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Abstract

Neuromorphic vision sensors, also known as event cameras, offer significant ad-

vantages over conventional frame-based cameras, in terms of high dynamic range, low

latency, and low power consumption. However, their high sensitivity to illumination

changes and asynchronous operation introduces substantial data (typically in the form of

false or structure-irrelevant event data) posing challenges to the veracity of the acquired

information in downstream vision tasks, such as, object recognition, feature tracking and

human action recognition. Traditional cleansing methods for neuromorphic vision sen-

sor event data typically rely on denoising techniques guided by reference-based metrics,

which require auxiliary modalities such as Active Pixel Sensor (APS) frames or manual

annotations. These references are often unavailable in real-world scenarios. Moreover,

existing reference-free metrics generally overlook structural integrity, leading to decep-

tively high scores when aggressive noise removal results in the loss of meaningful struc-

ture. In this paper, we propose the Temporal Structural Event Index (TSEI), a novel,

reference-free, structure-aware metric designed to assess the veracity of cleansed neuro-

morphic vision sensor event data. TSEI integrates temporal structural similarity (TSSM)

and contrast normalization within an adaptive segmentation framework to jointly evaluate

signal preservation and noise suppression. Experiments on both synthetic and real-world

datasets demonstrate that TSEI strongly correlates with structural fidelity and recogni-

tion accuracy, outperforming existing metrics in detecting over-cleansing and structural

degradation. These findings highlight that structural awareness is a critical factor in en-

hancing the veracity of neuromorphic event data and ensuring reliable performance in

visual recognition tasks.

1 Introduction

Neuromorphic vision sensors, particularly event cameras, represent a novel class of biologi-

cally inspired vision device [20, 22]. Unlike conventional cameras that capture synchronized
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two-dimensional frames at fixed intervals, event cameras asynchronously record per-pixel

brightness changes with microsecond-level temporal resolution [8]. Each recorded event

encodes a polarity-based change in illumination, along with precise spatial and temporal in-

formation [15]. These distinctive characteristics endow event cameras with exceptionally

high dynamic range, ultra-low latency, and low power consumption, making them highly

suitable for real-time vision tasks such as optical flow estimation [18, 29, 30], high-speed

video reconstruction [21, 26], feature tracking [6, 9, 11], and human action recognition [1]

and simultaneous localization and mapping (SLAM) [23, 27, 28].

However, the high temporal sensitivity of neuromorphic vision sensors also makes them

vulnerable to noise, typically in the form of spurious events or structure-irrelevant activity

induced by background motion or illumination changes, especially under dynamic light-

ing conditions [17]. Even subtle variations in background or ambient lighting can generate

substantial amounts of spurious activity, commonly referred to as background noise [25].

Consequently, the event streams captured by these sensors often contain a significant propor-

tion of non-informative or misleading data, posing major challenges for downstream visual

processing tasks. To address this, effective denoising that removes noise while preserving

structurally meaningful events has become a critical pre-processing step in neuromorphic

vision systems.

To evaluate the effectiveness of event data cleansing algorithms, a variety of metrics

have been proposed. Most existing approaches are reference-based, relying on auxiliary

modalities such as Active Pixel Sensor (APS) frames, Inertial Measurement Unit (IMU)

signals, or manually annotated labels [2]. Although effective in controlled settings, these

references are often unavailable or unreliable in real-world scenarios. Moreover, the sheer

volume of neuromorphic vision sensor event data (often reaching millions of events per

second) makes manual annotation impractical [5, 17].

In contrast, reference-free metrics such as the Total Sum of Squares (TSS) rely solely on

contrast-based evaluations. While more practical, they are highly sensitive to event density

and tend to overestimate performance in high-density or noisy regions, without adequately

penalizing structural distortions.

In response to the limitations of existing metrics, several reference-free alternatives have

been proposed. However, many of these overlook a critical aspect of neuromorphic event

data quality: structural fidelity. That is, a cleansing algorithm may aggressively suppress

noise yet inadvertently discard structurally meaningful events, still receiving high scores

from contrast or density-based metrics. This shortcoming raises a central question: Is struc-

tural awareness the key to improving the veracity of neuromorphic vision sensor event data

and enabling reliable downstream recognition?

