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ABSTRACT This paper investigates pilot and data power optimization for cell-free massive MIMO
(CF-mMIMO). We propose an iterative algorithm that jointly updates pilot and data power levels to
improve channel estimation and ensure reliable data transmission. Pilot powers are allocated based on
the normalized mean square error (NMSE) of channel estimation, granting higher power to users with
poor estimates while reducing interference for users with favorable conditions. Based on the resulting
channel state information (CSI), data powers are then optimized via geometric programming to achieve
max–min fairness across users. By alternating between NMSE-driven pilot power control and fairness-
oriented data power allocation until convergence, the proposed method achieves efficient CSI acquisition,
balanced interference management, and enhanced fairness. In addition, we introduce a lightweight access
point (AP)–user association algorithm that ranks AP–user channel strengths, limits the number of users per
AP, and employs iterative replacement to ensure scalability and full user connectivity. Simulation results
demonstrate that the proposed framework significantly improves spectral efficiency and fairness compared
to conventional methods, while remaining suitable for practical CF-mMIMO deployments.

INDEX TERMS AP-user association, pilot and data power control, spectral efficiency, and scalable uplink
CF-mMIMO.

I. INTRODUCTION

MOBILE user equipment will keep growing with in-
creasing capacity demands over the next decade,

requiring ubiquitous and boundless connectivity. Massive
multiple-input multiple-output (mMIMO) is widely recog-
nized as one of the most promising techniques for the 5G and
beyond wireless networks, offering significant improvements
in spectral efficiency (SE) along with simplified processing
and near-optimal performance [1]–[3]. Looking ahead, the
main constraints on spectral efficiency (SE) are inter-cell
interference due to lack of access point (AP) cooperation,
significant path losses, and corresponding hardware energy
consumption [4]. Sixth-generation (6G) networks aim to
enhance SE by 100 times compared to 5G by addressing
these issues with denser, cell-free network infrastructure,
transitioning from a cell-centric to a user-centric approach
to guarantee comprehensive coverage and high data rate [5].

Unlike traditional cellular networks, CF-mMIMO employs
numerous distributed APs equipped with multiple antennas
to serve multiple users simultaneously, resulting in signifi-
cant improvements in coverage, capacity, and reliability [6]–
[9].

A. Prior and related works
In CF-mMIMO systems, joint pilot and data power control
is a method that simultaneously manages the power levels
of both pilot and data signals to optimize overall system
performance. By jointly optimizing the allocation of pilot
and data powers, we can effectively leverage the spatial
diversity of the wireless channel to mitigate key challenges
such as pilot contamination, inter-user interference, and
noise. Specifically, data power control plays a crucial role in
managing inter-user interference, reducing the overlapping
interference between users during data transmission. Mean-
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while, pilot power control is instrumental in addressing the
effects of pilot contamination, enhancing channel estimation
accuracy. This dual approach, balancing data and pilot power,
enables a more robust and interference-resilient communica-
tion environment in CF-mMIMO systems. This problem is
challenging to solve because the data power and pilot power
optimization problems are non-convex when addressed indi-
vidually. When combined, they create an even more complex,
non-convex optimization problem. Additionally, these two
vectors—data power and pilot power—are interdependent,
adding another layer of complexity. This interdependence
requires careful balancing to achieve an optimal solution that
maximizes spectral efficiency while mitigating interference
and pilot contamination.

The works in [10]–[12] investigated the effects of the pilot
and data PC in the uplink of cell-based systems. However,
previous optimization algorithms used in cellular systems
cannot be applied to cell-free systems. Each serving AP
needs to estimate its wireless channel to its users based on
the same uplink pilot signal in cell-free systems. On the
other hand, some research on cell-free systems focused on
optimizing only the data transmission powers; there is no
pilot power control [13], [14] while using full and fixed
power to transmit pilot signals.

In [15], an algorithm was proposed based on a pilot
power control scheme to minimize the maximum channel
estimation error among users. The algorithm used the data
power allocation scheme proposed in [13] to solve a max-
min fairness problem, while the AP selection is performed
based on the largest large-scale fading-based criteria. How-
ever, the power levels for both pilot and data signals are not
optimized together, meaning their adjustments are not deter-
mined simultaneously. The joint power control method was
considered in [16] by utilizing single-antenna APs, wherein
the users are subject to a limited total energy. The study
in [17] proposed a method utilizing first-order optimization
to adjust pilot and data power based on a greedy power
algorithm. Although the authors describe this approach as
joint, it primarily involves sequential optimization of pilot
and data power levels rather than fully integrating them. The
authors in [18] considered the joint pilot and data power
control in user-centric scenarios by combining successive
convex approximation and geometric programming (GP).
In [19], a sequential convex approximation algorithm is
utilized to solve GP to control the pilot and data power
jointly. In [20], [21], the authors propose deep learning-
based joint pilot and data power control algorithms that
address the sum-rate maximization problem. In [22], a pilot
allocation scheme based on K-means clustering is developed
for CF-mMIMO systems. The work in [23] applies deep
learning techniques to design both sum-rate maximization
and max–min power allocation strategies. Similarly, the
authors of [24] introduce a deep learning-based algorithm
to maximize the minimum guaranteed user capacity. In [25],
a max–min uplink rate optimization framework is presented,

jointly optimizing pilot and data power across all users.
The study in [26] proposes a spectral efficiency scheme
aimed at maximizing the minimum user rate to enhance
fairness in data power optimization. A multi-objective opti-
mization framework is introduced in [27], which effectively
addresses the trade-off between fairness and sum spectral
efficiency. Furthermore, considering a total energy budget
per access point, an optimal power control strategy for
allocating pilot and data power is proposed. Authors in
[28] employ an unsupervised deep learning approach for
uplink power control in CF-mMIMO systems. Moreover, a
fractional PC policy for uplink CF-mMIMO was presented
in [29], which can be fully distributed and uses large-scale
quantities. Inspired by weighted minimum mean square error
and fractional programming, the algorithm in [30] proposed a
fair power allocation. The authors in [31] introduce an access
point-user association strategy combined with pilot power
allocation to mitigate multiuser interference and enhance
spectral efficiency. Deep neural networks were introduced
in [32], [33] to reduce complexity, including convolutional
neural network models, distributed DNNs, and graph neural
networks for efficient PC optimization with maximum ratio
transmission beamforming.

B. Motivation
The deployment of large-scale CF-mMIMO networks de-
mands scalable strategies for both user association and power
control. Conventional clustering schemes often lack scala-
bility and fail to guarantee service for all users. Many prior
joint designs either optimize pilot and data in a single shot
based on fixed channel state information (CSI), or sequen-
tially (pilot-data) without re-optimizing both with updated
normalized mean square error (NMSE)/CSI at each iteration.
This limits their ability to capture the mutual coupling be-
tween estimation quality and interference. These challenges
motivate a unified framework that ensures reliable AP–user
association and jointly iteratively optimizes pilot and data
power, thereby improving scalability, fairness, and overall
system performance in practical CF-mMIMO deployments.

