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Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic hepatic
disease with a rising global prevalence (25-38% of the general population). As a new term,
MASLD was introduced in 2023 to replace the previous nomenclature of non-alcoholic fatty
liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD).
This new term/definition introduced changes in the diagnostic criteria and underscores the
direct link between cardio-metabolic risk and this prevalent liver disease. In this context,
the present review examines the clinical and pathophysiological links between MASLD
and cardiovascular disease (CVD), providing a robust evidence synthesis of primarily
systematic review data on the association between MASLD and coronary artery disease
(CAD), atrial fibrillation (AF), and heart failure (HF). This association appears to be not only
synergistic, but also independent of other known CVD risk factors, highlighting MASLD
as a key cardio-metabolic risk factor that merits prompt diagnosis and treatment. The
development of MASLD-related cardiovascular morbidity increases with the severity of the
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underlying hepatic pathology, particularly with progression to steatohepatitis and fibrosis.
Notably, growing evidence highlights the links between MASLD and CVD through cardiac
structural, electrical, and functional alterations that can progress to CAD, AF, and new-
onset HE. Recognizing these links in clinical practice underscores the importance of early
detection and multi-disciplinary management of MASLD to prevent disease progression
and CVD complications.

Keywords: metabolic dysfunction-associated steatotic liver disease; MASLD; non-alcoholic
fatty liver disease; NAFLD; metabolic dysfunction-associated fatty liver disease; MAFLD;
cardiovascular disease; coronary artery disease; atrial fibrillation; heart failure

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred
to as non-alcoholic fatty liver disease (NAFLD), is a chronic liver disease with increasing
prevalence worldwide [1]. Indeed, MASLD impacts approximately 25-38% of the gen-
eral population, albeit with substantial geographic variations attributed, at least partly, to
differences in both lifestyle and genetic factors (e.g., Latin America exhibits the highest
prevalence rates, followed by the Middle East and North Africa, while Europe exhibits the
lowest) [1]. The hallmark of this prevalent hepatic disease is excess accumulation of fat
in hepatocytes (steatosis; presence of >5% steatotic hepatocytes), which may be further
complicated by local inflammation (steatohepatitis) and fibrosis, potentially leading to
cirrhosis [2]. Thus, the spectrum of the underlying hepatic pathology ranges from simple
steatosis to steatohepatitis and fibrosis, which may further progress to cirrhosis and even
hepatocellular carcinoma [3-5]. Due to such complications, steatotic liver disease is ex-
pected to become the leading cause of liver transplantation by 2030 [6]. Moreover, MASLD
is linked to a range of extrahepatic complications, including cardiovascular disease (CVD)
which is the leading mortality cause in this patient population [7-9]. The close links be-
tween steatosis/steatohepatitis and the metabolic syndrome, encompassing central obesity,
type 2 diabetes mellitus (T2DM), hypertension, and dysregulated lipid metabolism, largely
mediate this increased CVD risk [10,11]. Accordingly, growing evidence indicates that
metabolic-related steatotic liver disease increases the risk of multiple cardiac complications,
including coronary artery disease (CAD), atrial fibrillation (AF), and aortic valve sclerosis,
as well as left ventricular hypertrophy (LVH) which is associated with the development of
heart failure with preserved ejection fraction (HFpEF) [12].

To highlight the close links between steatosis/steatohepatitis and cardio-metabolic
disease, an international expert consensus introduced the term metabolic dysfunction-
associated fatty liver disease (MAFLD) in 2020. MAFLD is defined based on evidence of
hepatic steatosis through histological, radiological, or serological methods, combined with
the presence of either overweightness/obesity status [defined in adults as body mass index
(BMI) > 25 kg/ m? in Caucasians or >23 kg/ m? in Asians] or, T2DM [13,14]. For adults
with normal weight (defined as BMI < 25 kg/m? in Caucasians or <23 kg/m? in Asians)
and steatosis, the diagnosis of MAFLD further requires at least two out of the following
seven metabolic risk factors: (i) waist circumference measurements > 102 and >88 cm in
Caucasian adult males and females, respectively (or >90 and >80 cm in adult males and
females of Asian descent, respectively); (ii) blood pressure > 130/85 mmHg or specific
antihypertensive treatment; (iii) pre-diabetic status [i.e., fasting glucose levels ranging from
5.6 to 6.9 mmol/L (100 to 125 mg/dl), or 2-h post-load glucose levels ranging from 7.8 to
11.0 mmol/L (140 to 199 mg/dl), or glycated hemoglobin (HbAlc) between 5.7% and 6.4%
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(39 to 47 mmol/mol)]; (iv) Homeostatic Model Assessment for Insulin Resistance (HOMA-
IR) score > 2.5; (v) high-sensitivity C-reactive protein (hsCRP) > 2 mg/L; (vi) plasma
high-density lipoprotein (HDL) cholesterol levels < 1.0 mmol/L (< 40 mg/dl) for males and
< 1.3 mmol/L (< 50 mg/dl) for females or the use of specific lipid-lowering therapy; and
(vii) plasma triglyceride concentrations > 1.70 mmol /L (> 150 mg/d]l) or the use of specific
lipid-lowering therapy [13,14]. In 2023, a further change to the nomenclature for NAFLD
was proposed through a multi-society Delphi consensus statement, introducing the term
MASLD to replace the terms NAFLD and MAFLD and discontinue the use of the term
“fatty” which was considered stigmatizing for patients [15]. The diagnosis of MASLD in
adults is based on the presence of at least one of the following five cardio-metabolic criteria:
(i) BMI > 25 kg/m? (or ethnicity-adjusted BMI values, such as >23 kg/m? in Asians), or
waist circumference > 94 cm in men and > 80 cm in women (or ethnicity-adjusted waist
circumference values); (ii) pre-diabetes or T2DM [fasting glucose levels > 5.6 mmol/L
(>100 mg/dl), or 2-h post-load glucose levels > 7.8 (>140 mg/dl), or HbAlc > 5.7%
(>39 mmol/mol)] or treatment for T2DM; (iii) blood pressure > 130/85 mmHg or treat-
ment with antihypertensive medications; (iv) plasma triglyceride levels > 1.70 mmol /L
(>150 mg/dl), or treatment with lipid-lowering agents; (v) plasma HDL-cholesterol levels
< 1.0 mmol/L (<40 mg/dl) in men and <1.3 mmol/L (<50 mg/dl) in women, or lipid-
lowering therapy [15]. An overview of the diagnostic criteria for NAFLD, MAFLD, and
MASLD in adults is presented in Figure 1. For the diagnosis of MASLD, the alcohol intake
should not exceed 140 g and 210 g per week for females and males, respectively, while the
term metabolic- and alcohol-related /associated liver disease (MetALD) was introduced for
the cases where excess alcohol intake is present along with metabolic risk factors to explain
the cause of hepatic steatosis [15]. As with NAFLD, both MAFLD and MASLD represent a
spectrum of hepatic pathology, from simple hepatic steatosis to metabolic-associated steato-
hepatitis (MASH) [16], which is the term introduced to replace non-alcoholic steatohepatitis
(NASH) [17].

Contrary to NAFLD which is diagnosed based on the exclusion of other hepatic
pathology causes (e.g., alcohol-associated liver disease, medication, hereditary causes,
autoimmune liver conditions, or viral causes of hepatic disease) [18], the new nomenclature
of MAFLD and MASLD places emphasis on the cardio-metabolic aspects of this preva-
lent chronic liver disease. Thus, these new terms represent a significant change in the
diagnostic criteria for steatotic liver disease, which focuses the spotlight on the associated
cardio-metabolic risk/diseases. Of note, an implication of the different criteria applied
for the diagnosis of NAFLD, MAFLD, and MASLD, is that, despite the very high overlap
between them, these terms cannot always be applied interchangeably. As such, caution
is also required when interpreting existing primary research evidence which has been
accumulated under one of these three terms (e.g., for patients with a NAFLD diagnosis)
without a comparison to the other two [19]. To address challenges due to these differ-
ent nomenclature/terms and diagnostic criteria/definitions, the present review offers a
comprehensive evidence synthesis of primarily systematic review/meta-analyses data
that exist on the association of all three existing terms (NAFLD, MAFLD, and MASLD)
with CVD. To avoid confusion regarding the use of these terms, in the following sections,
the present review applies the terms NAFLD, MAFLD, and MASLD interchangeably as
NAFLD/MAFLD/MASLD regarding the general pathophysiology aspects of the disease,
but, when cited data refer to a specific published study, the specific term/definition (i.e.,
NAFLD, MAFLD, or MASLD) used in the corresponding cited study will be applied.
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* Waist circumference measurements 2102/88 cm in Caucasian adult males
and females (or 290/80 cm in adult males and females of Asian descent).
* Blood pressure levels 2130/85 mmHg or the administration of specific
antihypertensive medications.

