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Reconciling Kubo and Keldysh approaches to Fermi-sea-dependent nonequilibrium observables:
Application to spin Hall current and spin-orbit torque in spintronics
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Quantum transport studies of spin-dependent phenomena in solids commonly employ the Kubo or Keldysh
formulas for the nonequilibrium density operator in the steady-state linear-response regime. Its trace with
operators of interest, such as the spin density, spin current density, and so on, gives expectation values of
experimentally accessible observables. As is well known, for local observables, these formulas require summing
over the manifolds of both Fermi-surface and Fermi-sea states. However, the significantly different results
yielded by the two formulations when applied to the same system have ignited vigorous debates. Here, we
revisit this problem using an infinite-size graphene system with proximity-induced spin-orbit and magnetic
exchange effects as a test bed. By considering such system as being composed of central active region in between
two semi-infinite leads, in the spirit of the Landauer setup for quantum transport, we prove the numerically
exact equivalence of the Kubo and Keldysh approaches via the computation of spin Hall current density and
spin-orbit torque in both clean and disordered limits. The key to reconciling the two approaches is the numerical
frameworks we put forward for (i) evaluation of the Kubo(-Bastin) formula for a system attached to semi-infinite
leads, which ensures a continuous energy spectrum and evades the need for commonly used phenomenological
broadening otherwise responsible for ambiguities, and (ii) proper evaluation of the Fermi-sea term in the Keldysh

approach, which must include the voltage drop across the central active region even if it is disorder free.

DOLI: 10.1103/zwqs-gpr4

The density (or state or statistical) operator [1] is the central
concept of quantum statistical mechanics. The operator and
its representation—the density matrix—in some basis of the
Hilbert space are essential conditions to describe equilibrium
quantum systems at finite temperature [2], as well as out-
of-equilibrium systems driven by steady or time-dependent
external fields. The density operator also plays a crucial role
in describing the transition between nonequilibrium and equi-
librium states [3], as well as in zero-temperature quantum
mechanics [4] and quantum information science, where it
describes decoherence (i.e., the decay of the off-diagonal el-
ements of the density matrix in some preferred basis [5]),
and eventually quantum-to-classical transitions [5,6]. From
the knowledge of the density matrix p, the expectation value
of a physical observable represented by a Hermitian oper-
ator O is obtained from O = Tr[p O]. The density matrix
in equilibrium is unambiguously specified by the Boltzmann
and Gibbs prescription. A textbook example [2] is the grand
canonical ensemble peq = Y, f(E,)|E,)(E,| for noninteract-
ing fermions with single-particle energy levels E,, occupied
according to the Fermi-Dirac distribution function f(E), and
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with the corresponding eigenstates |E,) of a fermionic Hamil-
tonian. By contrast, there is no unique procedure to obtain
the density matrix of steady-state [7,8] or time-dependent
[9-12] nonequilibrium systems and for arbitrary strength
of the driving field [7], while including their many-body
interactions [12].

Nonetheless, in problems of noninteracting electrons
driven by weak external fields, linear-response theory of Kubo
[13] or Keldysh Green’s functions (GFs) [14,15] makes it
possible to construct a universal expression for p"4 that is
expressed in terms of the retarded GF involving the Hamil-
tonian of the system in equilibrium, H. For example, in the
case of the Kubo formula [13], and using Bastin et al. [16]
formulation in terms of GFs, the steady-state p"®? (at zero
temperature for simplicity) is given by

Piabo = Piabo + Piubos (1a)
4¢FE a R
ot = —Re[Im G iy Im G, (1b)