C. Contribution
This study introduces a scalable framework for CF-mMIMO
that jointly addresses pilot and data power control together
with efficient AP–user association. The goal is to ensure
both scalability and performance improvement in large-scale
deployments.
We first propose an AP–user association algorithm that
resolves two key shortcomings of conventional user-centric
clustering: the lack of an upper bound on the number of users
per AP, which makes the system unscalable as K increases,
and the absence of guaranteed association for all users. To
address the first issue, we impose a limit on the number
of users that each AP can serve. The association process
begins by ranking the channel strengths between each AP
and all users, after which each AP selects its strongest users



to associate with. This initial step establishes the AP–user
association matrix. However, some weaker users may remain
unassociated. To ensure full coverage, these users are col-
lected into a separate set and reallocated through an iterative
replacement mechanism, where overloaded APs substitute
their weakest associated users with unassociated ones. This
procedure continues until all users are successfully connected
to at least one AP.

We also develop an iterative algorithm that simultaneously
adjusts pilot and data power levels to optimize system per-
formance. Each user’s signal-to-interference-plus-noise ratio
(SINR) is derived under a matched filtering receiver, and the
NMSE is formulated as a min–max optimization problem.
Since the problem involves non-convex constraints, we em-
ploy McCormick relaxation techniques, enabling pilot power
to dynamically adapt to instantaneous channel conditions.
Based on the resulting CSI and NMSE values, a max–min
optimization problem is then solved to allocate data power
levels, achieving fairness and reliability in transmission. The
key novelty of this design is its iterative structure: pilot
powers are updated according to the resulting data power
allocations, while data powers are recalculated in response to
updated pilot powers. This cycle continues until convergence,
ensuring that both pilot and data power vectors evolve jointly.
In this way, users with poor channel estimates are allocated
higher pilot power to improve estimation accuracy, while
users with favorable channel conditions receive lower power
to reduce interference and conserve energy. Furthermore,
by leveraging geometric programming (GP) techniques [34],
[35], data power allocation achieves max–min fairness across
users. Unlike previous works [15], [19], which treat pilot and
data power optimization separately, the proposed approach
integrates them dynamically, ensuring efficient CSI acquisi-
tion and effective data transmission simultaneously. Simu-
lation results verify that this iterative strategy substantially
improves both spectral efficiency and fairness.
By jointly integrating the iterative pilot–data power control
mechanism with the scalable AP–user association strategy,
the proposed framework provides a comprehensive solution
that ensures efficient power allocation, reliable channel esti-
mation, and scalable user association, making it particularly
suitable for practical CF-mMIMO deployments.

D. Outline
The rest of the paper is organized as follows: Section II
outlines the system model. In Section III, we propose an
iterative power control algorithm that optimizes both pilot
and data power allocation to enhance SE. The section also
includes the summary and the complexity of the proposed
method. Section IV presents simulation results, highlighting
the benefits of the proposed method. Finally, Section V
concludes the paper.

FIGURE 1: Various widths and heights demonstrate different
power for pilots and data for different users.

E. Notations
We represent vectors using bold lowercase letters and matri-
ces using bold uppercase letters. E{·} stands for the statisti-
cal expectation of random variables, and a circular symmetric
complex Gaussian matrix with covariance Z is denoted by
CN (0,Z). The diagonal matrix is denoted as diag(·), and the
symbol C is used for the complex numbers. (·)T, (·)∗, (·)−1,
and (·)H denote transpose, conjugate, inverse, and conjugate-
transpose, respectively. The Euclidean norm and absolute
value are denoted by ∥·∥ and |·|, respectively. Superscripts p

and d indicate pilot- and data-related variables or parameters,
while I denotes the identity matrix.

II. System Model
As shown in Fig. 1, we consider a CF-mMIMO system with
M randomly distributed APs that serve K single-antenna
users, assuming that K ≪ M . All APs are equipped with
N antennas and connected to a CPU via unconstrained
fronthaul links. The system operates in time-division duplex
mode, and all APs and users are perfectly synchronized. The
channel between the mth AP and the kth user is denoted by
gmk ∈ CN . In each block, an independent realization from
a correlated Rayleigh fading distribution is drawn:

gmk ∼ CN (0,Rmk) (1)

where Rmk = tr(Rmk)/N is the large-scale fading that
describes geometric pathloss and shadowing, and Rmk =
E{ĝmkĝ

H
mk}. We assume that at each of the mth AP,

the local statistical channel state information (CSI) of all
connected links is perfectly known, as it can be estimated
using standard methods [36]. We consider a system that
operates in the block-fading channel model, where the time
and frequency plane is divided into coherence blocks, τc,
in which τp and τc − τp dedicate the uplink pilot, and data
transmission symbols, respectively.

A. Uplink Training and Channel Estimation
In this paper, we consider a CF-mMIMO network where a
subset of APs in the network serves each user. We assume
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that each user selects its pilot sequence randomly, which
can be conducted in a fully distributed manner. Since the
number of symbols for the training is τp, only τp orthogonal
pilot sequences are available in the network, so for K > τp,
multiple users have to share the same pilot sequence. This
random pilot assignment approach is straightforward but
often results in nearby users sharing the same pilot sequence.
Consequently, these users experience degraded performance
due to substantial pilot contamination effects. The focus
of this paper is not based on the pilot decontamination
algorithm, and we assume significant pilot contamination in
this study due to random pilot assignment, allowing us to
evaluate the proposed method under worst-case conditions.

We consider τp mutually orthogonal pilot sequences
{ϕ1, . . . ,ϕτp}, each of length τp and normalized such that
∥ϕt∥2 = τp. The value of τp is fixed and does not scale with
the number of UEs K. Each UE is assigned one of these
pilots upon access. In practical massive access scenarios
where K > τp, multiple UEs inevitably reuse the same
pilot. These UEs are referred to as pilot-sharing UEs. Let
tk ∈ {1, . . . , τp} denote the pilot index of UE k, and define
Sk ⊆ {1, . . . ,K} as the set of UEs reusing pilot tk, including
UE k itself. When the UEs in Sk transmit the shared pilot
ϕtk

, the received signal at AP m, denoted by yp
mtk

∈ CN ,
can be written as [37, Sec. 3]

yp
mtk

=
∑
i∈Sk

(τpp
p
i )

1/2gmi + nmtk
(2)

where ppi denotes the pilot transmit power of UE i and
nmtk

∼ NC
(
0, σ2IN

)
is the thermal noise. The MMSE

estimate of gmk for k ∈ Sk is given by

ĝmk = (τpp
p
k)

1/2RmkΘ
−1
mtk

yp
mtk

(3)

where Bmk = E
{
ĝmkĝ

H
mk

}
= τpp

p
kRmkΘ

−1
mtk

Rmk, and

Θmtk
= E{yp

mtk
(yp

mtk
)H} =

∑
i∈Sk

τpp
p
iRmi + σ2IN (4)

The interference caused by the pilot-sharing users in St as
indicated in (2) leads to pilot contamination, which degrades
the system performance. Therefore, pilot contamination de-
grades the estimation performance, making coherent trans-
mission less effective, and the estimates ĝmk for k ∈ St

become correlated, leading to additional interference [37].