* Pre-diabetic conditions [i.e., fasting glucose levels ranging from 5.6 to 6.9
mmol/L (100 to 125 mg/dl), or 2-hour post-load glucose levels ranging from
7.8 to 11.0 mmol/L (140 to 199 mg/dl), or glycated hemoglobin (HbA1c) levels
between 5.7% and 6.4% (39 to 47 mmol/mol)]

* Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) score
22.5
* High-sensitivity C-reactive protein levels > 2 mg/L.

* Plasma HDL-cholesterol levels <1.0 mmol/L (<40 mg/dl) for males and <1.3
mmol/L (<50 mg/dl) for females or the use of particular lipid-lowering

therapy.
* Plasma triglyceride concentrations 21.70 mmol/L (2150 mg/dl) or the use
of particular lipid-lowering therapy.

Type 2
diabetes
mellitus

(T2DM)

Based on the presence of at least one of the following five
cardio-metabolic criteria:
+* Body mass index (BMI) of 225 kg/m? or ethnicity-adjusted values such
as 223 kg/m? in Asians), or waist circumference measurements of >94 cm
in men and >80 women (or ethnicity-adjusted values).

* Pre-diabetes or T2DM [fasting glucose levels 25.6 mmol/L (2100 mg/dl),
or 2-hour post-load glucose levels 27.8 (2140 mg/dl), or HbA1c levels
25.7% (239 mmol/mol)] or treatment for T2DM
* Blood pressure >130/85 mmHg or administration of specific
antihypertensive medications.

* Plasma triglyceride levels 21.70 mmol/L (2150 mg/dl) mg/dl or
treatment with lipid-lowering agents.

* Plasma HDL-cholesterol levels <1.0 mmol/L (<40 mg/dl) in men and £1.3
mmol/L (250 mg/dl) in women, or lipid-lowering therapy.

MAFLD

MASLD

Figure 1. Overview of the diagnostic criteria for non-alcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD), and

metabolic dysfunction-associated steatotic liver disease (MASLD) [13,15,17].
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2. Methods—Description of the Literature Search

Although not a systematic review, the present narrative review followed a predefined
search strategy which was formulated and applied to identify English-published papers on
MASLD or NAFLD or MAFLD and CVD. As such, our search strategy utilized relevant
search terms and medical subject headings (MeSH) [20] for MASLD, NAFLD and MAFLD,
as well as for CVD, atherosclerosis, acute coronary syndrome, myocardial infarction, coro-
nary heart disease, atrial fibrillation, and heart failure. The searched databases included
PubMed and Google Scholar, which were searched without a date or publication type
limitation. Following removal of duplicate papers, two co-authors performed title/abstract
screening, which focused predominantly, but not exclusively, on systematic review and
meta-analysis papers, as well as on relevant primary research papers, that presented data on
links between MASLD and/or NAFLD and/or MAFLD and CVD. The key relevant papers
which were identified through this process were reviewed in full and were summarized
to be included as relevant to the scope of the present narrative review, as detailed in the
following sections.

3. NAFLD/MAFLD/MASLD and Subclinical/Clinical Atherosclerosis

Extensive research has established a direct correlation between dysregulated lipid
metabolism in NAFLD/MAFLD/MASLD and atherosclerosis, which is the primary un-
derlying cause of CVD [21]. Consistent systematic review and meta-analysis data have
revealed a significant association between NAFLD and the atherogenic index of plasma
(AIP; a prognostic marker for atherosclerosis in CVD) [22,23]. Furthermore, hepatic fibrosis
and cirrhosis demonstrate a significant correlation with atherosclerosis progression [24,25].
Notably, Brill et al. have shown that patients with NAFLD develop atherogenic dyslipi-
demia even in the absence of NASH [26]. Moreover, a study in China with 2550 patients
diagnosed with NAFLD showed that those with advanced hepatic fibrosis, as evaluated
by the NAFLD fibrosis score (NFS), had over a 2-fold higher risk of increased carotid
artery intima-media thickness (CIMT) and carotid plaque (both well-established markers
of subclinical atherosclerosis) compared to those without, even after adjusting for other
cardio-metabolic risk factors [27]. Further evidence has also demonstrated a correlation
between NAFLD and impaired endothelial function, as well as increased arterial wall stiff-
ness [28,29]. Additionally, a meta-analysis involving 4725 patients with NAFLD revealed a
significant association between hepatic fibrosis and subclinical atherosclerosis, assessed
via increased CIMT, coronary artery calcification (CAC) score, and arterial wall stiffness,
with an odds ratio (OR) of 2.18 [95% confidence interval (CI): 1.62 to 2.93] [30]. Further-
more, the severity of subclinical atherosclerosis in that meta-analysis exhibited a positive
correlation with the severity of hepatic fibrosis, as evidenced by comparisons between
mild (OR: 1.64, 95% CI: 1.22 to 2.20) and severe hepatic fibrosis (OR: 3.42, 95% CI: 1.81 to
6.46) [30]. Further systematic review and meta-analysis data, including 42,410 participants
(16,883 patients with NAFLD and 25,527 without; excluding individuals with a history
of chest pain or prior CAD), showed that the NAFLD group demonstrated a higher risk
of subclinical atherosclerosis, as evidenced by the CAC score, compared to those without
(OR: 1.64, 95% CI: 1.42 to 1.90) [31]. This is in line with the findings of another study with
356 participants with NAFLD and 256 without, which showed a markedly higher risk of
significant coronary artery stenosis in one or more arteries in the NAFLD group (84.6% vs.
64.1% of the participants with and without NAFLD, respectively; p < 0.001), with 68.3%
of the patients with NAFLD requiring percutaneous intervention compared to 43.4% of
those without (p < 0.001) [32]. Data from a large cross-sectional study, which included
a total of 5121 individuals from the general population who underwent both abdominal
ultrasound and computed tomography coronary angiography (CTCA), revealed that 38.6%
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of the participants had NAFLD, with those having a fatty liver index [FLL an index which
is based on BMI, waist circumference, and gamma-glutamyl transferase (GGT) and triglyc-
eride levels]) > 30 showing significantly higher proportions of atherosclerotic non-calcified
plaque (OR: 1.37, 95% CI: 1.14 to 1.65; p = 0.001) [33]. Interestingly, regression of subclinical
carotid atherosclerosis upon resolution of NAFLD over time has also been documented by
another large retrospective cohort study in 8020 adult men (mean age: 49.2 years) without
carotid atherosclerosis at baseline who underwent repeated health check-up examina-
tions [34]. That study also confirmed the association of persistent NAFLD with a higher
risk of subclinical carotid atherosclerosis development [34]. Furthermore, a comprehensive
meta-analysis of 83 studies, including 21,458 patients with NAFLD and 32,606 controls,
demonstrated a significant association between NAFLD and increased CIMT (mean dif-
ference: 0.10, 95% CI: 0.09 to 0.11; p < 0.00001) [35]. In addition, in the same study, a
meta-analysis of 12 studies with 2646 patients with NAFLD and 2540 controls found that
NAFLD was significantly associated with a 2-fold higher risk of carotid plaque formation
(OR: 2.08, 95% CI: 1.52 to 2.86; p < 0.00001) [35]. Together, these findings underscore the role
of NAFLD in promoting early atherosclerotic changes [35]. Table 1 summarizes findings
from key systematic reviews and meta-analyses on NAFLD or MASLD and subclinical
atherosclerosis measured by increased CIMT or presence of plaques, elevated CAC score,
and heightened arterial wall stiffness [30,35—41]. The majority of the studies included in
these analyses are classified as high quality studies, with a minority having moderate
quality, supporting the robustness of the synthesized data.

Table 1. Key systematic reviews and meta-analyses on the associations between subclinical atheroscle-
rosis and non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated steatotic
liver disease (MASLD).