Asea 2eEX Avr Aan A A
PRubo =~ dEf(E)Re[(G" — G“)dx 0p Re G, (1c)

where dp = d/0F and E, is the electric field strength
(assumed to point along the ¥ axis). Note that several decom-
positions [17] into p5<%  and pRT | governed by the Fermi-

sea and Fermi-surface states, respectively, have been used
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historically [18-22]. Here, we employ the specific “sym-
metrized decomposition” of Ref. [21] ensuring no overlap
between the two terms, while also using i)ls(‘{l‘lﬁo as the
Kubo-Greenwood form [23,24] which is advantageous for
comparison with Keldysh Eq. (4b). The retarded (r) GF stan-

dardly used in Eq. (1) is given by
G'=E—H+inl™", @)

where G¢ = (G")" is the advanced GF, Im G = (G" — G)/2i,
ReG = (G’ + G“)/Z, v =[r, ﬂ]/ih is the velocity operator,
and t is the position operator. In most practical applica-
tions employing atomistic models [25,26], H is either a
generic symmetry-allowed [27-30] or first-principles-derived
[31-34] tight-binding Hamiltonian on a finite lattice with pe-
riodic boundary conditions. The parameter 1 (formally an
infinitesimal) is required to define G by avoiding poles
on the real axis [35], with the limit n — O taken explic-
itly in analytical approaches [36-40]. However, in numerics,
n must remain nonzero due to the discreteness of energy
levels [30,41,42], and it can be reduced only at the com-
putational expense of handling larger systems or averaging
over random twisted boundary conditions [43]. Physically,
a finite n was initially interpreted as mimicking the effect
of uncorrelated inelastic scattering processes, thereby defin-
ing a phenomenological dephasing timescale t4 = 7i/n [44].
Later on, n has often been interpreted [21,31] as a ho-
mogeneous broadening due to scattering from short-range
impurities, but disorder should be explicitly introduced as
a term in A [such as through &; in Eq. (5)] to capture the
crucial vertex corrections in Pg.p as is well known from
diagrammatic theory [36-40,45]. Recently, inspired by the
success of approximation theory [46,47], a more practical
and accurate interpretation has arisen, where n is seen as
an energy resolution that determines how close finite-size
spectral simulations are to describing genuine thermodynamic
behavior [25,48-50].

The Keldysh formalism [14,15] is applicable beyond the
linear-response regime by employing additional GFs. Its fun-
damental quantities are the retarded G'(t,t") and the lesser
G=(t,t") GFs describing the density of available quantum
states and how electrons occupy those states, respectively.
The diagonal-in-time component of the latter yields the
time-dependent nonequilibrium density matrix according to
b]'li?dysh )= %G< (¢,1) [9]. In steady-state out-of-equilibrium
scenarios, all quantities depend only on the difference r — ¢/,
so that after a Fourier transformation in the energy domain
E, G=(E) yields the Keldysh formula for the nonequilibrium
density matrix, iy = 5= [ dE G=(E). This formula is
widely used in computational quantum transport [S1] studies
of two- [52-56] or multiterminal [57,58] Landauer setups
[23,41,51,59-63], where a finite-length central active (CA)
region, as in Fig. 1, is coupled to macroscopic Fermi-liquid
reservoirs via ideal semi-infinite leads. For instance, in the
two-terminal geometry in which the left (L) and right (R)
leads terminate into the corresponding reservoirs character-
ized by the Fermi-Dirac functions, f; g = f(E — urr), and
in the presence of a bias voltage eV, = up — ug [here, ur g
denotes the electrochemical potential [64] of L or R lead], the
lesser GF of the CA region was expressed by Caroli et al.

Left Lead Central Active Region Right Lead
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FIG. 1. Doubly proximitized [71] infinite graphene sheet viewed
as a two-terminal Landauer setup [23,59-63] for computational
quantum transport [51] with its CA region being an armchair
nanoribbon (of finite length L =40 A and width W =15 A)
attached to semi-infinite nanoribbons of the same kind. The nanorib-
bon is periodically repeated along the y axis to reproduce bulk
behavior of an infinite sheet [72]. We employ this setup in the
calculation of SH current density (Fig. 2) and SO torque (Fig. 3),
within the shaded-in-yellow middle strip, via both Kubo Eq. (1) and
Keldysh Eq. (4).