B. Uplink Data Transmission and Achievable SE
During the uplink data transmission, all users send their data
to the APs using the same time-frequency resource. The
received signal yd

m ∈ CN , at the mth AP is given by

yd
m =

K∑
k=1

(pdk)
1/2gmkqk +wd

m, (5)

where pdk is the transmit data power, qk with E{|qk|2|} =
1, is the data symbol transmitted by kth user, and wd

m ∈
CN (0, σ2IN ) is the additive white Gaussian noise at the
receiver. For signal detection in the first stage, the mth AP

utilizes the maximum ratio combining (MRC) technique in
which the received signal, yd

m is multiplied by the Hermitian
transpose of channel estimate, ĝH

mk and transmits ĝH
mky

d
m to

the CPU through the backhaul link for all users. Then, for
each user, k, the received products are combined as

yk =

M∑
m=1

ĝH
mky

d
m = (pdk)

1/2
( M∑
m=1

ĝH
mkgmk

)
qk

+

K∑
i=1
i ̸=k

(pdi )
1/2

( M∑
m=1

ĝH
mkgmi

)
qi + w′

k, (6)

where w′
k =

∑M
m=1 ĝ

H
mkw

d
m represents the noise. In the

second stage, the CPU gathers the local data estimates from
all APs and combines them to create a final estimate of the
user data. The CPU calculates its estimate using a linear
combination of the local estimates as

ŷk =

M∑
m=1

a∗mkĝ
H
mky

d
m

= (pdk)
1/2

( M∑
m=1

a∗mkĝ
H
mkgmk

)
qk

+

K∑
i=1
i ̸=k

(pdi )
1/2

( M∑
m=1

a∗mkĝ
H
mkgmi

)
qi + w′′

k , (7)

where w′′
k =

∑M
m=1 a

∗
mkĝ

H
mkw

d
m and amk ∈ C defines the

weight assigned by the CPU to the local signal estimate that
the mth AP has of the signal from the kth user. In this paper,
we have assumed that the large-scale fading weight vector
of user k for all APs is deterministic.

For simplicity, we define the vector ujk ∈ CM formed as

uik = [ĝH
1kg1i, · · · , ĝH

MkgMi]
T , (8)

where it represents the vector containing the combined
receive channels between ith user and all APs serving kth

user. Using (8), the received signal at kth user in (7) can be
expressed as

ŷk = (pdk)
1/2aTk ukkqk +

K∑
i=1
i ̸=k

(pdi )
1/2aTk uikqi + w′′

k . (9)

where ak = [a1k, · · · , amk, · · · , aMk]
T. It can be observed

from (9) that the effective channels of the different users
are represented by (akuik : i = 1, · · · ,K), as it has the
structure of a single antenna channel. In order to compute
the SE, we assume that the average of the effective channel,
E{akukk} is non-zero and deterministic, even though the
effective channel akukk is unknown at the CPU [38]. Then,
it can be assumed to be known. Therefore, the achievable
uplink SE of the kth user can be written as follows

SEk = (1− τp
τc
) log2 (1 + SINRk) , (10)



FIGURE 2: Demonstration of pilot and data power allocation
based on τp and τu = τc − τp for uplink

where the SINR of the kth user is presented by [39]

SINRk

=
pdk |akE{ukk}|2

aTk
(∑K

i=1
pdi E{uikuH

ik} − pdkE{ukk}E{uH
kk}+ Fk

)
ak

,

(11)

where ak = [1, · · · , 1]T ∈ RM and

[E{uki}]m =

{
σ2ppkτp tr(RmkΘ

−1
mkRmk) i ∈ Sk,

0 i /∈ Sk

, (12)

[Fk]mm = σ2ppkτp tr(RmkΘ
−1
mkRmk) (13)

[E{uiku
H
ik}]mm = τpp

p
ktr(RmiRmkΘ

−1
mkRmk)

+

{
ppkp

p
i τ

2
p

∣∣tr(RmiΘ
−1
mkRmk)

∣∣2 i ∈ Sk,

0 i /∈ Sk

(14)

C. Scalability
In order to address the scalability of CF-mMIMO, we pro-
pose a framework that ensures scalable operation by intro-
ducing a block-diagonal matrix L. This matrix is composed
of diagonal sub-matrices Lmi ∈ CN×N , where i = 1, . . . ,K
denotes the user index and m = 1, . . . ,M denotes the AP
index. The role of Lmi is to indicate which antennas of
AP m are assigned to serve user i. Specifically, if the q-th
antenna of AP m is configured to transmit to or decode the
signal from user i, then the q-th diagonal entry of Lmi is set
to 1, and 0 otherwise. To further characterize the AP–user
associations, a binary matrix T ∈ RM×K is defined, where
the entry Tmk equals 1 if the sum of diagonal elements of
Lmk is nonzero, and 0 otherwise. Based on this definition,
the subset of users associated with AP m is given by

Mm = {i | Tmi = 1, i = 1, . . . ,K},
and the subset of APs associated with user k is expressed as

Ak = {m | Tmk = 1, m = 1, . . . ,M}.

D. AP-user association
We first develop an AP–user association algorithm that
addresses two major limitations of the conventional user-
centric clustering approach: (i) the absence of an upper
bound on the number of users that can associate with a single
AP, which compromises scalability as K increases, and (ii)
the lack of a guarantee that all users are associated with at
least one AP.
Following the assumption in [40, Sec. V], we impose a
maximum limit of τp users per AP, i.e.,

|Mm| ≤ τp, m = 1, . . . ,M,

to mitigate the first limitation.
The proposed algorithm proceeds as follows. For each AP
m, the large-scale fading coefficients with all users are
sorted in descending order. AP m then selects the first
τp users for association. This procedure is repeated for
all APs, after which the AP–user association matrix T is
constructed. However, since the initial association prioritizes
users with stronger large-scale fading, weaker users may
remain unassociated.
To ensure universal association, the algorithm identifies such
weak users and groups them into a set W . A replacement
mechanism is then applied iteratively:
1. The AP i with the maximum cumulative β across its
associated users, Mi, is identified.
2. Within Mi, the user j with the weakest channel is
selected, i.e.,

j = argmin
k∈Mi

gik.

3. User j is replaced with the first user from the weak-user
set W .
This replacement procedure is repeated until W = ∅, thereby
ensuring that every user is associated with at least one AP. In
this way, the proposed algorithm guarantees both scalability
and full coverage in the AP–user association process.

III. Proposed pilot and data power control
In this section, we introduce the pilot and data power control
technique. It determines the transmission power allocated
by each user and the proportion of this power dedicated to
pilot signals and data transmission. To this end, we introduce
a novel constraint based on the maximum transmit budget
power for the user and the coherence block and develop an
iterative algorithm to minimize the NMSE. Subsequently, we
employ a scheme based on McCormick relaxation to adjust
the pilot power according to real-time channel conditions.
Following this, we use GP to solve the max-min fairness

SINRk =
pdkp

p
kτp tr(RmkΘ

−1
mtk

Rmk)

K∑
i=1

pdi tr(RmiRmkΘ
−1
mtk

Rmk)

tr(RmkΘ
−1
mtk

Rmk)
+

∑
i∈Sk
i ̸=k

ppi p
d
kτp| tr(RmiΘ

−1
mtk

Rmk)|2

tr(RmkΘ
−1
mtk

Rmk)
+ σ2 (15)
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optimization problem and allocate data power for each user.
The algorithm aims to maximize the system’s performance,
including spectral efficiency and fairness, while adhering to
specific constraints, such as total transmit power. Notably,
this methodology differs from others by iteratively updating
and adjusting both power levels for each channel realization.

