
A High Accuracy and Hardware Efficient
Approximate Computing based Leaky

integrate-and-fire Neuron Model
Haihang Xia, Shengdi Wang, Yuqin Zhao, Haotian Liu, Charith Abhayaratne, and Tiantai Deng

School of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United kingdom
hxia10@sheffield.ac.uk, t.deng@sheffield.ac.uk

Abstract—The adoption of Spiking Neural Networks (SNNs)
has grown significantly, driven by their potential to enhance
image processing, robotics, and motor control. These applications
typically demand both high performance and low power con-
sumption, especially when deployed on edge devices. Achieving
high-performance and low-power SNNs in hardware remains
challenging due to their computational complexity and large-
scale design. Balancing accuracy and speed often increases power
and resource usage, making efficient implementation essential.
Optimizing a single neuron model—a fundamental unit replicated
thousands of times—is key to improving overall hardware effi-
ciency. The Leaky Integrate-and-Fire (LIF) model, widely used in
SNNs, offers a more efficient alternative to other neuron models
by improving computational and energy efficiency.

This paper presents a LIF neuron model design based on
approximate multiplication. Given the high robustness of SNNs,
they are well-suited for approximate computing. The proposed
design significantly reduces multiplication complexity with only
2.6099% error. The minimal error has little impact on SNN
performance, as shown by similar training results between
approximate and precise LIF-based SNNs across various datasets
and network sizes. To further demonstrate the advantages of our
AM-based LIF neuron model, we carry on a test through a Xilinx
FPGA. The FPGA implementation results demonstrate that the
AM-based LIF neuron achieves a 8.26% to 84.36% reduction in
Look-Up Table utilization, a 17.04% to 86.49% reduction in slice
register utilization, and achieving a 10.31-fold increase in energy
efficiency relative to the state-of-the-art LIF neuron model.

Index Terms—Spiking Neural Networks, Leaky integrate-and-
fire model, FPGA, approximate computing.

I. INTRODUCTION

In recent years, SNNs have experienced rapid development
due to their potential for a wide range of applications, includ-
ing image processing, event-based data analysis, robotics, and
communication. Compared to Convolution Neural Networks
(CNNs) and Transformers [1], SNNs offer significantly better
power efficiency and lower hardware resource utilization, mak-
ing them particularly well-suited for deployment on hardware-
constrained and energy-limited platforms such as edge devices.
In addition, SNNs feature unique learning algorithms, enabling
them to be applied across diverse application domains and to
effectively process complex spatio-temporal information [2].
As a result, SNNs are increasingly regarded as a promising
paradigm for next-generation neural networks [3] [4] [5].

The neuron model is the basic component in SNNs. An SNN
neuron model is a mathematical description that simulates the

variation in potential difference across a biological neuron’s
cell membrane [6]. To balance computational efficiency with
biological plausibility, a variety of neuron models have been
proposed for SNN, for example, the Leaky Integrate-and-Fire
(LIF) model [7], the Hodgkin-Huxley (HH) model [8], and
the Izhikevich model [9]. Among them, the LIF neuron model
is the most widely used due to its simple computation while
maintaining a reasonable level of biological plausibility [10].
However, the LIF neuron model still involves complex opera-
tions such as iterative multiplication, addition, and exponenti-
ation. These power- and resource-intensive computations can
significantly impact performance-power efficiency in hardware
implementations [11].

Simulating SNNs on von Neumann machines is typically
inefficient due to asynchronous network activity, which leads
to quasi-random access to synaptic weights in both time
and space [5]. Additionally, Application-Specific Integrated
Circuits (ASICs) are less commonly used due to their high
development cost, long design cycles, and lack of recon-
figurability. As a result, FPGAs have become a preferred
platform for deploying and testing, owing to their low cost,
high parallelism, and programmability [12].

