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Abstract—Spiking Neural Networks (SNNs) show great po-
tential in applications such as image processing, robotics, and
communications. However, the vast number of neuron models
and learning algorithms in large-scale SNNs impose significant
hardware and energy overhead, with multiplication remaining
the most critical operation. Thus, to address this challenge, this
paper presents the hardware design of the Logarithmic Linear
Multiply (LLMu) and Logarithmic Linear Segmented Multiply
(LLSMu). These two components are specifically designed for
neuron models and learning algorithms, achieving high accuracy
with low hardware resource utilization and energy consumption.
To demonstrate the capabilities of LLMu and LLSMu, we im-
plement two mainstream SNN neuron models—Leaky Integrate-
and-Fire (LIF) and Izhikevich—as well as the Spike Timing-
Dependent Plasticity (STDP) learning algorithm, and compare
their performance with state-of-the-art approaches on FPGA and
ASIC platforms. The scope of this work is limited to these models
and algorithms. The LLMu- and LLSMu-based implementations
exhibit significantly improved energy efficiency over existing
methods. Specifically, in the FPGA implementation, the LLSMu-
based LIF neuron model achieves a 6.75× improvement, the
LLSMu-based Izhikevich neuron model achieves a 2.70× to
3.72× improvement, and the LLMu-based STDP achieves a
21.03× to 48.78× improvement in energy efficiency. In the ASIC
implementation, the LLSMu-based Izhikevich neuron model
further improves energy efficiency by 5.58× to 5.69×, while
the LLMu-based STDP achieves 5.96× and 3.69× improvements
compared to prior designs.

Index Terms—Spiking Neural Network, FPGA, ASIC,
SNN Accelerator, Approximate Computing, Izhikevich Neuron
Model, Leaky Integrate-and-Fire Neuron Model, Spike Timing-
Dependent Plasticity

I. INTRODUCTION

SPIKING Neural Networks (SNNs) have been widely ex-
plored in applications such as image processing, robotics,

motor control, communication, and event-based data process-
ing [1], particularly for energy- and resource-constrained plat-
forms such as edge and embedded devices. Owing to their low
power consumption, reduced hardware resource requirements,
and unique learning mechanisms, SNNs are increasingly re-
garded as promising candidates for next-generation neural
networks [2].

In SNNs, the neuron model serves as the most basic com-
putational unit, capturing the dynamics of membrane potential
by mathematically modeling the voltage difference across a
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biological neuron’s cell membrane [3]. In an effort to achieve
a balance between computational efficiency and biological
realism, a number of neuron models have been developed,
including the Leaky Integrate-and-Fire (LIF), Hodgkin-Huxley
[4], and Izhikevich [5] models. Among the various neuron
models proposed to date, the LIF and Izhikevich neuron mod-
els have been the most widely adopted in SNN applications.

In addition to neuron models, learning algorithms serve as
a key mechanism for inter-neuron communication, which is
primarily realized through synapses. These synapses function
as the fundamental medium for both signal transmission and
synaptic plasticity [6]. Among them, Spike-Timing Dependent
Plasticity (STDP) stands out due to its simplicity and strong
biological plausibility, as it depends only on the relative timing
of presynaptic and postsynaptic spikes [7].

However, despite the simplicity of individual neuron mod-
els and learning algorithms, large-scale SNNs contain vast
numbers of neurons and synapses, which constitute the pri-
mary source of energy and hardware resource overhead [8].
Moreover, the asynchronous nature of SNNs leads to irregu-
lar synaptic weight access patterns, making them inefficient
on conventional von Neumann architectures [9]. Therefore,
optimizing neuron models and learning algorithms, together
with designing specialized computing hardware for SNNs,
is essential to reducing power consumption and hardware
resource utilization without compromising performance.

Among these models and algorithms, multiplication is the
most computationally intensive operation. Consequently, refin-
ing multipliers used in neuron models and learning algorithms
can substantially reduce hardware resource utilization and
power consumption in SNN deployments.

In this context, to simplify the computations in neuron
models without compromising accuracy, Z. Peng et.al. lever-
aged the CORDIC algorithm to perform the square operation
in the Izhikevich neuron model [11]. Similarly, J. Wu et.al.
adopted the CORDIC method to implement multiplication and
exponential functions in the LIF neuron model and the STDP
learning algorithm [8]. While the CORDIC algorithm offers
improved computational speed and reduced power consump-
tion, it requires multiple iterations to achieve high accuracy.
This iterative nature results in increased storage demands,
higher latency, and a larger hardware footprint. To address
these limitations, J.Kim et al. use Template-Scaling-Based
Exponential Function Approximation (TS-EFA) for modeling
the LIF neuron [25]. TS-EFA slightly alleviates the high
latency of the CORDIC algorithm with lookup-table-based
approximation functions. However, TS-EFA’s FPGA imple-
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mentation still suffers from high resource utilization. This is
primarily due to its reliance on precomputed results stored
in RAM, increasing memory usage, power consumption, and
reducing computational efficiency.

Motivated by these limitations, this paper proposes the
Logarithmic Linear Multiply (LLMu) and Logarithmic Linear
Segmented Multiply (LLSMu) methods with low hardware
resource utilization, high throughput, and high energy effi-
ciency. These methods are specifically designed to optimize
multiplication operations in SNN neuron models and learning
algorithms. Given the high robustness of SNN systems, small
computational errors introduced by approximate computing
have minimal impact on overall network performance, while
significantly reducing hardware resource requirements and
power consumption. Unlike conventional iterative methods
such as the CORDIC algorithm, the proposed method em-
ploys linear approximation to directly estimate the result. Fur-
thermore, by decomposing large multiplications into smaller
parallel operations, the LLSMu architecture achieves further
improvements in speed and efficiency. A systematic error anal-
ysis is conducted to design effective compensation strategies
and perform hardware-level optimizations, thereby improving
computational accuracy. The proposed method is generalizable
to any SNN neuron model or learning algorithm involving
multiplication. In this work, the implementation and evaluation
focus on three widely adopted components: the LIF and
Izhikevich neuron models, and the STDP learning algorithm,
with the scope limited to these models and algorithms. The
main contributions of this paper include:

1) The traditional linear approximation method is en-
hanced through systematic error analysis and a seg-
mented parallel computation strategy. Based on this,
the proposed LLSMu approach achieves higher accuracy
and faster computation compared to conventional linear
approximation-based multipliers [13], with a 31.4% re-
duction in approximation error.

2) The LLSMu method was applied to the Izhikevich neuron
model and evaluated on FPGA and ASIC platforms. On
the FPGA, it improved throughput by 21.26 to 108.33%
and energy efficiency by 2.70× to 3.72× over prior
designs. On the ASIC, it reduced area by 71.30% and
76.64% compared to the CORDIC and PWL approaches,
respectively.

3) The LLSMu method was applied to the LIF neuron model
and evaluated on FPGA and ASIC platforms. On the
FPGA, it reduced slice register utilization by 17.47 to
92.69% and improved energy efficiency by 6.75× over
prior designs. On the ASIC, it achieved a 5.208× to
15.625× improvement in maximum operating frequency.

4) The LLMu method was applied to the STDP learning al-
gorithm and evaluated on FPGA and ASIC platforms. On
the FPGA, it reduced slice register and LUT utilization
by 6.56 to 91.68% and 22.92 to 92.41%, respectively,
improved maximum operating frequency by 47.96 to
114.25%, and enhanced energy efficiency by 21.03× to
48.78× over prior designs. On the ASIC, it achieved
3.979× and 1.953× higher throughput compared to

CLSTDP and ImSTDP, respectively.
5) SNNs of different sizes were built using the LLMu-

based STDP and LLSMu based neuron models and sub-
sequently evaluated on real-world rotor dataset. The test
accuracy ranged from 87.23% to 98.77%, demonstrating
that the errors introduced by approximate computing had
minimal impact on the system-level performance.

