
Graphical Abstract
A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction: A New Taxonomy and
Trends
Yifan Guan,Wei Wang,Jianjun Chen,Po Yang,Jingzhou Xu,Jun Qi

A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction: A New Taxonomy and Trends

Multimodal Data

Image
Data

Fluid
Data

Genetic
Data

Clinical
Data

Alzhiemer's
Disease

Incurable

Widely

Commonly

Early
Detection

Collect

Multimodal Fusion and Taxonomy

Utilise

Feature-Engineering Based Approach

Module Based Approach

Multimodal Fusion

Input

Machine Learning Fusion

Feature-Extraction Based Approach

Deep Learning Fusion

Modality Fusion Based Approach

Hybrid
Approach

Image Fusion

Learning-Free Approach

Model-Dependent Approach

Future Trends

- Data Contribution
Evaluation

- Pathology Based
Model Design

- Further Modalities
Introduce



Highlights
A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction: A New Taxonomy and
Trends
Yifan Guan,Wei Wang,Jianjun Chen,Po Yang,Jingzhou Xu,Jun Qi

• Proposes a novel taxonomy of multimodal fusion tailored to AD.
• Reviews ML and DL fusion methods with scenario-specific guidance.
• Outlines emerging trends and clinical translation challenges.



A Survey of Multimodal Fusion for Alzheimer’s Disease
Prediction: A New Taxonomy and Trends⋆
Yifan Guana,1, Wei Wanga, Jianjun Chena, Po Yangb, Jingzhou Xua and Jun Qia,∗

aXi’an Jiaotong-Liverpool University, School of Advanced Technology, No. 111 Ren’ai Road, Suzhou, 215123, China
bUniversity of Sheffield, Western Bank, S10 2TN Sheffield, UK

A R T I C L E I N F O
Keywords:
Machine Learning
Deep Learning
Alzheimer’s Disease
Multimodal Analysis

A B S T R A C T
Alzheimer’s disease (AD) is a neurodegenerative disease, well-known for its incurability, and
is common among the elderly population worldwide. Previous studies have demonstrated that
early intervention positively influences disease progression, leading to increased research into
pathological analysis and disease trajectory prediction through machine learning (ML) methods.
Given the similarities across different neurodegenerative disorders, a diagnosis relying solely
upon a single modality of data is inadequate. Consequently, current research predominantly
focuses on multimodal analysis, integrating medical imaging and clinical patient information,
with continuous identification of new data types potentially aiding AD diagnosis. Multimodal
approaches have been explored extensively over the past two decades, with significant advances
observed following the introduction of Deep Learning (DL) techniques. Deep neural networks
can adaptively extract and fuse features directly from input data, significantly broadening the
scope of multimodal analysis. However, earlier classification studies have primarily concentrated
on traditional ML, often neglecting the rapid advancements in DL networks. This article provides
a comprehensive description of the acquisition pathways based on modalities, discusses the
modalities currently used for research in neuroimaging, human body fluids, and other relevant
sources. Additionally, it classifies fusion methodologies utilised in both DL and traditional ML
contexts, highlights existing challenges, and outlines potential directions for future research.

1. Introduction
AD is a neurodegenerative disorder and the most common form of dementia, primarily associated with abnormal

protein aggregation and neuronal degeneration in the brain. As a leading cause of dementia, AD predominantly affects
elderly populations, typically manifesting between the ages of 60 and 70, and is prevalent globally. According to
a 2013 survey, over 30 million cases have been reported, with the number continuing to rise [192]. As of now,
more than 6.9 million individuals aged 65 and older in the United States alone are affected by AD [2]. Despite
extensive research, AD remains incurable and poses a substantial threat to the ageing population [188]. Nevertheless, a
definitive diagnosis of AD typically occurs only after a clear cognitive decline is observed, by which stage intervention
becomes far less effective [153]. Pathological studies indicate that AD progresses gradually over 10 to 15 years,
characterised by the accumulation of abnormal proteins such as amyloid-𝛽 and tau [171]. Early in this process,
patients may show only mild memory impairment without noticeable disruption to daily life. This stage, known as
Mild Cognitive Impairment (MCI) [128], has reshaped our understanding of AD from a binary disease state to a
progressive continuum. Crucially, both pharmacological and non-pharmacological treatments have shown promise in
slowing disease progression when applied during the MCI phase [131]. Consequently, recent research has emphasised
the early identification of biomarkers and pathological brain changes that signal the onset of AD or MCI [192]. Early
detection enables clinicians to predict disease trajectories more accurately and apply targeted interventions that may
delay symptom onset or reduce severity [192, 188]. Nonetheless, distinguishing AD from other types of dementia
remains challenging when relying on a single data modality, as overlapping symptoms and imaging characteristics
often obscure diagnostic certainty [123]. This limitation has driven the growing interest in multimodal analysis, now
a major focus of modern AD research.
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With continued research and development, ML has emerged as a powerful analytical tool across numerous
scientific domains, and its value has become increasingly evident in AD research. In medical applications, ML
excels at processing complex, high-dimensional data and uncovering subtle, non-linear relationships that traditional
statistical methods often fail to capture. Moreover, algorithms such as Support Vector Machines (SVM) and Artificial
Neural Networks (ANN) have enabled ML models to generate explicit diagnostic criteria and decision rules, thereby
enhancing interpretability and standardisation in clinical workflows[13]. These approaches have also demonstrated
strong diagnostic performance in AD classification tasks. Building upon these foundations, recent advances in feature
extraction and the integration of intelligent agents have further expanded the role of ML, enabling more efficient
and automated analysis of medical imaging data [12]. Upon ML technology, DL methods subsequently advanced
this progression by embedding comprehensive automated feature extraction directly into the analytical pipeline,
substantially reducing reliance on manual feature engineering and significantly enhancing data processing efficiency
[147]. Moreover, DL architectures demonstrate exceptional adaptability to large-scale data and possess heightened
sensitivity to intricate multimodal correlations. This capability significantly improves diagnostic classification and
predictive accuracy. Owing to their ease of use and powerful inherent feature extraction capabilities, deep neural
networks have notably propelled AD diagnostic research forward, driving innovation in multimodal diagnostic systems
[188].

This paper discusses the topic of AD diagnosis through ML. It integrates insights into current research in the AD
domain, systematically explores two primary directions to deliver a comprehensive. Firstly, we summarise various data
types commonly utilised in AD diagnosis, detailing the underlying principles of data acquisition and identifying critical
diagnostic information extracted from each modality. Secondly, examines the development trajectory of multimodal
methodologies in AD research, systematically categorising existing approaches into traditional ML and DL methods.
We provide detailed classifications of prevalent network architectures, thoroughly analysing their roles, functional
mechanisms, and variants as they appear across different studies, ultimately discussing potential future challenges and
developmental directions for multimodal analysis.
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Figure 1: Overview of the scope and structure of this review. The figure reflects the logical organisation of this review,
illustrating how the discussion progresses from ML to DL and image fusion paradigms. It exhibits the key components of the
paper, including the modalities commonly used in AD research, the proposed taxonomy of multimodal fusion encompassing
traditional ML, DL, and image fusion approaches, and a summary of future research directions.

Literature searches of this paper were performed on databases including IEEE Xplore, PubMed, ACM Digital
Library, and Elsevier, supplemented by a secondary comprehensive search via Google Scholar to avoid omissions.
Searches employed standard combinations of keywords and Boolean operators, strictly limited to English-language arti-
cles. According to the two primary thematic focuses of this work, two separate literature search rounds were conducted.
In the first round, keywords such as “Alzheimer’s Disease” and “history” were utilised to document major biomarkers
identified during the historical progression of AD research, along with the chronological introduction of different
Yifan Guan et al.: Preprint submitted to Elsevier Page 2 of 45
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modalities and associated techniques. Subsequently, additional searches were conducted using specific modality names
such as magnetic resonance imaging (MRI), Computed Tomography(CT), and positron emission tomography (PET),
covering prevalent data types thoroughly. Furthermore, inspired by recent works, an additional subsection was included
to discuss emerging effective modalities. The second round of searches concentrated specifically on methodological
aspects of multimodal ML approaches, employing keywords including “multimodal fusion”, “multimodal analysis”,
“Alzheimer’s Disease”, “machine learning”, and “deep learning”, alongside referencing relevant review articles.
Publications identified through this second search round were restricted to those published from 2010 onward, with
DL-related articles specifically limited to those from 2016 onward. This time period reflects the historical context in
which multimodal approaches became systematically structured and widely adopted around 2010, thus providing an
appropriate baseline for the scope of our literature survey.

This paper begins by reviewing the research background and developmental context of Alzheimer’s disease AD,
then extends the discussion to the multimodal data types commonly employed in study design. Building on these
foundations, we analyse current multimodal fusion methods in detail. Finally, we summarise the key challenges
that remain and outline potential future research directions. Figure 1 provides a concise overview of this workflow,
illustrating the logical structure and core content of the review. The subsequent sections of this paper are organised as
follows: section 2 presents the historical development of multimodal AD research. section 3 describes multimodal data
aspects, including introducing datasets, the definition of biomarkers, and frequently used and significant modalities.
section 4, representing the core content of this paper, discusses various fusion methodologies, including internal
multimodal transformations within models, fusion strategies and methods, associated application scenarios, and
the evaluation of resulting outputs, with a particular focus on DL networks. section 5 outlines future directions
and challenges associated with fusion methodologies, especially regarding more complex modalities and clinical
translation. Finally, section 6 provides a summary of the paper.

2. Historical Research
This section will retrospect the historical development of AD research, presenting the milestone discoveries and

introduction of significant technologies. Due to limitations in available technology and data, multimodal methods
emerged relatively late in the AD field, becoming widely recognised only after 2000. It wasn’t until the appearance
of deep networks and their application after 2010 that multimodal fusion became a relatively mainstream research
method. Before this period, research was largely based on single-modality analysis using traditional ML methods.
Figure 2 summarises the milestones of AD research, including the biomarker and modality exploration.

AD research dates back to the early 20th century when distinctive neuropathological hallmarks, particularly
neurofibrillary tangles (NFTs), were initially identified and subsequently clinically recognised around the 1950s
[20]. During this period, Blessed et al. established a critical link between amyloid plaque density and AD severity,
significantly advancing pathological understanding [18]. Additionally, to streamline dementia diagnosis, Blessed et
al. introduced the Blessed Dementia Scale (BDS), laying important groundwork for subsequent cognitive assessment
scales [47]. With advancing technology, the diagnostic value of imaging modalities, including CT, MRI, and PET, was
progressively validated for AD [76, 48, 36]. Around 1985, significant progress was achieved by isolating and clarifying
the molecular composition of amyloid plaques and NFTs, providing essential contributions to biomarker research [62].
Soon thereafter, Weidemann et al. demonstrated the presence and properties of amyloid precursor protein (APP) in
various cellular contexts and human cerebrospinal fluid (CSF), elucidating that APP cleavage generates amyloid-beta
peptides, the primary constituent of plaques characteristic of AD pathology [170]. This discovery emphasised CSF’s
diagnostic and biomarker potential.

Up to approximately 1990, AD research predominantly centred around biomarker discovery and exploring
pathological mechanisms. This era witnessed the confirmation of key biomarkers and identification of effective
modalities, forming a crucial foundation for contemporary multimodal AD research [36]. The late 1990s introduced
transformative innovations through ML methods. Initially, researchers applied these approaches to analyse cognitive
assessment outcomes, substantially surpassing traditional dementia screening performance [106]. Concurrently, the
pioneering work by deFigueiredo et al. [32] introduced ANNs for analysing single-photon emission computed
tomography (SPECT) imaging data, laying the groundwork for a structured analytical workflow consisting of image
registration, feature engineering, and neural network-based classification. ML demonstrated substantial advantages,
particularly its ability to detect complex, non-linear features and define precise classification boundaries, enhancing
diagnostic interpretability for clinical applications.
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Figure 2: Historical development of AD research. From the 1950s onwards, studies initially focused on identifying key
biomarkers of disease onset. Over the following decades, new imaging and analytical technologies were introduced to
enhance diagnosis. After 2000, multimodal research became increasingly mainstream, and the emergence of DL after 2010
marked a new stage in multimodal AD analysis.

Nonetheless, early multimodal AD research faced substantial limitations. Although multimodal investigations
existed since the early 1990s [16], several technical constraints hindered deeper exploration, including modality
alignment difficulties, simplistic ML architectures incapable of sophisticated multimodal processing, and limited
availability of paired multimodal data[54]. A significant turning point emerged around 2003 with the introduction
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, which markedly improved data availability
and significantly reduced the barriers to image-based multimodal analyses. Simultaneously, research focus shifted
from purely pathological investigations toward predicting disease progression and diagnostic staging [145]. This
shift amplified research interest in image-based analyses, particularly MRI, resulting in notable improvements in
AD diagnostic techniques [124]. As diagnostic tasks grew increasingly complex, single-modality approaches became
insufficient due to limited informational content [123], further motivating interest in multimodal methodologies.

Despite this momentum, multimodal fusion and joint analysis initially remained underdeveloped, constrained by
existing ML frameworks. Early multimodal implementations were rudimentary and lacked comprehensive analytical
depth. A decisive advancement occurred with the maturation of structured multimodal fusion approaches [12] and the
introduction of Multiple Kernel Learning (MKL) [144], particularly its adaptation within the AD research context [67].
These developments provided a clear methodological trajectory for multimodal fusion strategies in AD, significantly
enhancing subsequent research directions.

Building upon earlier methodologies, DL models incorporate automated feature extraction processes, notably
through convolutional neural networks (CNNs), substantially diminishing the reliance on manual preprocessing and
significantly enhancing analytical efficiency for imaging data [147]. This automated and flexible feature extraction
capability further enables DL architectures to accommodate more complex or heterogeneous data modalities, thereby
considerably advancing the scope and depth of multimodal research in AD. Shen et al. [139] verified the outstanding
performance of DL methods on large-scale datasets, particularly those featuring extensive imaging data. This series of
studies has demonstrated that DL is both practical and effective, making it a widely recognised and influential field in
medical imaging research.

Yifan Guan et al.: Preprint submitted to Elsevier Page 4 of 45



A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction

3. Multimodal Data
3.1. Public Dataset
3.1.1. ADNI

To advance the effective treatment of AD, the ADNI database was established in 2004 under the leadership
of Michael W. Weiner [171]. This open-access dataset is supported by a public-private partnership, funded by the
National Institute on Ageing, the National Institutes of Health Foundation, the Alzheimer’s Association, and numerous
companies. The ADNI dataset has evolved through five phases, with the current iteration being ADNI-4. Each phase
of the study recruits new participants for data collection and assessment. Currently, the dataset includes over 2,500
samples available for researchers. The dataset primarily comprises longitudinal data from participants across three
stages: normal control (NC), MCI, and AD. It includes several of the most commonly used data types: clinical and
cognitive assessments, MRI, PET, CSF biomarkers, blood biomarkers, and genetic data, along with additional data such
as demographic information and lifestyle records that may impact the progression of AD [171]. The establishment of
the ADNI dataset introduced an important standard by defining a unified protocol across different sites and platforms to
ensure the consistent quality of collected images and CSF samples. This improvement has facilitated data sharing and
increased the reuse rate, which is particularly significant for DL methods that require large sample sizes. The dataset
can be accessed by: https://adni.loni.usc.edu/, and register for an IDA account for the data downloading application.
3.1.2. AIBL

The Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) is a large-scale longitudinal cohort
study initiated in 2006 by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in collaboration
with several Australian institutions, including the University of Melbourne and the Austin Health Research Institute. Its
primary goal is to investigate how biological, lifestyle, and genetic factors influence the onset and progression of AD.
The AIBL dataset comprises approximately 1,100 Australian participants, including individuals with NC, MCI, and
AD. The dataset provides multimodal data, such as T1-weighted MRI, PET imaging, blood biomarkers, apolipoprotein
E(APOE) genotype, and comprehensive neuropsychological assessments. In addition to these medical and imaging
data, AIBL also includes extensive lifestyle and behavioral data covering diet, physical activity, education, and mental
health, enabling researchers to investigate modifiable risk factors associated with cognitive decline. Notably, AIBL
is closely aligned with the ADNI initiative, following compatible imaging and clinical protocols to facilitate data
harmonization and cross-cohort research. A subset of the AIBL data is also openly accessible through the ADNI
Data Sharing Infrastructure (LONI-IDA), expanding the international reach of the ADNI and enabling large-scale
meta-analyses across diverse populations. The AIBL dataset has become one of the most comprehensive multimodal
resources for studying aging, disease prevention, and early diagnosis of AD, providing valuable support for statistical
and DL models in this field. This dataset can be accessed and downloaded from the URL, which shares the same
account as ADNI: https://aibl.csiro.au/adni/index.html
3.1.3. NACC

The National Alzheimer’s Coordinating Center (NACC) is a large-scale, standardised database established in 1999
under the support of the National Institute on Aging (NIA) in the United States. It is managed by the University
of Washington, NACC integrates clinical, neuropathological, genetic, and imaging data collected from more than 30
Alzheimer’s Disease Research Centers (ADRCs) nationwide. The core objective is to provide a harmonised platform for
sharing and analysing Alzheimer’s disease data across multiple research sites and studies. The NACC dataset currently
includes data from over 45,000 participants, spanning cognitively NC, MCI, and AD subjects, as well as individuals
with other types of dementia. The dataset consists of the Uniform Data Set (UDS), which is a comprehensive collection
of clinical, cognitive, functional, and behavioural assessments, alongside neuroimaging data (MRI, PET), genetic
information (APOE, Genome-Wide Association Study), and post-mortem neuropathological results. Each participant
undergoes regular follow-up evaluations, enabling longitudinal tracking of cognitive decline and neuropathological
progression [15].