In order to reduce the hardware resource utilization of the
LIF neuron model, J.Kim et al. use Template-Scaling-Based
Exponential Function Approximation (TS-EFA) to emulate
the LIF neuron model [13]. TS-EFA slightly reduces the
latency introduced by the CORDIC iteration and eliminates
the hardware resources utilization and power consumption
associated with lookup-table-based approximation computing.
Although the TS-EFA method reduces latency, it requires
a large amount of RAM [13], resulting in high hardware
resource utilization and increased power consumption [15].

To improve performance and energy efficiency, this paper
proposes a novel LIF neuron design based on approximate
multiplication (AM) and validates it through FPGA imple-
mentation. Approximate multiplication reduces computational
complexity by trading a small amount of accuracy for sim-
plified operations, leading to lower hardware utilization and
reduced power consumption. Given the high robustness of
SNNs and the high accuracy of the proposed AM-based LIF
neuron model, its adoption does not degrade SNNs training
and inference accuracy. Moreover, in the hardware implemen-
tation of the AM-based LIF neuron model, conventional mul-

tiplication is replaced with a linear approximate multiplication
technique, which significantly improves power efficiency and
reduces hardware resource utilization. The main contributions
of this paper include:

1) An optimized approximate multiplier is proposed for the
LIF neuron model, achieving a high accuracy of 97.39%
while significantly reducing hardware complexity, with
59.4% fewer slice registers and 53.4% lower LUTs
utilization compared to conventional multipliers.

2) The proposed AM-based LIF neuron model was tested at
both the individual neuron level and the SNN network
level through a software-based emulator. The network
demonstrated an impressive accuracy of 92.68% on the
MNIST dataset and 97.68% on FashionMNIST.

3) The AM-based LIF neuron model was implemented on
an FPGA, demonstrating competitive results in energy
efficiency and resource utilization. Compared to state-of-
the-art designs, it achieved a reduction in slice register
utilization by 17.04% to 86.94% and a reduction in
LUTs utilization by 8.26% to 84.36%. Additionally, the
energy consumption per neuron iteration was reduced by
90.29%, and energy efficiency was improved by a factor
of 10.31.

The rest of this paper is organized as follows. Section II intro-
duces the proposed approximate multiplication and the AM-
based LIF neuron model. Section III provides a detailed de-
scription of the software-level testing of the proposed design.
Section IV discusses the hardware design and implementation.
Section V evaluates the FPGA implementation results and
compares them with state-of-the-art designs. Finally, Section
VI concludes the paper.

II. AM-BASED LIF NEURON MODEL

A. LIF Neuron Model

The LIF neuron model is the most widely used due to its
simple mathematical calculations while retaining a degree of
biological plasticity [12]. In order to make the LIF neuron
model meet the requirements of the hardware implementation,
we discretize it to obtain Eq.1 [14].

V [t+ 1] = e−
1
τ · (V [t]− Erest) + Erest + I (1)

The neuron’s membrane potential is represented by V [t],
where τ is the time constant and Erest is the reset potential. I
represents the current stimulus input to the neuron membrane;
in SNN, I comes from the output of the previous neuron.
Thus, the expression for I is shown in Eq.2.

I =

n∑
i=0

ωifi (2)

Where ω is the weight between neurons. If the pre-synaptic
neuron generates a spike to the post-synaptic neuron, the
parameter f equals 1; otherwise, f equals 0.

if V > Vth, then V = Erest (3)

Furthermore, when V is sufficiently large to reach the thresh-
old Vth, the neuron generates a spike, and V subsequently
returns to the reset potential, as shown in Eq. 3.

B. Approximate Multiplication

Approximate computation represents a classical trade-off
between accuracy loss and increased utilization of hardware
resources. In this context, the proposed approach introduces
only a minimal impact on accuracy and, therefore, does not
affect the performance of the LIF-based SNN. The approxi-
mate computing algorithms proposed in this paper are based on
linearly approximated logarithmic multiplication [16]. Assume
that there are two N-bit fixed-point numbers, A and B. The
first ’1’ in the numbers A and B occurs at positions ka and
kb, where (N − 1) ≥ ka, kb ≥ 0. According to Mitchell
multiplication, the linear approximate product of A and B can
be obtained by Eq.4. Where Ã and B̃ is the fractional part of
integer A and B.