A. Pilot and data power assignment
In CF-mMIMO, determining the per-user maximum trans-
mit energy depends on system requirements like spectral
efficiency, coherence block length, and interference man-
agement. Generally, the maximum transmit budget per user
(often denoted as Pmax) is determined based on the hard-
ware’s power budget, regulatory constraints, and the need to
mitigate interference. Studies suggest optimal power control
strategies, including fractional or adaptive transmit power
adjustments, help maintain performance within the system’s
maximum energy limits, balancing data and pilot power for
reduced interference and improved coverage. Thus, we can
write
τpp

p
k + (τc − τp)p

d
k ≤ Emax ⇒

τpp
p
k + (τc − τp)p

d
k

τc
≤ Pmax.

(16)
where Emax = τcPmax. This inequality implies that pilot
power (ppk) and data power (pdk) are jointly constrained
to ensure the total average transmit power remains within
Pmax. This relationship allows the system to manage the
balance between pilot training and data transmission within
the coherence block, which is important for improving spec-
tral efficiency and mitigating interference. Fig. 2 illustrates
the allocation of pilot and data power based on the pilot
sequence τp and the coherence block duration, τc. This figure
serves as a heuristic example aimed at providing an intuitive
understanding of the scenario under consideration rather than
offering a rigorous analysis.

On the other hand, the coherence block duration, τc is
influential in determining how transmit power is allocated in
communication systems, particularly in multi-user scenarios.
Although a user’s transmit power is constrained by its
hardware, such as amplifier efficiency and power limits,
the coherence block length indirectly affects how efficiently
this power can be used. Longer coherence blocks allow
for more data symbols per channel estimation, enhancing
spectral efficiency by reducing the time spent on training.
In contrast, shorter coherence blocks, caused by high mo-
bility or challenging environments, require more frequent
re-estimation, limiting the potential efficiency for a given
power budget. Additionally, shorter coherence durations
make managing inter-user interference more complex, often
requiring higher power levels to maintain service quality.
Therefore, the duration of the coherence block can impact
the power control strategies, ultimately influencing overall
system performance. Moreover, the significance of τp is to
quantify how much energy each terminal spends on pilots in
each coherence interval [41].

Based on this information, our objective in the following

section is to utilize two distinct constraints—one for pilot
power and the other for data power:

ppk ≤ τcPmax − (τc − τp)p
d
k

τp
, (17)

pdk ≤
τcPmax − τpp

p
k

(τc − τp)
. (18)

These constraints are designed to ensure efficient resource
allocation while maintaining system performance. The pilot
power constraint will address the proper power allocation for
channel estimation, minimizing interference, and ensuring
accurate channel state information. Meanwhile, the data
power constraint will optimize the power used for data
transmission to enhance spectral efficiency and mitigate
interference. Together, these constraints form the foundation
for a robust power control strategy tailored to the system’s
requirements.

B. Pilot Power control
During the training phase, the AP estimates the channels us-
ing the user pilots. However, due to non-orthogonality among
pilot sequences, a pilot signal from one user can adversely
affect the channel estimate of other users. This is known
as the pilot contamination effect and can be particularly
severe in CF-mMIMO systems that aim to serve multiple
users simultaneously with the same time-frequency resource.
Therefore, it is crucial to mitigate pilot contamination. To
this end, we introduce iterative pilot power coefficients that
can improve channel estimation accuracy during the training
phase.

It is known that the average channel gain influences the
MSE value. Although a stronger channel may exhibit larger
absolute errors than a weaker channel, the relative size
of the error is more critical than its absolute magnitude.
Consequently, estimation accuracy is evaluated using the
NMSE. Specifically, for the channel between the mth AP
and the kth user, the NMSE is defined as [38]:

NMSEmk =
E{∥gmk − ĝmk∥2}

E{∥gmk∥2}

= 1−
ppkτptr(RmkΘ

−1
mkRmk)

tr(Rmk)
. (19)

The system calculates the variance of the channel estima-
tion error between the mth AP and the kth user and presents
it as a relative value. It can be seen from (19) that NMSE
reduces as the channel estimation error (gmk − ĝmk) of the
kth user decreases. The proposed algorithm aims to allocate
pilot power for each user and provide uniformly good service
to all network users. We formulate a min-max optimization
problem designed to minimize the maximum user-NMSE
based on a novel constraint based on the maximum transmit
budget at the users and the coherence time to achieve this



objective as follows

P1 : min
{pp

k}
max

k=1,...,K

∑
m∈Ak

NMSEmk

s.t. ppk ≤ τcPmax − (τc − τp)p
d
k

τp
(20a)

ϵ ≤ ppk, ∀k ∈ K (20b)

where Pmax denotes the maximum transmit budget available
for each user. Constraint (20a) maintains a balance between
the power assigned for pilot and data transmission, allowing
the total power usage to stay within the prescribed limits.
The inequality reflects a trade-off between utilizing power
for pilot transmission to estimate channel parameters and al-
locating power for data transmission for information transfer.
To solve the optimization problem in (20). without loss of
generality, problem P1 can be rewritten by introducing a new
slack variable as

P2 : min
{pp

k,ν}
ν

s.t.∑
m∈Ak

(
1−

ppkτptr(RmkΘ
−1
mkRmk)

tr(Rmk)

)
≤ ν (21a)

ϵ ≤ ppk ≤ τcPmax − (τc − τp)p
d
k

τp
, ∀k ∈ K (21b)

However, the constraint involving the sum of ratios in (21a)
is non-convex due to the division by a quadratic term. Thus,
problem P2 is non-convex. To tackle this non-convexity, we
present a computationally efficient algorithm to convert the
concave constraint into a convex one based on McCormick
relaxation. This technique introduces auxiliary variables and
linear constraints to approximate the concave term with
a piecewise linear function. The McCormick relaxation
algorithm is utilized to address non-convex optimization
problems by creating convex and concave relaxations to
approximate the non-convex feasible region. We rewrite
(21a) as

1−
ppkτp tr(RmkΘ

−1
mkRmk)

tr(Rmk)
= qmk. ∀m, k (22)

To linearize this term using McCormick relaxation, we can
introduce auxiliary variables zmk and vmk to approximate
qmk:

zmk = tr(Rmk), (23)

vmk = ppkτp tr(RmkΘ
−1
mkRmk), (24)

where zmk ≥ 0 and vmk ≥ 0. We then add linear constraints
to ensure that zmk and vmk correctly approximate qmk, and

we reformulate the optimization problem as follows:

P3 : min
{pp

k,ν}
ν

s.t.
∑

m∈Ak

qmk ≤ ν

qmk ≤ 1− zmk

vmk
+ (1− zmk)

qmk ≥ 1− zmk

vmk
+ (1− vmk)

ϵ ≤ ppk ≤ τcPmax − (τc − τp)p
d
k

τp
, ∀k ∈ K

(25)

This method allows for the creation of relaxations that can
be solved efficiently and provide bounds for the optimal so-
lution. These constraints and the objective function represent
the linearized form of the original non-convex optimization
problem P2. Thus, problem P1 can be solved by solving a
sequence of convex problems P3. Using yet another linear
matrix inequalities parser (YALMIP) [42] of Matlab toolbox,
the optimized result is represented by the pilot power vector
p̂p
k, which stacks all pilot power coefficients p̂pk.