Through its standardised data collection protocols and continuous data sharing, NACC serves as a cornerstone
for multi-centre and longitudinal Alzheimer’s research. It enables researchers to study disease heterogeneity, validate
biomarkers, and develop generalisable diagnostic and predictive models. Its integration with other major initiatives
such as ADNI and AIBL further enhances its scientific utility, supporting cross-cohort analyses and advancing global
Alzheimer’s research collaboration. It can be accessed from the URL: https://naccdata.org/requesting-data/nacc-data
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3.1.4. OASIS
Open Access Series of Imaging Studies (OASIS) is another open-source database, led by the Washington University

Neuroimaging Laboratory, which aims to promote the public sharing of neuroimaging data. It was established later
than ADNI, but it has also become one of the important databases for studying neurodegenerative diseases and normal
ageing. Participants are recruited from the community, all submit initial blood samples, and undergo regular cognitive
tests, neuroimaging examinations, and lumbar punctures. Currently, the database has developed to OASIS-3, with a
total of about 1,400 subjects, including all participants in OASIS-2 [1]. The data content includes MRI, PET, blood
data, cognitive assessments, and genetic information. The OASIS dataset emphasises data openness and accessibility,
and covers subjects in various states such as NC, MCI, and AD. Its highly diverse samples and multimodal data
types provide rich resources for cross-sectional and longitudinal studies of neurodegenerative diseases. To access and
download the dataset, the following URL is available: https://sites.wustl.edu/oasisbrains/
3.1.5. IXI

The IXI dataset is part of the Information eXtraction from Images (IXI) project, which began in 2005 and was jointly
released by University College London (UCL) and Imperial College London. This dataset does not contain any AD
or other clinical labels. It provides high-quality MRI scans covering a broad age range and is designed to support
research on imaging algorithms such as segmentation, registration, synthesis, normalisation, and brain structural
analysis. The dataset comprises approximately 581 healthy volunteers with no history of neurological disorders. Data
were collected at Guy’s Hospital, Hammersmith Hospital, and the Institute of Psychiatry. The IXI dataset primarily
includes comprehensive MRI modalities, such as T1-weighted, T2-weighted, Proton Density (PD), DTI, and Magnetic
Resonance Angiography (MRA), accompanied by basic demographic metadata including age, gender, and scanning
site. It is openly accessible and does not require registration or ethical approval. The dataset can be freely downloaded
from the official project website: https://brain-development.org/ixi-dataset/
3.2. Biomarkers and Available Modality

Biomarkers, or biological markers, are measurable indicators that can be objectively assessed to reflect normal
biological processes, pathological changes, or responses to therapeutic interventions [74]. Their definition is primarily
based on their sensitivity, specificity, and clinical applicability to a particular disease. Establishing biomarkers for AD
during the preclinical stage is a crucial prerequisite for early intervention, making it a significant focus in biomedical
research [108]. Currently, biomarkers in the AD field can be broadly classified into two categories: fluid biomarkers
and neuroimaging biomarkers. Fluid biomarkers are measurable substances found in bodily fluids such as blood, urine,
and CSF. In contrast, neuroimaging biomarkers rely on imaging technologies to provide anatomical and functional
insights, including indicators such as brain atrophy and metabolic alterations, typically presented in visual formats.
The classification of biomarkers is largely determined by the measurement method or medium, which is distinguished
by being viewed as different data modalities. Figure 3 shows the available and popular modality categories in AD
research. For instance, tau protein detected in CSF is considered a fluid biomarker. Therefore, different modalities can
be regarded as carriers or observation mediums for the corresponding biomarkers. For example, traits observed through
imaging data from MRI and PET are classified as "imaging biomarkers," while information obtained from fluids such
as CSF and blood falls under "fluid biomarkers." Given the current research trend towards minimising harm to patients,
the concept of peripheral biomarkers has been introduced. This category is a subset of fluid biomarkers, derived from
peripheral tissues. Hence, peripheral biomarkers are a subset of fluid biomarkers, with CSF, due to its invasive nature,
classified as a fluid biomarker but not a peripheral biomarker.

The basis for AD diagnosis and its specificity originates from the identification of NFTs [20]. Subsequent research
has established links between AD and other traits such as amyloid plaques [18], brain atrophy [76], white matter changes
[46], and metabolic alterations [36], leading to the development of a diagnostic strategy that is not solely dependent
on NFTs. This strategy also introduced imaging techniques such as CT, MRI, and PET to assist in observation and
diagnosis. At the current stage, aside from post-mortem examinations, there remains no method that can definitively
confirm an AD diagnosis [20]. In recent years, research on fluid biomarkers, particularly those found in blood and
saliva, has made remarkable progress, offering new avenues for the clinical diagnosis of AD. However, the majority
of work in the DL field still predominantly focuses on image data.
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Figure 3: Overview of data modalities used in AD research. Data are broadly divided into image and non-image modalities.
Neuroimaging modalities, such as MRI, PET mainly capture the structural and functional characteristics of the brain, while
non-image data, including genetic, fluid, and clinical measures, provide complementary biological and cognitive information
typically represented in tabular form.

3.3. Image Data
The diagnosis of AD fundamentally relies on histopathological confirmation, typically through post-mortem

analysis to identify inherent biomarkers. The clinical uncertainty surrounding AD diagnosis has driven researchers
to seek additional supportive measures. Neuroimaging technologies have expanded the scope of observable and
summarised information, offering a window into brain changes and providing new biomarkers for AD diagnosis
[171]. Currently, various brain imaging techniques are employed to study the changes associated with AD progression.
These changes are broadly categorised into structural and functional types. Structural imaging focuses on providing
higher spatial resolution and detailing anatomical features such as the shape, size, and integrity of organs, tissues, and
other anatomical structures. Functional imaging, on the other hand, captures physiological processes within the body,
including organ and tissue function as well as neurological and metabolic activities [158]. For ease of analysis, this
paper classifies different techniques based on this framework rather than by the type of technology used.
3.3.1. Structural Image

Structural imaging focuses on depicting morphological alterations, including anatomical structure, regional
volume, and other tissue-level changes that accumulate over time. Because such structural alterations usually occur
later than molecular or metabolic abnormalities, they are less effective for early detection. However, once present,
they tend to be highly persistent and quantifiable, providing valuable longitudinal biomarkers of disease progression.
Consequently, structural imaging is particularly sensitive to the middle and late stages of AD, offering robust indicators
of cortical atrophy, ventricular enlargement, and other macroscopic degenerative patterns. The commonly used
structural imaging techniques include CT, structural MRI (sMRI), and Diffusion Tensor Imaging (DTI).
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CT. CT was the earliest technique employed for AD detection, though it was not considered a standard diagnostic
tool for AD [158]. Its main contribution was the introduction of a novel, non-invasive method for detecting structural
changes in the brain, such as atrophy and cortical sulcus enlargement, which helped differentiate AD from other forms
of dementia while reducing harm to the patient [76]. However, these changes typically occur in the later stages of
AD, making CT useful primarily for confirming dementia types in already affected individuals rather than for early
diagnosis. Despite this, CT remains widely used in some regions due to its lower cost and broad applicability.

sMRI. MRI is currently one of the most popular imaging techniques, initially garnering attention due to its ability
to provide clearer and more detailed images compared to CT [48]. With the demonstrated correlation between white
matter changes and AD progression, MRI, which offers more precise grey-white matter contrast [46], replaced CT
as a crucial tool for AD detection. The discovery of the relationship between hippocampal and medial temporal lobe
atrophy and cognitive deficits solidified MRI’s role as a key medium in AD research [52].

The foundation of MRI lies in Nuclear Magnetic Resonance (NMR), a phenomenon where atomic nuclei with an
odd number of protons or neutrons absorb and emit electromagnetic radiation in a magnetic field [90]. MRI machines
generate a strong magnetic field that aligns the magnetic moments of hydrogen nuclei in the direction of the field.
The machine then emits radio-frequency (RF) pulses at specific frequencies, causing the protons to deviate and rotate
around the magnetic field axis. When the pulse is turned off, the protons relax and return to their initial state, releasing
energy that the MRI receiver coils detect as RF signals, which are then used to create an image [19]. The magnetic
field gradient, influenced by the equipment, applies additional magnetic fields along the X, Y, and Z axes, enabling the
machine to selectively affect the resonance frequency in specific directions, thereby acquiring slice-by-slice images.
Finally, mathematical techniques are used to convert the frequency and phase information in the signals into spatial
information, resulting in detailed images.

Early MRI technology focused on anatomical analysis, which remains the primary application of sMRI. sMRI
mainly captures detailed anatomical imaging. In current applications, the most direct indicators of a patient’s condition
include hippocampal atrophy, cortical thinning, and ventricular volume changes. Numerous studies have shown that
sMRI can be used to estimate the progression from MCI to AD by observing hippocampal, temporal lobe, and
entorhinal cortex volume and tissue damage [53]. Moreover, structural brain changes have been shown to correlate
with stages of NFT deposition [172]. sMRI includes several imaging types, each focusing on different targets:

I) T1 and T2 weighted images. The definitions and differences between these imaging types stem from the
relaxation times during the MRI proton relaxation process. T1-weighted imaging is based on T1 relaxation, also known
as longitudinal relaxation, representing the time required for protons to realign with the magnetic field. Tissues with
higher water content have longer T1 times. T2-weighted imaging, conversely, is based on T2 relaxation (transverse
relaxation), which is the time it takes for protons in the transverse plane to lose phase coherence with each other,
leading to signal decay. Contrast with T1-weighted images, areas with higher water content (such as CSF) appear
brighter in T2-weighted images, while tissues with shorter T1 times (such as fat and bone marrow) appear brighter in
T1-weighted images [133]. Hence, T1 and T2 are typically used in AD diagnosis to observe different targets. While
T1 focuses on overall anatomical structure, assessing symptoms like hippocampal atrophy, T2 is more suitable for
detecting tissue abnormalities, particularly fluid-related anomalies, and is often used to identify white matter lesions
[53].

II) Fluid-Attenuated Inversion Recovery (FLAIR). In addition to T1 and T2, FLAIR imaging is another
technique primarily used to suppress signals from fluid tissues such as CSF while maintaining the visibility of other fluid
tissues. This technique relies on the RF pulse inversion recovery method, which inverts the net magnetisation vector of
hydrogen protons. As these protons relax and realign with the main magnetic field, the differing T1 relaxation times of
various tissues result in the nullification of signals from fluid tissues like CSF, without affecting the normal expression
of signals from other tissues [81]. Compared to T1 and T2-weighted imaging, FLAIR is less commonly used in AD but
is particularly useful for capturing subtle information that may be masked or obscured by fluid characteristics, often
focusing on vascular changes and detecting mixed dementia to ensure accurate diagnosis [31].

DTI. DTI can be considered an extension of MRI technology, designed to capture the directional movement of water
molecules within tissues, primarily used for imaging white matter tracts in the brain. Initially, DTI was commonly
employed for stroke-related diseases closely associated with white matter integrity. Researchers later explored its
potential in neurodegenerative diseases, discovering its exceptional utility in aiding AD diagnosis. The core principle
of DTI involves water diffusion in the brain, where the random movement of water molecules within biological tissues
is influenced by tissue structure. In white matter, water diffusion is anisotropic (FA), influenced by myelin and axonal
structures, resulting in diffusion along the direction of nerve fibres [84]. DTI can therefore assess white matter integrity
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and damage by measuring indices such as FA and mean diffusivity (MD). In AD detection, subtle structural changes
in white matter often precede brain atrophy, making DTI a feasible technique for early diagnosis.
3.3.2. Functional Image

Functional imaging focuses on capturing dynamic changes in the brain, such as variations in metabolism, neural
activity, and network connectivity. These signals are typically high-frequency and sensitive, reflecting short-term
physiological responses such as compensation and network reorganisation. Because functional alterations often emerge
earlier in the disease trajectory, they provide valuable biomarkers for early detection and subtype differentiation of
AD. However, functional imaging data are also more susceptible to noise and external interference, including motion
artefacts, physiological fluctuations, and environmental factors. Therefore, rigorous data denoising, preprocessing, and
standardisation are essential to ensure reliable interpretation and reproducibility. Functional imaging commonly used
in AD research includes functional MRI (fMRI), PET, magnetic resonance spectroscopy (MRS), SPECT, and various
complex molecular imaging technologies.

fMRI. Contrary to sMRI, which derives from early MRI applications and conceptual transfers, fMRI represents a
distinct imaging type designed to measure brain activity across different periods and states. Under the same hardware
conditions, fMRI completes the functional transition by observing blood oxygen level-dependent (BOLD) signals,
contrasting with sMRI methods. The core of fMRI is the study of haemodynamics, which can be simply understood
as the correlation between neuronal activity and oxygen consumption, leading to increased local deoxyhaemoglobin.
The body compensates for this by augmenting blood flow to active areas, resulting in a greater influx of oxygenated
haemoglobin [56]. Research led by Seiji Ogawa [118] revealed that changes in blood oxygenation affect local magnetic
fields, detectable via MRI. To accurately capture BOLD signals, fMRI employs echo-planar imaging (EPI) technology,
enabling rapid imaging to capture dynamic changes in BOLD signals in real-time. In comparison to the repetition time
(TR) of sMRI, fMRI typically operates within a TR of 1 to 3 seconds, shorter than T2 and T1 times, facilitating the
capture of dynamic rather than static information. Additionally, the RF pulse frequency is adjusted based on TR, with
smaller angles compared to conventional MRI settings, which are usually less than 90 degrees, to minimise signal
saturation and enable continuous data collection at relatively short TRs. These subtle variations in BOLD signals are
used to reflect neuronal activity, where areas of increased signal typically indicate heightened brain activity.

PET. In contrast to MRI’s functional classification, PET categorises more intricately based on specific detection
targets. Common types in AD research include Fluorodeoxyglucose-PET (FDG-PET), Amyloid PET, and Tau PET
[117]. PET imaging relies heavily on radioactive tracers, molecules tagged with positron-emitting radioactive isotopes
designed to mimic natural biomolecules like glucose and neurotransmitters. Each PET tracer targets specific biological
processes or molecules within the body, generally administered via injection. Following this, the tracer naturally
accumulates in regions of interest (ROI) driven by blood flow and biochemical properties. The emitted positrons
from the radioactive isotopes interact with electrons in tissues, resulting in annihilation events that produce pairs of
gamma photons travelling in opposite directions. The PET apparatus detects these gamma rays around the patient and
reconstructs a three-dimensional image of tracer distribution based on the source of the rays [114]. Similar to MRI
images, brightness can reflect the intensity of activity in corresponding areas, with brighter regions indicating a higher
frequency of molecular annihilation events, thereby corresponding to metabolic activities or responses in those areas.

Current AD diagnostic research employs tracers corresponding to the aforementioned PET types: FDG, Amyloid,
and Tau PET, where each of them concerns on specific element. FDG is one of the most widely used tracers,
accumulating in cells with high metabolic activity, such as active regions in the brain. This tracer is primarily utilised
to assess brain metabolic levels and detect regions of metabolic slowdown due to AD. Amyloid tracers specifically
bind to amyloid plaques, visualising amyloid deposits in the brain, which is one of the key features of AD detection.
Tau tracers bind to tau protein aggregates, representing another critical characteristic of AD, named NFTs, which can
aid in understanding the extent of pathological spread in the brain [117].

MRS. The fundamental principle of MRS is similar to that of MRI, both relying on magnetic resonance principles.
However, MRS focuses more on detecting and quantifying specific metabolites within tissues rather than providing
detailed anatomical images. Its detection depends on the proton precession process influenced by the magnetic field,
wherein protons experience slight frequency variations based on their chemical environment. These variations, known
as chemical shifts, occur due to the influence of electron clouds on the magnetic field, resulting in protons exhibiting
precession frequencies that slightly deviate from the baseline frequency. MRS can detect these chemical shifts; since
different metabolites and compounds possess unique characteristic chemical shift patterns, MRS can differentiate
various metabolites [156]. Changes in these metabolites often appear before visible structural changes on MRI,
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thus holding significant importance for early diagnosis [57]. Additionally, examining metabolites aids in exploring
the biochemical basis of AD, such as neurotransmitter systems and glial activation. However, the subtlety of these
changes presents challenges for detection sensitivity, and their interpretation necessitates substantial expertise, which
constitutes one of the higher barriers to utilising MRS.

SPECT. SPECT is a type of nuclear imaging technology, primarily differing in the tracers used and the imaging
approach. SPECT employs tracers that emit single gamma photons instead of positrons. A gamma camera detects these
photons, scanning around the patient and reconstructing images based on tracer locations. Common SPECT tracers
for AD detection include two types: Technetium-99m (Tc-99m), Iodine-123 (I-123) [69]. Tc-99m is used to monitor
regional cerebral blood flow. Upon injection, the tracer crosses the blood-brain barrier and accumulates in brain tissue
proportionate to local blood flow, reflecting cerebral blood volume, which is often related to neuronal activity and
function, indirectly indicating neuronal activity status. Notably, reduced blood flow in specific brain regions (e.g.,
parietal and temporal lobes) serves as an effective diagnostic feature for AD. I-123 similarly assesses cerebral blood
flow based on its uptake in various brain regions [132].
3.4. Fluid Data

Fluid biomarkers represent a significant category distinct from imaging biomarkers. As the name suggests, they
are primarily obtained by collecting bodily fluids and analysing their components for the diagnosis and progression
analysis of AD. Compared to the complex types and techniques of imaging biomarkers, fluid biomarkers are simpler,
with the predominant fluids being CSF and blood [134]. As research advances, saliva is also emerging as a promising
subject for future studies [115]. Currently, except CSF, blood is used for the AD prediction task [162]. Their targets
are quite similar, primarily focusing on biomarkers that directly reflect pathological changes associated with AD,
such as amyloid beta and tau tangles. Because these biomarkers directly indicate the pathological changes of AD, fluid
biomarkers can provide a more precise and effective reflection of disease progression compared to imaging biomarkers
and related data [64].

CSF. CSF serves as a crucial foundation for fluid biomarkers and is a key reason for the subsequent development
of fluid biomarkers. As a fluid biomarker in AD research, CSF is regarded as the gold standard due to its capability to
detect biochemical changes directly occurring in the human brain. Circulating around the brain and spinal cord, CSF
can directly reflect biochemical changes relevant to AD pathology. It enables the detection of various biomarkers and
indicators, including APP A𝛽42, tau tangles, neurofilament light chain (NfL), myo-inositol (ml) levels, and YKL-40
[119]. While the data obtained is highly reliable, CSF collection relies on lumbar puncture, which is more invasive
than other methods.

Blood. With advancing research, the potential of blood in AD diagnosis has gradually been recognised. Analyses
typically focus on plasma and serum independently [65]. For example, Ujiie et al. [154] found an increase in p97 levels
in serum, a phenomenon exclusive to AD patients, highlighting the possibility of identifying previously unrecognised
specific biomarkers associated with AD within blood. In addition to new biomarkers, blood can also be used to
investigate effective biomarkers present in CSF. However, compared to CSF, the complexity of blood components
results in lower stability, though it offers advantages in being less invasive and requiring only standard blood collection
methods, thus enhancing its applicability and practical value.

Other Body Fluids. Furthermore, saliva and urine also hold research value. Similar to the differences and
advantages of blood relative to CSF, both saliva and urine possess entirely non-invasive characteristics, providing
significant advantages in routine screening and small-scale studies [115]. However, like blood, these fluids are less
stable, with their analyses influenced by daily factors such as diet and lifestyle, making interpretation complex; thus,
they remain in the early stages of research and are challenging to apply in practice.