The remainder of this paper is organized as follows: Section
II reviews related neuron models, learning algorithms, and
approximate computing techniques. Section III presents the
proposed LLMu and LLSMu method, including their appli-
cations. Section IV presents the evaluation of LLMu and
LLSMu method with their application. Section V presents the
hardware architecture of the proposed SNN neuron models and
learning algorithms. Section VI reports the FPGA and ASIC
implementation results of all proposed designs. Section VII
concludes the paper.

II. RELATED WORKS

A. SNN Neuron Model
1) Izhikevich neuron model: The Izhikevich model [5] is

described as
dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u).

(1)

The parameters a, b, c, and d define the recovery time scale,
sensitivity to membrane potential, membrane recovery value,
and recovery increment, respectively. When the membrane
potential v reaches the threshold, a spike is generated, with
the change in v updated as

if v ≥ 30mV, then

{
v = c

u = u+ d.
(2)

2) LIF neuron model: The discrete-time iteration equation
of the membrane potential v in the LIF neuron model [8] is
given by

V [t+ 1] = e−
1
τ · (V [t]− Erest) + Erest + I. (3)

In (3), τ represents the membrane time constant. When v
reaches the threshold, the neuron generates a spike and updates
v to the resting potential as

if V > Vth, then V = Erest. (4)

B. Pair-based trace-STDP Learning Algorithm
Trace-STDP (t-STDP) is a representative form of STDP

[12]. Its discretized computation is given by

xτj [n] = xτj [n]−
xτj [n− 1]

τj
+ sj [n]

∆W [n] = Fj(ω[n]) · xτi[n] · sj [n]
− Fi(ω[n]) · yτj [n] · si[n],

(5)

where xτj represents the trace of the post-synaptic spike, sj
denotes the spike generation at the current time step of the
post-synapse, and τj is the time constant for the post-synaptic
trace. In addition, ∆W [n] denotes the weight change, with
Fj(ω[n]) and Fi(ω[n]) serving as fixed amplification factors.
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C. Mitchell Approximate Method

Mitchell’s method is a typical logarithmic linear approxima-
tion known for its high hardware efficiency [13]. The method
operates as follows. Assume that there are two N-bit fixed-
point numbers A and B. Suppose the first ’1’ in A and B is
at the position ka and kb, where (N − 1) ≥ ka, kb ≥ 0. By
extracting the characteristic bit and separating the fractional
part, A can be expressed as

A = 2ka

(
1 +

ka−1∑
i=0

2iai

)
. (6)

Subsequently, the fractional part is denoted by Ã as follows:

A = 2ka · (1 + Ã). (7)

Taking the base-2 logarithm of (7) yields (8):

log2 A = ka + log2 (1 + Ã). (8)

After this step, ka is extracted and retained as a characteristic
bit. The multiplication can then be transformed into an ad-
dition in the logarithmic domain. Performing the algorithmic
computation on A×B yields (9):

log2 (A×B) = ka + log2 (1 + Ã) + kb + log2 (1 + B̃). (9)

According to Mitchell’s method, (9) can be simplified by
approximating the log2 (1 + Ã) and log2 (1 + B̃) as follows:

log2 (1 + Ã) ≈ Ã ⇒ log2 (A) ≈ ka + Ã. (10)

Due to (1+Ã) < 2 the curve of log2 (1 + Ã) is close to linear
line. The mean error of this step approximation is 5.781%, the
deviation of it is 2.524%. Moreover, the maximum error of it
is only 8.607%. After these approximations, the logarithms of
A×B is obtained as

log2 (A×B) = ka + kb + Ã+ B̃. (11)

Finally, applying the antilogarithm yields the result of A×B
as follows:

P̃ = A×B ≈

{
2ka+kb(1 + Ã+ B̃), Ã+ B̃ < 1

2ka+kb+1(Ã+ B̃), Ã+ B̃ ≥ 1.
(12)

The average relative error in this phase is 3.841%, with
a standard deviation of 2.934% and a maximum error of
11.109%.

D. Classical Karatsuba Method

Karatsuba multiplication is a method that reduces the
computational complexity of multiplication by achieving sub-
quadratic performance, without compromising computational
accuracy [15]. Assume that there are two N -bit fixed-point
numbers A and B, which are sliced into four fixed-point
segments of equal bit width and expressed as

A = AH · 2k +AL (13)

B = BH · 2k +BL, (14)

where k = N
2 , AH , AL, BH and BL denote the high- and low-

bit segment of A and B, respectively. According to (13) and

(14), the exact multiplication result of A and B is expressed
as

A×B = (AH · 2k +AL) · (BH · 2k +BL)

= AHBH︸ ︷︷ ︸
m1

·22k + (AHBL +ALBH) · 2k +ALBL︸ ︷︷ ︸
m0

. (15)

For convenience of subsequent computational expression,
AHBH and ALBL are denoted as m1 and m0, respectively.
(15) consists four multiplication, AHBH , ALBL, AHBL and
ALBH . The cross terms can be eliminated by first expressing
them collectively as follows:

m2 = (AH +AL)︸ ︷︷ ︸
a0

(BH +BL)︸ ︷︷ ︸
a1

= AHBH +ALBL + (AHBL +ALBH). (16)

Correspondingly AH+AL and BH+BL are denoted as a0 and
a1, respectively. Therefore, AHBL+ALBH can be written as

AHBL +ALBH = m2 −m1 −m0︸ ︷︷ ︸
s3

. (17)

As a result, A×B can be expressed as follows:

A×B = m12
2k + (m2 − (m1 +m0︸ ︷︷ ︸

a2

))2k +m0. (18)

III. PROPOSED SNN NEURON MODEL AND LEARNING
ALGORITHM

A. Logarithmic Linear Segmented Multiply

In conventional Mitchell based logarithmic linear approx-
imation, information from the lower bits is typically lost.
Separating the computation of the lower-bit components can
help reduce approximation errors and improve overall ac-
curacy. Therefore, a Karatsuba-based approach is employed
to partition the operands into multiple segments, enabling
parallel approximate computations. This strategy maximizes
information retention while enhancing parallelism, thereby
improving the overall computation speed. Meanwhile, per-
forming a preprocessing step to shift the most significant ’1’
bit of the operand to the MSB position before subsequent com-
putation can significantly improve accuracy. The preprocessing
operation is illustrated in Fig. 1. The number of bits shifted
will be recorded, and the result will be shifted back to the right
by the same number of bits after the calculation is completed.

Fig. 1. Preprocess structure of LLSMu.

As shown in Fig. 2, the overall structure of LLSMu is
presented. After passing through the preprocess module, the
operand is symmetrically partitioned into four smaller-width
segments. These segments are then individually summed and
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Fig. 2. Simplified logarithmic linear segmented multiply arithmetic operation.
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Fig. 3. Simplified logarithmic linear multiply arithmetic operation.

fed into the LLMu module for approximate multiplication. The
internal structure of the LLMu module is illustrated in Fig. 3.
Upon entering the LLMu module, the fractional parts of the
operands are first extracted and summed. A carry detection
operation determines whether the sum of the fractional parts
exceeds one. This result subsequently influences both the
selection of the error compensation constant and the final shift
adjustment required for output correction.

The convex nature of the logarithmic function ensures that
the linearly approximated multiplication result is consistently
lower than the exact value, resulting in a negative error P̃−P .
The average error can thus be computed and applied as
a constant compensation, which improves overall accuracy
without incurring additional hardware resource overhead [14].
Since Ã and B̃ ∈ [0, 1), the average error P̃ − P can be
obtained by evaluating a double integral over this interval as

follows:

P = A×B = 2ka+kb(1 + Ã)(1 + B̃)

AverageError =
1

(1− 0)(1− 0)

∫ 1

0

∫ 1

0

(P̃ − P ) dÃdB̃

= −2ka+kb

(∫ 1

0

∫ 1−B̃

0

(ÃB̃) dÃdB̃

+

∫ 1

0

∫ 1

1−B̃

(1 + ÃB̃ − Ã− B̃) dÃdB̃

)
≈ −(0.08333)× 2ka+kb .

