Accuracy of smartphone video for contactless measurement of hand tremor frequency
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Abstract

Background
Computer vision can measure movement from video without the time and access limitations
of hospital accelerometry / electromyography, or the requirement to hold or strap a

smartphone accelerometer.

Objective

To compare computer vision measurement of hand tremor frequency from smartphone video

with a gold standard measure, accelerometer.

Methods



37 smartphone videos of hands at rest and in posture, were recorded from 15 participants
with tremor diagnoses (9 Parkinson’s, 5 Essential Tremor, 1 Functional Tremor). Video pixel
movement was measured using the computing technique of optical flow, with
contemporaneous accelerometer recording. Fast Fourier Transform and Bland-Altman

analysis were applied. Tremor amplitude was scored by two clinicians.

Results

Bland-Altman analysis of dominant tremor frequency from smartphone video compared with
accelerometer showed excellent agreement: 95% limits of agreement -0.38 Hz to +0.35Hz. In
36 out of 37 videos (97%) there was <0.5 Hz difference between computer vision and
accelerometer measurement. There was no significant correlation between the level of

agreement and tremor amplitude.

Conclusion
The study suggests a potential new, contactless ‘point and press’ measure of tremor

frequency within standard clinical settings or telemedicine.

Tremor disorders are common [1], but frequently misdiagnosed. In one report, 37% of
essential tremor diagnoses were found to be incorrect [2], and another study showed up to
20% inaccuracy in specialist clinician diagnosis of Parkinson’s from standardised videos of
tremor patients [3]. The Movement Disorders Society consensus statement on the
classification of tremors defines the clinical features on three axes: body distribution,

activation condition, and tremor frequency [4]. Of these, tremor frequency is probably the



most challenging for clinicians to determine accurately at the bedside. Gold standard
neurophysiology with accelerometer and/or electromyography is a limited and time-
consuming resource, usually reserved for a subset of patients in specialist hospital settings
[5]. Whilst smartphone accelerometers can measure the dominant frequency of hand
tremors, the patient must hold the phone or have it strapped in place [6]; and this will

potentially alter tremor characteristics.

There remains a need for a clinical tool that provides clinicians with quick objective
measurements of tremor frequency, analogous to other bedside measurements in medicine.
Computer analysis of video can measure other neurological signs such as finger tapping
bradykinesia [7]. In this article we propose a new approach using computer vision tremor
analysis [8-11] of smartphone video. One advantage of this is that standard clinical
examinations may be recorded without any equipment physically touching the patient, so
that they are unaltered by the weight or physical restriction of a measurement tool. In
addition to observing more ‘natural’ tremor from the patient without physical measuring
equipment, we anticipate an increase in contactless tools in the coming years due to social
changes related to the COVID-19 pandemic and improved infrastructure enabling
telemedicine and home-monitoring of disease progression [12]. In this study, we evaluate
computer vision applied to smartphone video of hands in tremor disorders and hypothesise
that it can quantify dominant tremor frequency in good agreement with accelerometer

results.

Methods



The study was approved by the London-Fulham Research Ethics Committee of the United

Kingdom Health Research Authority, IRAS no. 224848.

A convenience sample of 16 patients from Leeds Teaching Hospitals NHS Trust (United
Kingdom) participated in the study, with the following established diagnoses: 5 essential
tremor, 2 functional tremor, 9 Parkinson’s disease. The diagnoses had previously been made
in routine clinical practice by movement disorder specialist neurologists, according to
Movement Disorder Society guidelines [4,13]. Participants were recruited in order of recent
clinic attendance (i.e. there were no special selection criteria). All patients gave written,

informed consent for participation.

The participants were seated, and each hand was individually filmed. A resting tremor
recording was made with the forearm on the chair arm and the hand suspended over the end,
camera facing the dorsum of the hand. A postural tremor recording was made with hand and
arm extended horizontally forwards from the shoulder, with the camera in a lateral position.

Only those videos with visible tremor were used, making a total of 40 videos.

A smartphone, placed on a tripod, recorded an approximately 60 second video, at 60 frames
per second, 1920 x 1080 pixel resolution (standard ‘full high definition’ smartphone video).
Distance from camera to hand was not tightly controlled, but in practice was around 1m, with
only the hand and forearm visible within the video frame. An example video frame is shown

in Figure 1.



Figure 1.

In accordance with standard methods of tremor accelerometry [5], a single axis
accelerometer (‘Natus neurology tremor sensor’) was attached to the dorsum of each
participant’s hand, aligned with the long axis of the hand. Acceleration was recorded
contemporaneously with the video (without an exact time-lock mechanism), at a sample rate

of 3.84 kHz.