To address this, we propose the Temporal Structural Event Index (TSEI)—a novel,

reference-free, structure-aware metric that explicitly captures structural consistency within

neuromorphic event data. TSEI integrates contrast normalization and temporal structural

similarity (TSSM) within an adaptive segmentation framework. Our contributions are sum-

marized as follows:

• We introduce a density-aware normalized TSS formulation, which employs adap-

tive sigmoid weighting to emphasize informative event clusters while suppressing

sparse and noisy regions, enabling fair evaluation across scenes with varying densi-

ties.

• We incorporate temporal structural similarity (TSSM) between adjacent event win-
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dows, capturing consistent spatial patterns over time and providing the first structure-

aware evaluation metric specifically designed for neuromorphic event data cleansing.

• We design a flexible scoring function that fuses contrast and structural similarity,

allowing tunable trade-offs between signal preservation and noise suppression.

Extensive experiments on both synthetic and real-world datasets demonstrate that TSEI

more accurately reflects structural degradation and correlates strongly with recognition per-

formance. These findings underscore the importance of structural awareness in estimating

the veracity of neuromorphic event data and ensuring the reliability of vision systems built

upon it.

2 Related Work

Evaluating denoised event data quality is a core challenge in neuromorphic vision. Early

metrics are typically reference-based, requiring auxiliary data or manual annotations. For

example, the Percentage of Signal Remaining (PSR) is a metric that uses bounding boxes to

quantify the amount of signal relative to noise. [17], a recent approach utilizes APS and IMU

signals to estimate the validity of events [2]. Although effective in controlled settings, such

methods are limited in real-world use due to the lack of reliable references.

To address this, several reference-free metrics have been proposed. TSS [7] and similar

contrast-based methods are efficient but often biased by event density, rewarding noise-heavy

outputs and overlooking structural degradation. More recent work applies normalized con-

trast with spatial penalties, but remains static and lacks temporal modeling [10, 24].

In contrast, our proposed Temporal Structural Event Index (TSEI) is the first structure-

aware, reference-free metric that jointly considers temporal structural similarity and density-

normalized contrast. By adaptively segmenting event streams and capturing inter-window

coherence, TSEI enables robust assessment of structural fidelity and avoids over-cleansing.

3 Methodology

TSEI combines three key components—adaptive temporal segmentation, normalized con-

trast measurement, and temporal structural similarity—into a unified framework for robust,

structure-aware evaluation of cleansing performance across varying event densities and noise

conditions. The resulting evaluation score, referred to as the Temporal Structural Event In-

dex (TSEI) and denoted by E, reflects both temporal and spatial quality. These components

respectively balance event density over time, enable density-invariant saliency measurement,

and capture spatial consistency across adjacent temporal windows.

3.1 Adaptive Event Segmentation (AES)

To ensure fair comparison across segments with varying event densities, we partition the

input event stream into segments containing approximately uniform numbers of events. The

number of events per segment, denoted by n, is computed as:

n = max(nmin,ρ log10(N)) , (1)



4 LI & ABHAYARATNE: STRUCTURAL AWARENESS FOR EVENT DATA CLEANSING

where N is the total number of events, and ρ is the normalized spatiotemporal event density

defined as:

ρ =
N

XY T
, (2)

with X , Y , and T representing the spatial and temporal extents of the event stream. The total

number of segments S is then determined by:

S =

⌈

N

n

⌉

. (3)

This adaptive segmentation balances the number of events in each segment, thereby mitigat-

ing the effects of data imbalance and improving the robustness of subsequent evaluations.

3.2 Normalized Contrast Measure

Although contrast metrics such as the total sum of squares are widely employed in event data

analysis, they suffer from two key limitations:

(1) they scale directly with the number of events, rendering them overly sensitive to

density variations rather than the actual signal quality;

(2) they disregard spatial structure, often overemphasizing noise in dense regions while

neglecting meaningful patterns in sparse areas.

To overcome these shortcomings, we propose a density-normalized contrast formulation

incorporating two key modifications:

• Z-score normalization: Contrast values across temporal windows are standardized to

remove biases introduced by raw event counts.

• Density-aware weighting: A sigmoid-based weighting factor is introduced to sup-

press the influence of overrepresented dense regions and promote fairness across dif-

ferent event distributions.