[61] as G=(E) = iG" (E)fu(E)IL(E) + fr(E)R(E)IG(E).
The simplicity of this expression stems from the assumption
that many-body interactions are absent in both the CA region
[65—-67] and the leads [68]. Here, the retarded GF,

G'(E)=[E-H-3X[(E) - i,g(E)]", 3)

differs from Eq. (2) used in numerical Kubo calculations
on systems with periodic boundary conditions [26,27,30—
33,58] as it incorporates the leads through their self-energies
[51,69,70] EA]LR(E ). They define the level broadening op-
erators, 'L z(E) =[S} o(E) — ¢ o(E)], quantifying the
electron escape rate into the leads.

The Keldysh formula is valid in the nonlinear regime
(i.e., for large V;) [52,56,73]. Thus, to compare it with the
Kubo Eq. (1), we assume small eV, < Ep, where Er is the
Fermi energy, leading to f; — fr ~ eV, 8(E — Er) at zero
temperature. In such a linear-response limit, gy, can be
decomposed [52,74] as (many other decompositions [17] are
possible [75,76])

Aneq _ asurf Asea

PReldysh = PKeldysh T Pkeldysh> (4a)
3 eVb A A A

A surf _ r a

IOKeldysh - 7 G 1—‘LG ’ (4b)

1 [T N
f)ls(e:idysh = - ; / dEfR (E )Im GVb (E)
—00

+ % / ” dE f(E)Im G(E). (4c)

o0

In Eq. (4c) we explicitly subtract the grand canonical density
matrix in equilibrium (which is built into Kubo’s derivation
[13]), peqg = —1 [°2 dE f(E)Im G(E) expressed in terms of
GFs, as commonly done [57,73,77] to remove expectation val-
ues that can be nonzero in equilibrium but are experimentally
not observed, such as a fieldlike [78,79] component of spin
torque [73,77], persistent spin currents [57,80], and persistent
charge currents [23] (in the presence of an external magnetic
field).
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FIG. 2. Spin Hall current density as a function of the Fermi
energy. This quantity is obtained by tracing the conventional spin cur-
rent operator [92] with (a) Fermi-surface, (b) Fermi-sea, and (c) total
density matrices in Kubo [Eq. (1)] vs Keldysh [Eq. (4)] approaches
employing the same retarded GF [Eq. (3)] of doubly proximitized
graphene. The parameters in Eq. (5) are set as Agso = Jq = 0.1 eV
and the disorder strength is D = 0.3 eV. The spin current density is
averaged over 200 disorder configurations. Convergence with respect
to k,-point sampling was also established.

It may seem at first that, because the Kubo Eq. (1) and
Keldysh Eq. (4) have quite different functional forms, they
describe different scenarios, that is, bulk transport in the
former and two-terminal setups in the latter. Nonetheless,
the two formulations are general and should lead to the
same physical conclusions. Indeed, their equivalence [17] is
well established [23,62,63] for longitudinal charge transport
observables requiring only ARii, or pRi . However, no-
tably in the context of spin transport, the use of the two
formulations has generated widespread confusion and even
divergent conclusions about the same phenomenon. For ex-
ample, Ref. [58] compared the spin Hall (SH) current obtained
from Keldysh calculations in four-terminal geometry [57] to
that of Kubo calculations on periodic lattices, concluding that
the Kubo formula is insufficient. Conversely, in spin-orbit
(SO) torque calculations, the Keldysh approach apparently
predicts [71,81] only the fieldlike (i.e., odd in magnetiza-
tion [79,82]) component of SO torque Tkeigysh = T? in the
clean limit, while the Kubo formula yields [83-87] a nonzero
value of both T’ and dampinglike (i.e., even in magneti-
zation [79,82]) SO torque T¢. The even SO torque from
the Kubo formula has a well-studied “intrinsic” contribu-
tion that is governed [31,83-85] by the Berry curvature of
occupied Fermi-sea states and is largely insensitive to a phe-
nomenological n or even to real-space disorder [30]. Thus,
Txeldysh 7 Tkubo» €ven when both calculations are performed
on an identical system, such as the paradigmatic Rashba
SO- and exchange-coupled two-dimensional (2D) electron
gas [81,84,85]. This in turn has led to the opposite perception,
that is, that the Keldysh formula is insufficient. However,