Compared to imaging biomarkers, the advantage of fluid biomarkers, particularly those derived from CSF, lies in
their ability to directly reflect biochemical processes and detect proteins or hormonal changes highly relevant to the
aetiology of AD. Nonetheless, current DL methodologies predominantly focus on image data and imaging biomarkers.
This is largely due to the inherent requirements of DL, which necessitate substantial sample sizes; imaging data
typically offers greater volume than fluid biomarker data collected from sources like CSF. Additionally, advancements
in specific image processing networks, such as CNNs, facilitate the analysis of imaging data within DL frameworks.
3.5. Genetic and Neuropsychological Data

Beyond imaging and fluid biomarkers, research into the genetic and genomic associations with AD has persisted
since the disease was first identified. Currently, key genetic data relevant to AD include APOE𝜀4, Presenilin 1/2

Yifan Guan et al.: Preprint submitted to Elsevier Page 10 of 45



A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction

Table 1
Common Genetic Biomarker with Influence

Gene Association Impact Relevance

APOE𝜀4
Strong risk factor for

late-onset AD

Increases amyloid-beta deposition

and decreases clearance

Used for risk prediction;

not definitive for diagnosis

PSEN1

Causes early-onset

familial AD

Alters amyloid-beta production,

leading to plaque buildup

Near certainty of early

AD with mutations

PSEN2

Causes early-onset

familial AD (less common)
Alters amyloid-beta production

Near certainty of early

AD with mutations

APP

Causes early-onset

familial AD (rare)

Increases production of

aggregation-prone A𝛽42

Near certainty of early

AD with mutations

TREM2

Increases risk of

late-onset AD

Impairs microglial response to

amyloid and neuroinflammation

Highlights immune

system’s role in AD pathology

(PSEN1 / PSEN2), APP, and trigger receptor expressed in myeloid cells 2 (TREM2) [157]. Table 1 presents the
functions and impacts of different genetic data types.

In addition to the aforementioned categories, neuropsychological assessment is also a crucial evaluative metric.
Such assessments typically encompass several components: direct interaction between the clinician or expert and
the patient (including conversations, questions, and answers), the execution of various tasks, and the completion
of self-report questionnaires, thereby evaluating a range of cognitive functions in the individual being tested. To
ensure the validity of the assessments, they are standardised, guaranteeing reliable and stable testing and evaluation
across different environments and individuals. The scope of assessment is broad, covering memory capacity, attention,
language function, visual abilities, and executive function, thus providing a comprehensive and objective evaluation
outcome. Table 2 shows the contents of some of the more mainstream evaluation scales and compares the differences
in their presentation. Given that AD is a longitudinal study, related assessments must be repeated over time to monitor
changes in patient metrics, ensuring the tracking of AD’s real-time progression [11].

Commonly used assessment tools in the field of AD include the Mini-Mental State Examination (MMSE) [11],
Montreal Cognitive Assessment (MoCA) [75], and the Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog) [125]. These primarily focus on a range of cognitive-related issues and tests, though they do not
encompass all potential evaluative studies. The MMSE mainly assesses general cognitive function, while the MoCA
focuses on the detection of MCI; the ADAS-Cog is specifically designed for evaluating cognitive functions related to
AD. Table 2 below presents the assessment items and methodologies associated with these three tools.
3.6. Other Modalities Data

As research advances, an increasing number of physiological markers have been identified as associated with
AD, or as potential aids in AD diagnosis. Park et al. [121] confirmed the effectiveness of virtual reality (VR)-based
functional indicators (such as hand movement velocity, scanning path length, and completion time) as biomarkers. They
integrated these indicators with MRI data in a multimodal analysis, achieving superior diagnostic results compared to
using MRI alone. Similarly, previous research [135] has established a link between abnormal eye movements and
AD progression. Inspired by these findings, Yin et al. [179] employed eye-tracking data for cloud-based screening of
abnormal eye movements via Internet of Things (IoT), successfully identifying AD. Collectively, these studies and
associated clinical assessments indicate a clear relationship between external symptomatic manifestations and disease
progression. Consequently, pathological diagnosis no longer solely depends on traditional methods, opening critical
avenues for future research and more accessible clinical application.
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Table 2
Common Mental Test Evaluate Factor

Cognitive

Domains

Mini-Mental State Examination

(MMSE)

Montreal Cognitive Assessment

(MoCA)

Alzheimer’s Disease

Assessment Scale-Cognitive

Subscale (ADAS-Cog)

Focus Assesses general cognitive function

Detect mild cognitive impairment

(MCI) and assess various cognitive

functions.

Evaluate cognitive function in

Alzheimer’s disease

Orientation Questions about time and place Null Null

Attention
Tasks like serial subtraction and

repeating sentences

Tasks assessing sustained attention

and concentration

Calculation

Simple arithmetic tasks

Null Null

Memory
Immediate and delayed recall

of words
Recall of words after a delay Recall of words and stories

Language
Naming objects, following

commands, and repetition

Verbal fluency tasks and

comprehension

Word-finding, naming, and

following commands

Visual-Spatial

Skills
Copying a simple design

Tasks that involve drawing and

visual problem-solving.

Executive

Function

Drawing a clock or connecting

numbers and letters

Naming

Null

Identifying animals in pictures

Null

4. Multimodal Fusion
While the last part discussed the various modalities available for AD research, this part shifts focus toward how

these heterogeneous data sources can be effectively combined through multimodal fusion frameworks. Multimodal
Fusion holds a wide range of definitions in different research fields and scenes, typically representing a kind of
approach to analysing multimodal data. It should first be clarified that the concept of "fusion" discussed in this paper
mainly serves the topic of multimodal analysis in ML, rather than generalised image or data fusion techniques. The
application of multimodal data fusion in the field of ML primarily focuses on the joint analysis of data, with the goal
of integrating the distinct information expressed by multiple modalities. This fusion leverages the complementary
nature of the data to enable more comprehensive and precise analysis for downstream tasks. Multimodal research has
broad applicability across various industries, and even within the medical domain, numerous specialised branches exist
depending on the target condition or application. Previous reviews have typically provided comprehensive analyses
from a macro perspective, summarizing multimodal approaches according to criteria such as learning paradigms
(supervised, unsupervised, or semi-supervised), data types, and traditional fusion strategies [35, 190]. Despite these
reviews offering detailed and systematic frameworks in a wide range of aspects, these works still struggle to deliver
precise guidance regarding the applicability or practical utility of specific models to targeted diseases due to inherent
task-specific differences. Here, our work narrows the scope explicitly to multimodal research related to AD. By closely
examining mainstream approaches within the AD domain, we systematically summarise these studies, which used
network modules and architectural strategies, and classify them according to their practical applications.
4.1. A Refined Framework for Classifying Fusion Methods

Fundamental fusion strategies were originally defined within traditional ML frameworks, categorizing multimodal
integration according to the stage at which fusion occurs. Atrey et al. [12] were among the first to clearly categorise
fusion methods into early (feature-level) fusion and late (decision-level) fusion, and a combined approach known
as hybrid fusion. This classification standard has been widely recognised and adopted, serving as the foundation
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for many subsequent studies. In addition, some early-stage surveys generally regarded neural networks as a minor
subcategory within multimodal fusion methods in traditional ML [13], where they carried the classification forward
into the evaluation of various DL architectures. It is undeniable that, while DL has rapidly gained prominence since
around 2010 due to its convenience and powerful data analysis capabilities, traditional ML continues to hold unique
advantages, especially in medical contexts that require high interpretability of data and features. However, given the
rapid growth and specialised functions of contemporary deep neural networks, this topic warrants independent analysis.

Recent works began to explicitly separate it from traditional ML within multimodal analysis. For example, Elazab
et al. [44] provided a comprehensive analytical framework that examined Alzheimer’s disease diagnosis from both ML
and DL perspectives, distinguishing between single- and multimodal studies. Their survey offered a detailed summary
of existing network architectures and methodological approaches, while highlighting the transition toward multimodal
strategies and the key roles of feature selection, regularisation, and model optimisation in this process. While this
separation marks a clear step forward, it also reveals the limitations of current taxonomies. A key divergence between
DL and ML challenges the traditional classification framework, that is DL approaches eliminate the need for manual
feature extraction. DL methods inherently automate feature extraction within neural network architectures, directly
affecting subsequent fusion modules and downstream analytical tasks. Consequently, the fusion outcomes are no longer
exclusively determined by fusion modules alone; feature extraction mechanisms within networks also play a critical
role, challenging traditional conceptions of multimodal fusion processes.

Following traditional categorisation schemes, both feature extraction and subsequent fusion steps would be broadly
classified as “feature-level fusion.” Yet, this classification is overly coarse and neglects the specific architectural designs
and functionalities distinctive to DL. Similar limitations apply to traditional ML frameworks, where the developed
architectures have increasingly expanded beyond mere classification, assuming additional roles and complexities.
Building upon this observation, this paper introduces a novel, more fine-grained classification scheme for multimodal
fusion. It redefines fusion according to the operational roles performed within model architectures, aiming to
systematically analyse and distinguish existing fusion strategies and architectures within both traditional and DL
contexts from a refined and comprehensive perspective.
4.2. Traditional Machine Learning Fusion

Traditional ML methods rarely use the raw representation of data directly as model input. Instead, they rely
on manually engineered feature extraction and selection processes, heavily dependent on expert domain knowledge
[43]. For example, in medical imaging analysis, ROIs are often manually defined, and in clinical data analysis,
highly relevant variables are selectively identified through expert input. As a result, traditional ML models typically
involve limited network components, with the major workload focused on utilizing algorithms, such as SVM, Random
Forest, and Logistic Regression, to analyse these manually prepared feature sets and subsequently produce the final
outcomes. This situation lasted until about 2010, with the introduction of multimodal analysis [67]. It causes modalities
applied in AD research to become more complex, and the demand for data processing increased; traditional network
architectures struggled to meet the growing analytical needs and challenges posed by the data. Consequently, more
diverse architectures were proposed to address these complex data issues and feature selection strategies, leading
to a situation where earlier classification methods could no longer fully reveal the variety of contemporary network
architectures. Baltrusaitis et al. [13] further expanded this classification: Because the initial classification standard does
not depend on specialised network architectures, they were labelled as Model-Agnostic Approaches. In contrast, fusion
methods that include specialised feature-processing modules are categorised as Model-Based Approaches. Notable
examples of these include MKL, Multi-Task Learning (MTL), and Graphical Networks(GN). This framework provides
intuitive and effective guidance, offering significant value to our work. In fact, even within Model-Based Approaches,
it is still possible to divide methods into early and late stages based on the fusion phase and objects involved [148, 42].
Therefore, in this paper, we will not discuss this categorisation separately but will integrate it as a fusion strategy
or stage in a unified discussion with other methods. Based on this, the section will expand on the current widely
accepted classification methods, exploring variations of models within different categories, providing more detailed
classification criteria, and analysing the advantages and disadvantages of each approach.
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Multimodal Fusion
Approach

Machine Learning
Fusion Approaches

Feature Engineering
Based Approaches

El-Sappagh. S [43] [41] Lin. H [91] Reas. E. T [130] Shi. Y [141] Lin. W [92] Bi. X [17] Minhas. S [112]
Gray. K. R [60] Chen. Z [26] Li. Q [88] Zhang. D [184] Dai. Z [29] Ritter. K [131] Xu. L [175]
Polikar. R [126] Tong. T [152] Zhu. X [199] Soladoye. A [142]

Module-based
Approaches

Multi-kernel
Learning

Donini. M [34] Young. J [180] Zhang. Y [189] Shao. W [138] Wang. M [166]
Chen. H [22] Zu. C [200] Jie. B [78] Zhang. D [185] [186] Hao. X [66]
Liu. F [96] Ahmed. O. B [8] Peng. J [122] Dyrba. M [38] Liu. F [94]
Hinrichs. C [67] Zhang. D [183] Wee. C. Y [169]

Multi-task
Learning

Tabarestani. S [148] El-Sappagh. S [42]Shao. W [138] Zu. C [200]
Jie. B [78] Zhang. D [185] Hao. X [66] Zhang. D [186] Liu. F [94]
Suk. H. I [146] Zhu. X [198]

Graph
Learning Jin. Y [79] Shao. W [138] Wang. M [166] Dyrba. M [39]

Other
Module

Extreme Learning Machine: Kim. J [82] [93]
Latent Space Embedding: Zhou. T [194] Ning. Z [116]

Multi-module
Approach

Shao. W [138] Wang. M [166] Zu. C [200] Jie. B [78] Zhang. D [185]
Hao. X [66] Zhang. D [186] Liu. F [94] Elazab. A [45]

Deep Learning
Fusion Approaches

Feature Extraction
Focus Approaches

Image Data
Approaches

Hl. Durga Supriya [68] Wang.C [164] Eslami. M [49] Park. B [121]
Abdelaziz. M [4] Velazquez. M [160] Chen. Z [27]
Image Convert Approaches: Wang. Y [168] Song. X [143]
Jia. H [77] Ma. J [105]
Patch-wise Approaches: Yu. Q [181] Tang. C [150] Liu. M [98]
Lu. D [103] Leng. Y [86] Vu. T. D [163] Chen. J [23] Liu. F [95]
Suk. H. I [147] Gu. S [63]

Non-image
Data Approaches

Zhou. Y [197] Liu. S [100] Qiu. Z [128] Wang. Q [167]
Apprised Method: Wang.C [164] Qiu. S [127] Tu. Y [153] Zhang. F [187]
Akkaya. U. M. [9] Chen. J [23] Ortiz-Perez. D [120] Chen. Y [24]
Large Language Model Based Method: Mo. T [113] Chen. C [21]
Zhan. M [182]

Time Series
Approaches

Tabarestani. S [149] El-Sappagh. S [40] Abuhmed. T [7] Lee. G [85]
Rahim. N [129]

Modality Fusion
Focus Approaches

Space Embedding Jia. H [77] Zhou. T [195] Marti. J [109] Chen. Z [25] Liu. Y [101]

Attention/
Transformer

Transformer Based: Qiu. Z [128] Yu. Q [181] Tang. C [150]
Chen. J [23] Yao. Z [178]
Attention Based: Lu. P [104] Golovanevsky. M [59] Wang. Q [167]
Abdelaziz. M [3] Ortiz-Perez. D [120] Zhou. W [196] Hu. X [72]

Graph Neural
Network Abuhantash. F [6] Song. X [143] Kim. S [83]

others Thung. K. H [151]

Hybrid Approach Yu. Q [181] Tang. C [150] Jia. H [77] Marti. J [109] Liu. M [98] Chen. J [23] Shi. J [140] Song. X [143]
Fedorov. A [51] Gao. S [55] Wang. Q [167] Ortiz-Perez. D [120]

Image Fusion
Approaches Dwivedi. S [37] Goel. T [58] Choudhury. C [28] Beatrice. S [14]

Figure 4: Taxonomy of multimodal fusion methods. The first-level classification divides approaches into three main
categories: ML–based fusion, DL–based fusion, and image-level fusion. ML fusion methods are further organised by the
complexity and autonomy of their frameworks, progressing from feature-engineering-based models to modular and hybrid
architectures. DL fusion methods are classified according to their core functional modules, highlighting distinct design
focuses such as feature extraction, modality interaction, and hybrid integration. Image fusion methods, presented as a
complementary category, focus on pixel-level synthesis to generate composite images that integrate information across
modalities.
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Table 3
ML Based Multimodal Analysis Method: Part I

Author Year Modalities Approach Applied Module Task
Evaluation Matrix(%)
SEN SPE ACC

Tabarestani, S [148] 2020
MRI, PET, CSF, Cognitive
assessment tests(COG)

Module-Based MTL Regression NA NA NA

El-Sappagh, S [42] 2021
MRI, PET, Cognitive and
functional assessment, Genetic

Module-Based MTL NC vs MCI vs AD NA NA 93.30

Donini M [34] 2016 MRI, Clinical Score(CS) Module-Based MKL NC vs AD NA NA 92.38

Young, J [180] 2013
MRI, FDG-PET, CSF,
Genetic

Module-Based MKL sMCI vs cMCI 90.00 52.40 72.20

Zhang, Y [189] 2021 sMRI, fMRI, PET, DTI Module-Based MKL

NC vs AD
NC vs MCI
MCI vs AD
NC vs MCI vs AD

NA NA

94.58
81.02
89.63
88.54

El-Sappagh, S [43] 2021
CS, disorder
medication history

FE-Based Null
AD vs NC vs
pMCI vs sMCI

NA NA 90.85

El-Sappagh, S [41] 2022
MRI, CSF, CS
neuropsychological
battery markers (NSB)

FE-Based Null
AD vs NC vs
pMCI vs sMCI

84.88 NA 84.95

Chen, Z [26] 2024 sMRI, PET FE-Based Null
NC vs AD
NC vs MCI
sMCI vs pMCI

83.65
65.54
59.80

96.12
63.40
91.42

93.40
64.64
82.39

Jin Y [79] 2016 MRI, PET, CS, Genetic Module-Based GN Regression NA NA NA

Shao, W [138] 2020 MRI, FDG-PET Module-Based MKL,MTL,GN
NC vs AD
NC vs EMCI
EMCI vs LMCI

94.08
86.09
83.84

90.44
78.55
63.26

92.51
82.53
75.48

Wang, M [166] 2023
MRI, PET, Single Nucleotide
Polymorphism (SNP)

Module-Based MKL,GN
NC vs AD
NC vs LMCI
EMCI vs LMCI

97.83
88.46
93.36

94.68
73.16
52.15

96.48
81.35
76.38

Kim, J [82] 2018 MRI, FDG-PET, CSF Module-Based
Extreme Learning
Machine(ELM)

NC vs MCI 75.00 91.92 87.09

Lin, H [91] 2023 MRI, DTI, Genetic FE-Based Null SCD vs NC NA NA 83.13
Reas, E T [130] 2023 MRI, CS, Genetic FE-Based Null Regression NA NA NA
Park, B [121] 2024 MRI, VR FE-Based Null NC vs MCI 100.00 90.90 94.40

Zu, C [200] 2016 MRI, FDG-PET Module-Based MKL,MTL
AD vs NC
NC vs MCI
ncMCI vs cMCI