P̃ = Ã×B ≈

{
2ka+kb(1 + Ã+ B̃), Ã+ B̃ < 1

2ka+kb+1(Ã+ B̃), Ã+ B̃ ≥ 1
(4)

Since the logarithmic curve is a convex function, the values
obtained through linear approximation are always less than
the exact values. Therefore, the error can be calculated by P̃
minus the exact value. And the average error can be calculated
as Eq.5.

AverageError =
1

(1− 0)(1− 0)

∫ 1

0

∫ 1

0

(P̃ − P) dÃdB̃ (5)

≈ −(0.08333)× 2ka+kb

As the error is always negative, the approximate multipli-
cation can be modified as Eq.6.

P̃ = Ã×B ≈

{
2ka+kb(1 + Ã+ B̃ + c), Ã+ B̃ < 1

2ka+kb+1(Ã+ B̃ + c
2), Ã+ B̃ ≥ 1

(6)

C. AM-based LIF Neuron Model

The proposed LIF neuron model can be written as Eq.7 if
we replace the multiplication in LIF by our AM approach.

V [t+ 1] =AM(e−
1
τ , V [t]− Erest) + Erest + I (7)

if V [t] ≤ Vth, then V [t+ 1] = Erest

III. SOFTWARE EMULATION & EVALUATION OF
AM-BASED LIF NEURON MODEL

A. Evaluation of Approximate Multiplication

A 16-bit software emulator of the proposed approximate
multiplier (AM) was developed in Python to replicate the
hardware behavior, with its accuracy and standard deviation
evaluated using one million randomly selected operand pairs
(A and B) within the range of [0, 65535].

By comparing the emulator results with the exact computed
values, the average relative error was found to be 2.6099%,
with a standard deviation of only 1.846% and a maximum
error of 8.3%. The error distribution, shown in Fig.1, indicates
a uniform pattern that prevents isolated high-error cases from

[0
.0

%
~
0.

6%
]

[0
.6

%
~
1.

1%
]

[1
.1

%
~
1.

7%
]

[1
.7

%
~
2.

2%
]

[2
.2

%
~
2.

8%
]

[2
.8

%
~
3.

3%
]

[3
.3

%
~
3.

9%
]

[3
.9

%
~
4.

4%
]

[4
.4

%
~
5.

0%
]

[5
.0

%
~
5.

5%
]

[5
.5

%
~
6.

1%
]

[6
.1

%
~
6.

6%
]

[6
.6

%
~
7.

2%
]

[7
.2

%
~
7.

8%
]

[7
.8

%
~
8.

3%
]

Error Range

0

2

4

6

8

10

12

14

16
F
re

q
u
e
n
c
y
 (

%
)

11.57%
11.91%

12.68%

16.00%

9.77%

7.21%

6.29%
5.74%

5.08%

4.26%
3.56%

2.88%

2.00%

0.83%
0.19%

Fig. 1. Approximate Multiplication Error Distribution Graph.

adversely affecting overall system performance. Moreover, the
proposed method achieves higher accuracy than the iterative
error compensation method (4.43%) while maintaining lower
computational complexity [17].

B. Evaluation of AM-based LIF Neuron Model

An emulator of a 16-bit AM-based LIF neuron model has
been developed using Python for emulation. This emulator
serves to assess the impact of errors introduced by the ap-
proximation on neurons.

0 20 40 60 80 100

Time Step (t)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V

(a) τ = 1.

0 20 40 60 80 100

Time Step (t)

−30

−20

−10

0

10

20

30

V

(b) τ = 1.5.

0 20 40 60 80 100

Time Step (t)

−30

−20

−10

0

10

20

30

V

(c) τ = 2.

0 20 40 60 80 100

Time Step (t)

−30

−20

−10

0

10

20

V

(d) τ = 2.5.