(19)

Subsequently, the computed AverageError is directly added
to P̃ as an error compensation term. After processing through
three LLMu modules, the values of m0, m1, and s3 are ob-
tained as shown in (18). To minimize the overhead associated
with shifting and addition operations, m0 is symmetrically
divided into two k-bit segments: a high-bit part m0H and
a low-bit part m0L. The high-bit segment is directly con-
catenated with m1, effectively completing both the left-shift
of m1 by k bits and their addition in a single operation.
Subsequently, the concatenated result is added to s3, yielding
m12

k + s3 +m0h2
−k. Finally, m0L is concatenated with the

previous result, completing the final left-shift and addition
without introducing additional operations. The complete com-
putation process of LLSMu is summarized in Algorithm 1.

B. LLSMu-based Neuron Model

1) LLSMu-based Izhikevich Neuron Model: Ordinary dif-
ferential equations (1) need to discretize for hardware imple-
mentation. The equations for the membrane potential with n
iterations can be obtained as

v [n+ 1] =v [n] + ∆t · (2−5v [n]
2
+ 22v[n] + v[n]

+ 140− u[n] + I[n])

u [n+ 1] =u [n] + ∆t · a(bv[n]− u[n]).

(20)

The proposed design is based on 33-bit fixed-point number
(1,10,22), corresponding to 1 sign bit, 10 integer bits, and 22
fractional bits. This design accounts for the possibility that v
may occasionally take very small negative values, necessitating
a larger integer bit width. Meanwhile, the Izhikevich neuron
model typically uses a small time step ∆t to accurately
capture changes in membrane potential. A 22-bit fractional
width is sufficient to support ∆t values on the order of
10−7. In addition, fixed-point arithmetic requires significantly
fewer hardware resources than floating-point. Splitting 5×v[n]
into 22 × v[n] + v[n] allows a multiplication calculation
to be replaced by a shift and an addition operation. After
this procedure, (20) still contain multiplications by the time
constants ∆t, parameters a and b, and the constant 2−5.
Correspondingly, by approximating these terms with powers
of two, their multiplications are replaced by shift operations.
Moreover, the coefficient of the v[n]2 is changed from 0.04
to 2−5 that is closest 0.04. After all the operations of (20),
one multiplication of v[n] remains. Therefore, the finial op-
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Algorithm 1 Logarithmic Linear Segmented Multiply
Input: integer A[2N ], integer B[2N ], constant c = 0.08333

Output: P (A,B)

1: H(A)← A[2N − 1 : N ], H(B)← B[2N − 1 : N ]

2: L(A)← A[N − 1 : 0], L(B)← B[N − 1 : 0]

3: a0 ← H(A) + L(A), a1 ← H(B) + L(B)

4: klA ← leading one position(L(A))

5: klB ← leading one position(L(B))

6: if
L(A)

2klA
+

L(B)

2klB
− 2 < 1 then

7: m0 ← 2(klA+klB) × (c+
L(A)

2klA
+

L(B)

2klB
− 1)

8: else
9: m0 ← 2(klA+klB) × (c/2 +

L(A)

2klA
+

L(B)

2klB
− 2)

10: end if
11: khA ← leading one position(H(A))

12: khB ← leading one position(H(B))

13: if
H(A)

2khA
+

H(B)

2khB
− 2 < 1 then

14: m1 ← 2(khA+khB) × (c+
H(A)

2khA
+

H(B)

2khB
− 1)

15: else
16: m1 ← 2(khA+khB) × (c/2 +

H(A)

2khA
+

H(B)

2khB
− 2)

17: end if
18: ka0 ← leading one position(a0)
19: ka1 ← leading one position(a1)
20: if

a0
2ka0

+
a1
2ka1

− 2 < 1 then

21: m2 ← 2(ka0+ka1) × (c+
a0
2ka0

+
a1
2ka1

− 1)

22: else
23: m2 ← 2(ka0+ka1) × (c/2 +

a0
2ka0

+
a1
2ka1

− 2)

24: end if
25: a2 ← m0 +m1

26: s3 ← m2 − a2

27: H(m0)← m0[2N − 1 : N ], L(m0)← m0[N − 1 : 0]

28: P (A,B)← (s3 +m1&H(m0))&L(m0)

timization is to replace this multiplication with LLSMu. The
proposed Izhikevich neuron model is then expressed as

v [n+ 1] =v [n] + ∆t · (2−5LLSMu(v [n] , v [n]) + 22v[n]+

v[n] + 140− u[n] + I[n])

u [n+ 1] = u [n] + ∆t · a(bv[n]− u[n]). (21)

2) LLSMu-based LIF Neuron Model: The proposed design
is based on 16-bit fixed-point number (1,6,9). Since the
membrane potential in the LIF neuron model is relatively small
and exhibits larger fluctuations compared to the Izhikevich
neuron model, lower precision is sufficient. As a result, a 16-
bit width is adequate for its representation. And the unique
multiplication in the LIF neuron model is replaced by LLSMu.
The proposed LIF neuron model can be written as

V [t+ 1] =LLSMu(e−
1
τ , V [t]− Erest) + Erest + I (22)

if V [t] ≤ Vth, then V [t+ 1] = Erest.

C. LLMu STDP Learning Algorithm

In the proposed design, both τj and τi in (5) are set to
powers of two, allowing division to be replaced with simple
bit-shift operations. As a result, all calculations in (5) are
multiplication and addition. The multiplication can likewise
be replaced by the LLMu. The LLSMu was not adopted
for the STDP implementation because the value variations
in STDP are relatively small, with most values remaining
below 2. In addition, a 5-bit fractional precision is sufficient
to represent the synaptic weight changes. Therefore, 8-bit
fixed-point numbers (1, 2, 5) are adequate for this requirement.
Since LLSMu is optimized for high bit-width operations by
processing segmented operands in parallel, it is less suitable
for low bit-width scenarios. After applying the LLMu, the
STDP calculation after using LLMu is expressed as follows:

∆W [n] = LLMu(Fj(ω[n]), xτi[n]) · sj [n]
−LLMu(Fi(ω[n]), yτj [n]) · si[n].

(23)

IV. EVALUATION OF PROPOSED DESIGNED

The evaluation of the proposed design is conducted progres-
sively across three levels: the multiplier level, the neuron level,
and the network level. A Python-based hardware emulator was
developed for the LLMu, the LLSMu, the LIF and Izhikevich
neuron models, and the STDP learning algorithm. At the
network level, three types of networks were constructed and
evaluated using different datasets. Among them, the rotor-
related dataset was sourced from real experimental data and
was successfully used to deploy rotor fault detection in induc-
tion motors based on stator current and stray flux signals.

A. Error Analysis of Logarithmic Linear Segmented Multiply

An emulator of the LLSMu has been built, fully replicating
the behavior of integer hardware units. Since the bit width
is parameterized, the emulator supports testing with arbitrary
bit widths. The LLSMu is tested using one million randomly
selected operand pairs (A,B), where A,B ∈ [0, 216 − 1]
or A,B ∈ [0, 232 − 1], corresponding to 16-bit and 32-bit
evaluations, respectively. Moreover, the relative error is used,
defined as the difference between the approximate result and
the IEEE 754 exact result, normalized by the exact result.
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Fig. 4. Comparison of LLSMu and exact calculation results. The red line is
the dividing line of operand is 30.