Author, Year, Meta-Analysis Characteristics Subclinical Atherosclerosis OR or MD (95% CI)
[Reference] Outcome
Total Number of Studies: 26 Increased CIMT or plaqu.es OR: 1.74 (1.47 to 2.06)
. Increased arterial wall stiffness  OR: 1.56 (1.24 to 1.96)
Zhou et al., 2018, [36] Total Population: 85,395 :
NAFLD Population: 29,493 Increased CAC score OR: 1.40 (1.22 to 1.60)
! Reduced endothelial function OR:3.73 (0.99 to 14.1)
Total Number of Studies: 64 Increased CIMT OR: 2.00 (1.56 to 2.56)
Wong et al., 2021, [37] Total Population: 172,385 Increased CAC score OR:1.21 (1.12 to 1.32)
NAFLD Population: 67,404 CAC score progression OR: 1.26 (1.04 to 1.52)
Koulaouzidis et al., Total Number of Studies: 5 CAC score progression OR: 1.50 (1.34 to 1.68)

2021, [38]

NAFLD Population: 10,060

Toh et al., 2022, [39]

Total Number of Studies: 24
NAFLD Population: 62,623

Coronary artery stenosis or
plaques, or increased CAC score

OR:

1.22 (1.13 to 1.31)

Jamalinia et al.,
2023, [30]

Total Number of Studies: 12
NAFLD Population: 4725

Increased CIMT, arterial wall
stiffness, or CAC score

OR

:2.18 (1.62 to 2.93)

Abosheaishaa et al.,
2024, [40]

Total Number of Studies: 59
Total Population: 37,773
NAFLD Population: 13,861

Increased CIMT

MD: 0.10 (0.09 to 0.12)

De Filippo et al.,
2024, [41]

Total Number of Studies: 12
MASLD Population: 41,243

Increased CAC score

OR

:2.26 (1.55 to 3.23)
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Table 1. Cont.

Author, Year,
[Reference]

Subclinical Atherosclerosis

OR or MD (95% CI)
Outcome

Meta-Analysis Characteristics

Mladenova et al.,
2025, [35] *

Total Number of Studies: 83
Total Population: 54,064 Increased CIMT MD: 0.10 (0.09 to 0.11)
NAFLD Population: 21,458

Mladenova et al.,
2025, [35] *

Total Number of Studies: 12
Total Population: 5186 Carotid plaque formation OR: 2.08 (1.52 to 2.86)
NAFLD Population: 2646

*: The study by Mladenova et al. (2025) [35] presents meta-analyses for both the association between NAFLD and
CIMT and the association between NAFLD and carotid stenosis with carotid plaque formation as the endpoint.
Abbreviations: CAC: Coronary Artery Calcium; CI: Confidence Interval; CIMT: Carotid Intima Media Thickness;
MASLD: Metabolic Dysfunction-Associated Steatotic Liver Disease; MD: Mean Difference; NAFLD: Non-alcoholic
Fatty Liver Disease; and OR: Odds Ratio.

Similarly to the data on the association between NAFLD and subclinical atherosclero-
sis, meta-analysis data by Toh et al. also showed a pooled coronary heart disease (CHD)
prevalence of 44.6% (95% CI: 36.0% to 53.6%) among 67,070 patients with NAFLD, with the
patients with NAFLD exhibiting significantly increased odds of CHD compared to those
without (OR: 1.33, 95% CI: 1.21 to 1.45; p < 0.0001) [39]. Overall, in light of the evidence
supporting a significant association between subclinical and clinical atherosclerosis and
NAFLD/MAFLD/MASLD, these patients appear to be at higher risk of both fatal and
nonfatal cardiovascular events, such as myocardial infarction (MI), angina, coronary revas-
cularization, and stroke, which are linked to underlying coronary and carotid atherosclerotic
plaques. A large nationwide cohort study in Sweden, including 10,422 biopsy-proven pa-
tients with NAFLD who were followed up for 13.6 years, showed that the patients with
NAFLD had a significantly higher risk of developing CAD and stroke, with adjusted hazard
ratios (HR) of 1.64 (95% CI: 1.54 to 1.75) and 1.58 (95% CI: 1.46 to 1.71), respectively [42].
Although that Swedish cohort consisted only of Caucasians, these results are also consistent
with a meta-analysis by Targher et al. (34,043 individuals from a worldwide population
with a 6.9-year median observation period), which revealed that patients with NAFLD
have an increased risk of both fatal and nonfatal cardiovascular events, including CAD, MI,
coronary revascularization interventions, and stroke (HR: 1.64, 95% CI: 1.26 to 2.13) [43].
Additionally, the severity of NAFLD was associated with an increased risk of cardiovas-
cular events (HR: 2.58, 95% CI: 1.78 to 3.75) [43]. However, the studies included in this
meta-analysis assessed NAFLD severity using various diagnostic modalities, including
imaging, biomarkers, biopsy, and scoring systems, and, hence, this may introduce a bias
into the results. Moreover, a meta-analysis by Yan et al. showed that, among patients
with NAFLD, those with the highest NFS and fibrosis-4 score (FIB-4) values had a higher
risk of cardiovascular events compared to those with lower (HR: 1.92, 95% CI: 1.50 to
2.47 vs. HR: 1.75, 95% CI: 1.53 to 2.00, respectively) [44]. Furthermore, another recent
meta-analysis by Prasad et al. found that patients with NAFLD had a high risk of nonfatal
cardiovascular events compared to controls (HR: 1.57, 95% CI: 1.33 to 1.85) [45]. In this
meta-analysis, similarly to that by Targher et al., the risk of cardiovascular events was
aggregated rather than reported individually [43,45]. When separately reporting the risk
of MI and stroke in patients with NAFLD compared to those without, the meta-analysis
by Alon et al. showed a significantly increased risk of both MI (OR: 1.66, 95% CI: 1.39
to 1.99) and stroke (OR: 1.41, 95% CI: 1.29 to 1.55) [46]. Of note, a meta-analysis, which
investigated the MI risk in patients with a MASLD diagnosis, revealed that the MASLD
group had a 1.26 times higher risk of developing MI with less than 3 years of follow-up
compared to the non-MASLD group (HR: 1.26, 95% CI: 1.08 to 1.47) [47]. Alarming are
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also the data for relatively young patients with NAFLD, since a large meta-analysis which
investigated the risk of cardiovascular events in patients with NAFLD under the age of 40
who were followed up for a period of 10.6 years (10,668,189 participants from four cohort
studies; 11 datasets) revealed that these patients also had a higher CVD risk (HR: 1.63, 95%
CI: 1.46 to 1.82), with higher risk for both MI (HR: 1.69, 95% CI: 1.61 to 1.78, p < 0.00001)
and stroke (HR: 1.47, 95% CI: 1.39 to 1.55, p < 0.00001) [48]. Notably, a meta-analysis by
Jamalinia et al. involving 18,524,532 individuals demonstrated sex-specific differences in
CVD risk, with females with MAFLD showing a higher risk of fatal and non-fatal CVD
events (HR: 1.59; 95% CI: 1.44 to 1.75) compared to males (HR: 1.37; 95% CI: 1.27 to 1.48) [49].
This disparity appears to be, at least partly, influenced by female-specific factors such as
reproductive conditions, autoimmune disorders, breast cancer therapies, and pregnancy-
related complications, including gestational diabetes, which increase the steatotic liver
disease susceptibility and subsequent CVD risk [50-52].

Moreover, another meta-analysis, which included 29,906 individuals, demonstrated
that NAFLD was associated with a significantly higher risk of angina compared to the
controls, with a risk ratio (RR) of 1.45 (95% CI: 1.17 to 1.79) [53]. Within this meta-analysis,
a separate analysis of 2180 patients with NAFLD and 2805 controls also revealed a signif-
icantly higher risk of developing CAD for the NAFLD group compared to the controls
(HR: 1.21, 95% CI: 1.07 to 1.38) [53]. The association between NAFLD and acute coro-
nary syndrome (ACS) has also been evaluated with meta-analysis data from 25 studies
(593,635 patients with NAFLD and 4,915,788 controls), revealing a significantly higher
ACS risk among individuals with NAFLD (OR: 1.95, 95% CI: 1.49 to 2.55, p < 0.00001) [35].
An overview of systematic review and meta-analyses data on the risk of cardiovascu-
lar events in NAFLD [35,39,43,45,49,53-56] is presented in Table 2, with a focus on fatal
and/or nonfatal CVD events, including CAD, MI, coronary revascularization interventions,
or stroke.

Table 2. Key systematic reviews and meta-analyses on the association between clinical cardiovascular
events and non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver
disease (MAFLD).