n — 0 entails T° — oo [Fig. 3(f)] in Kubo calculations of
clean systems, which led to concerns [81] about the use of
Kubo Eq. (1) in the absence of extrinsic scattering mech-
anisms. Additionally, calculations via Kubo Eq. (1) with
first-principles Hamiltonian H of ferromagnet/heavy-metal
bilayers, such as Co/Pt, plugged into GF in Eq. (2) do
not [31,32] find strongly anisotropic angular features of SO
torque, thereby contradicting calculations [79] using Keldysh
Eq. (4) with GF in Eq. (2) or experiments [88] on the same
Co/Pt system.

In this Letter, we demonstrate the numerically exact
equivalence between the Kubo and Keldysh approaches by
focusing on two paradigmatic examples of coupled spin-
charge transport phenomena in spintronics, i.e., the SH effect
and the SO torque. We provide a constructive proof of their
equivalence by developing numerical frameworks which (i)
apply the Kubo(-Bastin) density matrix to two-terminal se-
tups (Fig. 1), via Eq. (3) plugged into Eq. (1), which is an
unexplored route in previous studies arriving at divergent con-
clusions, and (ii) properly construct [89] Py coOntribution
to the Keldysh density matrix [Eq. (4c)], Wthh requires us-
1ng (ararely computed [74,79]) G’ =[E—-H —eU; - E’

R] in Eq. (4c) that includes the voltage drop eU; across
the CA region (Fig. 1). Note that Gy, is markedly different

from G” [Eq. (3)] used in all other terms of Kubo Eq. (1) or
Keldysh Eq. (4). Since a voltage drop cannot [64] be justified
for a clean CA region yielding ballistic charge transport, this
also suggests that the computation of local transport quantities
always requires the introduction of real-space disorder, even
though disorder averaging is often avoided due to the high
computational cost of repeated integrations over the Fermi sea
[79] (recently developed spectral algorithms could be used to
mitigate this problem [90]). Bulk properties [91] can still be
extracted [92] from two-terminal systems with a CA region
of finite length by computing local quantities at some distance
[92,93] away from the CA region/lead interface (such as at the
shaded middle hexagons in Fig. 1).

To demonstrate such an equivalence, we compute the SH
current (Fig. 2) and SO torque (Fig. 3) densities via Kubo
and Keldysh routes for the same system—a graphene sheet
with both SO coupling and magnetic ordering (Fig. 1). The
effective TB Hamiltonian (whose parameters can be fitted to
first-principles calculations [71] or experimental data [40]) is
given by

A Zi)"RSO
H=—t Z CinCjo + Z [6 % dU](ra zrrCﬂT/
(i.j).o#0’
+ Z ¢ (8 50‘(7 +J§d[mz 0]00 )Cm (5)
i, o, o’
Physically, such spin-dependent interactions can be

introduced in graphene via proximity effects from an
overlayer of 2D ferromagnetic insulator and underlayer
of 2D semiconductor material [71]. Here, c (¢is) creates
(annihilates) an electron at a site i with spln o="1;
6 = (6, 6y, 6;) is the vector of the Pauli matrices; t = 2.7 eV
is the nearest-neighbor (NN) hopping; the sum (i, j) goes
over all pairs of NN sites; ¢; € [-D/2, D/2] is a uniform
random variable introducing Anderson disorder on each site;
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FIG. 3. Even T¢ (or dampinglike [78,79]) and odd T* (or fieldlike [78,79]) SO torques as a function of the Fermi energy. Each row was
obtained by tracing the torque operator [76,79] with (a), (b), (g), (h) Fermi-surface, or (c), (d), (i), (j) Fermi-sea density matrix, as well as
(e), (), (k), (1) total density matrix within Kubo Eq. (1) vs Keldysh Eq. (4). In (a)—(f), the CA region in Fig. 1 is clean, while in (g)—(1) it
contains Anderson disorder of strength D = 0.5 eV. (e) and (f) show additional (black and green) curves obtained from conventional [27,30—
33] Kubo calculations on periodic lattices [i.e., by using Eq. (2) plugged into Eq. (1)]. The parameters in Eq. (5) read as Agso = Jsa = 0.3 eV.

