword
Spotting [29].

5. CONCLUSION

ASR support for endangered languages remains sparse, principally
due to a lack of utterance-level supervision. Addressing this tech-
nological gap, we have shown that usable ASR can be attained for
endangered languages that have no utterance-level supervised data
by leveraging rudimentary resources such as a spoken dictionary.
We show that just 40 minutes of spoken dictionary data from multi-
ple speakers can produce a viable ASR baseline (<50% WER). Our
results highlight the flexibility of HMMs in integrating short- and
long-form supervision and text information to deliver usable ASR
(both HMM and E2E based) from unconventional resources. On the
other hand, Whisper generalises markedly better to conversational
speech, although the same may not be true for other E2E models
such as wav2vec 2.0. Ultimately, this paper has shown that develop-
ing speech technology for low-resource and endangered languages
does not require utterance-level corpora as a starting point. Collect-
ing new and clean resources is an important task, but future work
would do well to make sense of the data that already exist and con-
tinue to be created. Doing so may mean difference to the most urgent
cases of language endangerment.
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