Author, Year, [Reference]

OR or HR or RR (95%

Clinical Cardiovascular Outcome I

Meta-Analysis Characteristics

Targher et al., 2016, [43]

Total Number of Studies: 16
Total Population: 34,043

Fatal and nonfatal CVD events HR: 1.64 (1.26 to0 2.13)

NAFLD Population: 12.361 Nonfatal CVD events HR: 2.52 (152 to 418)
NAFLD

Wu et al., 2016, [54] Total Number of Studies: 64 CAD events HR: 2.31 (1.46 to 3.65)
Total Population: 164,494
Total Number of Studies: 6 CAD events RR:2.26 (1.04 to 4.92)

Haddad et al., 2017, [56]

Total Population: 25,837

NAFLD Population: 5953 Stroke events RR: 2.09 (1.46 to 2.98)

Mantovani et al., 2021, [55]

Total Number of Studies: 36
Total Population: 5,800,000
NAFLD Population: 335,132

Any fatal or nonfatal CVD events HR: 1.45 (1.31 to 1.61)

Nonfatal CVD events HR: 1.40 (1.20 to 1.64)

Toh et al., 2022, [39]

Total Number of Studies: 14

NAFLD Population: 67,070 CAD events

OR: 2.18 (1.69 to 2.81)

Prasad et al., 2023, [45]

NAFLD
Total Number of Studies: 36
Total Population: 7,068,007

Fatal and nonfatal CVD events HR:1.41 (1.13 to 1.76)

Nonfatal CVD events HR: 1.57 (1.33 to 1.85)

Abosheaishaa et al.,
2024, [53]

NAFLD
Total Number of Studies: 32
Total Population: 5,610,990

Angina events RR: 1.45 (1.17 to 1.79)

CAD events RR: 1.21 (1.07 to 1.38)
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Table 2. Cont.
Author, Year, [Reference] = Meta-Analysis Characteristics Clinical Cardiovascular Outcome 811){ or HR or RR (95%
Miladenova et al Total Number of Studies: 25
v Total Population: 5,509,423 ACS events OR: 1.95 (1.49 to 2.55)

2025, [35]

NAFLD Population: 593,635

Jamalinia et al., 2025, [49]

MAELD Fatiﬂ and nonfatal CVD events in HR: 1.37 (1.27 to 1.48)
Total Number of Studies: 36 males .
Total Population: 18,524,532 fearﬁ‘;l:d nonfatal CVDeventsin 1z 4 59 (4 44 10 1.75)

Abbreviations: ACS: Acute Coronary Syndrome; CAD: Coronary Artery Disease; CI: Confidence Interval;
CVD: Cardiovascular Disease; HR: Hazard Ratio; MAFLD: Metabolic Dysfunction-Associated Fatty Liver Disease;
NAFLD: Non-alcoholic Fatty Liver Disease; OR: Odds Ratio; and RR: Relative Risk. Nonfatal CVD Events:
including CAD, Myocardial Infarction, Coronary Revascularization Interventions, and Stroke.

4. NAFLD/MAFLD/MASLD and Atrial Fibrillation (AF)

AF is the most common sustained arrhythmia, affecting approximately 60 million
people globally, and increasing the risk of stroke four- to five-fold [57]. AF is also an
established predictor of HFpEF with poor long-term outcomes [58], whilst it is also as-
sociated with an increased risk of MI and congestive heart failure (CHF) hospitaliza-
tion [59]. Obesity, T2DM, dyslipidemia, and hypertension are shared risk factors for AF and
NAFLD/MAFLD/MASLD [60]. Notably, the systemic, chronic low-grade inflammation
and ectopic epicardial fat in steatosis/steatohepatitis appear to contribute to atrial and elec-
trical myopathies, ultimately leading to AF [61,62]. Accordingly, growing clinical data have
consistently demonstrated a significant association between NAFLD/MAFLD/MASLD
and an increased risk of various cardiac arrhythmias, including AF, QT prolongation, ven-
tricular tachyarrhythmias, and premature atrial and ventricular complexes [63-70]. The
Framingham Heart Study, which involved 3744 individuals with a 10-year follow-up pe-
riod, showed that high levels of aspartate and alanine transaminases were associated with
an increased incidence of AF, as demonstrated by a HR of 1.12 (95% CI: 1.01 to 1.24) and 1.19
(95% CI: 1.07 to 1.32), respectively [65]. Additionally, a study by Targher et al., involving
400 individuals with T2DM who were followed for 10-years, found significantly higher
AF incidence in the NAFLD group compared to the control group (OR: 4.49, 95% CI: 1.6
to 12.9) [66]. Another study by Targher et al., which further assessed the AF prevalence
in 702 hospitalized patients with T2DM, also showed that the risk of AF was higher in
individuals with NAFLD (OR: 3.04, 95% CI: 1.54 to 6.02), even after adjusting for other AF
risk factors [67]. Similarly, a large study conducted in an Asian population (924,497 NAFLD
and 5,309,434 non-NAFLD participants) followed up for 8 years showed that those with
NAFLD have a 12% increased risk of AF compared to the controls [71]. Moreover, NAFLD
was also identified as an independent predictor of AF in the Oulu Project Elucidating
Risk of Atherosclerosis (OPERA) study, which had a longer follow-up period of 16.3 years
and involved 958 individuals of whom 26% were diagnosed with NAFLD [72]. Although
more than half of the participants of that study had hypertension, the results remained
significant even after adjusting for all key AF risk factors (OR: 1.88, 95% CI: 1.03 to 3.45) [72].
However, analysis of data on 2122 individuals from the Framingham Heart Study who
were diagnosed with NAFLD through computed tomography (CT) scans and were fol-
lowed for 12 years showed that NAFLD was not significantly associated with AF after
adjusting for factors such as age, smoking, diabetes, HF, and hypertension [73]. This may
be attributed, at least in part, to insufficient statistical power to detect a potential associa-
tion between AF and CT-diagnosed NAFLD, as both the prevalence and incidence of AF
were notably low within the studied population [73]. Indeed, a larger study in the United
States, which included 9108 hospitalized patients with NAFLD and 111,812 individuals
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without NAFLD, showed that the prevalence of AF was significantly higher in patients
with NAFLD compared to those without (OR: 2.13, 95% CI: 1.93 to 2.34) [74]. Similarly, a
study in South Korea, which included 232,979 individuals without a prior history of AF or
structural heart disease, demonstrated that the AF risk was significantly higher in patients
diagnosed with NAFLD, even after adjusting for factors such as elevated serum creatinine
levels, HF, obesity, impaired fasting glucose, hypertension, and dyslipidemia (HR: 1.13, 95%
CI: 1.03 to 1.24) [75]. Similar findings have been reported by a multicenter study by Pastori
et al. among 1735 patients with non-valvular AF, of whom 732 (42.2%) were found to have
NAFLD based on the FLI [76]. Additionally, this study over a median follow-up period
of 18.7 months, also showed that patients with AF on anticoagulation therapy within the
NAFLD group did not exhibit an increased risk of bleeding compared to those without
NAFLD [76]. Such data merit further research attention, since it has been reported that
four out of ten NASH patients were not receiving anticoagulation therapy despite meeting
the corresponding criteria due to concerns regarding the risk of bleeding [74]. Although
there have been limited studies on the safety and benefits of anticoagulation therapy in
NAFLD with AF, the effectiveness in preventing strokes should be considered, whilst it
is also important to note that the risk of bleeding is high in cases of decompensated liver
disease [77,78].