The error distribution for the 16-bit evaluation is shown in
Fig. 4(a), where lighter-colored areas indicate smaller errors.
It can be seen that the area with higher errors is small, so the
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Fig. 5. Comparison of original Izhikevich model with LLSMu-based Izhikevich model. The blue line shows original model and orange line shows the
LLSMu-based Izhikevich neuron model. The first row shows the firing patterns. The second row illustrates the nullclines of V and U , while the third row
presents the corresponding phase plot. The parameters for neuron model are: (a) a = 2−5; b = 2−2; c = -65; d = 6; I = 35 (b) a = 2−3; b = 2−3; c = -65; d
= 2; I = 30 (c) a = 2−7; b = 2−4; c = -40; d = 2; I = 25 (d) a = 2−6; b = 2−2; c = -65; d = 2; I = 40.

average error is only 2.583% which improves 31.4% accuracy
compared to Mitchell multiplication. It can also be seen that
the peak error is only 7.1% and the error distribution is rela-
tively uniform, resulting in a standard deviation of only 1.83%.
Moreover, LLSMu outperforms the algorithm by Wu [16]
(4.43% average error) in accuracy while being less complex.
Additionally, the 32-bit LLSMu test results show an average
error of only 2.588%, a standard deviation of 1.86%, and a
peak error of 8.3%. The slight loss of accuracy is acceptable
given the low complexity. A small standard deviation also
proves the stability of LLSMu. Fig. 4(b) shows the comparison
of LLSMu calculation results with exact square calculations.
The two curves are almost identical. The gap widens for
larger operands as the absolute error increases, but the relative
error remains small. Moreover, in neuron models and STDP
learning, the operand will not exceed 30.

Additionally, the average error and standard deviation of
16-bit and 8-bit LLMu were also evaluated using the same
methodology. The 16-bit LLMu achieves an average error of
2.6099% with a standard deviation of 1.85%, and a max-
imum error of 8.3%. Moreover, the 8-bit LLMu yields an
average error of 2.712%, a standard deviation of 1.940%, and
a maximum error of 11.1%. Compared to LLMu, LLSMu
demonstrates improved accuracy and reduced standard devi-
ation through parallel operations and error compensation.

B. Error Analysis of LLSMu-based Izhikevich Neuron Model

Fig. 5 shows the difference between the original and
LLSMu-based Izhikevich model computation results across

four representative spiking patterns, where the neuron param-
eters were selectively configured to demonstrate distinct firing
behaviors. Moreover, the parameters a and b were constrained
to powers of two to meet hardware design requirements.
The figure confirms that the LLSMu-based curves closely
align with those obtained from precise computation across all
spiking patterns. To more accurately evaluate the performance
of LLSMu, the following error metrics are introduced.

Time Error (ERRT): The error in the neuron model may
cause the difference in spike timing and lag. With the neuron
model parameters as well as the outputs being the same and
keeping the neurons of both models synchronized, the time
interval between every two spikes in neurons was recorded.
The ERRT are calculated as follows:

ERRT =

∣∣∣∣∆ta −∆to
∆to

∣∣∣∣× 100%. (24)

In (24), ∆ta denotes the time interval between spikes in the
approximate computing neuron model, while ∆to represents
the corresponding interval in the original neuron model.

Normalized Root Mean Square Deviation Error
(NRMSD): The NRMSD is used to measure the similarity of
spike shapes in approximated and original models. NRMSD
is defined as follows:

RMSD =

√∑n
i=1 (va (n)− vo (n))

2

n

NRMSD =
RMSD

vmax − vmin
,

(25)



XIA et al.: AN APPROXIMATE COMPUTING BASED SPIKING NEURAL NETWORKS NEURON MODEL AND STDP LEARNING 7

where va and vo are the membrane potential of approximated
and original neuron model. vmax and vmin are the maximum
and minimum value in vo domain.

TABLE I
COMPARISON OF NEURON BEHAVIORS BASED ON ERRT AND NRMSD

Neuron Behavior ERRT (%) NRMSD (%)

Izhikevich

Low Threshold Spiking 0.13028 0.5650
Regular Spiking 0.86890 0.1240

Chattering Spiking 4.19330 0.6897
Fast Spiking 0.63818 0.9467

LIF

τ = 1 0 8.2268
τ = 1.5 16.667 3.02571
τ = 2 0 0.5387
τ = 2.5 0 0.0179
τ = 3 0 0.0045

τ means time constant in LIF neuron model

The smaller the values of ERRT and NRMSD, the closer
the model derived from the LLSMu is to the original model.
Table I shows that the ERRT is less than 1% for all the patterns
except Chattering Spiking which has ERRT more than 1%.
The specificity of the chattering Spiking leads to significant
error accumulation, resulting in a high but still acceptable
error. This indicates that the difference between original and
LLSMu-based neuron models is minimal, thereby explaining
the near-overlap of the waveforms.

C. Error Analysis of LLSMu-based LIF
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Fig. 6. Comparison of original LIF neuron model with LLSMu-based LIF
neuron model. The blue line shows the original model and the orange line
shows the LLSMu-based LIF neuron model.

A comparison between LLSMu-based and exact computa-
tion results for LIF neurons under different time constants τ is
presented. As shown in Fig. 6, when τ = 1, the discrepancy
is relatively larger due to the lack of spike generation. As
τ increases, the LIF neuron spikes more frequently, and the
difference between LLSMu-based and exact implementations
becomes negligible.

Table I reports the ERRT and NRMSD values of LLSMu-
based LIF neurons under four different τ values. It can be
observed that higher error occurs only when τ is small, pri-
marily due to increased spike interval. When τ is sufficiently
large, the neuron spikes consistently, resulting in zero ERRT
and near-zero NRMSD. In practice, τ is typically chosen to
be greater than 2 in SNNs to ensure stable spike generation.
Since information in SNNs is encoded in the timing of spikes
rather than their amplitude, the LLSMu-induced error does
not degrade the performance of LIF neurons when τ is
large. Therefore, LLSMu-based LIF neurons performs almost
identically to the original in practical scenarios.

D. Error Analysis of LLMu-based STDP Learning Algorithm

An LLMu-based STDP emulator was developed to measure
synaptic weight changes between neurons. The weight differ-
ences between the exact STDP model and the LLMu-based
STDP model were measured under random spike generation
from both pre- and post-synaptic neurons, as shown in Fig.
7. To quantitatively evaluate the error, the NRMSD was
employed, with the voltage v in the original formula replaced
by the synaptic weight change ∆w. The resulting NRMSD
for the LLMu-based STDP was measured to be 0.761%.
Furthermore, Fig. 7 shows that the weight error fluctuates over
time but remains consistently low due to the cancellation of
alternating positive and negative deviations.
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Fig. 7. Comparison of original STDP with LLMu-based STDP. The wight
blue line shows the original STDP and the wight orange line shows the LLMu-
based STDP.

E. Performance Analysis of LLMu- and LLSMu-based Spiking
Neural Network and STDP Learning Algorithm

1) Network Topology: In this study, three different SNN
architectures were developed, including a single-layer simple
SNN, a two-layer fully connected SNN, and a six-layer deep
convolutional SNN (DCSNN).

Output

Input Spike

Output Spike

Encoder Decoder

Original Data

Output

Input Spike

Output Spike

Encoder Decoder

Original Data

Fig. 8. Structure of 2-layers SNN.
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The single-layer network was used for classifying the simple
MNIST dataset. Moreover, the architecture of a two-layer
fully connected SNN, shown in Fig. 8, is employed for
electrical motor diagnostics. The raw data is preprocessed
through slicing windowing and Bernoulli rate-based encoding
to generate spike maps as input. The DCSNN, built to process
more complex task as shown in Fig. 9, consists of three parts.
The input part consists of a convolutional layer, batch normal-
ization layer, a max-pooling layer, and an SNN neuron model
layer. This stage encodes raw image data into spike-based data
through convolutional feature extraction and spiking neuron
processing, enabling compatibility with the downstream SNN
architecture. The fully connect and output part each contain a
fully connect SNN neuron layer.