Specifically, the normalized contrast score for window i, denoted as Di, is computed as:

Di =
D′

i −µD

σD + ε
, (4)

where D′

i the unnormalized contrast value, which is defined as:

D′

i = wi ∑
x

I2(x), (5)

with I(x) representing the warped event intensity at pixel x, calculated as:

I(x) = ∑
ek∈Wi

pkδ (x− xk). (6)

Here, pk denotes the polarity of the k-th event, xk denotes its spatial coordinate and δ (·)
denotes the Dirac delta function, approximated via discrete binning.

To mitigate contrast inflation in extreme density scenarios, a weighting factor wi is intro-

duced as follows:

wi =
1

1+ e−αw(ρi−βw)
, (7)
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where ρi is the event density in window Wi and αw, βw are the hyper-parameters controlling

the steepness and midpoint of the sigmoid function, respectively. This formulation ensures

that the contrast measure captures salient structural patterns in the event data, independent

of raw event density.

3.3 The Proposed Temporal Structural Similarity

To assess the preservation of temporal structural coherence in the event stream, we compute

the structural similarity between each pair of consecutive temporal windows. Let S(Wi,Wi+1)
denote the similarity score between window Wi and its successor Wi+1, defined as:

S(Wi,Wi+1) =
(2µiµi+1 +C1)(2σi,i+1 +C2)

(µ2
i +µ2

i+1 +C1)(σ2
i +σ2

i+1 +C2)
. (8)

In this formulation, µi and µi+1 represent the mean event intensities of windows Wi and

Wi+1, respectively, while σi and σi+1 denote their corresponding variances. The term σi,i+1

indicates the covariance between the two windows. The constants C1 and C2 are small values

introduced to stabilize the computation and avoid division by zero.

This similarity measure captures the degree of structural continuity across adjacent tem-

poral segments. It penalizes excessive filtering or cleansing operations that disrupt consistent

spatial patterns over time, ensuring that meaningful temporal dynamics are preserved.

3.4 Temporal Structural Event Index (TSEI)

The final structural event score for each temporal window is computed as a weighted com-

bination of the normalized contrast and the temporal structural similarity:

Ei = αDi +βS(Wi,Wi+1), (9)

where α and β are tunable parameters that control the trade-off between contrast preserva-

tion and structural consistency.

The overall score for the entire event sequence is obtained by averaging the per-window

scores:

E =
1

N

N

∑
i=1

Ei. (10)

This unified formulation provides a robust, interpretable, and structure-aware evaluation met-

ric for assessing the integrity of cleansed event data, without requiring any ground-truth or

external references.

4 Experimental Results

4.1 Quantitative Comparison Under Synthetic Noise

We begin by evaluating the proposed TSEI metric alongside two classical metrics—TSS and

MESR [4]—on synthetic datasets with controlled noise levels. Event streams are synthet-

ically generated by superimposing background noise points onto known spatial structures,
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Table 1: Performance comparison under 10% and 30% noise levels in different thresholds.

Cleansing Method 10% Noise 30% Noise

TSEI (Ours) MESR [4] TSS [7] TSEI (Ours) MESR TSS

Pure_Event 0.1515 0.4322 0.1914 0.1515 0.3879 0.1556

Event_Noise 0.1565 0.4033 0.1976 0.1152 0.3281 0.1743

0.01 0.2998 0.5666 0.0314 0.3052 0.5093 0.0226

0.1 0.2837 0.5706 0.0397 0.2922 0.5044 0.0284

0.5 0.2407 0.5857 0.0758 0.2421 0.5179 0.0526

1 0.2243 0.6425 0.0929 0.2232 0.7867 0.1325

Table 2: Performance comparison under 50% and 70% noise levels in different thresholds.

Cleansing Method 50% Noise 70% Noise

TSEI (Ours) MESR TSS TSEI (Ours) MESR TSS

Pure_Event 0.1503 0.4643 0.2143 0.1471 0.5125 0.2662

Event_Noise 0.1086 0.3532 0.2454 0.0959 0.3554 0.3102

0.01 0.2895 0.6297 0.0363 0.2776 0.7694 0.0491

0.1 0.2680 0.6314 0.0469 0.0959 0.7683 0.0630

0.5 0.2243 0.6425 0.0929 0.2232 0.7867 0.1325

1 0.2134 0.6366 0.1177 0.2110 0.8082 0.1711

with noise ratios set at 10%, 30%, 50%, and 70%. A temporal coherence-based cleans-

ing algorithm with a tunable threshold is employed to filter out noise events. This algorithm

retains events exhibiting strong local temporal consistency and discards temporally inconsis-

tent events, thereby enabling controlled noise suppression at different aggressiveness levels.