C. Data Power Control
One important aspect of CF-mMIMO systems is their ca-
pability to provide consistently equal service to all users.
We focus on the optimization problem of max-min fairness,
which entails using the pilot power coefficients calculated
in problem P3, (p̂p

k), and optimizing the data power control
coefficient to maximize the minimum user rates. We denote
the data power coefficient vector as pd

k = [pd1 , p
d
2 , · · · , pdK ],

then rewrite the uplink SE of kth user as

SEk(p̂
p
k,p

d
k) = (1− τp

τc
) log2

(
1 + SINRk(p̂

p
k,p

d
k)
)
, (26)

and optimization problem is formulated as:

P4 : max
{pd

k}
min

k=1,...,K
SEk(p̂

p
k,p

d
k)

s.t. 0 ≤ pdk ≤
τcPmax − τpp̂

p
k

(τc − τp)
, ∀k ∈ K (27)

We exploit GP (convex problem) to develop an efficient so-
lution for Problem P4, which is defined in (27). Problem P4
cannot be directly solved through the optimization software.
By utilizing the slack variables, the optimization problem
can be reformulated as

P5 max
{pd

k},t
t

s.t. t ≤ SINRk(p̂
p
k,p

d
k), (28a)

0 ≤ pdk ≤
τcPmax − τpp̂

p
k

(τc − τp)
, ∀k ∈ K, (28b)

To tackle this optimization problem and explicitly expand
the SINRk expression in (11), we focus on the special case
of spatially uncorrelated fading, i.e., Rmk = βmkIN . Under
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this assumption, (11) simplifies as

Nτpp
d
kp

p
k

∑
m∈Ak

β2
mkθ

−1
m∑

m∈Ak

(
Nτp

∑
i∈Sk
i̸=k

pdi p
p
i β

2
miθ

−1
m +

∑K
i=1 p

d
i βmi

)
+ σ2

,

(29)

where θm = τp
∑

i∈Sk
ppi βmi + σ2.

Lemma 1. Problem 5 (P5) can be solved using a GP,
allowing for a globally optimal solution in polynomial time.

Proof: Problem (28) can be written as a GP in standard
form [42]. In (28), the objective function is already in
the form of t, a monomial and thus a valid posynomial1

The power constraints are expressed as monomials, while
the SINR expressions can be rearranged as posynomial
constraints as follows in Appendix B.

Additionally, equation (28b) is in the form of a posyn-
omial. Since geometric programs have a convex structure,
P5 can be efficiently solved in a centralized manner using
the interior-point toolbox CVX [42], [43]. This process
must be repeated until the maximum number of iterations
is reached. The proposed method is summarized in step 2 of
the Algorithm 1.

The transmitted data power allocated to user k is intri-
cately influenced by several key factors. Firstly, the maxi-
mum transmit power, denoted by Pmax, sets a fundamental
constraint on the power level that can be allocated to each
user. Additionally, the coherence block duration, represented
by τc, is pivotal in determining the permissible power allo-
cation. This duration governs the temporal coherence of the
channel, thereby influencing the power allocation strategy.
Moreover, the estimated pilot power, denoted by p̂pk, is a
crucial parameter calculated based on the minimization of
the normalized mean square error for the channel. This
estimation process ensures an optimal trade-off between
pilot power and channel estimation accuracy, directly im-
pacting the effectiveness of the power allocation scheme.
Collectively, these factors underscore the intricate interplay
between system parameters and optimization objectives in
determining the transmitted data power for each user.

The key distinction between the proposed method and
existing algorithms lies in their approach to updating
data power based on channel states. Unlike most prior
works—including single-shot joint formulations and sequen-
tial schemes—we alternate NMSE-driven pilot power up-
dates with fairness-oriented data power optimization, feeding
back the updated CSI/NMSE each round. This explicitly
models the interdependence between estimation accuracy
and interference. Specifically, existing approaches often
compute pilot power independently and subsequently utilize
it to determine data power. In contrast, our proposed method

1A function q
(
y1, . . . , yT1

)
=

∑T2
t=1 at

∏T1
m=1 y

bt,m
m is posyno-

mial with T2 terms (T2 ≥ 2 ) if the coefficients bt,m are real num-
bers and the coefficients at are nonnegative real numbers. When T2 =

1, q
(
y1, . . . , yT1

)
is a monomial.

directly incorporates CSI into the data power calculation. By
considering the variance of the channel in which the pilot
power is utilized, our approach offers a more integrated and
adaptive strategy for power allocation, potentially leading to
improved system performance and efficiency.

Algorithm 1: Proposed Scalable Power Optimization

1 Input: Set of APs M, users K = {1, . . . ,K}, hmk

for all m ∈ M, k ∈ K ;
2 Initialization: pd

k = [1, . . . , 1], ζ > 0 ;

3 Step 1: AP–User Association (Scalable
Framework) ;

4 Construct the block-diagonal matrix L with
sub-matrices Lmi to indicate antenna allocation for
AP m and user i;

5 Build the binary AP–user association matrix T
where Tmk = 1 if

∑
diag(Lmk) > 0;

6 for each AP m do
7 Sort {Rmk, k = 1, . . . ,K} in descending order;
8 Select the top τp users to form the set Mm

(enforcing |Mm| ≤ τp);
9 end

10 Identify unassociated weak users and group them
into W;

11 while W ≠ ∅ do
12 Find AP i = argmaxm

∑
k∈Mm

hmk;
13 Find weakest user j = argmink∈Mi hik;
14 Replace j with first element in W and update T;
15 Remove that user from W;
16 end
17 Obtain Ak = {m | Tmk = 1, m = 1, . . . ,M} ;

18 Step 2: Iterative Power Optimization ;
19 for each channel realization do
20 repeat
21 Solve Problem P3 (25) (pilot power

optimization) → p̂p
k;

22 Update SINRk(p̂
p
k,p

d
k) in (28a) using (15);

23 Update constraint in (28b) ;
24 Solve Problem P5 (28) (data power

optimization) → p̂dnew
k ;

25 until convergence;
26 if ∥p̂dnew

k − p̂dold
k ∥ > ζ then

27 p̂d∗

k = p̂dnew
k ; break;

28 else
29 p̂dold

k = p̂dnew
k ; go to Line 21;

30 end
31 end
32 Output: p̂d∗

k , p̂p∗

k ;
33 for each user k do
34 Compute SINRk from (15);
35 Compute SEk from (26);
36 end
37 Final Output: Achieved SE = {SE1, . . . ,SEK};



IV. Computational Complexity
To evaluate the computational requirements, we compute the
complexity of each component for K users and |Ak| ≤ M
APs within the power control methods in terms of floating
point operations (FLOPs) as follows. The computational
complexity of the proposed iterative pilot power allocation
(IPPA) method is explained in Algorithm 1, which solves
the problem P3 and the GP convex optimization problem,
P5 at each iteration. For pilot power calculation, we con-
sider P3. The calculation process for qmk includes zmk

with complexity of O(|Ak|K) and vmk with complexity
of O(2|Ak|Kτ2p ). At the same time, the division makes
O(2|Ak|K) and summation for each k is O(|Ak|K). On the
other hand, constraints have totally O(6|Ak|K2). Thus, the
totals complexity for solving P3 is O(2|Ak|Kτ2p + |Ak|K+
2|Ak|K+K|Ak|+6|Ak|K2) ≈ O(2|Ak|Kτ2p +6|Ak|K2).
For the data power optimization problem in P5, calculating
SINR across all K users yields O(4|Ak|Kτ2p + 4|Ak|K)
and the iterative optimization process in GP solver incurs
complexity of O(K3.5) while the complexity of setting up
the constraints for GP becomes O(K2). The total com-
plexity over T iterations for the proposed method becomes
O(T ·

(
6|Ak|Kτ2p + 6|Ak|K2 +K3.5 +K2 + 4|Ak|K)

)
≈

O(T ·K3.5).
We compare the proposed iterative pilot power allocation

(IPPA) scheme with a data power allocation (DPA) scheme
[13], the pilot power allocation (PPA) scheme [15], joint pilot
and data power allocation (PDPA) in [18], pilot and data
optimized power allocation (PDOPA) in [19], normalized
estimation error-based power allocation (NEEPA) [44], and
the fractional pilot power control (FPPA) scheme in [29], in
which the only data power allocation is considered.