The first 2 seconds of the video and accelerometer recordings were removed to reduce any
voluntary movement artefacts as the patient settled into position. The endings of both

recordings were cropped at 60 seconds.

The videos were processed with custom-written MATLAB code [14] that we have made freely
available for download at this link: [https://github.com/DrStefanWilliams/tremor-optical-
flow]. It allows a bounding box to be manually drawn around the hand region for one frame

of each video, together with a line to mark the long axis of the hand, a process that takes



approximately 15 seconds for the user to complete. A Histograms of Optical Flow method
[15,16] was used to measure the direction and amplitude of pixel movement within the box
between pairs of video frames. This converts the region within the bounding box into an
optical flow field. Each position within the field corresponds to the vector pixel movement of
a point object between two sequential frames. We calculated a time series of the magnitude
of pixel movement for two directions perpendicular to the line marking the long axis of the
hand, and converted this to a one dimensional time series by subtracting the movement in

one direction from that in the opposite direction (for each pair of video frames).

We converted the resultant accelerometer and video time series into the frequency domain
using Fast Fourier Transform (FFT) (‘scipy.fftpack’) within Python [17], and then removed
frequencies below 2 Hz (low-frequency drifting movements) and above 14 Hz (higher than
hand tremor) from the analysis. Examples of accelerometer and video signal time series and

their FFT are shown in Figure 2.
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The recordings from one patient with functional tremor showed widely dispersed frequency
distributions (on both accelerometer and video derived FFT) for the 60 second recording,
without any obvious dominant peaks. This is consistent with the known clinical variability of
functional tremor over time (i.e. the frequency can vary greatly over 60 seconds, so that there
is no single, consistent, dominant frequency). These 3 recordings were removed from the final

analysis.

For the remaining 37 videos, the dominant frequency derived from video was compared with
the dominant frequency derived from the accelerometer. We calculated the mean absolute
error and undertook a Bland-Altman analysis [18] to provide the bias (mean difference), 95%
limits of agreement, and associated confidence intervals. We considered +0.5 Hz to represent

a priori clinically acceptable 95% limits of agreement.

A minority of recordings showed two distinct and prominent frequency peaks. We considered
a frequency spectrum to have two peaks if a secondary peak was at least 70% of the dominant
peak amplitude, and if the frequency of the secondary peak was at least 0.5 Hz from the
primary peak, see example in Figure 3. Given that clinical assessment of tremor assumes only

one dominant frequency, we selected the peak with highest frequency in these scenarios.
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Figure 3.

To test for an inverse correlation between tremor amplitude and the accuracy of tremor
frequency derived from video, we undertook two approximate measures of tremor amplitude.
The first calculated an approximate measure of movement amplitude from the accelerometer
signal. After converting the units from microvolt to cm/s?, we used Python [17] to scale the
accelerometer data to have a mean of 0, and then used the midpoint rule to estimate the first
integral (velocity), followed by eliminating drift by subtracting the line of best fit (using the
ordinary least squares method). We then used the midpoint rule again to estimate the second
integral, followed by calculating the standard deviation of mean displacement from the
baseline. As a second measure of tremor amplitude, two neurologists (SW, JA) clinically rated
postural and rest tremor amplitude from the videos, according to MDS-UPDRS items 3.15 and
3.17 respectively (grade 0 = no tremor, grade 1 = <1cm amplitude, grade 2 = 1-3cm amplitude,
grade 3 = 3-10cm amplitude, grade 4 = >10cm amplitude). The median amplitude rating was
MDS-UPDRS grade 2 (interquartile range 1-3). Spearman’s correlation coefficient was
calculated to test for relationships between these amplitude measures and video accuracy

(absolute error, Hz).



Results

Participant and video details are given in Table 1.

Essential Parkinson’s Functional
tremor disease tremor
Number of participants 5 9 1
Age (Std. Dev.) years 63 (10) 66 (12) 41
M:F 1:4 7:2 0:1
Resting tremor hand recordings 9 14 2
Postural tremor hand recordings 7 5 0
Median dominant accelerometer
5.5(5.1-5.9 5.4 (4.1-5.9 8.0
frequency (IQR), Hz ( ) ( )
Table 1

The dominant tremor frequencies from video (pixel optical flow) showed a mean absolute
error of 0.10 Hz (standard deviation +0.16 Hz) compared with the accelerometer frequencies.
In 36 out of 37 videos (97%) there was less than 0.5 Hz difference between the computer
vision and accelerometer frequency measurements. Bland-Altman analysis of the dominant
frequencies from video vs accelerometer showed a mean difference (bias) of -0.01 Hz, Figure
4. with 95% limits of agreement -0.38 Hz to 0.35 Hz. The 95% confidence intervals for the
limits of agreement were -0.48 Hz to -0.31 Hz for the lower limit and 0.28 Hz to 0.46 Hz for

the upper limit.
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Figure 4.