95.10
84.95
66.74

96.54
70.77
71.43

95.95
80.26
69.78

Shi, Y [141] 2019 MRI, PET, CSF FE-Based Null
NC vs AD
NC vs MCI

95.37
84.75

94.67
73.02

95.00
80.71

Chen, H [22] 2022 fMRI, sMRI, DTI Module-Based MKL SCD vs NC 80.56 97.14 88.73

Jie, B [78] 2015 MRI, FDG-PET Module-Based MKL,MTL
NC vs AD
NC vs MCI
ncMCI vs cMCI

94.90
85.86
64.65

95.00
66.54
71.79

95.03
79.27
68.94

Li, Q [88] 2017 sMRI, PET FE-Based Null
NC vs AD
NC vs MCI

99.25
75.00

95.61
80.70

97.36
77.66

Zhang, D [185] 2012 MRI, FDG-PET, CSF Module-Based MKL,MTL

NC vs AD
NC vs MCI
ncMCI vs cMCI
Regression

NA NA

93.30
83.20
73.90
NA

Hao, X [66] 2020
MRI, FDG-PET
Voxel-based
Morphometry(VBM)

Module-Based MKL,MTL,GN
NC vs AD
NC vs MCI
ncMCI vs cMCI

98.43
94.04
67.44

96.73
66.15
85.54

97.60
84.47
77.76

Lin, W [92] 2021 MRI, PET, CSF, Genetic FE-Based Null
NC vs AD vs MCI
NC vs AD vs
pMCI vs sMCI

NA NA
66.70
57.30

Zhang, D [186] 2011 MRI, FDG-PET, CSF Module-Based MKL
NC vs AD
NC vs MCI
ncMCI vs cMCI

93.00
81.80
NA

93.30
66.00
NA

93.20
76.40
NA

Bi, X [17] 2020 fMRI, SNP FE-Based Null NC vs AD NA NA 90.00
Liu, F. [96] 2013 MRI, CSF Module-Based MKL NC vs pMCI 93.26 87.49 90.56
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Table 4
ML Based Multimodal Analysis Method: Part II

Author Year Modalities Approach Applied Module Task
Evaluation Matrix(%)
SEN SPE ACC

Minhas, S [112] 2017 MRI, CS FE-Based Null sMCI vs pMCI 85.45 92.31 84.29
Polikar, R [126] 2010 MRI, PET, EEG FE-Based Null NC vs AD NA NA 85.50
Hinrichs, C. [67] 2009 MRI, PET Module-Based MKL NC vs AD 78.52 81.76 81.00

Zhang, D [183] 2011 MRI, PET, CSF Module-Based MKL
NC vs AD
NC vs MCI

93.10
86.50

92.50
84.90

92.80
85.70

Tong, T [152] 2017
MRI, FDG-PET, CSF,
Genetic

FE-Based Null
NC vs AD
NC vs MCI
NC vs AD vs MCI

88.90
85.10
NA

94.70
67.10
NA

91.80
79.50
60.20

Wee, C. Y [169] 2012 rs-fMRI, DTI Module-Based MKL NC vs MCI NA NA 96.30
Dyrba, M [39] 2020 MRI, FDG-PET, AV45-PET Module-Based GN Regression NA NA NA

Zhou, T [194] 2019 MRI, PET, Genetic Module-Based
Latend Space
Embedding

NC vs AD vs
sMCI vs pMCI

NA NA 70.20

Zhu, X [199] 2014 MRI, PET, CSF FE-Based Null

NC vs AD
NC vs MCI
ncMCI vs cMCI
Regression

95.70
98.00
48.50
NA

98.60
60.10
94.40
NA

95.90
82.00
72.60
NA

Zhu, X [198] 2015 MRI, PET Module-Based MTL
NC vs AD vs
ncMCI vs cMCI

NA NA 61.06

Ning, Z [116] 2021 MRI, PET Module-Based
Latent Space
Embedding

NC vs AD
NC vs MCI
sMCI vs pMCI

95.70
NA
NA

97.50
NA
NA

96.50
79.90
82.40

Gray, K. R [60] 2013 MRI, PET, CSF, Genetic FE-Based Null
NC vs AD
NC vs MCI
sMCI vs pMCI

87.90
77.50
57.10

90.00
67.90
58.70

89.00
74.60
58.00

Dai, Z [29] 2012 MRI, rs-fMRI FE-Based Null NC vs AD 87.50 90.91 89.47
Ritter, K [131] 2015 MRI, PET, CS, Genetic FE-Based Null sMCI vs pMCI NA NA 73.00

Xu, L [175] 2015 MRI, PET FE-Based Null
NC vs AD
NC vs MCI
sMCI vs pMCI

95.60
66.40
74.10

94.00
82.10
81.50

94.80
74.50
77.80

Dyrba, M [38] 2015 MRI, rs-fMRI, DTI Module-Based MKL NC vs AD NA NA 85.00

Liu, F [94] 2014 MRI, PET Module-Based MKL,MTL
NC vs AD
NC vs MCI
sMCI vs pMCI

94.71
84.85
67.83

94.04
67.06
70.00

94.37
78.80
67.83

Suk, H. I [146] 2014 MRI, PET, CSF Module-Based MTL

NC vs AD
NC vs MCI
MCI vs AD
ncMCI vs cMCI

94.00
88.89
46.67
59.00

98.33
67.33
94.00
88.00

95.27
80.07
74.60
72.02

Soladoye, A [142] 2025 Multi-modal CS FE-Based Null NC vs AD 94.00 NA 95.00
Lin, W [93] 2020 MRI, PET, CSF, Genetic Module-Based ELM sMCI vs pMCI 85.45 92.31 84.29

Ahmed, O. B [8] 2017 MRI, DTI, CSF Module-Based MKL
NC vs AD
NC vs MCI
MCI vs AD

82.92
71.58
65.62

97.20
86.05
81.33

90.20
79.42
76.63

Zhang, D [184] 2011 MRI, PET, CSF FE-Based Null NC vs AD 85.70 94.30 89.60

Peng, J [122] 2019 MRI, PET, SNP Module-Based MKL
NC vs AD
NC vs MCI
MCI vs AD

97.30
85.60
65.90

94.90
69.80
82.70

96.10
80.30
76.90

Compared to early ML methods, the increasing complexity of data and depth of analysis has resulted in an
expanding volume of data that the models must process, creating a computational burden. Hence, feature selection, one
of the key steps in the traditional ML workflow, has been emphasised. Initially, a manual step in traditional ML, feature
selection has become increasingly difficult to manage manually as data volumes grow. Consequently, the function
of feature selection gradually shifts to relying on network architecture, which also improves the development of the
network structure. The complexity of networks means that current research typically does not rely on just one decision-
making strategy but instead adopts multiple methods simultaneously. As such, simple definitions are insufficient to
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classify the current approaches. In this context, we categorise networks based on their structure and the specific tasks
they are designed to address: Feature Engineering (FE) based network, used to call the methods that follow traditional
classification strategies, where feature extraction and selection depend on manual efforts; Module-based network,
which includes feature selection, fusion, and other processes. Table 3and Table 4 display recent works, containing
their methods and model performance as reference.
4.2.1. Feature Engineering-Based Approaches

FE-Based Approaches contains the methods that require complete handcrafted work on the data preprocessing,
including feature extraction and selection. Traditional classification strategies(Feature-level, decision-level, and hybrid
fusion) are performed more intuitively and clearly in this category. The FE-based approach does not involve complex
network modules or architectures for additional feature processing or analysis, but is primarily influenced by manual
feature extraction techniques and the subsequent work of classifiers. Early fusion participates by integrating the
extracted features (for example, by directly concatenating or using simple mathematical methods for correlation),
while late fusion occurs at the output stage, independently analysing and making judgments for each modality, then
combining the results of these analyses for the final decision. As stated in [13], these methods do not depend on network
architectures and do not impose any specific requirements on subsequent classifiers or regressors, making them the most
intuitive and easily applied fusion methods in research. Figure 5 shows a general process of the FE-based ML.

Regression

Classification

Handcraft Work

Feature
Extraction

Feature
Selection

Machine-
Learning
Classifier

Output

ConcatImage
Data

Non-image
 Data

Figure 5: Feature-engineering-based ML framework for multimodal analysis. In early-stage AD research, both feature
extraction and feature selection depend on handcrafted processes, such as manual region measurement, statistical filtering,
or clinical variable selection. The ML component functions primarily as a classifier, integrating pre-engineered features from
different modalities to produce the final diagnostic or predictive outcome.

Nevertheless, the simplicity inherent in traditional ML comes with challenges, notably limiting the model’s
capability to deeply interpret feature structures and effectively identify complementary or underlying modal relation-
ships. To mitigate these shortcomings, researchers have pursued advanced improvements focused primarily on the
feature extraction phase through manual engineering strategies. For instance, Reas et al. [130] developed a survival
analysis-driven architecture employing Cox regression for feature selection and integration, thereby maintaining
interpretability while improving clinical applicability. In contrast, Shi et al. [141]introduced an innovative non-linear
feature extraction method by computing Pearson correlation coefficients between features and their power-transformed
variants, systematically capturing non-linear interdependencies. This approach constructs a novel high-dimensional,
non-linearly coupled feature space. These methods prioritise sophisticated feature processing techniques designed
explicitly to enhance modality interactions or uncover hidden intra-modal characteristics, ultimately improving the
expressive power of the model. Another strategy involves improving the performance of the model by modifying
the classifier structure. For example, Lin et al. [92] introduced a unified data processing approach during the feature
extraction phase using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Based on LDA
scores, they assessed disease progression indicators and proposed a novel binary Extreme Learning Machine (ELM) to
perform multi-level classification using a decision-tree strategy. This method yielded reliable results in more complex
three-class and four-class tasks. Additionally, Bi et al. [17] performed feature integration through correlation analysis,
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followed by deepening the feature matrix with a newly improved clustering-based Evolutionary Random Forest, which
also produced excellent results. Besides, recent work [142] reinforces this advantage of interpretability. They proposed
a composite feature selection strategy that pipelines the feature selection process and introduces global and local cross-
validation, ultimately providing effective guidance and detailed implementation planning for future work in conjunction
with clinical scenarios.

At the early stage, due to the relatively shallow depth and technological limitations that hinder the adoption of
more complex network architectures, most work in this area still relies on manual processes and correlation calculation
methods. It is based on a mathematical theory, which requires complex handcraft to process the features. In contrast,
the primary goal of the network, therefore, is simply to perform the final analysis based on the features that have
been extracted. While these methods remain valuable for certain tasks, their inability to explore deeper intermodal
relationships or adapt to more intricate data patterns limits their applicability in addressing more complex research
questions. However, this does not mean that traditional methods have become obsolete. Compared with subsequent
work, interpretability has always been a huge advantage of these methods. In disease fields that emphasize clinical
analysis and pathological research, traditional ML has always been an effective competitive force.
4.2.2. Module-Based Approaches

The biggest difference from the FE-based approach is that features are no longer simply processed manually and
directly input into classifiers for analysis. Instead, they are further integrated through specific network modules [8].
In the module-based approach, feature selection, which was originally a manual process, is now transferred to the
network itself [185]. Compared to previous methods that used a specific architecture for data analysis, researchers
have introduced composite multi-network architectures to select and integrate the extracted features [138, 200]. This
not only increases the volume of data that can be processed but also enhances the ability to mine latent correlations
between the data, thus improving model performance. This method breaks from the traditional use of ML methods
as just feature fusion and classification tools, and instead, it focuses more on mining the data’s inherent information
and relationships. Figure 6 shows the transformation of the research core in the workflow. ML begins to bear a greater
proportion of data analysis and turns into a complex composite structure. Currently, the most commonly used modules
include MKL, MTL, and GN, which are applied at different stages, such as feature selection, feature fusion, or both
tasks simultaneously.

Network ProcessHandcraft Work

Feature
Extraction

Feature
Selection

Fusion
Block Classifier

Source data
modalities

Image
Data

Non-image
 Data

Regression

Classification

Output

Figure 6: Module-based ML framework for multimodal analysis. In this category, ML algorithms begin to play a more
active role beyond simple classification. Instead of relying solely on handcrafted features, the model incorporates functional
modules to identify and combine the most relevant representations from each modality. This design allows ML to assume
greater responsibility for data integration and analysis, forming a transitional stage between traditional feature-engineering
workflows and modern DL architectures.

Multi-Kernel Learning.Among them, the most widely used method is MKL. Hinrichs, C. et al. [67] were the first
to introduce the MKL method to multi-modal AD research, and they proposed the EasyMKL framework, which is
based on robustness and the suppression of abnormal information. By assigning different modalities to different kernel
spaces and distributing weights, this laid a solid foundation for subsequent multi-modal studies. The MKL method can
be seen as an extension of SVM, with the key idea being the linear combination of multiple kernel functions to form
a new kernel.
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Specifically, a certain modality or feature is represented as an independent kernel, where different kernels focus
on the feature information of their respective data and project it into a high-dimensional space. Afterward, a classifier
calculates the weights and margins of the kernels to select those that contribute most to the final result. Compared
to other methods, MKL can be viewed as directly integrating both feature selection and feature fusion, with a more
intuitive focus on the characteristics of multi-modal data itself. It is easy to use and can be simply extended to handle
varying numbers of data or modalities without the need for complex module designs. For this reason, MKL has become
one of the most common multi-modal fusion modules in the AD research field.

To date, MKL has been widely adopted in various AD studies as a mainstream multi-modal fusion module, and
several variations of the method have been developed. Donini, M. [34] et al. improved upon the EasyMKL framework
by integrating feature selection methods, further refining the kernel design strategy. They treated each voxel and
clinical feature as independent kernels and applied sparse feature selection to allocate kernel weights, selecting the
most informative feature sets. This approach allows for more detailed handling of complex high-dimensional features
and improves the model’s sensitivity to different regions and information within modalities. It also enhances the model’s
interpretability and ability to process large-scale data. This method includes both feature selection and feature fusion
tasks, producing a final result for classification. In contrast, Zhang, Y. [189] proposed to integrate all multi-modal
features into the same kernel, using the 𝑙2,1-norm for feature selection. Different kernels ensured the diversity of their
analysis, making the model robust to various types of data distributions. Moreover, compared to traditional MKL
methods, this approach focuses more on the relationships between modalities, rather than within a single modality,
and, compared to the voxel and feature-based multi-kernel setups, this MKL reduces computational cost. However,
this does affect the model’s ability to judge the influence of a single modality, reducing interpretability. The same
𝑙2,1-norm is also used in [96], which further proposes using Random Fourier Features (RFF) to approximate Gaussian
kernels, reducing the model’s computational complexity.

Clearly, MKL is flexible and easy to implement. By adjusting the number and distribution of kernels, the model
can dynamically emphasise specific modalities or feature types, enabling researchers to focus on targeted objectives. In
addition, since the MKL loss function is typically convex, it guarantees convergence to a global optimum, simplifying
the training process [13]. However, its main limitation lies in the manual design and allocation of kernels. An
inappropriate kernel choice can lead to suboptimal or even adverse multimodal fusion performance.

Multi-Task Learning. MTL shares some similarities with MKL. In fact, Baltrusaitis, T. et al. [13] categorised
both MKL and MTL under kernel-based methods, proving their connection. However, this classification is somewhat
misleading, as the core component of MTL is the task assignment strategy and the information sharing between related
tasks, rather than focusing on the influence of a particular modality or feature. In fact, aside from kernel-based multi-
task methods, multi-task architectures have shown advantages in various applications [148]. Even in AD diagnosis
research, MTL frameworks focus on different aspects, such as explaining task relationships, feature selection [200],
and feature learning [42]. These methods have now been successfully applied to longitudinal data, advancing research
in neurodegenerative diseases [192].

Suk, H. I. et al. [146] applied MTL to the AD multi-classification task, treating each task as a cluster and learning the
importance of different features for each cluster while capturing shared features important for different tasks to assist in
subsequent classification. El-Sappagh, S. et al. [42] used an innovative architecture, moving away from the traditional
MTL framework. They built a multi-layer network architecture that focuses on different tasks: the first layer handles
the multi-classification task, while the second layer deals with the binary classification task, predicting the progression
of patients from MCI to AD over three years. Like traditional MTL methods, both tasks share feature inputs and are
capable of extracting shared features. Additionally, their other work applied MTL methods to multi-modal data analysis
(e.g., MRI, PET) and temporal sequence data (e.g., baseline, 6 months, and 12 months). This study leveraged MTL’s
advantages in longitudinal research, analysing multi-modal data at different time points, and finally fused the results
at the decision level for the final output [148].

In general, MTL decomposes a complex problem into several related sub-tasks, encouraging shared represen-
tations and mutual knowledge transfer. This strategy enhances both interpretability and performance, as tasks can
reinforce each other through shared learning. Nevertheless, the strength of task relatedness directly determines model
performanc: weakly correlated tasks may cause negative transfer, thereby degrading accuracy. Moreover, conventional
MTL frameworks do not inherently address cross-modal alignment, limiting their ability to capture deeper multimodal
representations.

Graphical Model. Another common method is the GN-based approach. The core of this method is to represent
variables and their interdependencies through graphical structures. In AD research, this can be simply viewed as
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internal nodes representing features, and edges between the nodes indicating correlations between different features
[166]. These methods can be roughly divided into directed and undirected graphs, represented by Bayesian networks
and Markov networks, respectively. For directed graphs, the focus is on internal causal relationships, with edges
indicating the direction of influence between features. In contrast, undirected graphs focus more on the joint probability
distribution of feature sets. Compared to MKL and MTL methods, GN structures offer higher interpretability, providing
intuitive feedback about the dependencies between different features and parameters, which helps to better understand
the relationships and interactions between multi-modal information and the underlying causes of diseases [79].

In contrast to the model improvement strategies of the former approaches, GN methods rely more on inference.
Jin, Y. [79] modified the traditional Bayesian method by proposing a hybrid Bayesian network that uses Conditional
Probability Distributions (CPD) to handle discrete data and Probability Density Functions (PDF) to handle continuous
data, allowing the network to process both types of input information simultaneously. It also defines dependencies
between variables, allowing mutual influence between different types of variables. This approach enables the handling
of heterogeneous multi-modal information and tolerates noise and missing data, reducing the negative impact of
data quality on the network. Dyrba, M. [39] proposed an alternative strategy based on a Gaussian Graph Network,
transforming a directed graph into an undirected one. This focuses on the conditional dependencies between features,
rather than causal relationships. This modification better matches the current state of AD research, as the relationships
between many brain regions are not dependent on causality. This change helps capture those associations more
comprehensively. Notably, Markov networks, another type of undirected graph, are seldom used in AD research because
their primary function is to model sequential and regular changes. They are less effective for complex multi-modal
scenarios and non-linear relationships, which limits their utility in AD research. Therefore, graph-based methods in
AD research mainly focus on Bayesian networks.