Fig. 9. Structure of 6-layers DCSNN.
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(a) Exact STDP.
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(b) LLMu-based STDP.

Fig. 10. Comparison of original STDP with LLMu-based STDP.

2) Evaluation of LLMu-based STDP Learning Algorithm:
A six-layer DCSNN is trained on the Fashion-MNIST dataset
using the original and LLMu-based STDP learning algorithm
under identical parameter settings, allowing the resulting
weight updates to be observed. As shown in Fig. 10, the
weight distributions at peak training accuracy are compared.
The observed difference is minimal and can be attributed
not only to the approximation error introduced by the LLMu
method, but also to stochastic factors inherent in SNN train-
ing. This demonstrates that the minor approximation errors
introduced by the LLMu method do not adversely affect the
overall training outcome of the STDP learning algorithm, even
in continuous computation scenarios. Additional evaluations
were also conducted using various network architectures and
datasets to further validate the generality of this result.

3) Evaluation of LLSMu- and LLMu-based SNNs: To eval-
uate the overall impact of the proposed design on SNN
performance, three previously introduced network architec-
tures were implemented with different neuron models and

TABLE II
COMPARISON OF PERFORMANCE USING DIFFERENT NEURON MODELS

AND LEARNING ALGORITHMS

Learning
Algorithm

Neuron
Model Method Accuracy (%)

MNIST
1-layer

F-MNIST
6-layer

Rotor fault
2-layer

Surrogate
Gradient
Descent

LIF
LLSMu 92.95 97.68 98.13
Exact 92.94 97.78 98.06

Izhikevich
LLSMu 90.62 97.88 93.83
Exact 90.43 98.0 93.91

STDP
LIF

LLSMu 92.95 87.39 98.62
Exact 92.95 87.30 98.82

Izhikevich
LLSMu 90.14 88.69 96.02
Exact 89.94 89.10 95.84

LLMu
STDP

LIF
LLSMu 92.94 87.23 98.77
Exact 92.94 87.56 98.78

Izhikevich
LLSMu 90.28 88.78 95.80
Exact 90.07 88.65 95.81

Exact means exact neuron model; LLSMu means LLSMu-based neuron
model

learning algorithms. These architectures were evaluated on the
MNIST and Fashion-MNIST datasets, as well as on real-world
dataset for rotor fault detection in induction motors using
stator current and stray flux signals. The maximum training
accuracy of the networks, summarized in Table II, indicate
that using LLSMu-based neuron models and LLMu-based
STDP algorithms has negligible impact on training accuracy
compared to their exact counterparts. The accuracies are nearly
identical, and the minor differences observed can be primarily
attributed to stochastic factors within the network.

V. HARDWARE DESIGN AND IMPLEMENTATION OF LLMU-
AND LLSMU-BASED STRUCTURE

A. LLSMu Structure

1) Preprocess Module: The preprocess module scans the
input integer from left to right using a series of consecutive
XOR gates. When a ’1’ is detected, its position is recorded,
and the input is left-shifted to align the first ’1’ with the most
significant bit (MSB). If no ’1’ is detected in the input, a
control signal is generated to bypass the multiplication process
and directly set the output to zero.

2) Logarithms Linear Approximate Computing Module:
As shown in block 2 of Fig. 11, the hardware architecture of
the LLMu is presented. The input data first passes through a
preprocess module to extract the fractional component. The
extracted values are then summed, and an overflow flag from
the adder is used to determine whether the result exceeds one.
Based on the overflow signal, a constant error compensation
value is selected and added to the result. Finally, the output is
left-shifted to produce the final computation result.

3) Segmented Multiply Module: Fig. 11 illustrates the
LLSMu design, which is divided into multiple pipeline stages.
The entire LLSMu consists of four components: the approxi-
mate multiplier, the error reduction part, the parallel operation,
and the adder tree. The first two factors are calculated by a
series XOR gate and a shift to be scaled. Next, divide the
two new inputs into four parts: AH , AL, BH , and BL.
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Subsequently, multiply AH with BH and AL with BL as
per the previous formula. At the same time, AH is added to
AL and BH is added to BL, after which the sum of the two is
multiplied by approximate computing. It is worth noting that,
to preserve overflow from addition, the bit width of LLMu in
this case is extended by one bit. This process yields values
m0, m1 and m2. After this, all factors are only required to
do addition, subtraction, and combinatorial operations. The
result requires rescaling after two addition and one subtraction
operations, as the initial two multiplication factors are shifted.
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Fig. 11. Block diagram of LLMu and LLSMu. Block 1 illustrates the structure
of LLSMu, and Block 2 illustrates the structure of LLMu.

B. Hardware Design of LLMu-based STDP Learning Algo-
rithm

As shown in Fig. 12, the hardware architecture of the
LLMu-based STDP implementation is illustrated. The signals
S PR and S PO, representing the presynaptic spikes si and
postsynaptic spikes sj , respectively, are used as control inputs
to the multiplexers. These multiplexers determine whether the
two polynomial terms involved in the weight update computa-
tion are set to zero. Meanwhile, T PR and T PO represent
xτi[n] and xτj [n], respectively. Since the time constant τ
is configured as a power of two, T PR and T PO can be
efficiently shifted and then processed through a subtractor and
an adder to obtain xτi[n] and xτj [n]. Afterward, the computed
values xτi[n] and xτj [n] are multiplied with F PR and F PO,
which represent Fi(ω[n]) and Fj(ω[n]), respectively, using
the approximate multiplication unit. The difference between
the two results yields ∆w. Finally, the weight update is
completed by adding ∆w to the current synaptic weight and
storing the result back to the weight register. Furthermore,
due to the computational intensity of the STDP algorithm in
SNNs, the LLMu-based STDP hardware is implemented using
a five-stage pipeline to accelerate weight updates, enhance data
throughput, and increase operating frequency.

C. Hardware Design of LLSMu-based Izhikevich Neuron
Model

In the hardware design of the Izhikevich neuron model, the
two key state variables, u and v, are computed in parallel, as
illustrated in Fig. 13. The square of v is calculated using the
LLSMu module, followed by a series of addition and subtrac-
tion operations to update the values of both u and v. Since
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Fig. 12. Block diagram of LLMu-based STDP hardware design.

the parameters a, b, and ∆t are approximated as powers of
two, their corresponding multiplications are replaced by shift
operations to reduce hardware complexity. Finally, two mul-
tiplexers are used to check whether v exceeds the threshold.
If the threshold is exceeded, v is reset to a predefined value,
and u is incremented by d. Because the update of u depends
on whether v reaches the threshold, two parallel computation
paths are implemented for u, corresponding to each condition.
The correct result is then selected by a multiplexer at the
output stage to minimize the computation cycle. Furthermore,
the whole design is divided into 9-stage pipeline to achieve
high operation frequency and data throughput.
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Fig. 13. Block diagram of LLSMu-based Izhikevich neuron model hardware
design.

D. Hardware Design of LLSMu-based LIF Neuron Model
The hardware design of the LIF neuron model is shown

in Fig. 14. Since e−
1
τ remains constant during computation

and may vary depending on the parameter configurations
of each task, its precomputed value is directly used as an
input. This approach reduces hardware resource consumption
while maintaining sufficient flexibility. The subtraction result
of v − Erest and e−

1
τ is fed into the LLSMu approximate

computation module, followed by summation with Erest and
the input current i to generate the updated membrane potential
v. The result is then compared with the threshold value. If the
threshold is reached, the multiplexer outputs Erest, and the
neuron emits a spike. Otherwise, the result is written back to
the internal v register for use in the next iteration. Furthermore,
the LIF neuron model is implemented using a 9-stage pipeline
to improve data throughput.
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Fig. 14. Block diagram of LLSMu-based LIF neuron model hardware design.