Systematic review and meta-analysis data from five studies with a total of 238,129 in-
dividuals have also demonstrated a two-fold higher AF risk in patients with NAFLD
compared to controls (RR: 2.06, 95% CI: 1.10 to 3.85) [79]. Another meta-analysis by Man-
tovani et al., with 364,919 individuals from nine studies investigating the incidence and
prevalence of AF in patients with NAFLD, also revealed a higher risk of prevalent AF
in patients with NAFLD compared to those without (OR: 2.07, 95% CI: 1.38 to 3.10) [80].
However, when data were stratified according to the type of included cohorts (cohorts with
T2DM only vs. community-based or population-based cohorts), NAFLD presence was
significantly associated with an increased 10-year risk of incident AF only in the cohort of
outpatients with T2DM (HR: 4.96, 95% CI: 1.42 to 17.28) [80]. This appears to be in line
with the role of older age and diabetes as risk factors for AF (e.g., individuals with diabetes
exhibit a 40% increased AF risk compared to those without) [81,82]. It is also interesting
to note that none of the studies in the meta-analysis by Mantovani et al. used 24-h Holter
electrocardiogram (ECG) monitoring [80]; hence, these findings may not reflect the precise
incidence of AF in patients with NAFLD, since cases of paroxysmal AF could have been
missed [83]. Of note, recent systematic review and meta-analysis data on the incidence of
AF among children and young adults aged < 40 years (10,668,189 participants followed up
for a median of 10.6 years) found that, even in this young population, the incident risk of AF
was significantly higher in those with NAFLD (HR: 2.00, 95% CI: 1.12 to 3.57; p = 0.02) [48].
Although in this meta-analysis there was a variety of NAFLD diagnostic methods with
variable sensitivity and specificity for moderate to severe steatosis, the reported results were
also significant on subgroup analysis [48]. Interestingly, a study that involved only biopsy-
confirmed NAFLD diagnosis in children and young adults (<25 years) who were followed
up for a median of 16.6 years revealed that the incident risk of AF was significantly higher in
patients with NAFLD compared to controls [84]. A meta-analysis conducted by Zhou et al.,
with 14,213,289 participants and a median follow-up duration of 7.8 years, reported that
the incidence of AF was significantly higher in the NAFLD group compared to the control
(HR:1.18,95% CI: 1.12 to 1.23; p < 0.00001) [85]. However, two studies included in this meta-
analysis used International Classification of Diseases (ICD) codes [86,87], thus introducing
the possibility of misclassification bias. Indeed, on subgroup analysis of NAFLD diagnosis,
there was no significant association between AF and NAFLD when diagnostic codes were
used (HR: 1.00, 95% CI: 0.71 to 1.40; p = 0.99), while the AF and NAFLD association was sig-
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nificant when the FLI was used for the diagnosis of NAFLD (HR: 1.19, 95% CI: 1.13 to 1.25;
p < 0.00001) [85]. Another meta-analysis by Alon et al. with a total of 8,115,545 individuals
(34% with NAFLD) from various geographical areas (Europe, Asia, and North America)
showed that the AF risk was significantly higher in patients with NAFLD compared to
those without (OR: 1.27, 95% CI: 1.18 to 1.37) [46]. Moreover, a meta-analysis study by
Bisaccia et al. (337,698 adults, including 84,511 with NAFLD; median follow-up of 24 years)
also showed a significantly higher AF risk in those with NAFLD compared to the control
group (OR: 1.68; 95% CI: 1.22 to 2.30) [88]. Although data on the association between AF
and specifically MAFLD remain limited, a study by Lei et al. (54,832 participants; 33%
with MAFLD) reported that those with MAFLD exhibited a high risk of developing AF
(HR:1.99, 95% CI: 1.39 to 2.83; p < 0.001) [89]. A recent meta-analysis by Mantovani et al.
of 16 retrospective cohort studies (19,424,566 individuals of whom 2,487,792 had MASLD;
median follow-up of 7.2 years) also showed that MASLD was associated with a significantly
increased risk of incident AF (HR: 1.20, 95% CI: 1.10 to 1.32), independently of conventional
cardio-metabolic risk factors [90]. Table 3 presents a summary of the results from key
systematic reviews and meta-analyses on the association between NAFLD or MAFLD or
MASLD and the development of AF [46,48,79,80,85,88,90,91].

Table 3. Key systematic reviews and meta-analyses on the association between atrial fibrillation (AF)
and non-alcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease

(MAFLD), and metabolic dysfunction-associated steatotic liver disease (MASLD).

Author, Year, Meta-Analvsis Characteristics Median Clinical Cardiovascular OR or HR or RR
[Reference] y Follow-Up Outcome (95% CI)
Witarnoreecha et al Total Number of Studies: 5
201]7 [;’9] v Total Population: 238,129 - Incidence of AF HR: 2.06 (1.10 to 3.85)
! NAFLD Population: 36,707
Mantovani et al., %’g E;)‘Ei’:trio"rfsgtgf;els; 9 ] Incidence of AF HR: 1.16 (0.91 to 1.48)
2019, [80] NAFLD Population: 156,915 Prevalence of AF OR: 2.07 (1.38 to 3.10)
Total Number of Studies: 6
Cai et al., 2020, [91] Total Population: 614,673 10 years Incidence of AF RR:1.19 (1.04 to 1.31)
NAFLD Population: 245,869
Total Number of Studies: 7
Alon et al., 2022, [46] Total Population: 8,115,545 4 years Incidence of AF OR: 1.27 (1.18 to 1.37)
NAFLD Population: 2,766,117
Total Number of Studies: 4
Bisaccia et al., 2023, [88]  Total Population: 337,698 24 years Incidence of AF OR: 1.68 (1.22 to 2.30)
NAFLD Population: 84,511
Total Number of Studies: 12
Zhou et al., 2023, [85] NAFLD/MAFLD Population: 7.8 years Incidence of AF HR: 1.18 (1.12 to 1.23)
14,213,289
Total Number of Studies: 4
Liao et al., 2024, [48] Total Population: 10,668,189 10 years Incidence of AF HR: 2.00 (1.12 to 3.57)
NAFLD Population: 1,068,246
Mantovani et al Total Number of Studies: 16
v Total Population: 19,424,566 7.2 years Incidence of AF HR: 1.20 (1.10 to 1.32)

2025, [90]

MASLD Population: 2,487,792

Abbreviations: AF: Atrial Fibrillation; CI: Confidence Interval; HR: Hazard Ratio; MAFLD: Metabolic Dysfunction-
Associated Fatty Liver Disease; MASLD: Metabolic Dysfunction-Associated Steatotic Liver Disease; NAFLD: Non-
alcoholic Fatty Liver Disease; OR: Odds Ratio; and RR: Relative Risk.
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5. NAFLD/MAFLD/MASLD and Heart Failure (HF)

HF is a rapidly growing public health issue affecting 64.3 million people world-
wide [92] and resulting in high mortality and morbidity with recurrent hospitalisations
and reduced quality of life [93]. As with other cardiac diseases, HF shares key common
risk factors with NAFLD/MAFLD/MASLD, such as obesity, T2DM, dyslipidemia, and
hypertension [94]. However, regardless of the presence of such metabolic syndrome-related
diseases, compelling evidence further indicates a significant independent association of
NAFLD with the development of LVH and diastolic dysfunction [70], which has been
observed not only in adult patients with NAFLD, but also in children [95]. As illustrated
in Figure 2, NAFLD/MAFLD/MASLD appears to be implicated in atrial, ventricular,
and electrical remodeling and myopathies through complex pathophysiological mecha-
nisms [61,62,96].