Calculations with disorder employ 200 configurations.

and Jyy is the sd exchange coupling between conduction
electrons and proximity-induced localized magnetic moments
described by a classical unit vector m;. While other SO effects
can be induced in graphene [71,94], we focus on the Rashba
SO coupling of strength Arso, where d;; is the unit vector
along the direction connecting NN sites i and j. The k-point
sampling along the transverse direction is implemented [72]
with hoppings connecting sites along the lower and upper
edge of the armchair nanoribbon multiplied by the phase eo" .
All results in Figs. 1(c), 2, and 3 are averaged [72,95] over the
transverse wavevector using 0)=w fZ ;VW dk, (OA)ky /2.
Though not essential for the Kubo versus Keldysh
equivalence, the k sampling makes the system behave as
infinite along the y axis and thus yields bulklike [72] behavior
(considered to be the hallmark of standard [25,26,31,48]
Kubo-Greenwood or Kubo-Bastin formula calculations). The
infinity of our graphene sheet is demonstrated by its density
of states in Fig. S1(d) of the Supplemental Material (SM) [17]
being identical to standard analytical result [96], as long as a
sufficient number of k, points is included to converge.

We start the path of reconciliation by first recalling that for
pure Fermi-surface transport properties, their equivalence was
well-established long ago [23,63]. This has been amply con-
firmed [97] for, e.g., conductance [23,62,98] of two-terminal
systems [99], including graphene [90,100] that we also revisit
in the SM [17]. Since the conductance formulas [17] for
Gkubo = Grelaysh are essentially the expectation value of the
total current operator [23,63,74] in the right lead divided by
the voltage drop (i.e., G = (fR)/Vb, where ([z) = Tr[,?)%“ffk]

and 0 = Kubo or [J = Keldysh), this implies equivalence
[23,63] of Trlixpgt 1 and Tr[IAR,?)Ii“erlijsh] on the proviso that
the retarded GF in Eq. (3) is used. This suggests that the
divergent conclusions in recent studies of spin-dependent
transport stem from attempts to calculate expectation values
of local quantities that require additional traces of their op-
erators with the Fermi-sea terms, pi,, [Eq. (1¢)] or gy
[Eq. (4¢c)]. To investigate this issue, in Fig. 2 we first consider
the expectation value of spin (Hall) current density (fysf), with
the corresponding operator being [92] fys = 5(0,6; + 6.0,).
In order to capture the bulk behavior, this local transport
quantity is computed and averaged over a small area in the
middle of the CA region as denoted (yellow hexagons) in
Fig. 1. Note that (ffz), or the SH conductivity osy = (]A';?Z) /Ex,
in the pure Rashba model (i.e., with Jyq = 0) treated by
the standard diagrammatic calculations with scalar disorder
has zero contribution from the Fermi surface due to ver-
tex corrections [36,39]. Interestingly, our Kubo calculations
for Jyq # 0 [gray curve in Fig. 2(a)] produce a relatively
small nonzero value from the Fermi surface. The suppres-
sion of the Fermi-surface contribution to jf in our results is
nontrivial since the interplay of Rashba SOC and exchange
coupling is expected to generate robust extrinsic spin Hall
effect (SHE) via skew scattering, as shown by Boltzmann
and Kubo calculations [101] (enhanced intervalley scatter-
ing due to the nature of our short-range disorder landscape
[101], as well as the nondiffusive nature of our trans-
port simulations, are likely explanations for this behavior).
By contrast, the Keldysh calculations [Figs. 2(a) and 2(b)]
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contain significant contributions from both the Fermi sur-
face and Fermi sea. Although this suggests that ,?)i”tfgo #*
ﬁ%‘é‘]{jysh and P, 7 Pielaysh» it i the sum of both contri-
butions that carries the physical meaning. Indeed, we see
that Tr[i);:cl'dysh K= Tr[ﬁ;i?mj} ] are perfectly matched in
Fig. 2(c).

