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Abstract: There are recent shifts in demand for design controllers from simple to complex
dynamic systems. Stability verification is one of the important steps in finalising the design of
control systems. Stability checks including the complexity of dynamic systems have become
increasingly important. Growing computational power provides opportunities to implement
efficient tools to address stability verification. To provide the stability confirmation for dynamic
simulators, we first establish state propagation bounds for the simulator implemented using
the Runge-Kutta 4th-order method. Secondly, we establish computational methods to verify
the stability of dynamic systems with finite numbers of simulations over the given range of
state space using the state propagation bounds. The algorithms provide the deterministic
stability guarantee for the continuous state space. Finally, we demonstrate the effectiveness
and limitations of the algorithms using an inverted pendulum system with a reinforcement

learning controller combined with an LQR (Linear Quadratic Regulator) controller.
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1. INTRODUCTION

Almost all classical control design approaches rely on sim-
plified dynamic model descriptions for complex real-world
systems. These approaches have made significant success
in many engineering system developments over the past
few decades (Lehtomaki et al., 1981; Doyle et al., 1989;
Utkin, 1977; Morari and Lee, 1999). However, these control
system designs must undergo costly, labour-intensive, and
tedious system verification procedures through computa-
tional (Kapinski et al., 2016) or experimental methods
(Karimi et al., 2010; Chen et al., 2019).

Several simulation-based control design approaches have
been on the rise. Examples include reinforcement learning
algorithms by Sutton et al. (1999) and Lillicrap et al.
(2015). The application of reinforcement learning to chal-
lenging optimal control problems is particularly notice-
able in robotics. For example, the contact dynamics of
robot manipulators are too complex to include explicitly in
the control design steps (Vukobratovic et al., 2003). The
nature of simulation-based control design approaches of
reinforcement learning makes it the ideal control design
tool for complex systems.

The lack of assurances about the stability and robustness
of simulation-based control systems made it challenging
to deploy the designs in safety-critical systems such as
aircraft, spacecraft and rockets. Researchers have sug-
gested various approaches to guarantee the stability and
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safety of the reinforcement learning control. Berkenkamp
et al. (2017) present a stability-guaranteed reinforcement
learning design method using a Lyapunov stability verifica-
tion approach, where the systems with discontinuities are
excluded. Han et al. (2020) propose a stability-guaranteed
actor-critic reinforcement learning approach for the sys-
tems modelled by the Markov decision process, and they
verified the methods using numerical simulations. Osi-
nenko et al. (2022) emphasise the importance of merging
model-based control methods with reinforcement learning
to achieve a performance guarantee. And, Brunke et al.
(2022) highlight the four major issues of safe learning
control in robotics related to complex dynamics, sensor
noise, sampling efficiency of collecting data and strong
modelling assumptions.

This paper focuses on the inclusion of complex dynamics
and the relaxation of modelling assumptions. Although
the controller is designed to provide a stability guarantee,
some of the assumptions in the design process might be
too strong. And, it is common that high-fidelity dynamic
simulators are used to verify the design in engineering
projects. For example, Lee et al. (2021) present the rotor
and wing combined models for a compound aircraft simu-
lator. A detailed quad-copter vehicle simulator for abnor-
mal simulations including the full rigid-body dynamics,
the propulsion model, the aerodynamics model and the
low-level controller has been shown in Foster and Hartman
(2017). And, Hieb (2013) demonstrates design procedures
for implementing a simulator model of an electric motor
producing the same responses as the real motor.

While there are several immediate challenges in imple-
menting accurate and computationally efficient numeri-
cal simulators, it is a common practice to utilize high-
fidelity simulators to verify the stability, performance and

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2025.09.568



62 Jongrae Kim et al. / IFAC PapersOnLine 59-12 (2025) 61-66

robustness of control systems, particularly in the industry
within the aerospace engineering sectors (Schwartz and
Hall, 2003; Yoo et al., 2024; Qi et al., 2024).

In the following sections, we derive the norm bound of
states propagated by a numerical simulator. A good esti-
mation of the norm bounds is critical for stability verifi-
cation. Based on the norm condition, a stability assurance
algorithm using a finite number of simulations is presented.
The limitations of the algorithm are identified in terms of
the magnitude of discontinuities in the dynamic systems.
The control system example of an inverted pendulum with
the reinforcement learning control algorithm shows the
effectiveness of the proposed method. Finally, the conclu-
sions and future works are presented.