As such, a prospective population-based cohort study of 1827 individuals with CT-
diagnosed NAFLD followed for five years showed that NAFLD is associated with subclini-
cal LV remodeling and hypertrophy, as well as impaired myocardial strain, independently
of other HF risk factors [97]. Furthermore, a small study in 65 individuals without known
CVD of whom 14 had biopsy-proven NASH also showed that NASH was associated with
myocardial structure alterations, whilst it was also inversely correlated with indices of LV
diastolic function [98]. In another study from Korea with 20,821 individuals (30% with
NAFLD), the NAFLD group had abnormal LV relaxation on echocardiography which
correlated with NAFLD severity, as well as increased relative wall thickness compared to
the non-NAFLD group, suggesting significant LV structural and functional alteration [99].
Echocardiography findings of a higher LV mass and end-diastolic volume, as well as
increased LV relative wall thickness, in patients with CT-diagnosed NAFLD compared
to controls were also reported by the multicenter, community-based, Coronary Artery
Risk Development in Young Adults (CARDIA) study in a cohort of 2713 young adults
(271 with NAFLD) as part of the 25-year follow-up examination [100]. Additionally, a
study in 308 participants (38% with NAFLD) revealed a significant correlation between
hepatic steatosis and fibrosis as assessed by transient liver elastography with LV diastolic
dysfunction as evaluated by 18F-fluorodeoxyglucose-positron emission tomography and
echocardiography [101]. An association of hepatic steatosis with an increased LV mass
index, LV wall thickness, and LV filling pressure, as well as increased mitral peak velocity,
was also documented in a cross-sectional study in 2356 adults (384 with hepatic steato-
sis) who underwent echocardiography and hepatic CT scans [102]. In that study, hepatic
steatosis was also inversely correlated with global systolic longitudinal strain and diastolic
annular velocity, indicating multiple subclinical systolic and diastolic cardiac dysfunctions
in such patients [102]. Another study in 228 individuals (75% with MAFLD) also showed
that LV diastolic dysfunction was significantly more prevalent in the MAFLD group com-
pared to the controls (60.8% vs. 24.6%, respectively, p < 0.001) [103]. Interestingly, a study
involving 147 patients with biopsy-proven NAFLD revealed that NAFLD was associated
with increased epicardial fat accumulation, which correlated with fibrosis severity [104].
That study further identified significant alterations in cardiac structure, such as increased
posterior wall thickness, increased relative wall thickness, and increased left atrium volume,
which also correlated with fibrosis severity, whilst a negative correlation with LV ejection
fraction was also documented [104]. A significant association between the prevalence
of LV diastolic dysfunction and the NAFLD fibrosis grade has also been identified in
a large study including 1310 patients with NAFLD diagnosed by ultrasonography and
1990 controls (30.4%, 35.2%, and 57.4% prevalence among those without NAFLD, with
NAFLD without advanced fibrosis, and with NAFLD with advanced fibrosis, respectively,
p <0.001) [105]. That study also found that the increased risk for LV diastolic dysfunction
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according to the NAFLD fibrosis grade was more pronounced among those with a BMI
less than 25 kg/m? compared to those with obesity, independent of other risk factors [105].
Furthermore, meta-analysis data from 16 studies (total of 26,365 participants; 67% with
NAFLD) also support the observed association between NAFLD and subclinical cardiac
structural alterations, with the NAFLD group exhibiting higher LV mass, LV end-diastolic
volume, and left atrium diameter, as well as increased posterior wall and septal thickness,
compared to the non-NAFLD group, thus indicating subclinical LV diastolic dysfunction
in NAFLD [106]. Another meta-analysis of 41 studies (total of 33,891 patients) found that
NAFLD was associated with impairment of both systolic and diastolic cardiac function, as
well as with changes in cardiac structure (increased LV mass and epicardial adipose thick-
ness) [107]. Increased NAFLD severity was associated with worse diastolic [e.g., decreased
early to late diastolic transmitral flow velocity as assessed echocardiographically by the
peak E wave (E) to peak A (A) wave (EA) ratio], but not with systolic indices [107]. Diastolic
echocardiographic parameters, such as the E to early diastolic mitral annular tissue velocity
(E/¢€’), are markers of LV diastolic dysfunction, with increased LV filling pressures reflect-
ing an increased E/e’ ratio [108]. A higher E/e’ ratio in patients with NAFLD compared
to controls [standardized mean difference (SMD) between the two groups of 1.02; 95%
CI: 0.43 to 1.61] has been documented in a recent systematic review and meta-analysis of
21 studies with a total of 35,013 participants (30% with NAFLD) [109]. Furthermore, this
meta-analysis also showed structural cardiac changes in the NAFLD group compared to
controls, including increases in both the LV mass index (SMD: 0.89, 95% CI: 0.31 to 1.47)
and the left atrium volume index (SMD: 0.87, 95% CI: 0.38 to 1.37), suggesting that patients
with NAFLD are at a higher risk of LV diastolic dysfunction [109].

The aforementioned adverse cardiac structural changes can progressively contribute to
the development and progression of new-onset HF [110]. A community-based cohort study
in 3544 Framingham Study participants followed for a mean duration of 23 years found that
a mild increase in GGT levels was associated with a higher incidence of HF, independently
of HF risk factors [111]. These findings were consistent with those from both the British
Regional Heart Study (3494 participants followed for a mean period of 9 years), and the
FINRISK cohort study (38,079 participants followed for a mean period of 14.5 years), which
also showed that an increase in GGT levels was significantly associated with a higher
incidence of HF in these community-based cohorts [112,113]. Another study in the United
States, which included 3869 patients with NAFLD and 15,209 controls who were followed
over a median duration of 7 years, identified a higher incidence of developing HF in the
NAFLD group (HR: 1.47, 95% CI: 1.27 to 1.70) [114]. Similarly, UK Biobank data from
196,198 individuals without baseline HF or other CVD who were followed for a median of
8 years revealed that those with NAFLD, based on a high FLI, had a significantly higher
incidence of developing HF (HR: 1.74, 95% CI: 1.63 to 1.86) [115]. Moreover, a cohort
study including 8,962,813 healthy Koreans followed for a median of 10 years also showed
that individuals with a high FLI (FLI > 30) had a significantly higher risk for developing
new-onset HF (HR: 1.61, 95% CI: 1.55 to 1.67), independently of other established HF
risk factors [116]. A higher risk of HF incidence has also been noted in biopsy-proven
NAFLD, as shown by a nationwide Swedish cohort study (10,422 adults with biopsy-proven
NAFLD without baseline CVD followed for a median of 13.6 years) [42]. This significant
association between a higher risk of developing HF and NAFLD (HR: 1.75, 95% CI: 1.63
to 1.87) was independent of known HF risk factors and correlated with NAFLD severity,
since the HF incidence was higher in patients with cirrhosis (HR: 2.83, 95% CI: 2.08 to
3.85) compared to those with hepatic fibrosis without cirrhosis (HR: 2.04, 95% CI: 1.66 to
2.51) [42]. Another cohort study (870,535 participants without a prior history of CVD, of
whom 27,919 had NAFLD; mean follow-up of 14.3 years) also showed that NAFLD had a
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significant independent association with an increased HF risk of new-onset HF (adjusted
HR: 1.23, 95% CI: 1.18 to 1.29) [117]. The risk of HFpEF in this study was significantly
higher compared to that of HF with reduced ejection fraction (HFrEF), with HR of 1.24
(95% CI: 1.14 to 1.34) and 1.09 (95% CI: 0.98 to 1.20), respectively [117]. A small study
with 181 participants (27% with NAFLD) also showed a two-fold higher risk of HFpEF in
patients with NAFLD compared to those without, with this risk being higher in the patients
with liver fibrosis and cirrhosis [118]. A significant association between NAFLD and the
risk of developing new-onset HF (HR: 1.34, 95% CI: 1.28 to 1.39; p < 0.001) during a 10-year
follow-up period was also shown in a retrospective analysis of 173,966 adult outpatients in
Germany (50% with NAFLD) [119]. Similar findings have been reported for MAFLD, with
a large study which followed individuals without baseline HF for 14 years showing that
patients with MAFLD (N = 30,755) had an increased risk of HF (HR: 1.40, 95% CI: 1.30 to
1.50) compared to those without (N = 67,930) [120]. Moreover, a significantly increased HF
incidence in patients with MASLD compared to those without (HR: 1.38, 95% CI: 1.35 to
1.41) has been documented in a study with 8,808,494 individuals without baseline CVD
(27.5% with MASLD) and a median follow-up of 12 years [121]. A meta-analysis by Li et al.,
with a total of 10,979,967 participants (22.2% with NAFLD), also showed an increased HF
risk in the NAFLD group (HR: 1.36, 95% CI: 1.16 to 1.58), even after adjustment for several
confounding risk factors [122]. In addition, a systematic review and meta-analysis study of
11 cohort studies (11,242,231 individuals from the United States, Europe, and Asia; 26.2%
with NAFLD; median follow-up of 10 years) showed that patients with NAFLD had an
increased risk of new-onset HF (HR: 1.50, 95% CI: 1.34 to 1.67), independently of known
HF risk factors [123].

It is important to also note that adverse cardiac structural remodelling significantly
impacts not only on the onset, but also on the progression of HF [110]. Accordingly, there
are data showing that patients with FLI > 60 exhibit an increased HF incidence (HR: 1.30,
95% CI: 1.24 to 1.36), increased HF hospitalization (HR: 1.54, 95% CI: 1.44 to 1.66), and
increased cardiovascular mortality (HR: 1.41, 95% CI: 1.22 to 1.63) [124]. Moreover, a study
in 264 older patients with NAFLD (mean age: 83 &+ 9 years) who were followed on average
for nearly two years showed an association of NAFLD with an increased risk of hospital
admission and post-discharged HF mortality (HR: 1.82, 95% CI: 1.22 to 2.81; p < 0.001) even
after adjustment for potential confounders [125]. Progression and worse prognosis of HF
in patients with NAFLD was also evident in a recent systematic review and meta-analysis
(12,374 patients with HF; median follow-up of 2.5 years) which showed that those with
NAFLD had a significantly higher risk of primary adverse outcomes (HR: 1.61, 95% CI: 1.25
to 2.07), all-cause mortality (HR: 1.66, 95% CI: 1.39 to 1.98), and HF hospitalization or re-
hospitalization (HR: 1.71, 95% CI: 1.03 to 2.86) compared to those without [126]. A summary
of these findings from key systematic reviews and meta-analyses on the association between
NAFLD and HF events is presented in Table 4 [46,122,123,127,128].
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Figure 2. Simplified representation of key pathophysiological mechanisms implicated in the cardiovascular complications of non-alcoholic fatty liver disease
(NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD), and metabolic dysfunction-associated steatotic liver disease (MASLD). Here, regarding the
general pathophysiology aspects of the disease, the terms NAFLD, MAFLD and MASLD are applied interchangeably and depicted as NAFLD/MAFLD/MASLD.
Abbreviations: ADMA: Asymmetric dimethyl arginine; CRP: C-reactive protein; HDL: High-density lipoprotein; IL-13: Interleukin-1(; IL-6: Interleukin-6; IR: Insulin
resistance; LDL: Low-density lipoprotein; NO: Nitric oxide; NLRP3: Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein 3
patatin-like phospholipase domain-containing protein 3; TG: Triglycerides. The symbols “+”, “]”, and “1” are used to indicate activation, decrease, and increase,

respectively. The symbol “—" is used to indicate progression.
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Table 4. Key systematic reviews and meta-analyses on the association between heart failure (HF) and
non-alcoholic fatty liver disease (NAFLD).