Graph-based methods excel at modelling inter-relationships and population structures while maintaining high
interpretability, as they explicitly represent associations among multimodal entities. Such methods are particularly
advantageous for cohort-level or relational studies, where network topology itself conveys diagnostic information.
However, their performance is highly dependent on graph construction: errors in similarity definition or prior selection
can severely impair the model’s learning and output stability. Consequently, these methods often require substantial
domain knowledge to design meaningful graph priors.

Multi-Module Model. The previous section discussed the most commonly used network modules in ML methods.
At the current stage of research, the integration of multiple modules for joint analysis has demonstrated its unique
potential. Zhang, D. et al. [185] introduced a model that simultaneously includes both regression and classification
tasks, proposing the use of MTL as a feature selection module to capture shared features across different task types. The
selected features, along with genetic information, are then fused into a lower-layer multi-task module, which ultimately
completes the prediction task. This architecture significantly enhances the model’s expressiveness and provides an
important reference for subsequent related research. This framework has also become the prototype for several models
in later works [200, 78, 138]. Jie, B. et al. [78] further performed a dialectical analysis of this model, arguing that
the original model lacked the ability to learn and utilise the inherent distributions of each modality. Based on this,
they improved the task allocation of the multi-task module by shifting the focus from downstream tasks to sub-tasks
specific to different modalities. This effectively ensured the preservation of the inherent distribution information of
each modality. Similarly, based on the previous approach, the work of [200] enhanced the robustness of the model
by introducing regularisation terms for labels, strengthening the important relationships between labeled themes (e.g.,
samples belonging to AD or MCI). This was achieved by minimizing the distance between class themes in the feature
space, which in turn enhanced the associations between these themes.

Discussions of relational modelling inevitably involve graph structures. To emphasise the complex relationships
between different ROI and apply these relationships to diagnostic tasks, Shao, W. et al. [138] introduced a hyper-
graph during the feature selection phase. Unlike traditional graph models, hyper-graphs allow each node to connect
to more than two vertices, enabling the modelling of more complex higher-order relationships. They constructed an
independent hyper-graph for each modality to ensure that higher-order relationships were not disrupted, and redesigned
the multi-task feature selection based on the hyper-graph. On the other hand, Hao, X. [66]focused on sample similarity,
proposing the computation of a similarity matrix using the random forest method, followed by feature selection
through a regularisation term, and ultimately leaving the fusion to MKL. The most recent work proposed a multimodal
sparse-similarity-based feature selection strategy, which constructs modality-specific similarity matrices using RF and
constrains the feature selection function through Laplacian regularisation. The selected features are then used for
classification via MKL [45]. This approach jointly learns from both similarity matrices and auxiliary data, enforcing
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shared sparse selection across domains, thereby allowing complex target tasks to benefit from the relevant priors learned
in simpler auxiliary tasks.
4.2.3. Discussion

The classification of traditional ML is built on the development of the model framework. The gradually complex
network architecture begins to be responsible for more functions in the data analysis process, and becomes a series
of complete network modules. From the aforementioned method analyses, with the continuous advancements in
multimodal, these network modules have gradually formed a stable application strategy.

MKL primarily addresses multimodal feature fusion, whereas graph-based architecture and MTL predominantly fa-
cilitate feature selection. The strength of MKL lies in its capacity to accommodate complex, heterogeneous multimodal
inputs by effectively identifying modality-specific kernels, thereby reducing biases due to heterogeneity. Additionally,
MKL employs implicit mappings into shared spaces, effectively capturing complex non-linear relationships and
modality complementarity. In contrast, MTL distinctly focuses on shared multimodal feature extraction, enabling
the discovery of critical biomarkers shared across multiple tasks, thus significantly enhancing interpretability and
generalisation. MTL also benefits from exploiting inter-task correlations, indirectly expanding training resources and
improving feature selection accuracy, especially under conditions of limited sample size. Hyper-graph methods, in
comparison, excel particularly in preserving complex data structures and modelling intricate feature interactions,
surpassing MTL in their capacity to represent higher-order, collective relationships among multimodal features. In
summary, methods characterised by stronger feature interpretability and representational power are generally preferred
for feature selection stages. Conversely, MKL has emerged as the favoured choice for feature fusion modules within
ML, primarily due to its unique ability to effectively handle heterogeneous data and its inherent convenience.

Nevertheless, these methods share several limitations. The most immediate arises from their dependence on
feature engineering. ML-based fusion still relies heavily on handcrafted or statistically pre-selected features, making
performance sensitive to feature-extraction design and limiting scalability across datasets or imaging protocols. Similar
constraints appear at the model-design level: kernel mappings or task relationships must be predefined, which restricts
the capacity to capture deeper hierarchical semantics that naturally emerge in multimodal data. A further limitation
concerns generalisation. Many ML-fusion frameworks are validated on small or single-centre cohorts, and their
performance often deteriorates when applied to unseen or cross-site datasets.

Based on these challenges, several future directions can be outlined. First, deep-learning-based feature extraction
provides a reliable path for improving the representation of input data. Integrating interpretable ML fusion with deep
neural encoders could combine the strengths of both paradigms: interpretability and expressive representation. Second,
a less explored direction involves automated feature and kernel construction, in which the system learns or searches
for modality-specific descriptors, kernels, or projections that should enter the fusion stage. Recent sparse-similarity
MKL and graph-regularised selection methods demonstrate that such automatic construction is feasible for AD cohorts
and can reduce manual dependence on domain-specific feature design [45]. Finally, domain adaptation and transfer
learning should also be considered. Embedding statistical harmonisation and cross-domain transfer mechanisms within
ML pipelines could enhance robustness across imaging sites and demographic cohorts.

In summary, while ML-based fusion offers interpretability and flexibility, it remains constrained by limited
scalability, heavy reliance on manual features, and sensitivity to data heterogeneity. Future research should aim
to bridge ML and DL paradigms through hybrid, explainable, and domain-adaptive frameworks that deliver both
transparency and generalisation in multimodal AD prediction.
4.3. Deep Learning Fusion

The primary distinction between traditional DL and ML arises principally from differences in their input data.
DL networks can be understood as a stack of variant network modules with several functions; the ability to process
raw data and extract features is inherently integrated into their complex architecture. Figure 7 displays the process
and framework of the general DL method on multimodal data analysis. These networks are generally structured in
hierarchical layers, where consecutive layers can be viewed as functional blocks focusing on specific tasks [177]. The
last one or two layers of each block are responsible for outputting data that is then passed on to subsequent layers or
modules, forming an end-to-end integrated architecture [100]. Typically, DL networks consist of three main modules:
the feature extraction module, the feature fusion module and the classification module. These modules are closely
linked, and different strategies or methods for feature extraction can significantly impact the final output features,
thereby influencing subsequent processes like feature combination and fusion analysis. However, feature extraction
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strategies are not entirely independent; they are often influenced or constrained by the nature of the features being used.
Therefore, the overall process of multimodal analysis in DL is tightly interconnected, making it difficult to separate
distinct stages of the process [13]. As the number of modalities and use cases increases, network architectures continue
to evolve rapidly, posing challenges for classification tasks within these networks.
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Figure 7: DL framework for multimodal analysis. DL models directly receive raw multimodal data as input and automatically
perform feature extraction, fusion, and classification within a unified architecture. Unlike ML, which based frameworks and
depend on handcrafted feature engineering, deep networks can hierarchically learn latent representations from both image
and non-image modalities. Modules such as CNNs, transformers, and graph neural networks enable the model to capture
spatial, temporal, and relational dependencies across modalities. Researchers only need to perform basic preprocessing, as
the subsequent learning and decision-making processes are autonomously handled by the network.

To effectively differentiate among existing multimodal fusion methods, we focus on two critical stages of DL:
feature extraction and feature fusion, and further, we propose categorizing these methods accordingly. Deep neural
network architectures enable the analysis of input data using predefined or trained modules, greatly simplifying the
feature extraction process. Figure 7 simply covers the situation of input data and the following data processing channels.
Specifically within AD research, the relevant modalities can be broadly categorised into image and non-image data
types based on their inherent data structures, guiding the feature extraction architectures toward two main categories:
CNN-based networks for image data and Multilayer Perceptron (MLP)-based networks for non-image data. Feature
fusion strategies, on the other hand, exhibit greater diversity. They include both conventional matrix operations (such
as element-wise addition, multiplication, concatenation, and cross-product) and integration methods embedded within
specialised neural network modules. Based on these distinctions, we further subdivide and systematically summarise
strategies and network modules employed at different analysis stages. Adopting a "general-customised" criterion, we
classify and evaluate existing network architectures to highlight their underlying principles and design philosophies.

The definition of the proposed taxonomy can be summarized here: At the feature extraction stage, methods
utilizing predefined networks without modification are categorised as general, while those employing modified or
specifically designed architectures are considered customised. General or standard feature extraction methods refer
to the common approaches for extracting features from each modality. These methods do not require specialised
techniques or significant architectural modifications aimed at enhancing feature representations. For instance, in AD
research, pre-trained CNNs such as ResNet and VGG are often used for image data analysis without needing extensive
adjustments based on the task at hand; Instead, considering the complexity inherent in fusion techniques, conventional
matrix-based strategies are classified as general. Matrix-based strategies do not rely on complex techniques to capture or
learn the relationships, dependencies, or correlations between modalities. Instead, they directly input the fused features
into the downstream classifier. Whereas fusion methods involving specialised neural network modules are designated
as customised, with additional subdivisions provided based on the specific network components used. This structured
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classification facilitates a clearer understanding and comparison of current multimodal fusion approaches in the AD
research field.

Based on these differences, DL methods can be classified according to whether they employ customised techniques
or designs. We classify each study by its primary contribution, that is, the part of the pipeline where the authors
claim novelty or make the largest design choice. When extraction is the main novelty and fusion is standard,
we place the work under feature extraction and annotate the fusion style. When the key contribution is the way
modalities are combined, we place it under fusion and record the extractors used. Table 5, Table 6, and Table 7
display the list of these multimodal research, and using "Customise" and "Normal" tags to recognise the core of
model design. "Customise" at feature extraction means the model under the feature extraction focus approaches;
in contrast, "Customise" at fusion strategy column means the model belongs to modality fusion focus approaches.

Table 5: DL Based Multimodal Analysis Method: Part I
Author Year Modalities

Feature
Extraction

Fusion
Strategies Tasks Evaluation Matrix(%)

(Normal / Customise) SEN SPE ACC
Leng, Y. [86] 2023 sMRI, FDG-PET Customise Normal NC vs AD

NC vs SMC
97.22
72.15

98.21
85.29

97.67
81.63

Qiu, S. [127] 2022 MRI, non-image Customise Normal
NC vs AD vs
MCI vs nADD
AD vs ADD

77.10
75.30

89.50
75.60

80.40
77.30

Venugopalan, J. [161] 2021 MRI,SNP, Electronic
Health Records (EHR) Normal Normal NC vs AD vs MCI 78.00 NA 78.00

Tabarestani, S. [149] 2019 MRI, PET, CSF, CS Customise Normal NC vs AD vs MCI 84.00 NA 84.00
Velazquez, M. [160] 2022 DTI, EHR Customise Normal EMCI-nc vs EMCI-c 100.00 98.60 98.81
Zhou, Y. [197] 2024 Genetic Customise Normal Regression NA NA NA

Dwivedi, S. [37] 2022 MRI, FDG-PET Normal Normal
NC vs AD
NC vs MCI
MCI vs AD

97.00
97.00
96.00

97.00
91.00
99.00

97.00
94.00
97.50

Vu, T. D. [163] 2017 MRI, PET Customise Normal NC vs AD
NC vs MCI NA NA 91.14

89.20
Goel, T. [58] 2023 MRI, PET Normal Normal NC vs AD vs MCI 95.33 96.17 95.89

Liu, S. [100] 2015 MRI, PET Customise Customise

NC vs AD
NC vs MCI
ncMCI vs cMCI
NC vs AD vs
ncMCI vs cMCI

95.93
97.91
68.04
53.65

98.53
67.04
86.81
85.05

97.13
87.24
78.88
57.00

Shi, J. [140] 2017 MRI, PET Customise Customise
NC vs AD
NC vs MCI
ncMCI vs cMCI

95.53
97.91
68.04

98.53
67.04
86.81

97.13
87.24
78.88

Ma, J. [105] 2022 sMRI, fMRI Customise Normal

NC vs AD
NC vs MCI
MCI vs AD
ncMCI vs cMCI
NC vs AD vs
ncMCI vs cMCI

NA NA

93.89
89.83
88.62
84.97
86.51

Fedorov, A. [51] 2021 MRI Customise Customise NC vs AD NA NA 84.10

Chen, Z. [25] 2023 MRI, PET Normal Customise
NC vs AD
NC vs MCI
sMCI vs pMCI

89.00
69.70
42.50

98.20
64.00
95.30

94.70
67.10
80.20

Lee, G. [85] 2019 MRI, CSF, CS, DD Customise Normal ncMCI vs cMCI 84.00 80.00 81.00
Rahim, N. [129] 2023 MRI, CS, DD Customise Normal NC vs AD 92.00 NA 96.00
Abuhmed, T. [7] 2021 MRI, FDG-PET, CS,

DD, NSB Customise Normal NC vs AD vs MCI
Regression

88.60
NA NA 90.50

NA
Liu, Y. [101] 2021 MRI, PET Normal Customise NC vs AD vs MCI NA NA 83.6
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Table 6
DL Based Multimodal Analysis Method: Part II

Author Year Modalities
Feature
Extraction

Fusion
Strategies Tasks

Evaluation Matrix(%)

(Normal / Customise) SEN SPE ACC

Akkaya, U. M [9] 2023 Genetic Customise Normal
NC vs AD
NC vs MCI
MCI vs AD

83.00
73.00
73.00

NA
83.00
77.00
79.00

Wang, Y [168] 2018 fMRI, DTI Customise Normal NC vs MCI vs AD NA NA 92.06

Yu, Q [181] 2024 sMRI, CS, Genetic Customise Customise
NC vs AD
sMCI vs pMCI

96.00
75.00

96.00
76.00

96.00
75.00

Eslami, M [49] 2023
MRI, PET, COG, NTS,
CSF,Genetic, Age

Customise Normal

NC vs AD vs
MCI
NC vs AD vs
ncMCI vs cMCI
vs others

NA NA
82.00

68.00

Tu, Y [153] 2022 MRI, CS, Genetic Customise Normal
NC vs AD
sMCI vs pMCI

97.00
91.00

93.00
88.00

96.00
87.00

Abdelaziz, M. [4] 2021 MRI, PET, SNP Customise Normal
NC vs AD
NC vs sMCI
NC vs pMCI

97.78
92.65
97.72

98.76
93.57
97.58

98.22
93.11
97.35

Tang, C. [150] 2023 MRI, PET Customise Customise

NC vs AD
NC vs MCI
MCI vsAD
NC vs AD vs MCI

97.96
98.52
94.25
98.65

99.54
98.61
98.81
99.34

99.04
98.57
97.43
98.72

Thung, K. H. [151] 2017
MRI, PET,
Genetic, Demographic

Normal Customise NC vs AD vs MCI NA NA 65.8

Lu, D. [103] 2018 sMRI, FDG-PET Customise Normal
sMCI vs pMCI
NC vs pNC/others

79.69
86.50

83.84
86.30

82.93
86.40

Golovanevsky, M. [59] 2022 MRI, Genetic, CS Normal Customise NC vs AD vs MCI NA NA 96.88

Jia, H. [77] 2022 fMRI, sMRI Customise Customise

NC vs SMC
NC vs MCI
SMC vs MCI
SMC vs AD
MCI vs AD
NC vs AD

100.00
93.33
100.00
87.50
90.00
100.00

95.00
90.00
87.50
100.00
100.00
80.00

91.30
92.00
94.44
94.44
95.00
92.00

Martí-Juan, G. [109] 2023 MRI, CS Customise Customise Regression NA NA NA

Zhang, F. [187] 2019 MRI, PET Customise Normal
NC vs AD
NC vs MCI
MCI vs AD

96.58
90.11
97.43

95.39
91.82
84.31

98.47
85.74
88.20

Liu, M. [98] 2018 MRI, FDG-PET Customise Customise
NC vs AD
NC vs sMCI
NC vs pMCI

92.05
81.08
63.07

93.94
84.31
67.31

93.26
82.95
64.04

Suk, H. I [147] 2014 MRI, PET Customise Normal
NC vs AD
NC vs MCI
sMCI vs pMCI

94.65
95.37
48.04

95.22
65.87
95.23

95.35
85.67
75.92

Abuhantash, F. [6] 2024 EHR, CS, DD Normal Customise

NC vs AD
NC vs MCI
MCI vs AD
NC vs AD vs MCI

NA NA

99.00
94.00
93.00
98.00

Song, X. [143] 2022 fMRI, DTI Customise Customise

NC vs SMC
NC vs EMCI
NC vs LMCI
SMC vs EMCI
SMC vs LMCI
EMCI vs LMCI

77.20
82.50
92.70
100.00
100.00
93.70

97.50
95.70
95.70
75.90
79.50
89.50

93.20
91.10
94.20
91.50
95.70
92.40
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Table 7
DL Based Multimodal Analysis Method: Part III

Author Year Modalities
Feature
Extraction

Fusion
Strategies Tasks

Evaluation Matrix(%)

(Normal / Customise) SEN SPE ACC
Yao, Z [178] 2025 MRI, PET Normal Customise NC vs AD 98.80 96.90 98.30
Gu, S [63] 2025 MRI, CS Customise Normal ncMCI vs cMCI 85.14 NA 86.89

Abdelaziz, M [3] 2025 MRI, PET Normal Customise
NC vs AD
NC vs MCI
sMCI vs pMCI

97.35
69.36
50.20

92.71
94.00
93.81

95.25
85.22
75.16

Ortiz-Perez, D. [120] 2025 Speech(Voice, Text) Customise Customise NC vs AD 85.06 NA 87.35
Cheng, J. [23] 2025 MRI, CS Customise Customise NC vs AD vs MCI 96.40 NA 97.65

Zhou, W [196] 2025 sMRI, fMRI Normal Customise

NC vs AD
NC vs MCI
MCI vs AD
NC vs MCI vs AD

97.34
89.70
92.04
85.39

91.48
91.24
89.13
92.49

94.19
90.86
90.56
85.64

Chen, Z [27] 2025 MRI, PET Customise Normal
NC vs AD
sMCI vs pMCI

94.74
70.21

93.10
80.65

95.48
78.95

Hu, X [72] 2025 MRI, PET, CS Normal Customise sMCI vs pMCI 90.60 98.00 95.40
Chen, Y. [24] 2024 MRI, EEG, CS Custmoise Normal NC vs MCI vs AD 88.89 NA 90.00

Zhou, T. [195] 2019 MRI, PET, SNP Normal Customise

NC vs AD
NC vs MCI
NC vs AD vs
MCI
NC vs AD vs
sMCI vs pMCI

NA NA

97.00
82.00

98.00

74.00
Massalimova, A. [110] 2021 sMRI, DTI Normal Normal NC vs AD vs MCI 95.00 NA 97.00
Kim, S. [83] 2023 MRI, Genetic, CS, DD Normal Customise Regression NA NA NA

Wang, Q. [167] 2023 MRI, DD, APOE, Plasma Customise Customise
NC vs AD
MCI vs AD

95.80
88.80

97.00
95.70

96.50
90.50

Lu P [104] 2024 MRI, SNP, Clinical Normal Customise sMCI vs pMCI 88.80 85.40 87.20

Durga S HL [68] 2024
MRI, Cognitive Score(CoS),
Demographic Data (DD)

Customise Normal NC vs AD 91.39 NA 92.65

Gao, X. [55] 2021 MRI, FDG-PET Customise Normal sMCI vs pMCI NA NA 80.85

El-Sappagh, S [40] 2020 MRI,PET,CSF,CS Customise Normal
NC vs AD vs
ncMCI vs cMCI

98.42 NA 92.62

Qiu Z [128] 2024 MRI, PET Customise Customise
NC vs AD
NC vs MCI
MCI vs AD

97.40
73.01
93.09

95.38
73.02
72.00

96.37
73.61
85.29

Wang, C. [164] 2024 MRI, DD, Genetic, CS Customise Normal Regression NA NA NA

4.3.1. Feature Extraction Approach
DL methods inherently allow neural networks to directly analyse and transform raw input data, facilitating the

extraction of features beneficial for downstream analyses. How to fully exploit and extract implicit information
from different modalities has been a continuously popular research topic. Methods primarily dedicated to improving
multimodal analyses by deeply exploring modality-specific latent information can be categorised as modality-focused
approaches. The core design principle of these methods lies in constructing effective feature extraction architectures
tailored to modality characteristics, enabling the capture of highly discriminative and pathology-related features.