2. STATE BOUNDS OF NUMERICAL SIMULATOR

Consider the following integral-type nonlinear system

T=t+At
x(t + At) = x(t) + /:t fix(7)|dr (1)

where x is a real-valued m-dimensional vector in the n-
dimensional real space, R™, x(t) is the value of x at time,
t, f(x) is Lebesgue integrable and there exist non-negative
L and M satisfying the following inequality:

1£(x) — )|l < Lllx — y|| + M 2)
for any x and y in D, D = {x | ||x|| < r} for r > 0,
L corresponds to the Lipschitz constant and M is the
maximum possible discontinuity of f(x).

For L > 0 and M = 0, (1) is called the Carathéodory
solution (Trumpf and Mahony, 2010), which considers,
however, f(t,x), where it can be discontinuous in ¢ as
long as f(¢,x) is Lebesgue integrable. In many engineering
systems, discontinuities depend on the states rather than
time, and we consider the nonlinear system specified by

(1) and (2).

Definition 1. (State-Transition Function). The state x at
t + At for (1) is obtained by the state-transition function,
P, as follows:

x(t+ At) = B[t + At t;x()] (3)

The numerical implementation of (3) using the Runge-
Kutta 4-th order method is (Press et al., 1988)

At
D[t + At t;x(1)] = x(t) + o (ki + 2ko + 2ks + ky) (4)

where ®[t+At, t; x(t)] is the state transition function from
t to t + At starting at the initial state, x, at ¢ and

ka[At,x(t)] = £[x(1)]

ko[At, x(t)] = £[x(¢) + ki1 At/2]
ks[At, x(t)] = £[x(¢) + ko At/2]
ky[At, x(t)] = f[x(t) + ks At]

O

The function implemented in a computer simulator, f(x),
typically includes nonlinear and discontinuous components
such as saturation, friction, backlash, hysteresis, deadband
and so forth. The numerical result obtained by (4) is
frequently the only available solution of (1). Without loss
of generality, the equilibrium point concerning the stability
is set to zero.

Assumption 1. We assume that the category of nonlinear
systems given by (1) and (2) has a unique solution. In
addition, the numerical implementation in (4) provides a
numerical solution sufficiently close to the solution for an
appropriately chosen simulation step size, At.

Using (2) and (4), the following theorem establishes a
bound of the state-transition function.
Theorem 1. (Bounds for A®). For any x and y in D
1@t + AL, t;x) — (t+ AL t;y)|| < alx =yl +b  (5)
where a = (1 + La), b= aM and
LAt (LAt)?  (LAt)3

a=At| 14+ == 4+ (6)

Proof: By the definition of ® in (4),
|®(t+ At t;x) — ®(t + At &)l

At
<l —yll+ - (Aki +2Aks + 2Ak; + Aky)

where Ak; = ||k;(At,x) — k;(At,y)]|| for i = 1,2,3 and 4.
Each Ak; is bounded as follows:
Aky = [[f(x) - £(y)[| < Llx —y[[ + M
Aky = ||f[x + ki (At, x)At/2] — £y + ki (At y)At/2]]|

LAt
< Llx -yl + T”kl(Atax) —ki(At,y)|| + M

LAt LAt
gL(1+2) [x =yl + <1+2>M
Aks = [[f[x + ko(At, x)At/2] — fly + ko (At, y)At/2]]|
LAt L2A¢?
<L 1+T+ 1 Ix —yll

LAt L2At?
+<1+2+ . >M

and
Aky = ||f[x + k3(At, x)At] — fly + ks (At, y)At]||
L2A¢? N L3A Ix -yl
2 4 y
2 2 3 3
L2At N L3At )M
2 4

<L<1+LAt+

+<1—|—LAt+

Hence,
Ak + 2Aks + 2Aks + Aky

Ix =yl

3 3
<L (6 £ 3LA+ L2AL + Lf)

L3At3
+ <6+3LAt+L2At2+ 1 >M

=L (ﬁta) [x —yll + (AGtO‘> M
Therefore,
At
6
and (5) is obtained. m

(Ak; + 2Ak, + 2Ak; + Aky) < Laljx — y|| + aM

Given the inequality condition for f(x) in (2), the tran-
sition function is bounded by (5), where « is a function
of At. We cannot, however, make the upper bound in (5)
arbitrarily small by decreasing At. As At is the simulation
step, the smaller At is, the longer the computation time
to finish the simulation is.
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Fig. 1. Example 1 nonlinear system 500 states history

Example 1. Consider a nonlinear system
3

& =—2sgn(z) — 10z + % (7)

As shown by the time histories of the states in Figure 1,
all |2(0)| less than 5.57 converge to the equilibrium point,

0. Otherwise, it diverges to +oco. For D = {z| |2| < v20}
and At = 0.01, the bound is as follows:

17@) ~ F(w)
< 2lsgn(z) — sgn(y)] + 10/ — | + 3le* —

I >Iw—y|

=4+ 10|z —y| + (V20)|z — y| = 30|z — y| + 4
i.e., L =30 and M = 4. Therefore,
|@(t + At t;2) — ®(t + At, t; )|
= allz — y|| +b=1.35]|z — y|| +0.047

3

1
< — —
<2x 2410z y|+3x<?§ﬁ(

In the following section, we develop procedures for verify-
ing stability using the bound established in (5).