Author, Year, . . L. Median Clinical Cardiovascular o

[Reference] Meta-Analysis Characteristics Follow-Up Outcome HR or RR (95% CI)
Total Number of Studies: 5

Salah et al., 2022, [127] Total Population: 1,433,066 - Incidence of HF HR: 1.60 (1.24 to 2.05)

NAFLD Population: 130,509

Total Number of Studies: 6

Lietal., 2022, [122] Total Population: 10,979,967 7 years Incidence of HF HR: 1.36 (1.16 to 1.58)
NAFLD Population: 2,437,551
Total Number of Studies: 4
Alon et al., 2022, [46] Total Population: 8,984,247 4 years Incidence of HF HR: 1.61 (1.43 to 1.84)
NAFLD Population: 2,465,243
. Total Number of Studies: 12
Jaiswal et al., . . .
2023, [125] Total Population: 18,055,072 6 years Incidence of HF RR: 1.43 (1.03 to 2.00)
’ NAFLD Population: 2,938,753
Mantovani et al Total Number of Studies: 11
v Total Population: 11,242,231 10 years Incidence of HF HR: 1.50 (1.34 to 1.67)

2023, [123]

NAFLD Population: 2,946,459

Abbreviations: CI: Confidence Interval; HF: Heart Failure; HR: Hazard Ratio; NAFLD: Non-alcoholic Fatty Liver
Disease; and RR: Relative Risk.

6. Pathophysiological Nexus Between NAFLD/MAFLD/MASLD
and CVD

Given the aforementioned growing body of data on the association between
NAFLD/MAFLD/MASLD and CVD, it is important to briefly highlight key underly-
ing mechanisms which are considered to play a mediating pathophysiologic role (Figure 2).
The hallmark of the pathophysiology of NAFLD/MAFLD/MASLD is the accumulation of
fat in the liver (steatosis), which is considered to represent the initial pathophysiological
insult [129]. Following this and particularly in the context of obesity, the liver is frequently
exposed to high circulating levels of pro-inflammatory adipokines and cytokines secreted
from the adipose tissue, as well as mitochondrial dysfunction, endoplasmic reticulum
(ER) stress, and oxidative stress in hepatocytes [130-132]. All these promote hepatic in-
flammation (steatohepatitis; NASH or MASH) and hepatocellular injury and may induce
progression from simple steatosis [129]. This progression is considered a key factor for
the subsequent development of hepatic and extrahepatic complications in the context
of NAFLD/MAFLD/MASLD, with steatohepatitis being already present in more than a
quarter of adults at the time of diagnosis [10,133].

The complete pathophysiological nexus between NAFLD/MAFLD/MASLD and
CVD is still not fully understood, since complex and multifactorial underlying mech-
anisms are implicated [10]. These appear to primarily involve obesity-related chronic
low-grade inflammation and insulin resistance, as well as atherogenic lipid abnormalities,
ectopic epicardial fat accumulation, gut microbiota dysbiosis, and dysregulation in the
balance between pro- and anti-coagulant factors [10,28,134-140] (Figure 2). Genetic factors
and endothelial dysfunction are also implicated in the pathophysiological links between
NAFLD/MAFLD/MASLD and CVD [28,141-143], as outlined in Figure 2. Collectively, all
these factors are considered to play a role in a ‘multi-hit’ pathophysiologic model which
characterizes chronic hepatic steatosis and particularly steatohepatitis [144-147]. In this
context, metabolic dysfunction and dyslipidemia appear to act as primary disease triggers,
with insulin resistance precipitating higher free fatty acid (FFA) accumulation within the
liver [148,149]. This may result in lipotoxicity, characterized by the degradation of hepa-
tocyte membranes and subsequent release of pro-inflammatory mediators, which in turn
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exacerbates insulin resistance, thus creating a vicious pathophysiological cycle [150-152].
Consequently, the liver initiates a ductular reaction as a compensatory mechanism aimed
at local tissue repair, which, however, may contribute to the progression of hepatic fibrosis
when this reaction persists [153]. The dysregulation of lipid metabolism leads to high levels
of low-density lipoprotein (LDL) cholesterol and triglycerides, with low levels of HDL
cholesterol, thus promoting atherogenic dyslipidemia [154,155]. For example, it has been
shown that angiopoietin-like protein 8 (ANGPTLS) is involved in hypertriglyceridemia
through the inhibition of the lipoprotein lipase enzyme [156], which is responsible for
triglyceride breakdown [157]. Subsequently, this atherogenic dyslipidemia triggers the
activation of toll-like receptors (TLR) 2 and 4, penetrating the vascular wall and result-
ing in the activation of the nucleotide-binding domain, leucine-rich—containing family,
pyrin domain-containing protein 3 (NLRP3) inflammasome [137,158]. The NLRP3 induces
ongoing low-grade, chronic inflammation by inducing the release of pro-inflammatory
cytokines, such as interleukin (IL)-1f3, IL-6, and CRP, thereby promoting atherosclerotic
plaque formation [144]. The Multi-Ethnic Study of Atherosclerosis (MESA), involving
3876 participants from the general population (668 with NAFLD), showed that IL-6 was
independently associated with subclinical atherosclerosis, as indicated by a high CAC
score, suggesting that IL-6 is not only linked to the presence of subclinical atherosclero-
sis, but also to its severity [159]. Mendelian randomization studies have also found that
impairment of the IL-6 pathway functionality results in decreased long-term vascular
events [160]. Additionally, CRP has been identified as a prognostic biomarker, indepen-
dently predicting CVD mortality in individuals with MAFLD [161]. Overall, polygenic risk
scores in combination with novel biomarkers (e.g., through metabolomics proteomics and
transcriptomics), particularly focusing on pro-inflammatory and pro-atherogenic processes,
appear to be screening and diagnostic tools for the prompt and effective monitoring of the
broader cardiovascular-liver-metabolic health [162]. The systemic, chronic inflammation
in NAFLD/MAFLD/MASLD may also cause atrial myopathy, and contribute to AF and
ventricular myopathy, thus causing ventricular remodeling and ultimately HFpEF [61,96].
This is supported by meta-analysis data which revealed a significant association between
elevated levels of pro-inflammatory biomarkers and an increased incidence of AF [163].
Additionally, this pro-inflammatory process may further favor the accumulation of ectopic
epicardial fat surrounding the atria, ventricles, or coronary arteries [164,165]. This epi-
cardial fat serves as an additional local source of pro-inflammatory adipokines, such as
leptin, which contribute to myocardial myopathy and fibrosis, thereby playing a significant
role in the pathogenesis of AF and HFpEF [166,167]. Furthermore, the presence of ectopic
epicardial fat contributes to electrical remodeling, leading to a reduction in the effective
refractory period [62]. Over time, this alteration promotes the development of chaotic
electrical patterns, ultimately resulting in AF [62]. As such, ectopic epicardial fat has been
identified as an independent predictor for the development of AF [168]. Epicardial fat
adjacent to the coronary arteries has also been shown to release additional adipokines, such
as resistin, which may contribute to the development of CAD [169]. Overall, meta-analysis
data indicate that epicardial fat in NAFLD may be an independent risk factor for CAD,
cardiac arrhythmias, and CHF [170].