Fig. 2. Comparison of the original LIF neuron model with the AM-based
LIF neuron model. The orange line shows the original model, and the blue
line shows the AM-based LIF neuron model.

Fig. 2 shows the different performances of AM-based LIF
neuron models and normal LIF neuron models with the same
parameters, where I equals 30, Erest equals -30, and Vth

equals 30. It can be seen that when τ is too small, a larger I
input is required to generate a spike. Furthermore, the degree
of difference between the two curves varies when the time
constant τ takes different values. To accurately quantify the
differences between the neuron model implemented with AFM
and the model obtained through exact computation, time error

and Normalized Root Mean Square Deviation were used for
evaluation [18].

Time error (ERRT): The error from the approximate
computation in the neuron may cause a difference in spike
timing and lag compared with the original model. The time
between two neuron spikes was recorded with the same neuron
model parameters and outputs, and synchronized neurons. The
ERRT is calculated as follows:

ERRT =

∣∣∣∣∆ta −∆to
∆to

∣∣∣∣× 100% (8)

As Fig.3 shows, ∆ta means the time interval between spikes
in the approximate computing neuron model. Correspondingly,
∆to this means the time interval between spikes in the original
neuron model.

−

−

D

D

Fig. 3. ERRT: An example diagram to show the time error measurement. The
blue line shows the original model, and the yellow line shows the proposed
neuron model.

Normalized Root Mean Square Deviation error
(NRMSD): The NRMSD is used to measure the similarity of
spike shapes in approximated and original models. NRMSD
is defined as

NRMSD =

√∑n
i=1 (va(n)−vo(n))

2

n

vmax − vmin

Where va and vo are the membrane potentials of the approx-
imated and original neuron models. vmax and vmin are the
maximum and minimum values in the vo domain.

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

V
a
lu

e

ERRT

0 1 2 3 4 5 6 7 8

Time Constant

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
a
lu

e

NRMSD

Fig. 4. ERRT and NRMSD of AM-based LIF neuron model.

Fig.4 illustrates the variation of ERRT and NRMSD with
the time constant τ under fixed input current I . As τ increases,
both metrics decrease and may even approach zero. This trend
arises because τ is positively related to e−

1
τ , leading to more

stable spike generation in the LIF neuron model (e.g., Fig.2(c),
(d)). When τ is small, spike generation becomes unstable or
ceases entirely (Fig.2(a)), resulting in higher accumulated er-
rors. Notably, in cases where no spikes occur, ERRT becomes
zero. In practice, τ is typically chosen as an integer greater
than 2 in LIF-based SNNs.

C. Evaluation of AM-based LIF Spiking Neural Networks

To assess the impact of approximation-induced errors on
training accuracy, both 1-layer and 6-layer SNNs were con-
structed using exact and AM-based LIF neuron models. As il-
lustrated in Fig.5, the training results exhibit high consistency,
demonstrating similar accuracy and convergence behavior
across both simple and complex network architectures. Specif-
ically, the 1-layer SNN was trained on the MNIST dataset,
while the 6-layer SNN was evaluated using the FashionMNIST
dataset. On the MNIST dataset, the AM-based LIF SNN
and the exact LIF SNN achieved maximum test accuracies
of 92.68% and 92.61%, respectively. On the FashionMNIST
dataset, the AM-based LIF SNN and the exact LIF SNN
achieved maximum training accuracies of 97.68% and 97.78%,
respectively. Furthermore, across both datasets, the training
curves of the AM-based models closely align with those of
their exact counterparts. This demonstrates that, owing to the
inherent robustness of SNNs, approximation-induced errors
have a negligible impact on the accuracy of both simple and
complex network architectures.

 MNIST

 MNIST

 FashionMNIST

 FashionMNIST

T
ra

in
 A

cc
u
ra

cy

Epoch

 MNIST

 MNIST

 FashionMNIST

 FashionMNIST

T
ra

in
 L

o
ss

Epoch

Fig. 5. Training result of AM-based LIF SNN and original LIF SNN.