3. STABILITY VERIFICATION

There are many practical methods to construct a candi-
date Lyapunov function. We assume the candidate Lya-
punov function has an energy function form given by

1
V(x) = §XTP x (8)
where P is an n X n matrix and positive-definite, whose

maximum eigenvalue is equal to Apax > 0.

Definition 2. (Lyapunov Stability). Let S be a subset of
D, whose corresponding energy is less than a positive real
number, ¢, as follows:

S={x|V(x) < ¢} (9)
where the equilibrium point, x.q, belongs to S and the
following inequality is satisfied for all x in S

VI®(t+ At t;x)] < V(x) < ¥,

then x.q is stable.

(10)

O

By the definition, the Lyapunov function slope is bounded
by
Hg‘;H = | Px|| < Amax” (11)

for all x € S.
Ezample 2. For the nonlinear system given in Example 1,
let S = {x | V(z) = 22/2 < 10}, where P = 1, £ = 10,
Amax = 1, 7 = v/20 and oV/ox < V/20. The equilibrium
point, xeq = 0, is stable if V[®(t + At,¢;2)] < 10 for all
x €S.
Theorem 2. (Bound for AV(x,y)). The difference in the
Lyapunov function is bounded by

AV(x,y) = |V[®(t + At, t;x)] — V[®(t + At, t;y)]|

< Amaxr(a”X - Y|| + b) (12)
for all x and y in S.

Proof: By the slope bound, the difference is bounded by
[V[®(t + At, t;x) — V[®(t + At t;y)]]
< AmaxT||®(E + At, ;%) — ®(t + At t;y)]|
and because of (5), the last term is also bounded by
AmaxT®(t + At ;%) — ®(t + At, t;y)||
< Amax? (a|x —y|| +b) [ |
Ezample 3. For the nonlinear system given in Example 1
and S given in Example 2,
[V[®[t + At, t;z] — V][t + At, t; ]|
= /20 (1.35|z — y| + 0.047) = 6.04|z — y| + 0.21
for all x and y in S.

To verify the stability of the equilibrium point in S, we
sample a finite number of points in S. A set is called a 6-
sampling set if, for all x in S, at least one sample is within
distance ¢ from x, and the set contains all such sampling
points.

Definition 3. (6-sampling set Sg). For a positive d, the J-
sampling set, Ss, is defined by

Ss = {xs | ||lx —xs|| <9 for all x € S} (13)

0

Ezample 4. For the set S given in Example 2, firstly,
divide the range of x in S into ns equal intervals, e.g.,
ng is set to 500 and the length of each interval, §, is
24/20/500 = 0.0179. Secondly, sample 500 =5 points with
the interval 0.0179 starting from —+/20. Finally, perturb
each x5 by 6,, which is a random number from the uniform
distribution between 0 and 0.0179, i.e.,
Ts — x5 + 51,
where the random perturbation is to avoid the determin-
istic grid sampling. Then, for any « in S, there is x5 in the
range of J, i.e.,
Ss = {xs | |xr —xs] <6 =0.0179 for all z € S}

Theorem 3. (Verification of Forward Invariant). For all x;
in Sy, if there exists a positive real v such that

VIP(t+ At t;x5)] <L —7
and § satisfies

(14)

Amax? (@d +b) <~ (15)
then S is forward invariant (Kapinski and Deshmukh,
2015).
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Proof: Prove it by contradiction as in Kapinski and Desh-
mukh (2015). Assume (14) and (15) are satisfied but there
exists x* in S such that V[®(t + At,¢;x*)] > £. Multiply
-1 for both sides

—VI[®(t+ At t;x*)] < —¢
Add (14) and (16)
VI[®(t + At, t;x5)] — V[®(t+ At t;x*)] < —y < 0
Hence,

v < |VI[®(t + At, t;x5)] — V[P (t + At, t;x")]|
Because the energy slope bound is given by (12) and x;
belongs to the d-sampling set, S5, the right-most term is
bounded by (15)

v < |VI[®(t+ At t;x5)] — V[®(t + At, t;x")]|

< Amax? (al|xs — X*|| +b) < Amaxr (@d +0) <~
The inequality contradicts as AV (xg, x*) is strictly greater
than v and less than equal to v simultaneously. Hence,

the assumption of the existence of x* such that V[®(t +
At, t;x*)] > ¢ is incorrect. [ |

In the forward invariant verification step, v cannot be an
arbitrary value but is determined by the maximum value
of V(x) as follows:

§=10—V(xs) (16)

where

V(xs) = max V[®(t + At, t;xs)]

X5€Ss

(Kapinski and Deshmukh, 2015).