In the DPA algorithm [13], only the data power is
controlled while the pilot power is set to the maximum
power under the pilot power constraint. The minimum SE
is maximized as the optimization objective. This method,
considering O(|Ak|K2 + |Ak|K2τp) as the complexity for
calculating SINR across all users, based on max-min power
allocation with iterative bisection, has a total complex-
ity of O(|Ak|2K + |Ak|2 + K|Ak| log |Ak| + K|Ak| +
TDPA|Ak|K2 + TDPA|Ak|K2τp) for TDPA = log2(

tmax−tmin

κ )
iterations. Since this method is based on the bisection
method, which results in a per-iteration complexity in the
order of O(TDPA ·K4).

The PPA algorithm [15] is a scheme focused solely
on controlling pilot power, while the uplink data power
is set to its maximum within the data power constraint.
It has an initial complexity of O(|Ak|K2) for comput-
ing the starting values based on algorithm 1 in [15] and
follows an inner iteration (over TPPA = log 2( tmax−tmin

κ )
iterations) with complexity O(|Ak|K2 + |Ak|K2τp) for
each iteration. This process is repeated over Touter outer
iterations. Thus, the final complexity of the PPA method is
O(|Ak|2K + |Ak|2 +K|Ak| log |Ak|+K|Ak|+ |Ak|K2 +
TouterTPPA|Ak|K2 + |Ak|K2τp). Although the primary goal

of this method is to minimize channel estimation error, it
does not adjust the data power in response to changes in
pilot power. The solution from the PPA technique entails
solving a convex optimization problem followed by applying
the bisection method, resulting in a per-iteration complexity
of O(Touter · TPPA ·K4).
As an example to show the computational complexity of
the proposed method and other compared methods, we ran
all algorithms using MATLAB 2024a on a Windows 11
personal computer with Intel(R) Xeon(R) w7-2475X,2592
MHz, 20 Cores CPU, and 64 GB memory RAM. The results
are demonstrated in Table 1. To do this properly, we closed
all background processes on our computer (internet, e-mail,
music, and all unrelated software) and restricted MATLAB
to use a single processor at all times. Furthermore, it should
be noted that these measurements have been done based on
the parameters given in the simulation section.
Moreover, the computational complexity of all methods,

TABLE 1: Computational time

Approaches Execution time (s)

IPPA 0.0095

PPA 0.2665

DPA 0.0711

PDPA 0.0899

PDOPA 0.1348

NEEPA 0.0715

expressed in terms of floating-point operations (FLOPs), is
summarized in Table 2

TABLE 2: Computational complexity

Methods Computational complexity

IPPA O(T ·K3.5)

PPA O(Touter · TPPA ·K4)

DPA O(TDPA ·K4)

PDPA O
(
max((Touter · TPPA · 2K3.5),K4)

)
PDOPA O

(
Touter(max((27K3.5), 9(M + 5)K2)

)
NEEPA O

(
max(TPPA · 2K|Ak|, TDPAK

4)
)

Fig. 3 illustrates the computational complexity of different
power allocation algorithms in terms of FLOPs versus the
number of users K. It can be observed that all methods
exhibit an increasing trend with K, but with significantly
different growth rates.
The proposed IPPA scheme achieves the lowest complexity
across all values of K. For example, at K = 100, IPPA
complexity is nearly 93% lower than the conventional PPA
scheme and approximately 70% lower than PDOPA. This
highlights the efficiency of IPPA in large-scale scenarios.
In contrast, the PPA method suffers from extremely high
complexity, reaching about 4.5 × 109 FLOPs at K = 100.
This corresponds to almost 15 times higher complexity than
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FIGURE 3: Computational complexity comparison for M =
100, N = 1, K = 40, and τp = 20.

IPPA and about 200% higher than PDOPA at the same
number of users. Such high growth makes PPA impractical
for massive user deployments.
The DPA, PDPA, and PDOPA schemes achieve moderate
complexity. At K = 100, PDOPA reduces complexity by
around 50% compared to PPA, while DPA and PDPA further
reduce it by about 65%. Nevertheless, these methods still
require 3–5 times more FLOPs than IPPA, showing that
while they improve scalability compared to PPA, they remain
less efficient than IPPA.
Finally, the NEEPA algorithm provides complexity close
to that of IPPA, achieving reductions of more than 85%
compared to PPA. However, NEEPA still consumes about
30–40% more FLOPs than IPPA as K grows large. Overall,
these results confirm that IPPA is the most computationally
efficient solution, offering substantial savings in FLOPs.

V. Numerical Results
A. Propagation Model
This section presents numerical results to assess the perfor-
mance of the proposed approach under various CFmMIMO
scenarios. While many recent studies on uplink maximum
ratio combining have adopted the propagation model from
[13], it is important to recognize that this model is derived
from the COST-Hata framework in [45], originally designed
for macro-cell environments. Specifically, it assumes that
APs are deployed at heights of at least 30 meters, and users
are located at distances exceeding 1 km from the APs. These
assumptions significantly differ from the dense, micro-cell-
like deployments expected in CF-mMIMO systems. Notably,
the authors of the COST-Hata model explicitly indicated that
it “must not be used for micro-cells” [40]. To ensure a fair
and meaningful performance evaluation, we consider both
propagation models from [13] and [39], and select the most
appropriate model based on comparative simulation results,
as illustrated in Fig. 4.

We consider simulation setups with M APs with N

antennas, and K single antenna users. Each coherence block
contains τc = 200 samples, and the total number of dis-
tributed antenna elements across the network is given by
LM . Unless otherwise stated, τp = 20 symbols are reserved
for uplink pilot transmission, and each user uses its full
transmit power 100 mW for pilot signaling. We performed
500-channel realizations. It is assumed that APs and users
are independently and uniformly distributed within an area of
1× 1 km2, and a wrap-around technique is used to prevent
boundary effects and simulate a network with an infinite
area. The following three-slope propagation model was used
in [13]:

βmk =


−81.2, dmk < d0

−61.2− 20 log10
(
dmk

1

)
, d0 ≤ dmk < d1

−35.7− 35 log10
(
dmk

1

)
+ Fmk, dmk ≥ d1

(30)

where d0 = 10 m, d1 = 50 m and dmk is the horizontal
distance between the user u and AP l (i.e., ignoring the
height difference). The shadowing term Fmk ∼ CN

(
0, 82

)
only appears when the distance is larger than 50 m and the
terms are correlated as

E {FmkFji} =
82

2

(
2−δki/100 + 2−ϱmj/100

)
(31)

where δki is the distance between user k and user i and ϱmj

is the distance between AP m and AP j. The maximum user
power is 100 mW, the bandwidth is 20 MHz, and the noise
power is 92 dBm.

