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Abstract— Cardiopulmonary exercise testing is the gold stan-
dard for assessing VOmax, but it is costly in terms of time
and personnel. Its limitations drive the need for alternative
methods of assessment. Using physiological measurements such
as heart rate, several machine learning prediction models have
been developed to estimate VO,max. This paper provides the
first direct comparison of multiple modelling approaches in
a clinical population using wearable sensor data. Wearable
ECG and accelerometer data were first pre-processed. We
used a signal quality index for ECG data and ML-based
physical activity classification. We then extracted known useful
features, based on previous literature. Five models (Multiple-
Linear Regression (MLR), Support Vector Regression, Random
Forest, XGBoost, Multi-layer Perceptron) were compared using
5-fold cross-validation, with performance evaluated via RMSE,
R?, correlation, and SEE. MLR outperformed other models
in predicting VO,max (R = 0.68+0.09, RMSE = 3.35+0.32).
Overall performance in this clinical population was lower
than in studies using exercise-derived features in a healthy
individuals, but shows that wearable sensor data, including
heart rate variability features, can still provide meaningful
insight for VO,max estimations.

Clinical relevance— This study shows how a linear model
can estimate VO;max from ECG and accelerometer data.
This model offers better interpretability to more sophisticated
machine learning approaches with no cost in performance in
this case.

I. INTRODUCTION

Cardiopulmonary exercise testing is the gold-standard
method to measure cardio-respiratory fitness (CRF) [1].
Specifically, it measures the maximal oxygen uptake (VO;)
attained during exhaustive exercise. Research has established
VO,max as one of the strongest predictors of morbidity
and mortality across various populations [2]. Consequently,
CPET has become an essential tool in clinical settings.

The perioperative setting, particularly thoraco-abdominal
surgery, has widely adopted CPET as a standard preoperative
assessment tool [3]. Combined with clinical measures, CPET
predicts postoperative outcomes, aiding risk stratification and
resource allocation. However, its high cost, need for trained
clinicians and controlled environments limit accessibility and
widespread use [4]. Consequently, research has focused on
estimating VO,max without CPET.

One approach involves sub-maximal testing, such as the
6-minute walk test. However, these methods are less accurate
and still require visits to a preoperative clinic for structured
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assessment [5]. Recent advances in wearable sensor tech-
nology offer a promising alternative that allows continuous
monitoring of vital signs in free-living environments [4]. This
approach provides a more comprehensive view of the daily
movements and physiological responses of patients compared
to the snapshot provided by short-term tests.

Research has demonstrated the potential of features from
wearable sensors, including resting heart rate (RHR) and
physical activity measures, to predict VO,max [6][7]. Evi-
dence also suggests that heart rate variability (HRV) may be
associated with VO,max [8]. While HRV analysis tradition-
ally required precise beat detection, novel methods have been
developed to overcome this challenge in wearable sensors
[9].

Various analytical approaches have been employed to
predict VO,max [10]. Multiple linear regression (MLR) is
a commonly used effective method. More recently, machine
learning methods have gained popularity, with multi-layer
perceptrons (MLP), support vector machines (SVM) and
random forests (RF) emerging as potentially superior models.
Although these studies have reported high accuracy, they
generally use healthy participant data. A comprehensive
comparison of these methods, particularly in clinical pop-
ulations where VO, max is commonly assessed, is lacking.

We address this gap by conducting a comparison of
machine learning methods for predicting VO, in a sample of
preoperative patients. Specifically, we combine demographic
data with features extracted from wearable sensor recordings
to evaluate the performance of five machine learning models.

II. MATERIALS AND METHODS
A. Dataset

This research used data from the REMOTES study, an
observational clinical trial completed at Leeds Teaching
Hospitals NHS Trust (December 2022-September 2024).
The experimental procedures involving human subjects de-
scribed in this paper were approved by the UK HRA (REC
22/SS/0050).