VI. HARDWARE IMPLEMENTATION RESULTS

The LLSMu-based LIF neuron model, Izhikevich neuron
model, and STDP learning algorithm were developed using
Verilog HDL and implemented on a Xilinx Zynq UltraScale+
FPGA board. All hardware designs were synthesized and
evaluated using Vivado 2023.2. Additionally, these designs
were implemented and analyzed under typical process corners
(1.00 V, 25 ◦C) using TSMC’s 28 nm technology node. Synop-
sys Design Compiler, VCS, and PrimeTime PX were employed
to perform logic synthesis, dynamic timing simulations, and
power analysis for all hardware implementations. Most of the
comparative studies on digital implementations of SNN neuron
models and STDP learning algorithms report only FPGA-
based results. Consequently, ASIC designs for comparison
are relatively scarce. For a fair comparison, FPGA and ASIC
results are not directly compared. Since SNNs are typically
constructed through the repeated implementation of neuron
models and learning algorithms, evaluating and comparing the
implementation results of a single neuron model and learning
algorithm provides valuable insight into the overall network
performance when scaled. Moreover, improvements in a single
neuron model or learning algorithm will inevitably enhance the
overall performance of network deployment.

TABLE III
COMPARISON OF LLSMU WITH DADDA MULTIPLIER

Dadda Multiplier Booth-AM [17] AM.Cc [18] LLSMu

FPGA Platform Zynq UltraScale+ Virtex-7 Virtex-7 Zynq UltraScale+
Bitwidth 32-bit fixed-point 24-bit fixed-point 32-bit fixed-point 32-bit fixed-point

Slice Registers 96 NR NR 393
Slice LUTs 741 301 992 661
Max. Freq. 223.3 MHz 91.0 MHz 331.13 MHz 302.4 MHz
Throughput 0.8932 GB/s 0.273 GB/s 1.325 GB/s 1.210 GB/s

Pipeline 2 NR NR 6
Latency 4.48 ns 10.99 ns 3.02 ns 3.31 ns

Power @100MHz 17 mW NR NR 7 mW
Power Consumption 165.649 pJ/PMR 48.26 pJ/PMR 33.040 pJ/PMR 76.061 pJ/PMR
Energy Efficiency 6.04 GOPS/W 20.72 GOPS/W 30.27 GOP/W 13.15 GOPS/W

Relative Error 0 9.1% 13% 2.583%
Normalized FoM1 - 3.384× 2.997× 1×

PMR means not Per-Multiplication Result; OPS means Operation per Second; AM.Cc
means Approximate Multiplier used in the referenced work; FoM1 = Area × Error ×
Latency × Power Consumption, Area includes Slice LUTs

A. FPGA Implementation of Logarithmic Linear Segmented
Multiply

Table III compares the implementation results of the
LLSMu with the Dadda multiplier and several state-of-the-
art approximate multipliers, including the booth approximate
multiplier (Booth-AM). Compared to the 32-bit Dadda multi-
plier and the design in [18], LLSMu reduces LUT utilization
by 10.8% and 33.4%, respectively. Although it uses more slice

registers than the Dadda multiplier, LUTs occupy significantly
more area than slice registers, resulting in a net improvement
in hardware resource efficiency. In terms of performance, the
maximum operating frequency of LLSMu is only 8.7% lower
than that of [18], while being 232.3% and 35.4% higher than
those of [17] and the Dadda multiplier. Although [17] and
[18] consume 36.6% and 56.6% less energy per multiplication
compared to LLSMu, this comes at the cost of 352.3% and
503.3% higher computational error, respectively. To provide
a more comprehensive evaluation of overall multiplier per-
formance, a composite figure-of-merit (FoM) [24] is adopted.
Results show that the FoM1 of [17] and [18] are 3.384× and
2.997× worse than that of LLSMu.

B. FPGA Implementation of LLSMu-based Izhikevich Neuron
Model

1) Hardware Overhead Evaluation of LLSMu-based Izhike-
vich Neuron Model: Table IV demonstrates that the LLSMu-
based Izhikevich neuron model requires only 47.16% LUT
compared to the FC-CORDIC based Izhikevich neuron. De-
spite using 41.05% more slice registers than the FC-CORDIC
based Izhikevich neuron, the area of 300 slices only requires
7.50% of the 1000 LUTs. Compared to [19], [23] and [20],
the lower usage of LUTs and slice registers in their designs is
primarily attributed to the use of additional memory resources.

2) Running Speed Evaluation of LLSMu-based Izhikevich
Neuron Model: Compared to [24], the LLSMu-based Izhike-
vich neuron model achieves a 108.33% improvement in max-
imum operating frequency using operands of the same bit
width. When compared to [21] and [23], the frequency is
10.20% and 14.80% higher, respectively. In contrast, it is only
2.26% and 26.20% lower than that of [22] and [20], both
of which use operands with lower bit widths. Therefore, the
LLSMu-based implementation achieves the highest through-
put, with improvements ranging from 21.26% to 108.33%.

3) Energy Efficiency Evaluation of LLSMu-based Izhikevich
Neuron Model: The power of the LLSMu-based Izhikevich
neuron model is lower than those in [19] and [28], but higher
than that reported in [24]. Since the reported power values
across studies correspond to different operating frequencies, a
fairer comparison is made by evaluating the energy consump-
tion per membrane potential iteration and the corresponding
energy efficiency at each design’s maximum frequency. The
LLSMu-based Izhikevich neuron model achieves the lowest
power consumption and highest energy efficiency among all
compared designs. Compared to [21] and [24], it reduces en-
ergy consumption per membrane potential iteration by 93.82%
and 73.12%, respectively, achieving 16.21× and 3.72× im-
provement in energy efficiency.

4) Accuracy Evaluation of LLSMu-based Izhikevich Neuron
Model: The LLSMu-based Izhikevich neuron model exhibits
lower NRMSD than most designs, except [19], which re-
duces error by fitting numerous curve segments at the cost
of increased hardware utilization. To better reflect overall
performance, the FoM is also adopted. Compared to this work,
the FoM2 of [21] and [24] are 15.3× and 93.1× worse,
respectively.
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TABLE IV
OVERALL COMPARISON OF LLSMU-BASED IZHIKEVICH NEURON DESIGN AND PRIOR DESIGNS

Method PWL [19] ASIZH [20] CORDIC [21] MNIN [22] PWL [23] FC-CORDIC [24] LLSMu

FPGA Platform Virtex-6 ZYNQ-7000 Spartan-6 Virtex-2 pro Virtex-2 pro ZYNQ-7000 Zynq UltraScale+
FPGA Technology 40 nm 28 nm 45 nm 90 nm 90 nm 28 nm 16 nm

Bitwidth NR 15-bit fixed-point 30-bit fixed-point 20-bit fixed-point 20-bit fixed-point 33-bit fixed-point 33-bit fixed-point
Slice Registers 199 302 280 408 491 648 914

Slice LUTs 230 188 469 459 602 1991 939
DSP Block 0 NR 0 NR NR NR 0

Memory BRAM* RAM* NR NR 158 × 8 b NR 0
Max. Freq. 285.00 MHz 318.00 MHz 212.80 MHz 240.00 MHz 204.31 MHz 112.60 MHz 234.58 MHz
Throughput NR 596.25 MB/s 798.00 MB/s 600.00 MB/s 602.50 MB/s 464.48 MB/s 967.64 MB/s