All Python-based emulators, SNN testing codes, and addi-
tional figures not presented in the paper are available in the
following GitHub repository: AM-based-LIF-SOCC-2025.

Preprocess

Preprocess

+ +
{1,[15:0]}

M
U
X

M
U
X

0

1
+

{[14:0],0}

{[14:0],0}
{[16:0]}

M
U
X

M
U
X

{[16]}

K

M
U
X

M
U
X

C

0.5C

+ >>{[17:0],15'b0}

Preprocess

Preprocess

+ +
{1,[15:0]}

M
U
X

0

1
+

{[14:0],0}

{[14:0],0}
{[16:0]}

M
U
X

{[16]}

K

M
U
X

C

0.5C

+ >>{[17:0],15'b0}

Preprocess

Preprocess

+ +
{1,[15:0]}

M
U
X

0

1
+

{[14:0],0}

{[14:0],0}
{[16:0]}

M
U
X

{[16]}

K

M
U
X

C

0.5C

+ >>{[17:0],15'b0}

Fig. 6. Hardware design structure of the proposed approximate multiplier.

IV. HARDWARE IMPLEMENTATION OF AM-BASED LIF
NEURON MODEL

A. Hardware Design of AM-based LIF Neuron Model

Fig. 6 shows the data flow for the approximate multiplier.
The computation begins with the pre-processing module,
which extracts the fractional part of the operand and obtains
Ã and B̃. These two values are then summed, and the adder’s
carry-out is used to determine whether the sum exceeds 1.
Furthermore, the carry-out is also used to decide whether
to add 1 to the left-shifted digit and the error offset. The
difference from the formula is that the k values in pre-
processing are actually 16 − ka and 16 − kb. This is done
to simplify subsequent shift operations and avoid subtraction.
In effect, both operands are left-shifted by 16 bits during pre-
processing. To improve accuracy, overflow bits are preserved
in both the addition and error compensation stages, resulting in
an 18-bit intermediate value effectively left-shifted by 17 bits.
Therefore, the final result requires only a right shift of either
ka+kb−15 or ka+kb+1−15. To simplify the computation
and avoid conditional operations, the design eliminates the
need to determine whether the final shift should be to the left
or right based on the sign of ka+kb−15 or ka+kb+1−15.
Instead, 15 zero bits are appended to the least significant end
of the 18-bit value before applying the right shift of ka + kb
or ka + kb + 1. After the right shift operation, the overflow
bits are discarded to produce the final 32-bit output result.

v

E_rest

-

+
i

AM

E_tau

+

M
U
X

M
U
X

Thresholdv

E_rest

-

+
i

AM

E_tau

+

M
U
X

Threshold

(a) Hardware Structure.

V E_rest I + E_rest

AM

e^(-1/)(v - E_rest) + I + E_rest

Stage 1

Stage 2

Stage 3

Stage 4

Pipeline Stage

V E_rest I + E_rest

AM

e^(-1/)(v - E_rest) + I + E_rest

Stage 1

Stage 2

Stage 3

Stage 4

Pipeline Stage

(b) Pipeline structure.

Fig. 7. The hardware design structure of AM-based LIF neuron model.

Fig.7(a) shows the control data flow of the AM-based
LIF neuron model. Furthermore, the pipeline structure of the
AM-based LIF neuron model is shown in Fig.7(b). Since
the time constant τ usually remains unchanged in network
computations, e−

1
τ can be precomputed and directly used as

an input, thereby reducing hardware implementation resources.
First, the LIF neuron performs the calculations of V − Erest

and I+Erest in parallel. Then, the approximate multiplication
of Etau and V − Erest is completed over two clock cycles,

followed by the accumulation of all computation results.
Finally, the result is checked to determine whether it exceeds
the threshold Vth, after which it is fed back into the LIF neuron
for the next iteration of the membrane potential update.