All participants were adults scheduled for elective major
abdominal surgery and attending preoperative CPET. Major
abdominal surgery was defined as procedures classified as
Major 1 to Major +5 according to the British United Prov-
ident Association (BUPA) classification of procedures (e.g.
colectomy, total pancreatectomy) [11]. Eligible participants
were undergoing surgery for a range of benign and malignant
conditions and were referred for CPET as part of routine
preoperative assessment. They received trial information and



provided written informed consent. They wore the Ubiqvue-
Lifesignals LX1550E chest sensor continuously for 72 hours,
which included a 2-lead electrocardiogram (ECG) (244.14
Hz) and a triaxial accelerometer (25 Hz). Baseline demo-
graphic and physiological data were collected including age,
gender, body mass index (BMI), and VO,max (ml/kg/min).
Participants with less than 24 hours of recorded data were
excluded from analysis.

B. Signal Processing
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Fig. 1. Figure to show the implementation of the SQI. The ECG is
portioned into 10s-segments before passing each segment through the SQI
tool. If passed and labelled as acceptable, HR and RR-intervals were
extracted from the segment.

1) ECG signals: Wearable ECG sensor data is prone to
motion artefacts. To minimise noise, we used Orphanidou’s
signal quality index (SQI) to extract periods of ‘acceptable’
signal after testing a range of approaches [12][13]. Of the
two ECG leads, the ECG lead with the most ‘acceptable’
segments across participants was used. Heart rate (HR) was
extracted from ‘acceptable’ windows after the signal was
passed through the SQI (Figure 1); the final HR in beats-
per-minute was computed as the mean value across segments
containing only ‘acceptable’ ECG data. This feature extrac-
tion process ensured that only high-quality physiological data
were used.

2) Accelerometer signals: Accelerometer data was pro-
cessed using the Biobank Accelerometer Analysis Toolkit,
categorising physical activity (PA) into five behavioural
states: Sleep, Sedentary Behaviour, Light PA (LPA), and
Moderate-to-Vigorous PA (MVPA) and Vigorous PA [14].

Step count extraction employed an open-source wavelet-
based algorithm aggregating to per-minute step-counts [15].

C. Feature Extraction

1) Movement Features:

o Daily Activity Distribution - We computed the average
daily time spent across PA classifications. Total duration
was divided by valid device wear resulting in mean daily
values for LPA, MVPA and VPA.

 Daily Step Metrics - We calculated the mean number of
steps taken per day, considering only valid wear time.

e MVPA Walking Duration - We identified periods of
MVPA walking by isolating minutes where steps sur-
passed 100 per minute, indicative of MVPA intensity,
before computing the average daily duration [16].

2) HR Features:

o Resting HR - We estimated RHR by calculating the
mean HR recorded between 3 AM-7 AM, during pe-
riods classified as ‘sleep’ or ‘sedentary’, adhering to
established protocols for deriving RHR [17].

o Average active HR - Average HR recorded during LPA,
MVPA and VPA.

¢ Minimum and Maximum HR - Minimum and maximum
HR recorded by device.

o Step-to-Heart Rate Analysis - We aligned HR data with
per-minute step counts, focusing on active periods (step
count>0). We calculated step count-to-heart rate ratios
for these minutes, known to predict VO,max [7]. We
derived the 25th, 50th, 75th, and 95th percentiles of
these ratios to extract four features.

3) HRYV features: HRV features were categorised into two
groups: short-term and long-term HRV [18].

o Short-term HRV - We developed a pipeline to extract
HRV features from noisy wearable ECG data. We
extracted ECG between 3 am. to 7 a.m. sleep to
minimise external influences [19]. From this, The 5-
minute ECG segment with most ‘acceptable’ labels
was identified. After preprocessing to handle ectopic
beats (and removing those with >50 ectopic beats), we
calculated ten short-term HRV measures using the hrv-
analysis package: four time-domain features (SDNN,
RMSSD, pNN50%, MeanNN), four frequency-domain
features (VLF, LF, HF, LF/HF) and two non-linear
features (SD1, SD2) [20].

o Long-term HRV - We analysed recordings from day 1
due to minimal data loss (17.5% average). Participants
required >16 hours of valid HR data to ensure compre-
hensive circadian rhythm assessment, aligning with rec-
ommendations for capturing full day-night autonomic
activity cycles [18]. From this we extracted two long-
term HRV features:

SDNN24 - Calculated from all RR intervals in day 1:
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Where N is the total number of RR intervals, RR; is
the i-th RR interval, and RR is the mean of all RR
intervals.
SDANNygr24 - To account for noise and missing data,
a modified version of SDNN was calculated using 60
minute segment lengths [9]:
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D. Prediction Model Development