Pipeline 3 8 NR NR 7 10 9
Latency 10.5 ns 25.16 ns 28.20 ns NR 34.26 ns 88.90 ns 38.37 ns
Power 14 mW NR 71 mW (212.8 MHz) NR NR 4.6 mW (100 MHz) 12 mW (100 MHz)

Power Consumption NR NR 2002.2 pJ/MPI NR NR 460 pJ/MPI 123.63 pJ/MPI
Energy Efficiency NR NR 0.499 GOPS/W NR NR 2.174 GOPS/W 8.089 GOPS/W
Error (NRMSD) 0.022% 0.160% 0.3951% 0.130% 1.540%† 0.940% 0.124%

Normalized FoM2 NR NR 15.3× NR NR 93.1× 1×

NR means not reported; MPI means Membrane Potential Iteration; OPS means Operation per Second; BRAM* means BRAM was used but not specified; RAM* means RAM was
used but not specified; † means the error type is RMSD; FoM2 = Area × Error × Latency × Power Consumption, Area includes Slice LUTs and Slice registers

TABLE V
OVERALL COMPARISON OF LLSMU-BASED LIF NEURON MODEL DESIGN AND PRIOR DESIGNS

Model LIF [25] LIF [26] LIF [27] AdEx LIF [28] AdEx LIF [29] AdEx LIF [30] LLSMu LIF

FPGA Platform Virtex-7 Virtex-7 ZYNQ-7000 Spartan-6 Virtex-2 pro Zynq UltraScale+ Zynq UltraScale+
FPGA Technology 28 nm 28 nm 28 nm 45 nm 130 nm 16 nm 16 nm

Bitwidth 16-bit fixed-point 6-bit fixed-point NR 20-bit fixed-point 37-bit fixed-point 10-bit fixed-point 16-bit fixed-point
Neuron Number 512 1 922 1 1 1 1
Slice Registers 296 297 3298 829 388 292 241

Slice LUTs 314 196 4314 1221 1279 363 355
DSP Block 4 NR 0 0 0 NR 0

Memory 1003×64 b BRAM* 13×36 Kb NR 0 NR 0
Max. Freq. NR 100 MHz 100 MHz 134.40 MHz 190 MHz 500 MHz 394.01 MHz
Throughput NR 312.50 MB/s NR 336 MB/s 878.75 MB/s 625 MB/s 788.02 MB/s

Pipeline 8 NR NR NR NR NR 9
Latency NR NR NR NR NR NR 22.84 ns
Power NR NR 180 mW NR NR 231 mW (500 MHz) 34 mW (500 MHz)

Power Consumption NR NR NR NR NR 462 pJ/MPI 68.526 pJ/MPI
Energy Efficiency NR NR NR NR NR 2.16 GOPS/W 14.59 GOPS/W
Error (NRMSD) 4× 10−12† NR NR 0.434% 2.755% 1.670% 1.721%

Normalized FoM3 NR NR NR NR NR 7.2× 1×

NR means not reported; MPI means Membrane Potential Iteration; OPS means Operation per Second; BRAM* means BRAM was used but not specified; † means MSE error type
as used in the original work; FoM3 = Area × Error × Power Consumption, Area includes Slice LUTs and Slice registers

C. FPGA Implementation of LLSMu-based LIF Neuron Model

1) Hardware Overhead Evaluation of LLSMu-based LIF
Neuron Model: Table V compares the FPGA implementation
results of the LLSMu-based LIF neuron model with those of
state-of-the-art LIF neuron models. The LLSMu-based LIF
neuron model achieves the lowest slice register utilization
among the works in [25]– [30], with a reduction ranging
from 17.47% to 92.69%. For LUT utilization, it achieves a
reduction of 2.20% to 91.77% compared to [27]– [30], and is
only 13.06% and 81.12% higher than that of [25] and [26],
respectively. However, both [25] and [26] employ additional
memory, and the operand bit width in [26] is only 37.50% of
that in the LLSMu-based LIF neuron model.

2) Running Speed Evaluation of LLSMu-based LIF Neuron
Model: The LLSMu-based LIF neuron model achieves a
107.37% to 294.01% increase in maximum operating fre-
quency compared to [26]– [29], and is only 21.20% lower
than [30], which may be attributed to the smaller operand
bit width used in [30]. In terms of throughput, the proposed
model outperforms those in [26], [28], and [30] by 26.08% to
152.17%, and is only 10.32% lower than [29].

3) Energy Efficiency Evaluation of LLSMu-based LIF Neu-
ron Model: Compared to state-of-the-art designs, the LLSMu-
based LIF neuron model achieves the lowest power, requiring
only 14.53% of that in [30] when operated at the same
frequency. Furthermore, for each membrane potential iteration,
it consumes just 14.83% of the energy used by [30], achieving
a 6.75× improvement in energy efficiency.

4) Accuracy Evaluation of LLSMu-based LIF Neuron
Model: The NRMSD of proposed design is 1.287% higher
than that of [28], but [28] incurs significantly higher hardware
resource utilization. In comparison with [30], both designs
exhibit similar resource utilization, and [30] achieves only a
marginally lower NRMSD by 0.051%. The FoM is also used to
evaluate overall performance. Latency is excluded from FoM3

due to its absence in most referenced designs. The results show
that the FoM3 of [30] is 7.2× worse than that of this work.

D. FPGA Implementation of LLMu-based STDP Learning
Algorithm

1) Hardware Overhead Evaluation of LLMu-based STDP
Learning Algorithm: Table VI compares the FPGA implemen-
tation results of the LLMu-based STDP with several state-of-
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TABLE VI
OVERALL COMPARISON OF LLMU-BASED STDP LEARNING ALGORITHM DESIGN AND PRIOR DESIGNS

Model C-STDP [31] C-STDP [19] PSTDP [32] TSTDP [32] STDP [33] R-STDP [34] LLMu t-STDP

FPGA Platform Virtex-6 Virtex-6 Spartan-6 Spartan-6 Zynq-7000 Zynq UltraScale+ Zynq UltraScale+
FPGA Technology 40 nm 40nm 45 nm 45 nm 28 nm 16 nm 16 nm

Bitwidth 16-bit fixed-point NR 18-bit fixed-point 18-bit fixed-point 20-bit fixed-point 16-bit fixed-point 8-bit fixed-point
Slice Registers 292 139 642 1370 122 460 114

Slice LUTs 309 192 859 1943 911 1435 148
DSP Block 0 0 NR NR 16 0 0

Memory NR NR NR NR NR NR 0
Max. Freq. 322 MHz 322 MHz 362 MHz 362 MHz NR 250 MHz 535.62 MHz
Throughput 644 MB/s NR 814.50 MB/s 814.50 MB/s NR 500 MB/s 535.62 MB/s

Pipeline 8 NR NR NR NR NR 5
Latency 24.84 ns NR NR NR NR NR 9.335 ns
Power NR NR 128 mW 222 mW NR 205 mW <3 mW (100 MHz)

Power Consumption NR NR 353.59 pJ/SOP 613.26 pJ/SOP NR 820 pJ/SOP 16.80 pJ/SOP
Energy Efficiency NR NR 2.83 GSOPS/W 1.63 GSOPS/W NR 1.22 GSOPS/W 59.51 GSOPS/W

Error (Type) NR 0.336% 5.914 0.176 8.230% 0.0006 0.761%
(NR) (NRMSD) (NMSE) (NMSE) (max error) (NMSE) (NRMSD)

NR means not reported; SOP means Spike Operations

the-art STDP design. Compared to [31], [19], and [34], the
LLMu-based STDP achieves the lowest utilization of slice
registers and LUTs, with reductions ranging from 6.56% to
91.68% for slice registers and from 22.92% to 92.41% for
LUTs, without using any DSPs or additional memory.