V. FPGA IMPLEMENTATION RESULT AND EVALUATION

To evaluate the hardware design of the AM-based LIF
neuron model, tests were performed at both the multiplier
level and the neuron level. Furthermore, the evaluation in-
cluded comparisons with state-of-the-art LIF neuron models
in terms of hardware resource utilization, power consumption,
and computation speed. The AM-based LIF neuron model
and the AM-based multiplier were developed using Verilog
HDL and implemented on the Xilinx Zynq UltraScale+ FPGA
board. The hardware for the AM-based LIF neuron model was
developed and evaluated on Vivado 2023.2.

TABLE I
COMPARISON OF APPROXIMATE MULTIPLIER WITH DADDA MULTIPLIER

Approximate Multiplier Dadda Multiplier

FPGA Platform Zynq UltraScale+ Zynq UltraScale+
Bit-width 16-bit fixed-point 16-bit fixed-point

Slice Registers 26 64
Slice LUTs 163 350

Maximum Operating Frequency 307.13 MHz 175.96 MHz
Pipeline 2 2
Latency 6.512 ns 11.366 ns

Power @100 MHz 3 mW 8 mW

A. Evaluation of Approximate Multiplier for LIF Neuron
Model Design

Table I compares the performance of the approximate multi-
plier and the Dadda multiplier. Both of them are implemented
in the same bit-width (1, 6, 9) and on the same FPGA platform.
The approximate multiplier uses 46.6% LUTs of the Dadda
tree multiplier. And the approximate multiplier’s maximum
operation frequency is 174.5% of the Dadda tree multiplier.
When all the multipliers are working at 100 MHz, the power
consumption of the approximate multiplier is only 37.5%
of the Dadda tree multiplier. Moreover, the latency of the
approximate multiplier is only 57.3% of the Dadda tree with
the same pipeline stage number.

B. Hardware Overhead Evaluation of AM-based LIF Neuron
Model Design

Table II compares the implementation results of the AM-
based LIF neuron model with other state-of-the-art LIF neuron
models. The AM-based LIF neuron model saves 44.90% of
the LUTs from [22], 84.36% of the LUTs from [21], and
83.62% of the LUTs from [20], as shown in Table II. Although
[13] implemented 512 neurons using only 314 LUTs, which is
57% more than the AM-based LIF neuron model, it utilized a
1003×64 b memory. By pre-computing most of the data and
storing it in memory, [13] was able to use very few LUTs.
However, a 6.4 KB RAM area is approximately equivalent to
52,429 6-input LUTs, and reading data from RAM introduces
significant power consumption and latency. Moreover, the

AM-based LIF neuron model also uses significantly fewer slice
registers than other LIF neuron models. The AM-based LIF
neuron model, therefore, minimizes the implementation area
of a single neuron and greatly enhances hardware resource
utilization. The AM-based LIF neuron model is a more appeal-
ing option for implementing large-scale SNNs, which typically
comprise a large number of neurons.

C. Running Speed Evaluation of AM-based LIF Neuron Model
Design

Table II shows that the AM-based LIF neuron model
achieves a maximum operating frequency of 267.38 MHz,
representing an improvement of 98.94% over [20] and 40.73%
over [21]. Although its frequency is 46.52% lower than that
of [22], this is primarily due to [22]’s smaller bit width and
significantly higher hardware resource utilization, with 81.50%
and 160.71% more LUTs and slice registers, respectively.
Moreover, a lower bit width in the LIF neuron can compromise
its precision, thereby reducing its representational capability.
Therefore, this work adopts a 16-bit width as a trade-off
between performance and accuracy. This means the AM-based
LIF SNN will have a much faster speed and be more suitable
for online learning.