Using these 27 features combined with age, gender and
BMI, we selected five different models to predict VO,max
based on models commonly implemented [10]:



o Multiple Linear Regression (MLR)
o Support Vector Regression (SVR)
o Random Forest (RF)

o XGBoost

o Multi-layer Perceptron (MLP)

E. Model Development

To prevent multi-collinearity, highly correlated features
were removed (>0.9). We employed participant-level 5-fold
cross-validation for model development and evaluation. The
dataset was partitioned into five folds, with approximately
20% of participants held out for testing in each fold, and
each participant appearing in the test set once. For each
iteration, models were trained on four folds and tested on
the remaining fold to allow independent evaluation on unseen
participants. This allowed us to maximize the use of the small
dataset while maintaining data separation between training
and testing. Within each training set, feature selection (for
Linear Regression and SVR) and hyper parameter tuning (for
Random Forest, XGBoost, SVR, and MLP) were performed
using internal cross-validation to prevent data leakage.

The five models were developed as follows:

o Linear Regression: LASSO-selected features.

« Random Forest: All features, parameters: estimators

(100-500), max depth (10-50 or None).

o XGBoost: All features, parameters: estimators (100-
500), max depth (3-8), learning rate (0.01-0.2).

e SVR: LASSO-selected features, parameters: C (0.1-
100).

o MLP: All features, parameters: hidden layer sizes (3-11
neurons), learning rate (0-1), momentum (0-1), logistic
activation.

For each model (excluding MLR), we performed 20 itera-

tions of RandomizedSearchCV with 3-fold cross-validation.

F. Model Evaluation

Performance was assessed using four metrics and averaged
across folds [10]:

1) Root Mean Square Error (RMSE):

(3)
2) Standard Error of the Estimate (SEE):
Zr‘il(yi —9i)?
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3) R-squared (R?):
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4) Pearson Correlation Coefficient (r): Measures the linear
correlation between predicted and observed values.
Where y; are the observed values, g; are the predicted

values, ¢ is the mean of observed values, n is the number
of samples, and k is the number of features in the model.

III. RESULTS

198 participants were recruited into the REMOTES trial,
of which 169 participants had sufficient data for analysis.

TABLE I
DESCRIPTIVE STATISTICS (MEAN £ STANDARD DEVIATION) BY
GENDER.
Variable Men (n=125) ‘Women (n=44)
Age (years) 68.78 £ 10.17  67.16 £ 13.37
BMI (kg/m?) 28.26 + 5.05 30.27 £ 7.49
Collected data (hours) 72.51 4+ 14.34 7373 4+ 18.28
VO2max (ml/kg/min) 18.73 £ 4.72 15.25 £ 3.70
Average Daily Step Count 3836+ 3043 2778 £+ 2215

A. Model Development

HR during MVPA and LPA were removed due to in-
sufficient data. RMSSD, SD1, SDNN and SDNN24 were
removed due to high multi-collinearity, leaving 25 fea-
tures for analysis. Daily average steps, gender, BMI, age,
SDANNyr24 and LF/HF had non-zero coefficients from the
LASSO regression in every fold of the cross-validation.

B. Model evaluation

Aside from Pearson’s correlation, the MLR model had
the highest performance across metrics (RMSE = 3.35; R?
= 0.46, SEE = 3.95). When assessing correlation, MLR
had a performance equal to SVR, which was the second
highest performing model across other metrics (Table 2). The
XGBoost model was the worst performing across all metrics.

TABLE 11
MODEL PERFORMANCE METRICS ACROSS THE FIVE FOLDS (MEAN =
STD). THE HIGHEST PERFORMANCE IN EACH METRIC IS EMBOLDENED.

Model RMSE RZ Correlation SEE

MLR 335 £ 032 046 £ 0.13 0.68 £ 0.09 3.95 £ 0.39
RF 3.82+£ 033 0.31+013 0.61+013 7.94+ 061
XGBoost 3.86 £ 042 030 +£0.14 059 £0.12 8.04 +£0.82
SVR 340+ 023 0454+ 0.11 0.68 &+ 0.08 4.01 & 0.27
MLP 3.69 +£ 034 0.32+005 0.63+011 7.68+0.76

IV. DISCUSSION

This study compared the performance of several ML
models in predicting VO,max from wearable sensor data
in preoperative participants. Results indicate that MLR per-
formed best overall, achieving the highest R> (R? = 0.46 =+
0.13) and the lowest RMSE (3.35 4 0.32) and SEE (3.95 +
0.39). SVR had similar predictive performance. This study
is the first to directly compare commonly used ML models
in a clinical population.