Given the crucial role of imaging data in AD research, CNNs have emerged as the most widely adopted architecture
for image-based feature extraction. CNN architectures typically comprise convolutional and pooling layers, where
convolutional layers use kernels to extract local features by convolving with input data. Each kernel generally focuses
on specific types of features, and kernel size directly determines the receptive field. Pooling layers, positioned after
convolutional layers, perform downsampling on feature maps, thereby reducing computational complexity and memory
consumption [168]. For example, Vu et al. [163] applied CNNs to PET and MRI data, achieving accuracies of 91.1%
for AD/NC classification and 89.2% for MCI/NC classification, demonstrating CNNs’ robust performance in medical
image analysis. However, limited by the black box in DL, feature extraction still requires further digging. In contrast
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to traditional approaches that typically utilise only the features from the last layer, Wang et al. [167] captures and
integrates features from all layers of the feature extraction module, apply them for downstream analysis. A similar
methodology can also be observed in the work of Qiu et al. [128], where they additionally segmented features into
distinct categories and utilised specialised modules corresponding to each feature type for detailed analysis.

On the other hand, AD progression is inherently longitudinal; biomarkers and clinical indicators evolve over
time [192]. To effectively leverage temporal information, recurrent neural networks (RNNs) have been introduced.
Originally designed for sequential data, RNN architectures retain information from previous inputs, allowing prior
states to influence future outputs. Such structures enable RNNs to model local temporal dependencies effectively.
For handling longer or more complex sequences, researchers have developed advanced RNN variants, such as Long
Short-Term Memory (LSTM) to incorporate memory cells for better long-term information storage, and Gated
Recurrent Units (GRU), which selectively gate information to mitigate gradient vanishing issues.Tabarestani et al.
[149] successfully employed LSTM to analyse multimodal AD data such as psychological assessments, MRI, PET,
and genetic data, and achieved 84% accuracy in a three-class classification task.

However, with ongoing advances and deeper exploration into multimodal data, pre-trained general-purpose network
architectures often struggle to satisfy research-specific demands. Consequently, researchers continue to extend and
refine baseline network modules, tailoring feature extraction processes to accommodate specialised requirements.
We summarise the mainstream strategies into the following paths: image patch-wise method, image convert method,
appraisal-based dimensionality reduction Method, and large language model-based feature Extraction.

Image Patch-wise Method One highly popular special processing method is the segmentation of images into
smaller patches for analysis. Although conventional CNNs divide images into blocks during analysis, CNNs treat
the image as a complete entity. In contrast, patch-wise methods treat each image block as an independent unit for
analysis. This strategy, compared to working with the entire image, allows for a more focused exploration of the implicit
information in different regions of the image, enabling the extraction of more detailed features. In the context of AD
research, the ability to accurately identify specific brain regions is particularly significant due to the region-specific
and progressive nature of the disease, making it crucial for disease detection.

Lu, D. [103] adopted this strategy and introduced a multi-scale approach to extract structural and metabolic
information at different scales, thereby enhancing the model’s expressive power. Although Qiu, Z. [128] did not use
the same overarching approach, their research also retained unique information from different layers during the feature
extraction phase and subsequently fed it into the fusion module. In the latest studies, Wang, C. [164] implemented
a patch-based approach, further refining the architecture by manually segmenting the brain into different regions,
processing each patch with a complete CNN block, and finally applying PCA for dimensionality reduction to predict
the Clinical Dementia Rating (CDR).

Patch-wise processing targets image data by dividing a high-resolution image into smaller tiles for analysis. This
strategy reduces GPU memory use and computational load, allowing models to operate at higher effective resolution.
It also improves sensitivity to fine details such as tiny lesions and subtle edges, which are common in medical imaging.
These gains come with trade-offs. Splitting an image can weaken the capture of global context. Tile borders may
introduce artefacts, and overlapping regions can yield inconsistent predictions. Large or elongated lesions may be
fragmented across tiles and partly missed. Choosing an appropriate patch size and stride is therefore critical. Typical
mitigations include multi-scale or pyramid tiling, using overlap with blending, adding context padding around each
tile, or combining tile-level outputs with a global branch. In addition to CNN-based patch processing, recent work has
begun to use Transformer encoders purely as patch-level feature extractors, rather than as multimodal fusion modules.
In this setting, the image is first divided into fixed-size patches. Each patch is then linearly projected and positionally
encoded, and the Transformer is used to model local-global relationships among patches within a single modality.
Because the Transformer operates on a set of patch tokens, it naturally fits the patch-wise paradigm and can capture
long-range dependencies that conventional patch CNNs may miss. Importantly, in this usage the Transformer does
not perform cross-modal interaction; it functions only as a stronger intra-modality encoder that produces high-quality
patch embeddings to be passed to subsequent fusion or classification layers. This makes it a suitable replacement for
patch CNNs when higher-level spatial reasoning is required, without changing the overall fusion pipeline.

An interesting point to note is that the shift from ML to DL is directly reflected in the increased complexity of
network architectures and the reduction in manual feature engineering. The patch-wise method, in contrast, is more
similar to dividing the image into multiple ROI segments and analysing them separately, which can be seen as a return
to ML approaches. This raises the question, whether approximating traditional ML feature engineering within deep
network design could improve model expressiveness; It warrants further discussion.
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Image Convert Method Another viable approach is to convert multimodal image information during the feature
extraction stage, enabling better representation of the data or aligning information and structure across different
modalities. One such method involves converting the data into connectivity matrices during preprocessing, which
are then used as inputs. Compared to raw image data, the transformed connectivity matrices effectively reduce noise in
the original images and enhance the model’s focus on relevant regions. Moreover, matrices have lower dimensionality
compared to the original images, making the model more computationally efficient and easier to process, while also
helping to mitigate the risk of over-fitting.

Greicius, M. [61] and colleagues explored the direct relationship between functional connectivity (FC) and
structural connectivity (SC), demonstrating that FC in fMRI can reflect SC. Building on this insight, Wang, Y. [168]
hypothesised that combining fMRI and DTI-derived connectivity networks could better represent brain connectivity
and improve diagnostic accuracy for AD. They proposed converting DTI and fMRI images into corresponding
structural connectivity networks (DTISCN) and functional connectivity networks (FCN), stacking the resulting
matrices, and then inputting them into a CNN for classification. Following this approach, Ma, J. [105] focused on
the overall geometric shape inherent in the data, transforming FC and SC into symmetric positive definite (SPD)
matrices defined on Riemannian manifolds, thus preserving their affine invariance properties to ensure the stability of
the numerical representation.

These approaches project each image into a prior-guided, common representation (for example, atlas space, tissue-
type maps, cortical thickness, or PET parametric maps). The projection compresses the data and standardises scale
and geometry across modalities. As a result, downstream models need less memory and compute, and the outputs are
easier to interpret. Because all modalities are converted into isomorphic representations, multimodal alignment and
fusion can be performed with simple operations such as concatenation or averaging. The benefits come with clear
trade-offs. Strong reliance on preprocessing and template choice can introduce bias and site dependence. Conversion
may discard lesion detail, texture, and other fine-grained cues, which limits representational capacity on complex tasks.
These methods are therefore most suitable when data are scarce, when interpretability is a priority, or when a baseline is
needed with modest resource demands. Practical mitigations include multi-resolution mappings, retaining residual or
edge channels, uncertainty or quality-control flags from the conversion step, and harmonisation across sites or scanners.

Appraisal-based dimensionality reduction Method The Appraise method is primarily used for dimensionality
reduction of features. Unlike direct feature integration from images, it focuses on certain aspects of the data to produce
a score based on specific objectives. While the aforementioned feature processing methods primarily deal with image
modalities, this method addresses the alignment of dimensions between image and non-image modalities. In practical
applications, clinical and genetic data often appear in low-dimensional formats, such as tabular data, yet hold significant
value for AD diagnosis. However, the independent nature of different modality expression spaces often leads to
issues where the large dimensional disparity can either cause the network to overlook important information from
certain modalities or excessively emphasis the influence of image modalities. Either case negatively affects the final
performance of the model. Therefore, it is crucial to standardise the dimensions and project features from different
modalities into a shared space for analysis.

Embedding image features in low-dimensional spaces is a popular approach, with the method of embedding directly
impacting feature selection and the efficiency of representation in the lower-dimensional space. Conventional methods
rely on CNN networks to directly integrate image features and preserve global information. However, other approaches
can help the model focus on feature information from different perspectives. Wang, C. [164] used traditional ML
dimensionality reduction techniques, such as PCA, to better preserve highly correlated information within image
features. Zhang, F. [187] applied convolution to multimodal images simultaneously and then combined the features
from different modalities at the end, introducing the Pearson correlation coefficient for output, ultimately producing
an evaluation metric focused on the inter-modality information correlation. In contrast, [127] employed a multi-
task architecture where a CNN network simultaneously outputs conventional image feature representations and an
Alzheimer’s (ALZ) score based on whether the patient suffers from non-AD dementia (nADD), finding that this score
was more informative than typical clinical data.

These methods aim to place heterogeneous modalities in a balanced representation space. They learn scores
or weights to appraise features and then apply a projection so that no single, high-dimensional source dominates
the learning signal. In practice, this includes filter or embedded feature selection, sparse or low-rank projections
(e.g., PCA/Partial least squares regression (PLS)/Canonical Correlation Analysis (CCA)-style bottlenecks, or their
deep variants), and learned gating/attention that produces per-feature or per-channel weights. The result is a lower
computational burden and improved interpretability, because the appraisal scores reveal which factors drive the

Yifan Guan et al.: Preprint submitted to Elsevier Page 27 of 45



A Survey of Multimodal Fusion for Alzheimer’s Disease Prediction

prediction. Trade-offs are clear. Down-projection can remove lesion detail and subtle texture, reducing generalisation.
Supervised appraisal can also leak labels if the selector is fitted on the full dataset or outside a proper cross-validation
pipeline, which inflates the apparent performance. By contrast, lifting a low-dimensional modality to a higher-
dimensional space (e.g., via MLP expansion or kernel features) can enable richer interactions with high-dimensional
partners, but it may inject noise, magnify variance, and destabilise training. Overall, these multi-branch designs
are extensible, as new modalities can be added by simply incorporating an encoder and a projection head into the
shared space. Yet each addition requires recalibration (normalisation, scaling, and loss weighting) to maintain fair
contributions and robust fusion.

Large Language Model Based Feature Extraction. Compared with the earlier methods summarised in this
section, the emergence of large language models (LLMs) is a more recent development, yet one that merits careful
discussion. The previous subsections primarily focused on imaging-based modalities or cross-modal alignment prior
to fusion. Although imaging plays a central role in AD research, non-imaging modalities, particularly textual data (such
as genetic annotations, clinical narratives, and electronic health records (EHRs)), also possess substantial diagnostic
value but remain relatively underexplored.

LLMs help bridge this gap. Their functionality extends far beyond traditional natural language processing (NLP)
models, encompassing information retrieval, synthesis, and data generation [111]. In current AD research, LLMs are
used primarily as feature extractors. They excel at processing unstructured or weakly structured data, particularly
textual information. Raw text is tokenised and mapped into high-dimensional contextual embeddings, which are then
treated as an additional modality alongside imaging and tabular data. Compared with classical NLP pipelines, LLMs
offer broader coverage of domain-specific terminology, greater robustness to grammatical and stylistic variability, and
the ability to capture longitudinal context across multiple clinical visits.

Recent studies have demonstrated the utility of LLMs in analysing clinical documents through prompt engineering
and fine-tuning for dementia subtyping, improving both interpretability and classification accuracy [107, 80]. Li et
al. [89] fine-tuned a foundation model to extract AD-related information from non-structured EHR data. Beyond
textual data, other work has employed LLMs for speech analysis, extracting salient features from noisy recordings
and identifying relevant acoustic markers. Leveraging their generative capabilities, these studies have also used LLMs
to augment scarce datasets by synthesising additional speech samples [113].

While these findings highlight the potential of LLMs in AD research, their limitations, such as domain-specific
bias, susceptibility to hallucination, and high computational cost, remain key challenges [102]. Given their strength
in textual representation learning, future work should focus on efficiently integrating LLMs into the deep-learning
feature extraction pipeline, particularly for enhancing textual and clinical modalities. Moreover, the generative abilities
of LLMs offer promising directions for addressing modality imbalance and data scarcity, including synthetic data
generation, anomaly correction, and cross-modal augmentation.
4.3.2. Modality Fusion Approach

Modality fusion approaches aim to optimise the performance of the fusion module within a model. AD and other
neurodegenerative disorders share many pathological characteristics, which means that single-modality information is
insufficient for accurate prediction or diagnosis. Compared with conventional multimodal tasks, AD research depends
strongly on the complementarity and integration of information across modalities [171]. Early multimodal fusion
techniques typically concatenated features from different modalities and fed them directly into a classifier network. Such
methods were straightforward and often effective, yet they lacked the ability to capture the complex inter-relationships
between modalities. The subsequent development of DL methods was strongly influenced by early machine-learning
classification architectures, particularly the “early–late–hybrid” fusion taxonomy. Building upon this foundation,
several studies adopted MTL and MKL strategies to design deep multimodal fusion frameworks, achieving notable
performance improvements [151, 5]. These works demonstrate how the conceptual lineage of traditional ML continues
to shape deep neural models, especially in how they separate or couple modality-specific and shared representations.

As DL matured, it gradually overcame the architectural constraints of earlier frameworks, and the boundary between
feature extraction and fusion became increasingly blurred. In this work, we define a fusion module as any network block
that receives two or more heterogeneous inputs simultaneously, mixes the information internally, and outputs a fused
representation or decision. For instance, the Transformer architecture is widely recognised for its fusion capability,
although it can also serve purely as a feature extractor for unimodal analysis. Therefore, we classify a Transformer as
a fusion module only when it operates on multimodal inputs. Following this principle, we categorise fusion methods
according to their interaction mechanisms among modalities. Specifically, we distinguish: Shared-embedding-based
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methods, which minimise representational distance by projecting modalities into a common latent space; Attention-
based methods, which model cross-modal dependencies through dynamic, data-dependent weighting; and graph-based
methods, which exploit message passing and relational structures to capture spatial, temporal, or semantic relationships
between modalities.

Shared embedding. In recent studies, the application of non-image modalities has become more widespread, with
multimodal fusion research having a main focus on the concepts of shared space and latent space, until the welcomed
multimodal fusion modules or networks are introduced. The former, inspired by correlation analysis methods like
CCA, aims to align information across modalities, maintaining similar representations for further analysis, matching,
or fusion. The latter, influenced by information theory and dimensionality reduction techniques, aims to reveal latent
factors or features through data mapping into different dimensions. Whether in shared or latent spaces, the feature
projections rely on the network’s own learning, representing abstract features that make deep networks difficult to
interpret, which is the major challenge in their application.

Recent work by Qiu, Z. [128] provides an intuitive framework that highlights the functions and differences between
shared and latent spaces. They input the extracted features into three lower-level fusion modules: Global Attention
Learning (GAL), Local Attention Learning (LAL), and Latent Space Learning (LSL). The GAL module corresponds
to shared space, aiming to capture inter-modality correlations. In contrast, the LSL module interacts with different
modality feature vectors through an outer product operation, creating a high-order representation that captures hidden
associations between modalities and features that cannot be directly captured by shared space alone. Research by Chen,
Z. [25] focuses more on LSL, introducing orthogonal latent space learning. This method adds new constraints to the
projection matrix, ensuring that the information from different modalities is sufficiently distinct, thereby reducing
the extra burden and risk associated with redundant data. Martí-Juan, G. [109] constructed a latent shared space in
which encoded information from different modalities is projected into a shared latent space, facilitating more effective
dynamic changes and cross-modality reconstruction.

Embedding-based methods aim to project heterogeneous modalities into a common representation space, thereby
reducing inter-modality distance and ensuring global consistency. This unified space mitigates the imbalance that
often arises when certain modalities dominate learning, preventing weaker or lower-dimensional modalities from being
overlooked. Because the objective function explicitly encourages cross-modal alignment, the absence of one modality
does not strongly distort the overall representation. Consequently, these methods are naturally more robust in scenarios
involving missing modalities. However, the emphasis on global consistency can also be a limitation. The alignment
and projection process may discard modality-specific or fine-grained features, leading the network to overlook subtle
but diagnostically relevant details. Thus, while shared-embedding approaches offer strong generalisation and resilience
to modality dropout, they may underperform in tasks requiring fine local discrimination. They are particularly suitable
for complex training conditions, such as frequently changing modality combinations or limited sample sizes, where
model stability and alignment consistency are prioritised over maximal spatial precision.