Another local transport quantity that has been a source of
divergent conclusions is the SO torque [102]—an intensely
studied phenomenon over the past decade due to its experi-
mental [83] and technological relevance [103,104]. In general,
spin torques arise [78,105] due to the exchange of spin angular
momentum between flowing electrons and localized mag-
netization. Specifically, injected unpolarized charge current,
together with SO coupling, produces nonequilibrium spin
density, (§;) = Tr[p5;%6] where §; = ¢76¢; is the spin oper-
ator, whose computation makes it possible to obtain local SO
torque as T; = Jy(S;) x m;. Both [0 = Kubo [27,30-33,83—
86,106] and O = Keldysh [71,75,76,79,81,82,107] density
matrices have been frequently used in SO torque calcula-
tions. Similar to Fig. 2, we average the local SO torque
over the middle of the CA region indicated in Fig. 1 to
obtain T = SV T; = T¢ + T°. Figures 3(a)-3(f) shows
the energy dependence of the even and odd components of
T, with magnetization fixed out of plane M =) . m; || Z,
calculated for the clean system. Since both formulations in
Figs. 3(a)-3(f) yield identical Ty, = Tf{eldysh and T, =
Teiaysn» this demonstrates how the Keldysh formula repro-
duces Fermi-sea-governed even (or dampinglike [78,79]) SO
torque T¢ in the clean limit, that was previously considered
to arise only via the Kubo route [27,83-85]. In Figs. 3(e) and
3(f), we additionally show the even and odd SO torques pro-
duced by conventional usage [27,30-32] of the Kubo Eq. (1)
on periodic lattices. As expected, the particular choice of the
ad hoc broadening n affects the results for T’ [Fig. 3(f)],
diverging with n — 0 which is unphysical [81,108-110].
Moreover, T¢ which is independent of 7 (and, therefore,
considered “intrinsic” [83-85]), deviates substantially from
our Kubo = Keldysh results for T on two-terminal systems
[Fig. 3(e)]. Thus, the implementation of the Kubo(-Bastin)
Eq. (1) on two-terminal geometries that we develop here
evades ambiguities due to choice of 7 in finite-size periodic

lattice calculations because two-terminal Landauer setups are
infinite systems with a continuous energy spectrum [51] (as
demanded also in the original derivations of Kubo [13,108-
110]) which ensures that dissipation is effectively introduced
[111-113]. Our implementation also mimics closely exper-
imental setups where a nonequilibrium state is introduced
[23,63,108—-110] by injecting current through the leads or
by applying a voltage difference V, between them, rather
than by applying an electric field. In the disordered case,
Fig. 3(g) shows that ,i)fg‘eld « produces additional contribu-
tions to the dampinglike Te which we attribute to the often
overlooked skew-scattering-induced dampinglike SO torque
[71,86,87,114]. Also, [)fe‘idysh and pgi, produce [Figs. 3(i)
and 3(j)] additional contributions to T°. Despite these differ-
ences in specific contributions, their sums produce identical
results, Tr[,?)lrii?d oI = Trl pyg T, in Figs. 3(k) and 3(1).
This, together W1th the results of Fig. 2(c), completes our
proof of equivalence.

The numerical frameworks developed and validated here
demonstrate an unambiguous route to study generic spin-
charge transport phenomena in the linear-response regime of
realistic systems, in addition to resolving a debate in spintron-
ics over the proper usage of Kubo and Keldysh formulas.
Our findings also suggest that assigning a unique and special
physical meaning [31,83—-85] to the Fermi-sea term in Kubo
[Eq. (1)] requires further scrutiny, as the decomposition of the
density matrix into Fermi-surface and Fermi-sea contributions
is not unique [17] and, as seen through the demonstrated Kubo
versus Keldysh equivalence, there are many possible [17] (and
rather mundane looking) forms of the Fermi-sea term within
the Keldysh formalism [Eq. (4)]. The particular expression to
be used in practical calculations is a matter of computational
convenience [115].
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