The improved performance of MLR over ML models may
be attributed to sample characteristics. Previous studies in
healthy populations have reported that MLP models outper-
form linear models [10]. However, this may not generalize
well to a heterogeneous clinical cohort. Age and gender are
known to be among the strongest predictors of VO,max, and
the wide distribution of age and step count values in this



Multiple Linear Regression: Predicted vs Actual VO,;max
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Fig. 2. Plot to show the correlation between the predicted and actual
VO;,max values from the MLR model across participants.

cohort may have reinforced the linearity of these relation-
ships. Additionally, in a clinical sample, a physical activity
measure like step counts may not only quantify fitness but
also indirectly reflect a participants overall health status.
For example, individuals with fewer co-morbidities may
have a higher functional status and therefore achieve higher
daily step counts, rather than step count purely representing
behavioural activity.

A predominance of male participants and the presence
of varying co-morbidities may have influenced model per-
formance, potentially favouring simple models that better
capture dominant linear trends across the cohort. We con-
sidered developing separate models by sex; however, this
approach has not been commonly implemented in previous
research and would limit comparability. Additionally, clinical
thresholds for VO,max used in preoperative risk assessment
do not differ by sex, and sex was included as an input
feature across models to account for sex-specific differences.
Maintaining a single model supports clinical application
while ensuring sex-related variability is incorporated into
model development.

The prediction performance in this study was lower than
the highest-performing ML models reported in previous
research (R>0.8) [10]. This discrepancy may be explained
by differences in predictor variables; many high-performing
VO,max models include exercise test-derived variables. By
including variables obtained during some form of exercise,
even if sub-maximal, these are more likely to provide useful
indication or capture aspects of maximal exercise capacity
more directly than wearable-derived resting or free-living
data. However, in clinical populations scheduled for major
abdominal surgery, exercise test-derived variables are not
always feasible and wearable sensors provide an accessible
alternative despite this limitation. When comparing against
other research using only free-living data in healthy popula-
tions, results are more comparable (r = 0.8) [6]. Additionally,
this study’s dataset represents a broader demographic with

a wider range in fitness levels and health conditions, which
may introduce further variation.

Despite lower average performance, this study achieved
lower RMSE and comparable performance to some previous
models using healthy participants in controlled or semi-
controlled settings [21]. Notably, it is the first to incorporate
HRV features from wearable sensors into VO,max predic-
tion. HRV parameters were consistently selected in LASSO
regression for the highest-performing models, suggesting
that they add meaningful information from free-living data.
Since HRV reflects autonomic function, incorporating HRV
features may further enhance predictive models.

This study has several limitations. While the sample
includes diverse ages and health conditions, it is limited
to a preoperative population, restricting generalisability. A
gender imbalance may further impact this. Additionally,
HRYV features were collected in free-living conditions, where
movement artifacts could affect measurements. Future re-
search should further explore HRV’s role in CRF prediction
and its reliability in free-living settings.

This study also contributes to the development of robust
ECG preprocessing pipelines for wearable data by outlin-
ing how an SQI can be implemented to support accurate
HR estimation. While this provides a starting point, future
work could benefit from a more formal framework for
SQI development. In particular, signal quality assessment
should be tailored to the specific goals of the processing
pipeline—whether beat detection, HRV analysis, or signal
morphology classification—rather than relying on general-
purpose quality metrics. Embedding task-specific SQI frame-
works into analysis pipelines could enhance both the inter-
pretability and reliability of wearable ECG research, espe-
cially in clinical contexts.

V. CONCLUSION

Linear models outperformed ML models in predicting
VO,max in this preoperative population, contrasting with
findings in healthy groups. This suggests that demographic
and physiological predictors may exhibit stronger linear rela-
tionships in clinical settings. Future research should explore
whether adding clinical variables improves predictions and
further assess the role of HRV in VO,max estimation.
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