Ezxample 5. With the values given in Examples 1, 2, 3 and
4, run the numerical simulation of the nonlinear system
given in (7) using the Runge-Kutta 4-th order integration
for each sample generated in Example 4. Update 4 by the
maximum V[®(t + At;t; x5)] found by the simulations. If
¢ — 4 is less than or equal to zero or the inequality in (15)
is violated, then the stability verification fails. If both of
the inequality conditions, (14) and (15), are satisfied for
all x5, the invariant set is verified for Ss. In this example,
4 obtained is 9.22. £ —4 = 10— 9.22 = 0.78 is greater than
zero and Apaxr (ad 4+ b) = 0.425 is less than 4.

The estimated 7, i.e., 4, relies on the sampled maximum
value, V(x5). The true maximum in S, i.e.,
V(x*) = max V[®(t + At, t;x)]
x*€S

is larger than or equal to V(X5). The true maximum value
is bounded as follows:

Theorem 4. (Bound for V(x*)). V(x*) is bounded by
V(x") < V(x")

where V(x*) = V(xXs) + Amax” 0 and § = max || x* — x;]|

Proof: By the slope bound in (11) and the definition of

d-sampling in Definition 3, there exists at least one xg in

Ss within the distance less than 0 from x* satisfying the
following inequality:

V(x*) = V(x5) < Amax[[x* = X5 < Amaxr &
Rearrange it and by the definition of V (xs)
V(x*) < V(X5) + Amaxr 0 < V(Xs) + Amax? 0

1 2 4 6 8 10 12 14 16
{ reduction step

Fig. 2. £ reduction for each step in Example 1

Ezample 6. The true maximum, V(z*), in Example 5 is

bounded by V(z*) and it is equal to

V(z*) =9.224+1x V20 x §

Based on the upper bound of the true maximum, 9.3 in
this case, we can confirm the condition, v, is positive as
¢ —V(z*) = 0.78 — 4.475. Hence, as long as 6 < 0.174,
4 is positive. Once the inequality, (15), is confirm to be
satisfied with 4. We can confirm that all the propagated
states from any x in S have their corresponding V' (z) less
than or equal to 9.3. Update £ equal to 9.3, redefine S with
the updated ¢, sample x5 from S and repeat the process
for verifying the forward invariant. We keep the sample
numbers equal to 500 and perform the procedures 16 times
starting from ¢ = 10. Figure 2 shows the reduction of ¢ for
each step.

When the final ¢ is not small enough to the equilibrium
point in the performance aspects of the system, then
further ¢ reduction procedures with a smaller §, i.e., more
number of the samples, will be performed, which reduces
the left-hand side of the values in the inequality, (15).
There is, however, a fundamental limitation caused by the
discontinuities in the system. The inequality condition in
(15) is bounded below by

AmaxT0 < Amaxr (ad +b) < v (17)

When there are infinite samples in S, i.e., § = 0, the lower
bound is the minimum to achieve. If the lower bound is
greater than -, we cannot verify the invariant property
and stability using the proposed method. This is one of
the fundamental limitations caused by the discontinuities
in the system.

Ezample 7. In Example 6, ¢ decreases every step until
the last step shown in Figure 2. The last value of ¢ is
1.28 corresponding to the set S with |z| < 2.26. Further
reduction of ¢ is possible with the increased number of
samples by 10 times, i.e., 5000 samples and reduce r with
new ¢ found. ¢ reduces further to 0.040. However, further
increase of ng, i.e., decrease of 9, will not reduce ¢. v found
is 0.0128 and Apaxrb is 0.0129. Hence, even for § = 0, the
inequality, (17), cannot be satisfied.

The summary of the invariant verification procedure is in
Algorithm 1, where the input variables are the number of
samples, ng, the bound for S, ¢, the simulation integration
step, At, and P for the Lyapunov function. The loop
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Algorithm 1 Invariant Verification(ns, ¢, At, P)

1: Set V = —oo and n. = 0 and Generate x5 € Ss C S
2: for k=1,2,...,ns do
3: Propagate xlg in Sy using (4)

4: Calculate View = V[®(t,t + At;x%)]
5. if Vyew > V then

6: V +— View

7 end if

8: Y = -V

9: if v does not satisfy (15) then

10: Terminate the loop

11: else

12: Ne ¢ Ne + 1

13: end if

14: end for

15: if n. is equal to ng then

16: Declare the forward invariant is verified
17: else

18: Declare no verification

19: end if

20: Terminal Condition The loop terminates when all
n, number of x5 are checked.