15 of the 37 videos were rated as <lcm amplitude by both clinician raters (i.e. MDS-UPDRS
grade 1 or 0). No significant inverse correlation was found between the absolute error of
video tremor frequency (Hz) and tremor amplitude, either measured by clinician amplitude
rating (Rater 1: Spearman’s rho -0.07, p=0.70; Rater 2: Spearman’s rho -0.15, p=0.37) or
accelerometer displacement (Spearman’s rho 0.25, p=0.14), Figure 5. Video 1 shows an
example of two tremors with low amplitude (UPDRS grade 1) in which there was excellent
agreement between the video and accelerometer frequencies (6.41 vs 6.39 Hz for the first

hand shown in the video, and 5.60 vs 5.62 for the second hand shown in the video).
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Discussion

We found that computer vision could measure the dominant frequency of hand tremor from
smartphone video, and this showed excellent agreement with a gold standard measure of
tremor frequency, accelerometery (95% limits of agreement -0.38 Hz to +0.35 Hz). The
method appears to remain accurate across a range of amplitudes with no significant inverse

correlation detected between absolute error and tremor amplitude.

Frequency is an important characteristic of tremor, especially to aid diagnostic classification
[4,5], but can be challenging to determine accurately. Unlike accelerometers (clinical or within
smartphones), our video method is contactless, does not involve specialist equipment or
patient interaction with an app, and simply visually records what the clinician sees during a
standard neurological examination. The hardware required already exists in the pocket of
most clinicians, so that our approach is an equitable one, that bypasses many of the usual
cost and geographical barriers. In essence, our method is largely automated, without a need

to tightly control camera distance, lighting or background. There are only three manual



procedures that are currently inherent to our method: (1) setting the smartphone camera to
record video, (2) drawing one bounding box around the hand, and (3) drawing one line for
the long axis of the hand. Steps (2) and (3) involve drawing just two items (one box and one
line) for a single frame of the video, and even this process could be automated in future work.
We would expect our method to detect any oscillatory movement that is visible in the video,
regardless of distance of the camera from the body part, because the technique is a measure
of pixel movement. Purposefully, we did not tightly constrain the distance between the hand
and camera as we recognised that flexibility in this parameter would be important in a clinical
setting. If hand pixels are moving in an oscillatory manner, the pixel movement will be

detected and the frequency of that oscillation measured.

Contactless tremor measurement using optical flow has recently been described using the
(markerless) Microsoft Kinect 3D camera system [19]. However, this method is limited by the
need for specialist costly hardware, and inaccuracy in tracking smaller movements, such that

tremor smaller than 2cm cannot be reliably detected [19].

Three previous studies reported computer processing of standard video to measure tremor.
In 2013, Hemm-Ode et al applied an optical flow algorithm to videos of two patients with
hand tremor during Deep Brain Stimulation (DBS) and found “similar trends” in optical flow
and accelerometer [20]. However the authors did not report any quantitative (Hz)
measurement of tremor frequency and no summary statistics were provided. A second study
measured change in one-dimension, by sampling pixel colour oscillation at static points to
give tremor frequency, and showed results comparable with ours (<0.5 Hz difference in 94%

of samples) [10]. The advantage of our technique that tracks pixel movement in two



dimensions is that it allows potential future measurement of direction, magnitude change,
and movement beyond simple tremor. The third previous publication in this area described
measurement of tremor during superimposed large amplitude movement [11]. However, it
used a more complex technique than ours that required human video labelling of multiple
frames to train the computer to reliably detect hands, and agreement with accelerometer
was considerably lower than our results (mean absolute error of 1.066 Hz for postural tremor

and 1.253 Hz for rest tremor).