2) Running Speed Evaluation of LLMu-based STDP Learn-
ing Algorithm: The LLM-based STDP achieves the highest
operating frequency among the designs in [31]– [34] and
[19], reaching 156.25% to 226.25% of their reported values.
Although its operand bit width is smaller, resulting in a lower
throughput, it is still only 34.24% lower than that of [32]

3) Energy Efficiency Evaluation of LLMu-based STDP
Learning Algorithm: Compared to [32] and [34], this work
achieves the lowest power consumption. However, since the
operating frequencies at which their power measurements were
obtained are not reported, a fair comparison is made based on
energy per weight update and energy efficiency. Under this
metric, the LLMu-based STDP reduces energy consumption
per weight update by 95.25% to 97.95%, achieving a 21.03×
to 48.78× improvement in energy efficiency.

4) Accuracy Evaluation of LLMu-based STDP Learning
Algorithm: The NRMSD of the LLMu-based STDP is 0.425%
higher than that of [19], but the error remains minimal. Due
to differences in error calculation methods and the lack of
sufficient data in referenced work, a direct comparison using
the FoM is not feasible.

E. ASIC Implementation
1) ASIC Implementation of LLSMu-based Izhikevich Neu-

ron Model: Table VII presents a comparison between the
ASIC implementation of the LLSMu approach and representa-
tive state-of-the-art CORDIC and PWL approaches. Even with
larger operand bit widths, it still achieves a 95.56× improve-
ment in maximum operating frequency and a 143.48× increase
in throughput. Moreover, it reduces area by 71.30% to 76.64%
and improves energy efficiency by 5.58× to 5.69×. The error
is also reduced by up to 0.287%. In addition, the FoM2 of
the two designs in [35] are 455.49× and 268.96× worse than
that of this work. While part of these improvements can be
attributed to a more advanced technology node, the results also
demonstrate the effectiveness of LLSMu in enabling higher
frequency, lower power consumption, and reduced chip area.

TABLE VII
ASIC RESULT COMPARISON - IZHIKEVICH

Method CORDIC [35] PWL [35] LLSMu

Node 130 nm 130 nm 28 nm
Voltage NR NR 1.0 V
Bitwidth 22-bit fixed-point 22-bit fixed-point 33-bit fixed-point

Frequency 9.1 MHz 9.1 MHz 869.6 MHz
Latency 109.89 ns 109.89 ns 10.35 ns

Throughput 0.025 GB/s 0.025 GB/s 3.587 GB/s
Area 25894 µm2 21076 µm2 6048.126 µm2

Power 0.33 mW 0.3 mW 5.649 mW
Power Consumption 36.260 pJ/MPI 36.970 pJ/MPI 6.496 pJ/MPI
Energy Efficiency 27.580 GOPS/W 27.050 GOPS/W 153.941 GOPS/W

Error (ERRT) 1.560% 1.110% 0.869%
Normalized FoM2 455.49× 268.96× 1×

NR means not reported; MPI means Membrane Potential Iteration; OPS means
Operation per Second; FoM2 = Area × Error × Latency × Power Consumption

TABLE VIII
ASIC RESULT COMPARISON - LIF

Method QUANTISENC [36] Multiplexing [37] LLSMu

Node 32 nm 28 nm 28 nm
Voltage NR 0.9 1.0 V
Bitwidth 8-bit fixed-point 12-bit fixed-point 16-bit fixed-point

Neuron number 1 4096 1
Frequency 0.1 GHz 0.3 GHz 1.5625 GHz

Latency 10 ns 320 ns 5.12 ns
Throughput 0.1 GB/s NR 3.125 GB/s

Area 2894 µm2 2160000 µm2 1291.37 µm2

Power 0.102 mW NR 2.003 mW
Power Consumption 1.02 pJ/MPI 3.60 pJ/MPI 1.28 pJ/MPI
Energy Efficiency 980.39 GOPS/W 277.78 GOPS/W 780.03 GOPS/W

Error (RMSD) 0.43 NR 1.03
Normalized FoM2 1.46× NR 1×

NR means not reported; MPI means Membrane Potential Iteration; OPS means
Operation per Second; FoM2 = Area × Error × Latency × Power Consumption

2) ASIC Implementation of LLSMu-based LIF Neuron
Model: Table VIII compares the ASIC implementation of
the LLSMu-based LIF neuron model with state-of-the-art
approaches. It achieves a 5.21× to 15.63× improvement in
maximum frequency, 31.25× higher throughput, and reduces
latency and area to 51.20% and 44.62% of [36], respectively.
Although its energy efficiency is 20.44% lower, this is likely
due to the 50% smaller operand bit width used in [36], which
leads to lower energy consumption per membrane potential
iteration. Additionally, while [36] achieves a 0.6% lower error
than this work, the overall performance evaluation using FoM2

shows that it still performs 1.46× worse.
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TABLE IX
ASIC RESULT COMPARISON - STDP

Method CLSTDP [38] ImSTDP [38] LLMu tSTDP

Node 22 nm 22 nm 28 nm
Voltage NR NR 1.0 V
Bitwidth 8-bit fixed-point 8-bit fixed-point 8-bit fixed-point

Frequency 1.000 GHz 1.250 GHz 1.538 GHz
Latency 3 ns 2.40 ns 3.25 ns

Throughput 0.387 GB/s 0.787 GB/s 1.538 GB/s
Area 1771.0 µm2 1294.5 µm2 655.074 µm2

Power 1.68 mW 1.33 mW 0.89 mW
Power Consumption 3.453 pJ/SOP 2.137 pJ/SOP 0.579 pJ/SOP
Energy Efficiency 289.60 GSOPS/W 467.90 GSOP/W 1727.12 GSOPS/W
Error (NRMSD) NR 11.961%* 0.761%

Normalized FoM2 NR 84.65× 1×
NR means not reported; SOP means Spike Operations; * means not provided
originally, but derived via reimplementation; FoM2 = Area × Error × Latency ×
Power Consumption

3) ASIC Implementation of LLMu-based STDP Learning
Algorithm: Table IX compares the ASIC implementation
of the LLMu-based STDP with state-of-the-art approaches.
Under the same operand bit width and a less advanced tech-
nology node, the LLMu-based design still achieves a 53.80%
and 23.04% improvement in maximum operating frequency,
along with 3.98× and 1.95× higher throughput compared to
CLSTDP and ImSTDP, respectively. Its area is reduced to only
36.99% and 50.60% of that of CLSTDP and ImSTDP. In terms
of power efficiency, it outperforms both designs by 5.96× and
3.69×, respectively, while latency is the only metric where it
is slightly higher, by 35.40% and 8.33%. Moreover, compared
to ImSTDP, this work achieves 11.2% lower error and delivers
84.65× better overall performance, as measured by the FoM2.

VII. CONCLUSION

This paper presents two novel approximate computing de-
signs, Logarithmic Linear Multiply (LLMu) and Logarithmic
Linear Segmented Multiply (LLSMu), targeted at neuron mod-
els and learning algorithms in Spiking Neural Networks. The
proposed LLSMu achieves high computational accuracy, with
a tested error rate of only 2.583% . Due to its multiplication-
replacement structure, the method is broadly applicable to a
wide range of SNN neuron models and learning algorithms.
The LLSMu was deployed and tested within the Izhikevich
and LIF neuron models, as well as the STDP learning algo-
rithm. Both neuron-level and network-level evaluations were
conducted, and the results demonstrate that the LLSMu-based
implementations maintain the same accuracy and spiking pat-
terns as their exact counterparts. Hardware implementation on
the FPGA and ASIC further evaluated the design, showing ex-
tremely high energy efficiency, while achieving low hardware
resource utilization, and high data throughput. This makes
the approach well-suited for energy- and resource-constrained
platforms such as edge devices, enabling large-scale SNN
deployment with lower hardware and energy requirements,
along with improved computational speed.
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