Algorithm 2 Stability Verification
1: Set ny, = 0, ng, At, P, £ and IsReduced = True
2: Set the number of maximum no reduction in ¢, n
3: while n,, <n do
4: if IsReduced = False then
5: Increase ng
6: end if
7 IsReduced «+ False
8
9

nnr % nnr + ]‘
: Run Invariant Verification(ns, ¢, At, P)
10: if invariant verified and V(x*) < ¢ then

11: 0+ V(x*)
12: IsReduced<+True, n, < 0
13: end if

14: end while
15: Terminal Condition The loop terminates if ¢ does
not decrease 7 consecutive times.

terminates when it finishes checking n, samples. The
summary of the stability check procedure is in Algorithm
2. The algorithm terminates if ¢ does not reduce for n
times in a row.

4. INVERTED PENDULUM

The dynamics of an inverted pendulum is given by

i 9. 1
0= 751116‘—1— oL (18)

where the gravitational acceleration, g, is equal to 9.821
m/s?, the length of the pendulum, [, is equal to 1.3 m, the
mass of the pendulum, m, is equal to 2.2 kg and w is the
control torque in Nm, whose magnitude is restricted to the
412 Nm range. The control algorithm has two parts: LQR
(Linear Quadratic Regulator) and reinforcement learning.

The LQR controller is given by
urqr = —1060 — 1046 (19)

The LQR acts on the system if the control command
magnitude is within the range of £12 Nm. Otherwise,

x107
61 x

—o—4 = Amaxr(ad + ) > 0] |

——l—V(x*) >0

NG / e
& Q. / ~o—_
¢ s
L s D S O — ‘ ’ ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14
¢ reduction step

Fig. 3. The inequality conditions in Example (18)

the reinforcement learning algorithm acts for all the other
cases. The detailed control design is shown in Kim (2022).

The reinforcement learning controller has seven sensor
inputs. The two sensors are ¢ and 6. The other five are
accelerometers attached to the pendulum at an equal
distance. The reinforcement learning controller has four
layers of artificial neural networks. The input layer has 800
nodes. The second, third and last output layers have 600
nodes. The reinforcement learning algorithm is the DDPG
(Deep Deterministic Policy Gradient) reinforcement learn-
ing method in Lillicrap et al. (2015). The activation func-
tions of the first three layers are ReLU (Rectified Linear
Unit). The output layer activation function is the tanh(-)
function.

The simulator propagates the states every 0.01 s to achieve
tolerable numerical errors. It is, however, too short for the
states to make any meaningful magnitude reduction for the
given ¢ determined by the number of samples. For every
0.3 s, i.e., 10 integration steps, we check the reduction of
{. The state-transition function propagates the states 30
times with 0.01 s intervals while the bounds are calculated
for At = 0.3. This is another limitation of the algorithm.
We cannot extend the propagation length too long. It will
cause a large increase in the bounds and the difference in
the states between 30 times propagation with 0.01 s and
one-time propagation with 0.3 s.

The stability check procedure starts from |0 < 10° and
|6] < 10°/s. Initially, the number of x5 samples is 2,250k,
which produces § = 0.00033. The while-loop in Algorithm
2 repeats 14 times. Figure 3 shows the two inequality
conditions, where P is the 2 x 2 identity matrix, Apax = 1
and r = 107/180. The algorithm runs in parallel on the
NVIDIA Jetson AGX 64GB Orin Developer Kit, which has
2048 NVIDIA CUDA cores. The algorithm is implemented
using the CUDA package in Julia (Besard et al., 2018). The
calculation takes about 8 minutes to complete the while-
loop in Algorithm 2.

5. CONCLUSIONS & FUTURE WORKS

We present a stability verification method to provide de-
terministic stability assurance of dynamical systems im-
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plemented as numerical simulators. The simulator may
include strong nonlinear components such as discontin-
uous jumps in the states and simulation-based control
design algorithms. The proposed bounds directly connect
to the numerical simulators and the parameters used in
the simulations. It reveals a fundamental limitation of
the stability check for discontinuous components in the
function of states. Immediate future research is to derive
tighter bounds for the longer propagation horizon. Current
works include applying the stability checking algorithm to
high-fidelity dynamic simulators.
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