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Abstract. Constructing machine learning (ML) pipelines is challenging
for non-ML experts due to various tasks and methods. Despite several
no-code tools, their ML catalogs remain difficult to navigate. To address
these challenges, we present an interactive system that simplifies ML
pipeline creation through a graphical user interface (GUI) powered by
EzeKGLib, a knowledge graph (KG)-based ML framework. The GUI fea-
tures a drag-and-drop interface, allowing users to design ML workflows
visually without coding. In addition, a large language model (LLM)-
powered assistant provides context-aware recommendations for selecting
pipeline steps from the Fze KGLib graph. We also utilize ontologies and
semantic validation to ensure logical dependencies within the pipeline,
guaranteeing usability and correctness. The resulting pipelines are auto-
matically translated into executable KGs and executed by Fze KGLib. We
demonstrate the system’s capabilities through a detailed walkthrough,
highlighting its role in streamlining ML workflow creation and execution.
This demo showcases the synergy between ontologies, KGs, and LLM-
powered recommendations, democratizing ML pipeline development for

both experts and non-experts.
Video: http://bit.ly/43TugUP
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1 Introduction

Machine learning (ML) is becoming a vital tool in areas like healthcare, finance,
and engineering [3, 1]. However, building ML pipelines can be complex for non-
ML experts, as it involves decisions on data preprocessing, model selection, hy-
perparameter tuning, and evaluation, often requiring knowledge of various tools
and frameworks. While existing platforms such as Google’s AutoML ¢, KNIME

5 https://cloud.google.com/automl
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Fig. 1. EzeKGLib’s Graphical User Interface (GUI)

7, and DashAI 8 provide user-friendly interfaces and automated ML capabilities,
they typically operate as closed systems and do not leverage linked open data
(LOD) for interoperable, reusable pipeline creation. Platforms like KNIME also
offer Al-driven recommendations. However, they lack automated evaluation of
suggested pipelines to assess their effectiveness.

To address these challenges, we present an interactive system with a graphical
user interface (GUI) for ExeKGLib [2]. This system integrates a large language
model (LLM)-powered assistant to simplify and enhance the flexibility of ML
pipeline creation. With a drag-and-drop interface, users can build workflows
visually without requiring multiple tools or complex coding, while also receiving
context-aware recommendations from the assistant.

FEreKGLib’s LOD-driven representation makes ML pipelines reusable and
interoperable. The use of knowledge graphs (KGs) and data science ontologies
provides a structured representation of ML workflows, encoding relationships be-
tween tasks, methods, and datasets for transparent and reusable workflow con-
struction, and ensuring that the pipelines are executable [2]. This integration of
visual design, Al assistant, and ontology-driven structuring lowers the technical
barrier to ML pipeline development, making it accessible to both experts and
non-ML practitioners.

In the following sections, we highlight the system’s capabilities through a
usage scenario and outline its architecture, execution flow, and key features. We
will also discuss future directions for enhancing usability.

" https://www.knime.com/
8 https://github.com/DashAlSoftware/DashAl/
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Usage Demonstration

To illustrate the functionalities of our system, we showcase how users can con-
struct and execute ML pipelines using the GUI. The following steps outline the
user interaction flow, with GUI elements illustrated in Figure 1:

Upload Dataset: The user starts with uploading a dataset, and the system
extracts metadata including column names and types.

Ask AI Assistant: The user can get context-aware recommendations by
describing the problem in the LLM-based assistant chat box illustrated in
Figure 2. For example, “We need to predict possible machine failure earlier
to plan maintenance”.

Search Task: The user can search for a specific task (e.g., binary classifi-
cation) by typing keywords into the search bar.

Task and Method Descriptions: Hovering over tasks and methods shows
brief tooltips with descriptions, aiding users in understanding their function.
Construct Pipeline: The user drags and drops ML tasks supported by
EzeKGLib (e.g., feature selection, plotting) from the sidebar onto the canvas.
The sidebar displays a hierarchy of tasks automatically populated from the
data science ontology. For a task node on the canvas, the compatible set of
methods is retrieved based on semantic relationships in the KG and shown to
the user. Method parameters are populated similarly based on the ontology.
The user configures the pipeline by choosing appropriate methods and their
parameters and adds edges between tasks to establish connections.
Execute Pipeline: When the user hits the ‘Run Pipeline’ button (see Fig-
ure 2), the constructed pipeline is automatically transformed into an exe-
cutable KG, validated using data science ontologies, and executed within
EzeKGLib, with real-time feedback provided to the user.
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Fig. 3. LLM-Powered Recommendations Flow

3 System Design

The system consists of a front and backend, with the backend integrating Ez-
eKGLib and an LLM-powered assistant.

3.1 Frontend and Backend Architecture

The frontend, built using Vue.js ® and Vue Flow '°, provides an interactive drag-
and-drop interface for constructing ML workflows while communicating with
the backend for LLM-powered recommendations, semantic validation, pipeline
storage and execution, and real-time feedback via the Axios API !,

The backend processes user-defined workflows by converting them into KG
representations and executing them using FreKGLib. It integrates semantic val-
idation through the data science ontology, ensuring that ML pipelines adhere
to logical dependencies and best practices. The LLM assistant provides context-
aware task and method recommendations based on user queries and dataset
metadata. Once validated, the pipeline is executed within Eze KGLib, and the
results are sent back to the frontend for real-time monitoring and refinement.

3.2 LLM-Powered Recommendations

The LLM-powered assistant in our system generates recommendations by an-
alyzing user input in the context of the dataset used in pipeline construction.
When a user requests a recommendation, the system dynamically constructs an
input query that includes: (1) User request (e.g., “Which model should I use
for binary classification?”), (2) Dataset metadata (e.g., column names and data
types), and (3) Ontology-based constraints (e.g., ensuring suggested methods
are compatible with tasks).

The query is processed using OpenAI’s GPT-40 LLM!2. The workflow, shown
in Figure 3, consists of two main steps: (1) Task recommendation, where the LLM
suggests relevant ML tasks based on the processed query and the tasks supported

9 https://vuejs.org/

10 https://vueflow.dev/

1 https://axios-http.com/

12 https://openai.com/index/gpt-4/
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by FzeKGLib, and (2) Method recommendation, where the LLM selects the most
suitable methods for each task in the pipeline, again based on the processed
query and ontology constraints. At intermediate stages, the input to the LLM
is refined using classes from the ontology, ensuring that the recommended tasks
and methods remain semantically relevant.

To evaluate LLM-generated results, we conducted experiments with ML
problems from OpenML '3. Using a task-specific accuracy metric, we compared
the LLM’s suggested pipeline steps to those implemented in OpenML. The re-
sults showed that almost 60% of the recommendations matched the benchmark.

We also conducted a usability study with 10 participants, where the LLM-
powered assistant received a usefulness rating of 0.9. Participants cited its ability
to suggest relevant tasks and methods as a significant advantage.

4 Future Work

We plan to enhance the GUI’s usability by providing proactive next-step pipeline
component suggestions and real-time error detection. Another improvement in-
volves integrating automated pipeline summarization and explanation features,
which would improve pipeline exploration and interpretability. User feedback
can also be used to continuously improve pipeline recommendations.

A current limitation of the system is the use of a general-purpose language
model (GPT-40) for generating recommendations. While effective, such models
are not specifically optimized for machine learning or programming tasks, which
may limit the accuracy of advanced pipeline suggestions. In future work, we
plan to explore the use of domain-specialized or fine-tuned LLMs to improve the
precision and contextual relevance of the assistant’s outputs.
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