D. Energy Efficiency Evaluation of AM-based LIF Neuron
Model Design

The power consumption of the AM-based LIF neuron model
is only 4 mW, which is just 1.73% of that in [22]. Although
[22] operates at a higher frequency, the performance gains
from the increased frequency do not outweigh the rise in
energy consumption. Furthermore, in terms of energy con-
sumption per neuron iteration and overall energy efficiency, the
AM-based LIF neuron model achieved an 90.29% reduction in
energy consumption and a 10.31-fold improvement in energy
efficiency compared to [22]. Although works such as [13] and
[19] utilize additional memory, they do not report key pa-
rameters such as power consumption and operating frequency.
In general, LUT- and slice register-based implementations
provide faster access and lower power consumption compared
to memory-based approaches.

In summary, the AM-based LIF neuron model demonstrates
strong performance, particularly in energy efficiency and re-
source utilization. This enables SNNs implemented with this
model to operate on resource-constrained hardware platforms
or scale to larger networks while maintaining low power
consumption.

VI. CONCLUSION

This paper presents a novel design for the LIF neuron
model. The proposed model has been tested and evaluated
at multiple levels, including the multiplier level, single neuron
level, neural network level, and also implemented on FPGA
in RTL with appropriate tests and evaluations. In this design,
the AM method achieves high accuracy, with a low error rate
of 2.6099%. Furthermore, the AM-based LIF neuron model
preserves precision with minimal timing errors, quantified

TABLE II
OVERALL COMPARISON OF THE AM-BASED LIF NEURON MODEL AND PRIOR DESIGNS

TCAS1’2021 [13] NEUROCOMPUTING’20 [19] TCAS1’2016 [20] TCAS1’2014 [21] TBioCAS’2020 [22] This Work

Model LIF LIF AdEx LIF AdEx LIF AdEx LIF Modified LIF

FPGA Platform Virtex-7 NR Spartan-6 Virtex-2 pro Zynq UltraScale+ Zynq UltraScale+
FPGA Technology 28 nm NR 45 nm 130 nm 16 nm 16 nm

Bit-width 16-bit fixed-point NR 20-bit fixed-point 37-bit fixed-point 10-bit fixed-point 16-bit fixed-point
Neuron number 512 1 1 1 1 1
Slice Registers 296 135 829 388 292 112

Slice LUTs 314 218 1221 1279 363 200
DSP block 4 NR 0 0 NR 0
Memory 1003 × 64 b 15 kb NR 0 NR 0

Maximum Operating Frequency NR NR 134.4 MHz 190 MHz 500 MHz 267.38 MHz
Pipeline 8 2 NR NR NR 4
Latency NR NR NR NR NR 14.96 ns
Power NR NR NR NR 231 mW (500 MHz) 4 mW(100 MHz)

Energy Consumption NR NR NR NR 462 pJ/MPI 44.88 pJ/MPI
Energy Efficiency NR NR NR NR 2.16 GOPS/W 22.28 GOPS/W

NR means not reported; MPI means Membrane Potential Iteration

by ERRT and NRMSD, thereby exerting no adverse effects
on SNNs training. Compared to state-of-the-art LIF neuron
models, the FPGA implementation of the AM-based LIF
neuron model not only achieves significantly lower hardware
resource utilization and minimal per-neuron implementation
area, but also demonstrates exceptionally low power consump-
tion. Specifically, it achieves a 17.04% to 86.49% reduction
in slice register utilization, an 8.26% to 84.36% reduction in
LUT utilization, a 90.29% decrease in energy consumption
per neuron iteration, and a 10.31-fold improvement in energy
efficiency.

REFERENCES

[1] Z. Mei et al., “TEA-S: A Tiny and Efficient Architecture for PLAC-
Based Softmax in Transformers,” IEEE Trans. Circuits Syst. II-Express
Briefs, vol. 70, no. 9, pp. 3594-3598, April 2023.

[2] Q. Al-Taai et al., “Towards an excitable microwave spike generator for
future neuromorphic computing,” in 2021 16th European Microwave
Integrated Circuits Conference(EuMIC), 2022, pp. 386-389.

[3] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671, Dec.
1997.

[4] Y. Liu et al., “FPGA-NHAP: A General FPGA-Based Neuromorphic
Hardware Acceleration Platform With High Speed and Low Power,”
IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 69, no. 6, pp. 2553-2566,
Mar. 2022.