As shown in Tables 1 and 2, TSS and MESR scores increase consistently with noise,

often overstating performance despite structural degradation. In contrast, TSEI reflects true

data quality remaining stable or decreasing under heavy noise by capturing structural loss,

thus offering a more reliable assessment of event data veracity.

To further illustrate this behavior, Figure 1 plots the values of TSEI, MESR, and TSS

across a range of cleansing thresholds under four noise levels. While MESR and TSS in-

crease monotonically with more aggressive cleansing, TSEI exhibits a peak followed by a

decline—initially rising as noise is removed, but dropping as structurally important events

are lost. This turning-point pattern, uniquely captured by TSEI, demonstrates its effective-

ness in balancing noise suppression with structural preservation—an essential requirement

for reliable vision systems.

4.2 Structure-Preserving Evaluation via Hausdorff

To assess structural preservation during cleansing, we use the Hausdorff distance (HD)—a

geometric metric that measures the maximum spatial deviation between the cleansed and

ground-truth event sets. Applied to our synthetic datasets, it quantifies structural misalign-

ment or loss. A rising Hausdorff distance with increasing threshold indicates over-cleansing

and structural degradation, aligning well with TSEI trends.

Figure 2 illustrates the trends of TSEI, MESR, and TSS alongside the Hausdorff distance

across varying noise levels and cleansing thresholds. As the threshold increases, the Haus-

dorff distance rises sharp, particularly under high-noise conditions, indicating progressive

structural degradation. Among the three metrics, only TSEI reliably reflects this degrada-

tion, exhibiting a consistent downward trend that correlates strongly with the increase in

Hausdorff distance. By contrast, MESR and TSS either remain flat or increase monotoni-

cally, failing to capture the underlying structural disruption.
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Figure 1: TSEI rises with noise removal but drops once structure degrades, while MESR and

TSS keep increasing, unaffected by structural loss.

Figure 2: TSEI aligns closely with Hausdorff distance, while MESR and TSS remain insen-

sitive to structural degradation.

To further visualize this behavior, Figure 3 presents heatmaps of TSEI, MESR, and TSS

across all threshold-noise combinations. The TSEI heatmap distinctly highlights a "structural

collapse zone" in high-noise, high-threshold regions, indicated by a sudden drop in scores.

In contrast, the MESR and TSS heatmaps appear less discriminative, showing smooth or

monotonic gradients that do not correlate with structural fidelity loss.

These results validate TSEIs effectiveness as a structure-aware quality metric. Its align-

ment with the Hausdorff distance—a direct geometric measure demonstrates its ability to pe-

nalize over-cleansing and detect structural damage. This sensitivity is crucial for maintaining

the veracity of event data and supporting downstream vision tasks that rely on fine-grained

spatial structure.
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Figure 3: TSEI exhibits clear structural sensitivity, with low values concentrated in high-

noise, high-threshold regions.

4.3 Comparison Across Cleansing Methods with Real Data

We further evaluate the proposed TSEI metric by comparing four representative event data

cleansing methods—AW-GATCN [13], BAF [3], DWF [10], and TS [12]—across five di-

verse event datasets: Caltech101 [16], Cifar10 [14], D-END [4], N-CARS [19], and N-

END [4]. For each method-dataset pair, we compute the average TSEI and MESR score

before and after cleansing, and report the improvement (∆TSEI and ∆MESR) to assess struc-

tural enhancement in Table 3. TSS is not used for comparison because it decreases with fewer

event points, making it unreliable after noise reduction.

Background Activity Filter (BAF) and Dual Window Filter (DWF) are classical statis-

tical filters. BAF estimates event activity within an 8-connected neighborhood and removes

events below a threshold. DWF uses a FIFO queue to retain only recent events, filtering out

those with low temporal correlation.

Time Surface (TS) converts events into a continuous temporal surface using logarithmic

decay. Events disrupting surface smoothness are removed, enhancing robustness in struc-

tured scenes.

Adaptive Weighted Graph Attention Convolutional Network (AW-GATCN) treats

events as spatiotemporal graphs with edges weighted by motion and polarity cues. A variance-

based thresholding scheme and attention mechanism help identify and preserve structurally

significant events.