Attention based The Attention mechanism was originally applied in the image domain, where it assigns attention
scores to different regions based on their relevance to the task. This allows the model to focus on important parts
of the image while ignoring irrelevant features, thereby improving efficiency and accuracy [59]. The purpose is to
enable the model to concentrate on specific features of an image rather than the entire image. In a multimodal context,
attention scores can be computed between two modalities, enabling the integration of their information [159]. Zuo,
Q. [104] utilised the attention module for feature fusion, grouping, and capturing the correlation information between
different modality groups. They also introduced a non-linear gating unit before the attention module to transform
modalities, ensuring that features from different modalities are projected into a shared space with consistent feature
dimensions. Golovanevsky, M. [59] employed self-attention to convert raw inputs and positional information into high-
dimensional representations, emphasizing the important representations within each modality and enhancing intra-
modality correlations. They then used cross-attention blocks to perform cross-modality feature interactions, gradually
transforming independent modality information into a joint representation.

The transformer architecture operationalises this mechanism at scale. Originally developed for natural-language
processing, the Transformer organises multi-head self-attention and feed-forward layers within an encoder–decoder
framework [159]. In the encoder, each input word is transformed into a vector representation through an embedding
layer and processed via self-attention layers. The self-attention mechanism enables the model to consider other
information from the input sequence while encoding each word, allowing it to capture dependencies between features.
This mechanism improves the model’s ability to understand the context of the input data. The decoder operates similarly
to the encoder but also includes an additional encoder-decoder attention layer [159]. In image tasks, the encoder relies
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heavily on multi-head attention to associate and select features, and because these tasks focus more on classification
rather than sequence-to-sequence tasks, the transformer is typically employed using only the encoder portion of the
architecture [176].

Wu, B. et al. [173] pioneered the integration of the Transformer into the residual network’s final layer to replace
the last convolutional layer for processing high-dimensional image features, using visual tokens to assist downstream
classification tasks. This approach laid the groundwork for the development of Vision Transformers and set the stage
for Transformers to be adopted as fusion modules. The work by [181] extended this framework by projecting MRI
features, clinical tabular data, and genetic information into a shared space and introducing the Transformer Encoder as
a multimodal fusion tool. [150] also applied the Transformer to process MRI and PET data. After performing a round of
CNN feature integration and adding positional information, the different modalities were fused using cross-attention.
Recent studies have further expanded the scope of input data by combining heterogeneous modalities, such as tabular,
signal data and imaging inputs. Leveraging the Transformer’s strong temporal modelling and cross-modal analytical
capabilities, these works explicitly align MRI spatial features with EEG temporal representations, achieving promising
results in multimodal AD analysis [24].

In general, attention-based methods capture cross-modal relationships through iterative query–key–value oper-
ations. The interactions between modalities occur more frequently and at a finer granularity than in other fusion
strategies, enabling these methods to model subtle intra- and inter-modality associations and to achieve fine-grained
alignment. This characteristic allows attention mechanisms to extract informative signals even under imbalanced
sample distributions, while their inherent weighting scheme enhances interpretability and visualisation of model
decisions. However, this high-frequency, fine-grained interaction comes at a cost. Attention-based models require
substantial computational and memory resources, and their complexity increases exponentially with the growth of
feature dimensions or the number of input tokens. Moreover, fluctuations in sample quality can lead to instability in
the learned attention patterns, making data curation and preprocessing particularly critical for robust performance. On
this basis, Transformers represent a structured realisation of the attention principle rather than a separate mechanism.
They provide a scalable architecture for modelling both intra and inter-modality dependencies within a unified
framework. Their major advantage lies in flexibility: Transformers impose few constraints on data format and can learn
dependencies across diverse input types. This adaptability has made them one of the most influential architectures
in multimodal fusion research. Additionally, LLM-derived embeddings can be integrated into the same attention-
based fusion pipelines as imaging or tabular features, because they expose a token-level interface compatible with
Transformer encoders. In such cases, the LLM itself does not perform multimodal fusion; instead, fusion is carried out
by a downstream attention or Transformer block that jointly attends over image tokens, clinical tokens, and text-derived
tokens. This situates LLM applications within the broader Transformer-based fusion family rather than as a separate
fusion paradigm.

Graph-based fusion GNNs are increasingly being explored in AD research due to their ability to model the
relationships between different data types. In contrast to other methods, Graph-based fusion methods focus on
modelling interactions and relationships between information sources rather than performing direct feature-level
concatenation. They represent data as a graph structure, in which nodes correspond to entities (for example, subjects,
modalities, brain regions, or time points) and edges encode their spatial, temporal, or semantic relationships[174].
Through message-passing or aggregation operations, these methods propagate information along edges, allowing
the model to exploit structural priors that describe anatomical connectivity, population similarity, or longitudinal
progression. Such characteristics make graph approaches particularly suitable for population-level analyses and
longitudinal studies, where relational patterns are central.

In the study by Abuhantash, F. [6], cognitive score similarities are used to create edges in a graph where each patient
is represented as a node. This method simplifies the classification task but primarily relies on cognitive data for patient
representation. On the other hand, Song, X. [143] divided the multimodal fusion process into two phases: first fusing
image data, then constructing a feature matrix for each patient and using these matrices as nodes in a graph. Non-image
data, like clinical information, is used to construct the graph’s edges. This approach places a heavier emphasis on image
data, with non-image data assisting in uncovering latent features within the images. Conversely, Kim et al. [83] take a
more integrated approach, applying both image and non-image data to contribute to the construction of both nodes and
edges. This fusion of both data types allows for a deeper, more comprehensive analysis of patient conditions, providing
a better foundation for diagnosing AD.

A key advantage of employing GNNs as image fusion modules lies in their intrinsic interpretability, as the
learned node and edge weights can be directly visualised to reveal relational importance. The design of the network
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architectures inherently depends on explicit prior knowledge, resulting in an intuitive representation of structural
relationships and clear tracing of neighbourhood interactions. This also allowed them to be not limited to fully
supervised learning and can perform effectively in semi-supervised or weakly supervised settings, since the graph
topology provides auxiliary constraints and regularisation. Nevertheless, this explicit dependence also implies that
arbitrary or inadequately designed graph structures may substantially degrade model performance, limit feature
representation capabilities, and hinder the extraction of implicit relationships beyond the predefined structure. Besides,
they are often less effective for high-precision, voxel-level analysis, and their performance depends heavily on the
design of the graph itself, which is how nodes and edges are defined and weighted. Inappropriate or noisy graph
construction may propagate misleading information through the network. Consequently, graph-based fusion usually
requires strong domain knowledge to construct meaningful priors and achieve stable results.
4.3.3. Hybrid Fusion

Hybrid fusion refers to the integration of both modality-focused and fusion-focused approaches within a single
network architecture. In the early stages of DL research, there was no universal or mainstream network module for
multi-modal fusion. Instead, various methods emerged, each offering unique and highly individualised solutions to
the multi-modal fusion challenge. Liu, M. [98] and colleagues designed a cascade-level fusion based on CNNs. In
this approach, patches of multi-modal images from the same position are input into a 3D CNN for feature extraction.
These features are then correlated and passed through a 2D CNN to learn the inter-modal correlations. Finally, the
features are fused once more before being input into the classifier. In this process, CNNs not only extract features
but also play a role in modality fusion, capturing information at various stages and progressively refining the result.
Similarly, Wang, Y. [168] recognised the potential of CNNs by transforming images into connectivity matrices. These
matrices, representing different modalities, are then combined and fed into a CNN for feature fusion and extraction,
which is used in downstream classification tasks. Shi, J. [140] attempted to introduce deep polynomial networks to
AD learning, utilizing stacked network modules for feature selection and fusion. As GNNs, attention mechanisms,
and transformer architectures gained traction in AD research, their powerful capabilities and adaptability became
increasingly appreciated by researchers. These modern techniques have since become dominant in the choice of fusion
modules, gradually unifying the selection of fusion strategies in multi-modal network architectures.
4.3.4. Robust Fusion under Missing Modalities

Ensuring robust multimodal fusion requires models that can operate reliably even when one or more input
modalities are unavailable or incomplete. The missing-modality problem has long been a persistent challenge in AD
research, affecting both traditional machine-learning and deep-learning frameworks. Because AD studies are inherently
longitudinal, data collection must be repeated at multiple time points and across several modalities. As the importance
of multimodal analysis continues to grow, the need for paired and complete datasets has become more pronounced. In
practice, however, large-scale acquisition is rarely achievable: data are often corrupted, incomplete, or entirely absent
due to cost constraints, site policies, human error, or acquisition failure. This reality motivates a growing body of
research devoted to either reconstructing the missing information or improving model robustness under incomplete
inputs. To date, most existing works can be categorised into two major directions: explicit completion of missing
information and enhancement of model robustness under incomplete inputs.

This line of work aims to reconstruct the missing data using available modalities, thereby creating “simulated”
complete inputs for downstream tasks. Early methods adopted simple data imputation techniques such as zero-filling
or mean-value substitution [4]. Subsequent efforts introduced modality completion, reconstructing the absent modality
from the existing ones. Traditional approaches often relied on atlas-based or machine-learning models, which offered
interpretability but limited generalisability. The emergence of generative adversarial networks (GANs) has markedly
simplified the completion process, enabling the synthesis of visually realistic and human-interpretable images. These
metghods excel at capturing fine-grained cross-modal mappings and extracting detailed modality information. GFE-
Mamba effectively exploits this property: rather than using the generated images as inputs to the classification network,
it utilises the intermediate feature maps captured within the generative model. The classification module further
incorporates a Mamba architecture to process long sequential data and to fuse clinical-scale information with latent
imaging features [50]. Despite these advantages, such methods require large training datasets and remain prone to
artefacts and unstable outputs, which limits their practical integration into clinical workflows.

The second direction focuses on improving the model’s resilience to missing modalities, ensuring it can still
learn informative representations despite incomplete inputs. Common strategies include shared latent-space learning,
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knowledge distillation, and modality masking. The first approach has been discussed earlier in the DL section;
knowledge distillation employs a teacher network trained with full modalities to guide a student network that operates
under missing inputs, aligning them at the feature or semantic level [155]. Modality masking introduces artificial
incompleteness during training by randomly omitting or occluding modality inputs, forcing the encoder to reconstruct
or analyse incomplete samples, thus covering a range of real-world missingness patterns [97].

Recent work increasingly combines generative and robust strategies, forming end-to-end pipelines that directly
connect the generative and predictive components. In these systems, the workflow typically follows a “missing-
modality → generation → multimodal fusion → classification” paradigm, eliminating the need to manually pair
generated and original samples [27]. Based on the guidance of the strategy, robustness is now often embedded as a core
design principle within network architectures. For example, Hu et al. [72] synthesised PET images from MRI inputs
and performed tri-modal co-attention fusion to align representations across modalities. Similar ideas have appeared in
other medical domains, consistently improving performance under partial data conditions.

The emergence of diffusion-based architectures has further advanced generative solutions. Diffusion models
provide greater stability, structural coherence, and higher-quality synthetic outputs. For instance, FMM-Diff [191]
introduces latent reconstruction of missing modalities within the diffusion pipeline and cross-modal feature sharing
to extract correlated information during synthesis. Likewise, SLaM-DiMM [136] employs multi-channel inputs to
reconstruct any of four available modalities, greatly improving generation robustness. Despite their advantages,
diffusion-based frameworks remain computationally demanding and complex to train, making them difficult to
integrate into generation–diagnosis hybrid systems. As a result, GAN-based architectures still dominate practical
hybrid designs due to their relative simplicity and efficiency.

In summary, generative approaches offer human-interpretable outputs and detailed cross-modal mappings, while
iterative improvements have enhanced the stability and fidelity of generated data. However, their reliance on extensive
datasets and high computational resources poses significant barriers. Moreover, the visual quality of generated
images does not necessarily equate to feature-level utility, because pixel alignment and semantic alignment are not
interchangeable. In contrast, robustness-driven models exhibit stronger adaptability and generalisation but still depend
on the presence of informative modalities; under severe missingness, their performance deteriorates sharply. In a
combined network structure, the advantages of the two methods are combined. The content generated by the generative
model is usually constrained by the downstream task. The information it generates is often closer to the task-related
cross-modal mapping than that of a direct generative network, thus better serving the downstream task. At the same
time, the downstream network modules can also obtain more information to construct feature maps, which helps the
model to master the correct feature distribution.
4.3.5. Discussion

This section gives a classification strategy for the current DL multimodal fusion approach. We firstly defined a
baseline dual-/multi-branch architecture that uses pretrained backbones, with explicit registration or learned cross-
modal alignment, and a simple fusion operator (concatenation, fixed/learned weighting, or element-wise gating) at a
specified layer. We simply call these models "basic models". Above the "basic model", researchers will further improve
on the network structure to emphasise their network core or the research point. With observation from these changes,
we annotate methods as feature extraction-focused and modalities fusion–focused. This category strategy can show the
consideration and research focus of those researchers.

Despite substantial progress, deep-learning-based fusion still faces several limitations. Firstly, regardless of
model category, a major constraint arises from the black-box nature of DL models. Although they offer powerful
representational capacity, they often lack transparency. Consequently, many studies prioritise performance gains
while overlooking clinically meaningful information embedded in the input data. Secondly, data requirements and
imbalance remain a persistent challenge. DL fusion typically demands large and balanced multimodal datasets;
however, incomplete or small-scale cohorts frequently lead to overfitting and modality bias. Although the section
Robust Fusion under Missing Modalities discusses several methods to mitigate this issue, modality incompleteness
continues to represent a core bottleneck restricting broader research development. Thirdly, the high architectural
complexity of deep networks substantially increases computational and memory costs. Furthermore, the private or
site-specific nature of many clinical datasets hinders external validation and model deployment, thereby limiting large-
scale or longitudinal applications.
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To address these issues, several remedies have been proposed. For the interpretability problem, incorporating
architectural priors (e.g., ROI-aware modules, anatomical graphs) and training priors (e.g., region-weighted or concept-
based losses) can enhance model transparency. Uncertainty estimation and attention visualisation may further improve
clinical interpretability. When introducing additional modalities, expert priors can serve as soft constraints or weak
labels to guide the model toward clinically relevant regions. Looking ahead, lightweight network optimisation should
remain a central focus, as efficiency is critical for clinical applicability. Simultaneously, future research should more
comprehensively address model generalisation, for instance, by employing pretraining on publicly available multimodal
datasets and adopting transfer learning or domain adaptation strategies to enhance robustness across different sites and
imaging protocols.
4.4. Image Fusion

Image fusion aims to fuse different images into a new one, which holds the compound features and information
from the source images. In this paper, we use image-level fusion to mean generating a fused, human-readable image
outside the downstream task model. This differs from in-model fusion, where multimodal inputs are fused within
the task network [193]. The common in-model fusion, which includes traditional ML and DL methods, typically
extracts features from each image modality before fusing high-dimensional features at the model; image fusion provides
direct visual data, replacing complex multimodal inputs with fused images, reduces computational cost and improves
efficiency, and offers greater interpretability. In addition, an advantage in clinical medical applications is that it allows
doctors to obtain more information and make faster diagnoses. Based on the technology route, we categorise them into
two classes: the learning-free approach and the model-dependent approach.
4.4.1. Learning-Free Approach

Learning-free image fusion typically does not rely on data-driven parameter learning, but rather on manually
designed fusion strategies. Learning-free approaches are categorised into spatial-domain and transform-domain
approaches: Spatial-domain fusion. Spatial-domain fusion operates directly on image pixels by segmenting images
into regions or blocks and merging them based on spatial information [73]. However, this approach requires feature
consistency and strongly relies on the accuracy of image segmentation. which can limit complementary feature
expression, potentially reducing fusion effectiveness. Transform-domain fusion. Transform-domain fusion converts
images into another domain, fuses transformation coefficients, and reconstructs the final image using the inverse
transformation. These methods are commonly based on multi-scale transformation (MST) theory, including Laplacian
Pyramid (LP), Wavelet Transform (WT), Curvelet Transform (CVT), and Non-Subsampled Contourlet Transform
(NSCT).

Due to its versatility, computational efficiency, and ability to capture multi-scale features, WT was the first to
be applied in AD research. WT decomposes images into high and low frequency components, fuses corresponding
frequency bands, and reconstructs a composite image using WT-based reconstruction techniques [61]. Dwivedi, S.
[37] and Goel, T. [58] applied WT-based fusion to MRI and PET images, generating integrated images containing
both anatomical and metabolic information. A recent study explored NSCT-based fusion for AD imaging, using Pulse
Coupled Neural Networks (PCNN) and fuzzy rules for feature selection and integration. The fused data were then
reconstructed using inverse NSCT, completing the fusion process [14]. Similar to other methods, the fusion approaches
depend on manual image registration, predefined network parameters, and architectures, making them part of the
preprocessing stage.
4.4.2. Model-Dependent Approach

Model-dependent approaches introduce DL methods for the feature extraction and fusion work, instead of the hand-
crafted work and fusion rule design. Compared with the high cost and error-prone nature of manual feature extraction,
the strong feature extraction capabilities of DL provide a reliable channel for the same task [193]. Beyond image
reconstruction, these methods structurally resemble standard feature extraction networks, encompassing multimodal
feature extraction, representation learning, and information integration (fusion), allowing shared architectures across
tasks. Depending on the level of DL method participation and the task flow, the model-dependent approaches follow
two main approaches: non-end-to-end fusion and end-to-end fusion.

End-to-End Fusion End-to-end fusion accomplishes the complete image fusion process within an independent
model; that is, input the source image to the DL model, and it will give the fused target image as output which
without any intermediate result output. The process can be divided into three stages: feature extraction, feature fusion,
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and image reconstruction. CNN-based structure and GAN-based model are typically adopted for end-to-end image
fusion [28]. Specifically, the CNN-based method converts the source image into high-dimensional features, fuses
these features from different images, and finally utilises deconvolution layers to reconstruct the image [87]. For the
GAN-based methods, it typically employs the CNN-based module as the generator, then introduces a discriminator
and an adversarial loss to guide image generation towards matching the target distribution [165]. Furthermore, the
use of discriminators is more flexible in actual model design; multiple discriminators can help the model retain more
original information that is hoped to be valuable [30].