[5] P. Michael and P. Thomas, “Deep Learning With Spiking Neurons:
Opportunities and Challenges,” Front. Neurosci., vol. 12, pp. 409662,
Oct. 2018.

[6] J. L. Lobo et al., “Spiking Neural Networks and Online Learning: An
Overview and Perspectives,” Neural Netw., vol. 121, pp. 88-100, July
2019.

[7] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambrisge, U.K.: Cambridge Univ. Press, 2002.

[8] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
J. Physiol., vol. 117, no. 4, pp. 500-544, Aug. 1952.

[9] E.M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063-1070, Sept. 2004.

[10] S. Li et al., “FEAS: A Faster Event-driven Accelerator Supporting
Inhibitory Spiking Neural Network,” in 2021 12th International Sym-
posium on Parallel Architectures, Algorithms and Programming, 2021,
pp. 14-18.

[11] W. Ye, Y. Chen and Y. Liu “The Implementation and Optimization of
Neuromorphic Hardware for Supporting Spiking Neural Networks With
MLP and CNN Topologies,” IEEE Trans. Comput-Aided Des. Integr.
Circuits Syst., vol. 42, no. 2, pp. 448-461, Feb. 2023.

[12] E. Z. Farsa et al., “A Low-Cost High-Speed Neuromorphic Hardware
Based on Spiking Neural Network,” IEEE Trans. Circuits Syst. II-
Express Briefs, vol. 66, no. 9, pp. 1582-1586, Sept. 2019.

[13] J. Kim et al., “Hardware-Efficient Emulation of Leaky Integrate-and-
Fire Model Using Template-Scaling-Based Exponential Function Ap-
proximation,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 68, no. 1,
pp. 350-362, Jan. 2021.

[14] J. Wu et al., “Efficient Design of Spiking Neural Network With STDP
Learning Based on Fast CORDIC,” IEEE Trans. Circuits Syst. I-Regul.
Pap., vol. 68, no. 6, pp. 2522-2534, June 2021.

[15] C. Walden et al., “Monolithically Integrating Non-Volatile Main Mem-
ory over the Last-Level Cache,” ACM Trans. Archit. Code Optim., vol.
18, no. 4, pp. 1544-3566, July. 2021.

[16] J. N. Mitchell, “Computer Multiplication and Division Using Binary
Logarithms,” IRE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512-517, Aug. 1962.

[17] X. Wu et al., “Design of Energy Efficient Logarithmic Approximate
Multiplier,” in 2023 5th International Conference on Circuits and
Systems (ICCS), 2023, pp. 129-134.

[18] M. Heidarpur et al., “CORDIC-SNN: On-FPGA STDP learning with
Izhikevich neurons,” IEEE Trans. Circuits Syst. I: Regular Papers, vol.
66, no. 7, pp. 2651-2661, July 2019.

[19] F.Perez-Pena, M. A. Cifredo-Chacon, and A. Quiros-Olozabal, “Digital
neuromorphic real-time platform,” Neurocomputing, vol. 371, pp. 91-99,
Jan. 2020.

[20] M. Heidarpour, A. Ahmadi and R. Rashidzadeh, “A CORDIC Based
Digital Hardware for Adaptive Exponential Integrate and Fire Neuron,”
IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 63, no. 11, pp. 1986-1996,
Nov. 2016.

[21] S. Gomar, A. Ahmadi, “Digital multiplierless implementation of bio-
logical adaptive-exponential neuron model,” IEEE Trans. Circuits Syst.
I-Regul. Pap., vol. 61, no. 4, pp. 1206-1219, April 2014.

[22] S. Xiao et al., “Low-Cost Adaptive Exponential Integrate-and-Fire
Neuron Using Stochastic Computing,” IEEE Trans. Biomed. Circuits
Syst., vol. 14, no. 5, pp. 942-950, Oct. 2020.