The large-scale fading coefficient (channel gain) in [39]
is modeled as:

βmk = −30.5− 36.7 log10

(
dmk

1

)
+ Fmk (32)

where dmk is the three-dimensional distance between AP l
and the user k. The APs are deployed 10 m above the plane
where the users are located, which acts as the minimum
distance. This model matches the 3GPP Urban Microcell
model in [46]. The shadow fading is Fmk ∼ N

(
0, 42

)
and

the terms from an AP to different users are correlated as [46]

E {FmkFji} =

{
422−δki/9 m = j

0 m ̸= j
(33)

As shown in Fig. 4, due to the limitations of the COST-
Hata-based model in [13] for micro-cell scenarios—and in
accordance with the recommendation in [40]—this work
adopts the propagation model introduced in [39]. This model
is better suited for dense and distributed AP deployments in
CF-mMIMO systems and offers a more realistic assessment
of system performance.

B. Simulation results
We assess the effectiveness of the proposed iterative pilot
power allocation (IPPA) scheme by comparing it with a
data power allocation (DPA) scheme [13], the pilot power
allocation (PPA) scheme [15], joint pilot and data power
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FIGURE 4: SE comparison of the proposed method in two
propagation models in [13] and [39] for M = 100, N = 1,
K = 40, and τ = 20.

allocation (PDPA) in [18], pilot and data optimized power
allocation (PDOPA) in [19], normalized estimation error-
based power allocation (NEEPA) [44], and the fractional
pilot power control (FPPA) scheme in [29], in which the only
data power allocation is considered. Note that the ”NPPA”
curves correspond to the cases where the users transmit
with full power during the training phase. Moreover, in the
proposed IPPC algorithm, we choose ϵ = 0.01, and the
maximum transmit budget Pmax= 100 mW.

Fig. 5 illustrates the SE performance of the proposed and
benchmark algorithms for two user scenarios, K = 20 and
K = 60, under the setting M = 100, N = 1, and τp = 20.

In Fig. 5a, the cumulative distribution functions (CDFs)
of SE are plotted. When the number of users is relatively
small (K = 20), all algorithms achieve reasonably high SE,
but the proposed IPPA method consistently outperforms the
benchmarks across the entire distribution, yielding higher SE
for both close and far users. As the system load increases to
K = 60, the performance gap becomes more pronounced.
In this dense-user scenario, conventional schemes (e.g.,
DPA, PDPA, PPA) suffer from degraded fairness and lower
reliability, while the proposed IPPA maintains a robust SE
distribution, highlighting its scalability and ability to handle
larger networks effectively.

In Fig. 5b, the 95%-likely SE is presented. This metric
emphasizes cell-edge user performance and fairness. For
K = 20, the IPPA achieves the highest 95%-likely SE,
followed closely by PDOPA and NEEPA, while DPA, PDPA,
and PPA lag behind. When K increases to 60, all schemes
experience a drop due to stronger inter-user interference
and limited pilot resources. However, the IPPA retains a
significant advantage, achieving the highest 95%-likely SE
and ensuring reliable service even for users with poor chan-
nel conditions. The results confirm that the proposed IPPA
scheme not only improves the average SE but also provides
superior fairness and robustness compared to benchmark
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FIGURE 5: SE Performance in the case M = 100, N = 3,
K = 20 and 60 users, and τp = 20

approaches, particularly in large-scale CF-mMIMO deploy-
ments with many users.

Fig. 6 presents the average SE performance as the
number of users varies from 20 to 100, with fixed parameters
M = 100, N = 1, and τ = 20. The average SE decreases
as the number of users increases for all schemes. This
degradation is mainly due to stronger inter-user interference
and the limited pilot resources available for accurate channel
estimation, which becomes more critical in dense-user sce-
narios. As the number of users grows, power allocation and
pilot assignment become increasingly challenging, leading
to lower overall SE.

The proposed IPPA consistently outperforms all bench-
mark schemes across the entire range of user numbers.
This improvement stems from its iterative joint pilot–data
power control strategy, which dynamically adapts pilot and
data powers to instantaneous channel conditions. By allocat-
ing higher pilot power to users with poor channels, IPPA
improves channel estimation accuracy, and by optimizing
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data power through max–min fairness, it ensures reliable
transmission while mitigating interference. This adaptability
allows IPPA to sustain better performance even under heavy
user loads. Although PDOPA and NEEPA also achieve rela-
tively good performance compared to conventional methods
(DPA, PDPA, PPA), they still fall short of IPPA, particularly
in high-user scenarios. The reason is that they treat pilot
and data power optimization separately, which limits their
ability to exploit the joint structure of the problem. On the
other hand, DPA, PDPA, and PPA show significantly lower
average SE since they lack efficient adaptation to channel
conditions and fail to maintain fairness as the network scales.

Fig. 7 illustrates the impact of the different number
of pilot sequences τ , considering M = 100, K = 40,
and N = 3. The IPPA scheme outperforms all benchmark
methods for every value of τ , highlighting the effectiveness
of the proposed AP-user association and iterative joint pilot-
data power control. The SE performance improves when τ
increases from small values. This is because longer pilot
sequences reduce pilot contamination and improve channel
estimation accuracy. However, beyond a certain point (e.g.,
τ = 10-15), further increasing τ leads to performance
degradation. The reason is that allocating more resources
to pilots reduces the fraction of symbols available for data
transmission, thereby lowering the overall SE. This trade-off
highlights the importance of selecting an appropriate pilot
length to balance estimation accuracy and data throughput.
On the other hand, while PDOPA and NEEPA show rea-
sonably good performance, they remain consistently below
IPPA since they treat pilot and data power optimization sepa-
rately. The conventional approaches (DPA, PDPA, and PPA)
perform worse due to their inability to adapt pilot power
allocation to user channel conditions, which leads to poor
estimation quality and weaker interference management.

Fig. 8 compares the impact of the AP configuration on the
average uplink throughput of various AP selection schemes
for K = 40 users. The proposed IPPA scheme consistently
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FIGURE 7: Average SE comparison with different number
of pilot sequences τ for M = 100, K = 40, and N = 3.

achieves the highest SE across all AP deployments, showing
superior scalability when the network grows. This is because
IPPA jointly adapts both the pilot and the data power in an
iterative manner, which effectively mitigates pilot contami-
nation and balances inter-user interference. As the number
of APs increases, the spatial degrees of freedom improve,
and IPPA is able to fully exploit these additional resources,
resulting in near-linear SE growth.
In contrast, the PDOPA and NEEPA schemes also benefit
from increasing APs but with lower efficiency, since their al-
location rules are either partially optimized or energy-centric,
limiting their ability to adapt to heterogeneous channel
conditions. The conventional DPA and PPA approaches yield
significantly lower SE, especially at large AP deployments,
highlighting their lack of robustness in user-dense scenarios.
PDPA shows competitive performance but still falls short of
IPPA, as it does not dynamically re-adjust pilot and data
domains in each iteration.
Another key observation is the role of AP-user association.
With more APs, each user is likely served by a larger set of
distributed antennas that have strong channels towards the
users, improving channel hardening and reducing pathloss
disparity. IPPA leverages this effect most efficiently by
optimally distributing both pilot and data powers across
the user domain. This demonstrates that the joint design
of power allocation and AP–user association is critical for
ensuring scalability in future CF-mMIMO systems.