As shown in Table 3, ∆MESR and ∆TSEI exhibit varying trends across methods and

datasets. On Caltech101, TS yields the highest ∆MESR but a negative ∆TSEI, while AW-

GATCN achieves the highest ∆TSEI. For Cifar10, TS shows the largest ∆TSEI, though most

methods have negative ∆MESR. On D-END, BAF reports the highest ∆MESR, whereas

AW-GATCN leads in ∆TSEI. In N-CARS, AW-GATCN achieves the highest improvements

in both metrics, and on N-END, it shows the largest ∆MESR, while TS yields the highest

∆TSEI.

These variations indicate that ∆MESR and ∆TSEI do not always align. Since the two

metrics operate on different numerical scales, their absolute values are not directly com-

parable; instead, the trend of change offers more insight into whether a method may be

over-cleansing the data.
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Table 3: Comparison of metrics improvements across different cleansing methods and

datasets. Bold indicates the best performance per column.

Cleansing Method Caltech101 Cifar10 D-END

∆MESR ∆TSEI (Ours) ∆MESR ∆TSEI (Ours) ∆MESR ∆TSEI (Ours)

AW-GATCN [13] 0.1886 0.0190 0.0072 0.0593 0.024 0.0514

BAF [3] 0.1056 -0.0275 -0.0618 0.0755 0.1343 0.0444

DWF [10] 0.1421 -0.0218 -0.0651 0.0427 0.1293 0.0447

TS [12] 0.4769 -0.1371 -0.3282 0.1025 0.1183 0.0330

Cleansing Method N-CARS N-END

∆MESR ∆TSEI (Ours) ∆MESR ∆TSEI (Ours)

AW-GATCN [13] 0.2725 0.1866 0.7729 0.0273

BAF [3] 0.0096 0.0116 0.1872 0.0053

DWF [10] 0.0358 0.0516 0.1863 0.0074

TS [12] 0.0235 0.0023 0.0458 0.0326

Table 4: Classification accuracy (%) across datasets and cleansing methods. Bold values

indicate the highest accuracy per dataset.

Cleansing Method Caltech101 Cifar10 D-END N-CARS N-END

AW-GATCN [13] 74.07 60.53 85.73 90.18 75.47

BAF [3] 50.87 65.70 80.43 66.67 63.33

DWF [10] 50.33 55.56 82.61 71.88 64.76

TS [12] 36.49 71.69 75.06 49.79 73.06

4.4 Correlation with Downstream Tasks

Building on the metric variations discussed in Section 4.3, we further evaluate the practical

relevance of these metrics by examining their relationship with downstream classification

accuracy. Table 4 presents classification results across five benchmark datasets and four

representative cleansing methods, consistent with the configurations in Section 3.3.

A general alignment is observed between higher TSEI scores and improved classification

performance. For instance, AW-GATCN consistently achieves top or near-top TSEI values

(Table 3) and delivers strong accuracy across datasets. Notably, some exceptions exist, for

example, TS shows relatively high accuracy on N-END despite moderate TSEI scores, sug-

gesting that structural integrity is not the sole factor influencing task performance.

These findings empirically support the trends observed in Section 4.3: while traditional

metrics such as MESR may fluctuate due to variations in event density, they do not consis-

tently reflect structural changes introduced by different cleansing methods. In contrast, TSEI

is specifically designed to account for structural fidelity and temporal coherence, making it

more sensitive to meaningful improvements in data quality. The alignment between high

TSEI scores and strong classification performance across datasets suggests that structure-

aware metrics provide more reliable and task-relevant evaluations. This connection rein-

forces the utility of TSEI not only as a diagnostic tool for cleansing effectiveness but also as

a practical indicator for selecting structure-preserving strategies in event-based vision appli-

cations.

5 Conclusions

We presented TSEI, a novel structure-aware, reference-free metric for evaluating event data

cleansing quality. By integrating temporal structural similarity and density-aware contrast
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normalization, TSEI effectively captures structural fidelity under diverse noise conditions.

Experiments demonstrate that TSEI not only detects over-cleansing but also correlates strongly

with geometric integrity and downstream classification performance. In addition to an evalu-

ation, TSEI serves as a practical indication for guiding structure-preserving cleansing strate-

gies, especially in real-world scenarios where reference data is unavailable. Its lightweight,

unsupervised nature makes it applicable to embedded real-time vision systems, such as,

robotics or autonomous driving.
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