Non-End-to-End Fusion. In contrast to the end-to-end approach, Non-end-to-end means the three stages of image
fusion are not done in a unified frame. Under this category, the DL method is applied for the feature extraction work in
a typical situation, while the core fusion rules still rely on manual design. For instance, Amini, N. [10] used pre-trained
CNNs (VGG19) for PET-MRI feature extraction and applied weighted averaging for fusion, while Do, O. et al. [33]
fine-tuned VGG networks and introduced an Equilibrium Optimisation Algorithm (EOA) for adaptive fusion. These
methods offer interpretability and flexibility; their performance is constrained by the effectiveness of manually designed
fusion rules, which may not always yield optimal results.
4.4.3. Discussion

Image fusion methods have had a substantial impact on AD research, which can be categorised into Learning-free
and model-dependent approaches. Learning-free approaches are transparent, reproducible, and annotation-efficient,
offering clear interpretability and making them valuable for clinical diagnosis and early exploratory studies. However,
their fixed rule design limits adaptability and the ability to capture non-linear relationships between modalities. Model-
dependent approaches, on the other hand, provide superior representational power and scalability to large datasets, yet
their performance strongly depends on training quality, data volume, and model stability. Compared with in-model
fusion, image-level fusion offers clearer interpretability and lower computational cost, as it produces fused images
with a reduced input dimension for downstream models. Nonetheless, generating a fused image inevitably causes
information loss, and whether this visual simplification compromises downstream prediction accuracy remains an open
question. Looking ahead, future research should focus on quantitative validation of fused images within predictive
frameworks, which focus on assessing how information loss affects diagnostic accuracy, and on developing hybrid
pipelines where end-to-end fusion modules can be jointly optimised with classification or regression networks. The
integration of diffusion-based models may further enhance reconstruction fidelity and enable modality-aware, data-
adaptive fusion, bridging the gap between interpretability and precision.
4.5. Evaluation Metrics

In this subsection, we present and discuss several widely adopted evaluation metrics within AD research. Generally,
depending on the type of model outputs, downstream tasks are classified into classification tasks and regression tasks,
each associated with well-established evaluation standards. These metrics serve as critical tools for assessing model
performance and guiding future methodological enhancements. Calculation methods and detailed explanations of these
metrics are summarised in Table 8, which contains both the classification task and regression task.
4.5.1. Evaluation Metrics for Classification Task

Classification represents a prevalent downstream task in AD research, typically aiming to categorise subjects
into distinct disease stages, such as differentiating NC, MCI, and AD, or distinguishing between various subtypes of
MCI. Initially, these tasks primarily explored pathological differences between patient groups. Currently, the emphasis
has shifted towards accurately identifying clinical stages to enhance early diagnostic accuracy. Common evaluation
metrics utilised in classification tasks include Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Precision,
and Area Under the Curve (AUC). Accuracy measures the proportion of correctly predicted cases over all cases.
Sensitivity, also known as recall or True Positive Rate (TPR), quantifies the model’s effectiveness in identifying
actual positive instances, and in contrast, has False Positive Rate (FPR). Conversely, specificity evaluates the model’s
accuracy in correctly excluding negative instances. Precision assesses the proportion of true positives among samples
predicted as positive, reflecting prediction reliability. AUC comprehensively assesses model performance across
various classification thresholds, effectively balancing sensitivity and specificity. The importance of each metric varies
according to clinical context. In screening contexts, higher sensitivity and AUC values might be prioritised to minimise
missed positive diagnoses, achievable through adjusting decision thresholds. Thus, researchers should carefully select
or combine multiple metrics based on their specific evaluation goals.
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Table 8
Popular Evaluation Metrics in AD Research: I

Metric Formula Best values Description Ref.
Classification Task

Accuracy Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Higher

Accuracy measures how many samples are correctly classified
in the total samples, reflecting the overall accuracy of the
model. When the category distribution is balanced, Accuracy
is a good choice that can intuitively reflect the model’s
performance.

[37]

Sensitivity Sensitivity = 𝑇𝑃
𝑇𝑃+𝐹𝑁

Higher

Sensitivity measures the model’s ability to detect positive
samples, reflecting how many of all actual positive samples
are correctly identified. In medical diagnosis scenarios, for
those diseases that hold higher risks or harm, missed
diagnosis (FN) is more dangerous than
misdiagnosis (FP),
where Sensitivity is particularly important.

[100]

Specificity Specif icity = 𝑇𝑁
𝑇𝑁+𝐹𝑃

Higher

Specificity measures the model’s ability to exclude negative
samples, reflecting how many of all actual negative samples
are correctly excluded. In medical scenarios, high specificity
means low misdiagnosis rate (FP), which helps avoid
over-diagnosis of healthy people and reduces unnecessary
panic and medical burden.

[127]

Precision Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

Higher

Precision measures the proportion of samples predicted by
the model to be positive that are actually positive, reflecting
the reliability of the model’s predictions. In the AD scenarios,
its focus is similar to that of SPE. Higher Precision means a
more reliable prediction, and it mainly focuses on situations
where normal people do not want to be misjudged as risky.

[149]

Area Under
the Curve AUC = ∫ 1

0 TPR(FPR) 𝑑(FPR) Higher

Area Under the ROC Curve calculates the area of the
performance curve under various thresholds. It cannot
analyse the performance under a specific threshold, but is
used to comprehensively measure the model performance
under different discrimination thresholds, taking into
account both sensitivity and specificity, and focusing on all
sample types. Adjusting the discrimination threshold can
affect the weights of sensitivity and specificity to meet the
needs of different scenarios.

[152]

F1-score F1-score = 2 × Precision×Sensitivity
Precision+Sensitivity

Higher

F1-score is a harmonic average that takes into account both
precision and recall. It measures the overall performance of
the model on positive samples and is suitable for scenarios
that focus on minority samples or class imbalance.

[110]

Regression Task

Mean
Squared Error MSE = 1

𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2 Lower

Mean Squared Error calculates the average of the squares of
the differences between the predicted values and the true
values. It reflects the overall level of prediction error and is
more sensitive to extreme errors. It is more commonly used
for mathematical analysis and visualisation of the training
process.

[79]

Root Mean
Squared Error RMSE =

√

1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2 Lower

Root Mean Squared Error, calculates the square root of MSE
, which also reflects the overall level of prediction error.
Because it is on the same scale as the original data, it is more
intuitive and easier to understand, convenient for direct
comparison with actual errors, and easier for business
personnel or domain experts to understand.

[148]

Mean
Absolute Error MAE = 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦̂𝑖| Lower

Mean Absolute Error, which calculates the average of the
absolute values of the difference between the predicted
value and the true value, can better reflect the average error
level of most samples. It is not affected by extreme outliers
and can provide a more objective overall error level when
there are outliers in the data.

[109]

Pearson correlation
coefficient 𝑟 =

∑𝑛
𝑖=1(𝑥𝑖−𝑥̄)(𝑦𝑖−𝑦̄)

√

∑𝑛
𝑖=1(𝑥𝑖−𝑥̄)

2
√

∑𝑛
𝑖=1(𝑦𝑖−𝑦̄)

2
Null

Pearson correlation coefficient measures the consistency
between the model prediction and the true value, and is
often used to observe trends in medical scenarios. However,
correlation has no correlation with model prediction
performance, so it is necessary to combine other criteria
for joint analysis.

[130]
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4.5.2. Evaluation Metrics for Regression Task
Regression tasks predict continuous outcome variables, frequently used in AD studies to quantify brain structural

or metabolic parameters, cognitive scores, or progression rates of the disease. Compared to classification, regression
tasks offer a more direct reflection of disease severity rather than discrete stages, facilitating understanding of
longitudinal disease progression and enabling an objective evaluation of therapeutic outcomes. Standard regression
metrics include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Pearson correlation coefficient. MSE computes the mean square difference between the predicted and true values,
making it particularly sensitive to outlier predictions. RMSE, the square root of MSE, retains the same units as the
original measurements, providing an intuitive interpretation of prediction errors. MAE measures average absolute
differences between predicted and actual values, being more robust against extreme outliers compared to MSE or
RMSE. The Pearson correlation coefficient is generally used to measure linear relationships. It is generally used to
measure the consistency between model predictions and true values. Actually, as no single metric sufficiently evaluates
model performance in isolation, employing multiple metrics concurrently and tailoring their selection to specific
application scenarios is common, thus achieving comprehensive and meaningful performance evaluations.

5. Challenge and Future Direction
In the preceding sections, we systematically reviewed and categorised current multimodal analysis approaches

for AD prediction, evaluating a wide range of methods within both traditional ML and DL frameworks. Although
substantial progress has been achieved, several persistent limitations and challenges continue to hinder further
development in this field.

The first challenge concerns modality missing, a long-standing issue in multimodal AD research. As network
architectures become increasingly complex and the demand for large-scale training data grows, the impact of missing
modalities is becoming more pronounced. Whether in longitudinal studies, multimodal fusion tasks, or datasets with
unbalanced label distributions, the absence of specific modalities can lead to information bias, severely degrading
model performance, particularly in learning from rare samples. Current solutions generally follow two directions: (i)
generating missing data through synthesis models and (ii) designing robust architectures capable of learning from
incomplete inputs. However, both strategies have limitations. Generative models are computationally demanding and
prone to instability, whereas robustness-based designs often fail when key modalities are absent. Hybrid architectures
combining generation and classification have recently emerged but introduce new challenges, including loss-function
balancing and the potential propagation of artefacts from the generative process into downstream classifiers. Future
research should therefore focus on developing more stable, lightweight, and interpretable strategies for handling
incomplete multimodal data, better suited to clinical and longitudinal contexts.

The second major challenge lies in the trade-off between interpretability and learning capacity, reflecting the fun-
damental contrast between ML and DL paradigms. Traditional ML is inherently more interpretable due to its shallow
structures and human-defined features(such as volumetric, cortical, or metabolic measures), whose contributions can
be directly quantified and traced to clinical meaning. In contrast, DL models sacrifice this transparency for automatic
representation learning, which enables them to extract multi-level, non-linear, and semantically rich latent features
from raw multimodal data, discovering cross-modal dependencies that handcrafted features may overlook. While DL
thus offers unparalleled representational power, its black-box nature limits its clinical reliability and user trust.

A promising direction is to bridge the interpretability–representation gap by integrating the strengths of both
paradigms. For example, aligning ML-derived feature clusters or decision boundaries with DL feature maps can en-
hance visual and conceptual interpretability. The incorporation of interpretable neural operators or concept bottleneck
layers could further anchor abstract network representations to clinically meaningful constructs. Alternatively, hybrid
paradigms that embed interpretability constraints and expert priors within high-level semantic spaces of deep networks
may achieve a synergy between performance and transparency.

Overall, future multimodal AD research should aim to construct unified frameworks that combine interpretability,
robustness, and representational efficiency, ensuring that predictive models remain both powerful and clinically
comprehensible. In addition, drawing upon current advancements in the field, we briefly outline several potential
perspectives that can inform future studies or inspire novel strategies for DL network architecture design and
performance evaluation.
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5.1. Network Architecture Insights
A retrospective analysis of DL developments in AD research reveals an important observation: traditional ML

methods continue to provide valuable insights into the design and construction of deep networks, sometimes even
proving to be more effective in specific scenarios. For instance, slice-based feature extraction, widely adopted in DL,
bears a strong resemblance to the traditional manual selection of ROI. Similarly, network segmentation around ROI
regions aligns with conventional methods, allowing the model to shift its focus from the entire image to localised
features, such as brain atrophy, grey and white matter volume changes, and sulcal morphology. This approach enhances
the model’s ability to focus on critical regions while reducing computational costs. GNNs also share structural
similarities with traditional graph-based methods, with the primary difference being the shift from feature-based
construction to a patient-centric approach. Additionally, conventional classifiers such as SVMs have demonstrated
strong performance but are increasingly replaced by softmax classifiers due to the rising computational demands
associated with larger datasets. These observations suggest that traditional ML approaches remain highly relevant
and can directly inform the design of DL modules, making them an important area for future exploration.
5.2. Usable modality extension

Another important research direction involves expanding the range of available modalities. Current AD studies
are heavily focused on brain imaging data, with most analyses conducted on 2D data, which can easily overlook the
inherent 3D spatial information in medical images. However, 3D spatial characteristics are critical for AD diagnosis.
As research into 3D image analysis and segmentation continues to gain traction, maximizing the preservation of spatial
information within network architectures becomes a crucial challenge. Otherwise, the utilisation of non-imaging data is
also gaining attention. Early detection and intervention are crucial in AD research. Different modalities capture distinct
types of information and manifest at varying stages of the disease lifecycle. Among the biomarkers and representations
currently identified as being associated with AD, CSF and PET provide the earliest and most direct indicators of
pathological onset. However, both are invasive procedures, which restrict their feasibility for large-scale or routine
screening. Beyond these invasive modalities, EHR data, particularly unstructured EHRs, offer an alternative, non-
invasive source with substantial potential for early detection. Structured EHRs often contain limited and categorical
information, whereas unstructured EHRs encompass detailed clinical narratives that may capture subtle precursors of
disease onset. Yet, such information remains difficult to extract and analyse using conventional methods.

The advent of LLMs provides a transformative opportunity to address this challenge. LLMs enable the effective
parsing and contextual understanding of unstructured text, allowing for the decomposition, summarization, and
integration of complex clinical narratives into machine-readable representations. It also shows potential for generating
and enhancing data. This capability makes LLM-integrated multimodal analysis a highly promising research direction
for future AD studies, particularly for enhancing early, non-invasive detection and longitudinal disease monitoring.

Furthermore, with more modalities being introduced to assist in AD diagnosis. The expansion of available
modalities brings new opportunities to the field: Recent studies have successfully incorporated speech data [137], VR
data [99], and eye-tracking data [179] into ML models for AD prediction. Moreover, the former studies demonstrated
the feasibility of using transfer learning to overcome challenges associated with small sample sizes in such emerging
data types. These advancements offer promising opportunities for expanding the range of available modalities and
provide evidence that various aspects of patient behaviour have significant potential for exploring AD pathology.
5.3. Modality Contribution Evaluation

Evaluating the contribution of each modality inside the model plays a significant role and task in the research.
Building on the various modalities and technologies introduced, the available modalities in the research are increasing.
However, the strategies for combining these modalities and their actual impact on diagnostic performance remain
insufficiently explored. Current approaches have yet to establish the relative contribution of different modalities(both
imaging and non-imaging) toward diagnostic accuracy, and only some limited initial results exploring the influences of
different modalities on classification [38]. In other domains of multimodal research, modalities are often classified into
primary and secondary modalities based on their contribution to downstream tasks, with constraints placed on their
representation to optimise performance [70, 71]. Whether such strategies can be effectively applied to AD research
and how they should be implemented remain open questions.

Additionally, regarding the optimal processing methods for each modality and the final fusion strategies, they
remain uncertain. For example, with the recent introduction of Transformer models, many studies have favoured
simultaneously feeding both image and non-image data into the encoder for multi-head attention computations.
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However, the latest work [23] has shown that processing image features separately using Transformers while applying a
separate one-dimensional attention mechanism for non-image features, followed by a simple concatenation for fusion,
can achieve state-of-the-art performance. This suggests that simple fusion strategies may sometimes be more effective
than complex techniques. The result suggests that feature extraction and fusion might require further discussion,
especially whether the higher complexity of fusion is a positive effect on the final model performance steady. The
central issue underlying this phenomenon primarily arises from a shift in network design priorities: Many researchers
focus principally on architectural complexity rather than on the disease-specific problem itself, leading to insufficient
interpretability. Reviewing the literature in DL research for AD, it becomes apparent that most methods rely entirely
on automated feature extraction and fusion, thus ignoring a critical exploration of disease-specific attributes and
mechanisms. Researchers tend to emphasise improving model performance, often overlooking the relevance to the
disease itself. Among recent research, Qiu et al. [128] uniquely focused on explicitly incorporating pathological
information into the feature extraction process. They classified features according to feature performance, and allowed
the model to adapt network weights guided by established pathological insights and observed clinical phenomena of
AD. Although the current lack of studies employing similar methodologies limits the ability to verify their effectiveness
and robustness, these approaches nonetheless provide significant inspiration and valuable directions for subsequent
research efforts.

6. Conclusion
AD is a complex neurodegenerative disorder with global prevalence and profound social impact. As no curative

treatment currently exists, early detection and intervention remain the primary focus of modern research. Multimodal
analysis has emerged as one of the most effective strategies for understanding and predicting AD, allowing integration
of complementary information across structural, functional, molecular, and clinical dimensions.

This paper has provided a comprehensive overview of multimodal fusion strategies for AD prediction, covering
both traditional ML and DL paradigms. We introduced and compared the modalities commonly used in AD research,
summarised key biomarkers, and reviewed several major public datasets that support current investigations. Building
upon this foundation, we proposed a new, fine-grained taxonomy of multimodal fusion, redefining classification from
a functional perspective: namely, feature-engineering-based, module-based, and hybrid ML methods, and in DL,
distinguishing between feature extraction–focused and modality fusion–focused approaches. This taxonomy offers a
more interpretable framework for identifying the design logic and research focus of different architectures.

From our analysis, several key conclusions can be drawn: 1) Refined classification strategy. Conventional early/late
fusion frameworks are insufficient to represent the structural and functional diversity of modern ML and DL models.
The proposed taxonomy captures the fine-grained logic behind model construction and the conceptual emphasis
of each design. 2) Complementarity between ML and DL. ML methods offer interpretability and transparency,
whereas DL architectures provide strong representational power and adaptability to high-dimensional data. Through
interpretable feature alignment, hybrid optimisation, or explainable neural operators can combinate them and achieve
both performance and trustworthiness in clinical settings. 3) The importance of non-imaging data. Current research is
still dominated by imaging modalities, while non-imaging data such as EHRs, genetic information, and cognitive
assessments remain underexplored. Future studies should leverage LLMs and other foundation models to mine
unstructured EHR data, thereby enriching multimodal representations and enabling earlier, non-invasive detection of
AD. In the future, upcoming research should prioritise: (a) the development of lightweight and robust networks capable
of handling missing or incomplete modalities; (b) the integration of domain priors and interpretability mechanisms;
and (c) multimodal harmonisation frameworks that support cross-cohort and cross-site generalisation for clinical
deployment.

In summary, although multimodal fusion for AD data has achieved remarkable progress, significant challenges
remain in interpretability, generalisability, and scalability. Meanwhile, non-invasive data modalities are gaining
increasing attention and interest among researchers, which may lead to a future shift in network architecture design.
Future work on next-generation multimodal systems should aim to build transparent, robust, and clinically practical
frameworks that integrate data diversity, domain knowledge, and deep learning, thereby advancing reliable early
prediction of Alzheimer’s disease.
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