Our study has several limitations. Although 37 distinct videos were used (varying by
participant, hand, rest/posture), the participant group was small, so we cannot yet be sure
that the findings would generalise to a wider population. Although no significant inverse
correlation was found between error and amplitude, we cannot rule out the possibility that a
significant correlation might emerge in a larger or more diverse sample. Measurement of
tremor frequency is most useful when paired with electromyography [21,22], and camera-
based computer vision cannot yet measure muscle contraction. However, determining
frequency alone can be useful, e.g. by demonstrating variation of tremor frequency over time
in functional tremor [5], a potential future application of our technique (combined with Short-
time Fourier Transform) [9]. A camera measurement is two dimensional and, similar to single
axis (one dimensional) clinical accelerometer, movements exactly perpendicular to the
camera angle potentially may not be recorded, but this could be rectified by moving the
camera to a different angle [5]. Two dimensional video cannot measure absolute tremor
amplitude but in principle the relative amplitude (e.g. in relation to finger width), or change
in amplitude over time, could be derived from pixel movement in future work. We have not

guantified the lower limits of amplitude for detection of tremor frequency using our method,



but optical flow is known to be sensitive to small amplitude movement in standard video
(provided there is not additional movement ‘noise’ in the background of the video frame),
e.g. [23]. Itis notable that 15 of 37 videos were rated as <1cm amplitude, and we did not find
any significant relationship between tremor amplitude and video measure accuracy in our
current sample. Finally, a tripod is not available in ordinary clinical settings, but smartphone
cameras use image stabilisation software and in the future our method could include labelling

of a static background reference point, or combination with hand tracking algorithms [24].

For several recordings, the frequency distribution showed two distinct peaks of similar height
(power), with each being slightly higher than the other in video vs accelerometer measures.
This is consistent with the recognition that tremor can have more than one contributing
component with distinct frequencies [5]. However, to allow simple comparison of single
number results, we selected the highest frequency peakin these situations. A future approach

could perhaps provide a two frequency result to provide more detailed clinical information

In summary, we have described a simple method to measure hand tremor frequency from a
60 second smartphone video that shows good agreement with accelerometer measurements
and has the potential to provide a ‘point and press’ contactless measure of tremor frequency

within standard clinical settings.
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Legends

Figure 1. Example frame from smartphone video of resting tremor.

Figure 2. Examples of time series and frequency domain after fast Fourier transform, for (A)
accelerometer (dominant frequency 4.79 Hz) and (B) video (dominant frequency 4.80 Hz).

(Video signal derived from pixel movement via Histograms of Optical Flow method.)

Figure 3. Example of frequency distributions (Fast Fourier Transform) with two peaks. The
two peaks show the same frequencies in accelerometer and video, but each has a slightly
higher power than the other in the alternative methods of measurement. (A) Accelerometer
shows a first dominant peak of 4.47 Hz and a second dominant peak of 5.51 Hz; (B) video

shows a first dominant peak of 5.53 Hz and a second dominant peak of 4.49 Hz. The


https://github.com/victordibia/handtracking

distributions and dominant frequencies are very similar. Where a second dominant peak
was >70% the size of the first dominant peak (and separated by >0.5 Hz), we compared the
highest frequency peak of the two in both methods of measurement (in this case 5.51 Hz and

5.53 Hz).

Table 1. Summary of Participant Characteristics (IQR = Interquartile Range)

Figure 4. Bland-Altman Plot showing the agreement between tremor measurements derived
from video (pixel optical flow) and accelerometer. Dashed horizontal lines show mean
difference (bias) and the 95% limits of agreement. Grey bands show the 95% confidence
intervals for the limits of agreement. The relative outlier (0.89 Hz difference) was a

Parkinson’s hand at rest.

Figure 5. No significant inverse correlations were found between the absolute error of video
tremor frequency and measures of tremor amplitude. Y axes show absolute error of video
tremor frequency (the difference between video and accelerometer tremor frequency, Hz).
X axes on graphs (A) and (B) show the grade of tremor amplitude rated by two neurologists
(‘rater 1’ and ‘rater 2’), using MDS-UPDRS items 3.15 for postural tremor and 3.17 for rest
tremor (grade 0 = no tremor, grade 1 = <1cm amplitude, grade 2 = 1-3cm amplitude, grade 3
=3-10cm amplitude, grade 4 = >10cm amplitude). The x axis on graph (C) shows the standard
deviation of mean accelerometer displacement from baseline. Spearman’s rho and p values

for each graph: (A) rho -0.07, p=0.70; (B) rho -0.15, p=0.37; (C) rho 0.25, p=0.14.



Video 1. Two examples of smartphone video showing low amplitude tremor and excellent
agreement between accelerometer and video (pixel optical flow) measures of tremor

frequency