Fig. 9 evaluates the fairness performance of the proposed
and benchmark schemes from two perspectives: the CDF
of the user sum rate (Fig. 9a) and Jain’s fairness index
(Fig. 9b). From the CDF in Fig. 9a, IPPA achieves the
highest probability of offering larger sum rates compared
to all other methods. This gain is attributed to its iterative
nature, which balances pilot and data power in every round,
thereby mitigating pilot contamination and suppressing inter-
user interference more effectively. PDOPA and NEEPA also
yield improved distributions compared to conventional DPA
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FIGURE 9: Fairness performance in the case M = 100,
N = 3, K = 60, and τp = 20

and PPA, but their tails shift to lower rates, indicating
weaker guarantees for the worst-case users. In contrast,

the DPA scheme shows a sharp concentration at mid-range
rates, confirming its inability to adapt to heterogeneous user
conditions.

Fig. 9b provides additional insights into user fairness. The
Jain’s fairness index remains consistently above 0.94 for
IPPA, even as the number of users increases to 60. This
indicates that IPPA can maintain nearly uniform resource
distribution among users while still enhancing the sum rate.
PDOPA and NEEPA follow closely but gradually decline to
around 0.92–0.93, reflecting a slight imbalance under high
user loading. Conventional PPA and DPA methods degrade
further, with fairness dropping below 0.90 for large user
populations. The PDPA method performs the worst, falling
below 0.87, due to its inability to strike a balance between
sum-rate maximization and fairness objectives.
These results highlight two important findings. First, iterative
joint allocation of pilot and data power significantly enhances
both throughput and fairness, especially in dense user scenar-
ios. Second, scalability with respect to the number of users
is tightly linked to fairness guarantees: schemes like IPPA
can sustain high Jain’s index values, whereas conventional
power allocation rapidly deteriorates as K grows.

VI. Conclusion
In this paper, we investigated a pilot and data power
optimization for CF-mMIMO systems. An iterative algo-
rithm was proposed, where pilot powers are dynamically
adjusted according to the NMSE of channel estimation, while
data powers are allocated using geometric programming to
achieve max–min fairness. By iteratively updating pilot and
data powers in response to one another, the framework
ensures efficient CSI acquisition, improved interference man-
agement, and enhanced fairness among users. Furthermore,
a lightweight AP–user association strategy was introduced to
guarantee scalable and complete user connectivity. Simula-
tion results confirmed that the proposed scheme significantly
outperforms conventional methods in terms of both spectral
efficiency and fairness, while maintaining practical scalabil-
ity for large-scale CF-mMIMO deployments.

Appendix A: Proof of (29)

[E{ujk}]m = E{gH
mkgmj}

(i)
= E{ĝmj ĝ

H
mk}

=

{√
ppkp

p
j τp(βmjθ

−1
mkβmk) j ∈ Ik

0 j /∈ Ik
(A.1)

where Ik is the set of users that use the same pilot as user
k. Since gmj = ĝmj + g̃mj and gmk = ĝmk + g̃mk, then
(i) follows the fact that g̃mj (channel estimation error) and
ĝmk are independent. The equality in (13) follows as

[Fk]mm = σ2E{ĝmkĝ
H
mk} = σ2[E{ukk}]m

= σ2ppkτp(βmkθ
−1
mkβmk). (A.2)

To compute (14), we observe that E{[umj ]m[u∗
mj ]r} =

E{[umj ]m}E{[u∗
mj ]r} for r ̸= m since the the channels
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of different APs are independent. Hence, it only remains to
compute

[E{ujku
H
jk}]mm = E

{
ĝH
mkgmjg

H
mj ĝmk

}
= E

{
gmjg

H
mj ĝmkĝ

H
mk

}
. (A.3)

If j /∈ Ik, we can utilize the independence of ĝmk and gmj

to obtain

E
{
gmjg

H
mj ĝmkĝ

H
mk

}
= E

{
gmjg

H
mj

}
E
{
ĝmkĝ

H
mk

}
= ppkτpβmjβmkθ

−1
mkβmk. (A.4)

If j ∈ Ik, we can write that

E
{
gmjg

H
mj ĝmkĝ

H
mk

} (ii)
=

E{ĝmj ĝ
H
mj ĝmkĝ

H
mk}+ E{g̃mj g̃

H
mj ĝmkĝ

H
mk}, (A.5)

(ii) follows separating gmj into its estimate (ĝmk) and
estimation error (g̃mk). The first term is completed by
utilizing the results from ( Eq. (4.18), [38]) in which ĝmj is
estimated as

ĝmj =

√
ppj
ppk

βmjβ
−1
mkĝmk, (A.6)

and

E{ĝmj ĝ
H
mj ĝmkĝ

H
mk}

=
ppj
ppk

E{βmjβ
−1
mkĝmkĝ

H
mkβ

−1
mkβmj ĝmkĝ

H
mk}

=
ppj
ppk

E{|ĝmkβmjβ
−1
mkĝ

−1
mk|

2}

= ppkp
p
j |τpβmjθ

−1
mkβmk|2 + ppkτp

(
(βmj − γmj)βmkθ

−1
mkβmk

)
,

(A.7)

where γmj = βmj − ppj τpβmjθ
−1
mkβmj .

Also, the second term becomes

E{g̃mj g̃
H
mj ĝmkĝ

H
mk} = ppkτpγmjβmkθ

−1
mkβmk. (A.8)

By combining these two terms, we obtain (14). Replacing
(A.1),(VI), and (A.3) into (11) we will achieve (29).

Appendix B
The standard form of GP is defined as follows [34]:

min f0(x),
s.t. fj(x)≤1, j=1, · · · ,m,

qj(x)=1, j=1, · · · , c,

where f0 and f1 are posynomial and qi are monomial func-
tions. Moreover, x = {x1, · · ·xn} represent the optimization
variables. The SINR constraint in (29) can be written as
Numerator (Desired Signal Power) as:

(No)k = Nτpp
d
kp

p
k

M∑
m=1

β2
mkθ

−1
mk. (B.1)

and denominator (interference plus noise) term as:

(De)k =
∑
l∈Ak

(
Nτp

∑
i∈Sk
i̸=k

pdi p
p
i β

2
miθ

−1
m +

K∑
i=1

pdi βmi

)
+ σ2.

(B.2)

Thus, we can rewrite the SINR as:

SINRk =
(No)k
(De)k

. (B.3)

We check if the numerator and denominator can be written
in the posynomial form. In (B.1), since N , τp, βmk, and θmk

are constants, we have:

(No)k = pdkp
p
k · (constant). (B.4)

This is a monomial, which is compatible with GP.
The denominator, Dek, is composed of several terms:

1- Inter-user interference term: This is given by
Nτp

∑
i ̸=k p

d
i p

p
i β

2
miθ

−1
mk. It represents a sum over

all users i ̸= k, where each term is a product of
pdi , ppi , and a constant, making it a monomial.

2- Intra-user interference term: This is expressed as∑K
i=1 p

d
i βmi. Here, each term is a product of pdi

and a constant, which also qualifies as a monomial.
3- Noise term: Represented by σ2, this is simply a
constant.

As a result, (Dek) is a sum of these monomials, which col-
lectively form a posynomial. Since posynomials are compat-
ible with GP, this structure aligns well with the requirements
for GP-based optimization.
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