Moreover, the gut microbiome is also emerging as an additional pathophysiologic
factor in patients with steatosis/steatohepatitis and appears to also play a role in the patho-
physiology of plaque formation in such patients (Figure 2) [171]. Indeed, alterations in the
gut microbiota appear to disrupt cholesterol and triglyceride metabolism, thereby contribut-
ing to dyslipidemia and atherogenesis [141,172]. For example, gut microbiome alterations
impact on choline and carnitine metabolism, leading to elevated levels of trimethylamine
oxide (TMAO), which has been linked to the formation of atherosclerotic plaques [173].
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Additionally, TMAO serves as a prognostic indicator for both short- and long-term cardio-
vascular complications in patients with ACS [174]. Genetic polymorphisms in patatin-like
phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily
member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT?),
and glucokinase regulatory protein (GCKR) are also considered to play a significant role
in steatohepatitis, fibrosis, and hepatic carcinogenesis [175,176]. However, these genetic
variants exhibit diverse effects on CVD risk, as certain variants exhibit cardio-protective
effects (e.g., the E167K variant of TM6SF2 and the 1148M variant of PNPLA3) [177-179],
while others increase the cardio-metabolic risk (e.g., the rs738409 variant of PNPLA3) [180].
As such, evidence suggests that the rs738409 PNPLAS3 variant predicts CAD and could
serve as a relevant diagnostic biomarker [180]. A study in patients with biopsy-proven
NAFLD showed that the PNPLA3 GG genotype exhibits a significant association with
higher severity of carotid atherosclerosis in younger patients with NAFLD [181]. No-
tably, Zhong et al. also identified eight co-upregulated and 31 co-downregulated genes
between NAFLD and AF [182]. Genes such as AMOT, PDE11A, TYMS, TMEM98, and
PTGS2 demonstrated substantial diagnostic potential for identifying NAFLD patients at
risk of AF [182]. Moreover, they suggest that mitochondrial disturbances may underpin
the systemic inflammation in NAFLD, which possibly exacerbates AF [182]. Furthermore,
dysregulation of the coagulation cascade is evidenced in patients with NAFLD, resulting
in a hypercoagulable state characterized by increased levels of coagulation and fibrinol-
ysis inhibitors, as well as decreased levels of anticoagulant factors (e.g., protein C and
S), thus promoting athero-thrombosis [183-185]. In addition, endothelial dysfunction, an
early process in atherosclerosis, appears to also play a key role in the pathophysiological
links between steatotic liver disease and CVD [157]. This dysfunction appears associated
with impaired regulation of homocysteine and asymmetric dimethyl arginine (ADMA)
metabolism in the liver, leading to their local accumulation [146,186]. Consequently, el-
evated homocysteine and ADMA levels reduce nitric oxide (NO) production, resulting
in increased vascular resistance and platelet activation [145,187,188]. Since endothelial
dysfunction appears to contribute to the underlying pathophysiology of atherogenesis in
NAFLD/MAFLD/MASLD, targeting endothelial cells could be an additional strategy in
developing novel treatments for CVD in patients with steatosis/steatohepatitis [143].

7. Future Perspectives Related to the Pathophysiology, Diagnosis, and
Management of MASLD

As aforementioned, significant progress has been made during the past few decades
in elucidating the pathophysiology of MASLD, with both translational and clinical research
studies establishing strong links between this highly prevalent liver disease and CVD [189-193].
Based on this increasing body of evidence which links MASLD and CVD, recent recommenda-
tions and the clinical practice guidelines by the European Association for the Study of the Liver
(EASL), the European Association for the Study of Diabetes (EASD), the European Association
for the Study of Obesity (EASO), and the American Diabetes Association (ADA) recognise
MASLD as a key modifiable CVD risk factor and recommend systematic cardiovascular assess-
ment and integrated management to mitigate adverse cardiovascular-liver—-metabolic health
(CLMH) outcomes [189-191]. Indeed, consistent evidence increasingly shows that particularly
MASH and advanced liver fibrosis are associated not only with progression to cirrhosis, but
also with elevated CVD risk [192,193]. Meta-analysis data have also shown that non-invasive
fibrosis scores, such as the NFS and FIB-4, can predict CVD events and mortality, even after
adjusting for age, BMI, T2DM, and hypertension [194]. Moreover, data from general population
cohorts also indicate that higher hepatic fibrosis scores are associated with CVD events [44],
independently of traditional cardio-metabolic risk factors, suggesting that hepatic fibrosis itself
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may be considered as a cardio-metabolic risk factor. Accordingly, considering advanced hepatic
fibrosis as an additional independent CVD risk factor could potentially refine cardio-metabolic
risk stratification models and help to better inform the relevant monitoring and management
strategies. In this context, non-invasive evaluation of liver fibrosis is particularly important
in patients with multiple cardio-metabolic risk factors, such as obesity, T2DM, hypertension,
and dyslipidaemia. As such, a number of serum-based scoring systems have been developed—
collectively termed by the American Association for the Study of Liver Diseases (AASLD) as
non-invasive liver disease assessment(s) (NILDASs) [195]—to estimate steatosis and fibrosis
by integrating routinely measured clinical and biochemical parameters, including the NFS,
FIB-4 and the Enhanced Liver Fibrosis (ELF) test [195-198]. These NILDAs can be particularly
valuable to better stratify the risk of adverse CLMH outcomes at the population level and
identify high-risk individuals who may benefit from further evaluation for the detection of
advanced hepatic inflammation and fibrosis [195-198], thus facilitating timely interventions to
prevent both hepatic and CVD complications.

It becomes evident that elucidating the complex pathophysiological interplay between
MASLD and CVD, particularly regarding the role of novel mediators/biomarkers and the
associations of MASLD with atherosclerotic disease and adverse electrical and structural
processes of the heart, can further advance precision diagnostics and effective management
strategies for this chronic liver condition (Figure 3). To address such knowledge gaps, fur-
ther research focus is currently placed on the precise mechanisms mediating these complex
interactions which impact on CLMH outcomes and remain incompletely understood, thus
representing a critical area for further investigation. For example, the exact pathways through
which hepatic lipid accumulation contributes to adverse CVD outcomes are not fully eluci-
dated, particularly in lean patients with MASLD who lack key cardio-metabolic risk factors,
such as obesity, and are estimated to be at least 7% of the individuals with MASLD [199,200].
Furthermore, despite the considerable recent advances, the identification and validation of
novel reliable biomarkers for MASLD diagnosis, stratification, and monitoring remains chal-
lenging [195,196]. Both blood-based and imaging-based NILDAs have demonstrated potential
for evaluating disease activity and fibrosis [195,201], but their diagnostic performance exhibits
heterogeneity across clinical settings and patient populations. Thus, gaps still exist regarding
NILDAs which are capable of effectively diagnosing MASLD and/or dynamically tracking
MASLD/MASH progression and/or therapeutic responses, highlighting an unmet need for
further research in this field. The development of such novel biomarkers with the integration
of artificial intelligence and multi-omics technologies is expected not only to improve early
detection, diagnostic accuracy, risk stratification and dynamic monitoring for MASLD, but
also to enable more personalized/tailored therapeutic approaches and treatment planning
for these patients (Figure 3) [162,195,201,202]. For such precision medicine approaches, more
research is also required for the new pharmacologic agents against MASLD which target
obesity and/or hyperglycaemia [e.g., glucagon-like peptide-1 receptor agonists (GLP-1RAs);
GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists; triple hormone
agonists of GLP-1, GIP, and glucagon receptors; and sodium glucose cotransporter-2 inhibitors
(SGLT?2i)] or other pathways implicated in MASLD/MASH [e.g., fibroblast growth factor
21 analogues; proliferator-activated receptor (PPAR) agonists; farnesoid X receptor (FXR)
agonists; and resmetirom, a selective thyroid hormone receptor beta (THR-[3) agonist, which is
the first FDA-approved drug for MASH] [203-210]. Indeed, such new—approved and under
development—pharmacological treatments targeting MASLD/MASH require further clinical
research, particularly regarding their long-term efficacy, safety profile and CLMH benefits,
whilst effective direct anti-fibrotic agents are still missing [203-210]. Finally, it should also
be highlighted that lifestyle modification remains a cornerstone for the effective long-term
management of patients with MASLD/MASH alongside any pharmacological treatment, and,
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hence, research is also needed to optimise the benefits of these non-pharmacological interven-
tions. Accordingly, there are knowledge gaps regarding the optimal and personalised dietary
approaches for patients with MASLD/MASH (e.g., the long-term effects of the Mediterranean
diet, caloric restriction, intermittent fasting, low-carbohydrate and ketogenic diets, as well
as the therapeutic potential of prebiotics, probiotics, synbiotics, and other gut microbiota-
based interventions) which need to be further investigated [171,211-215]. Optimising the
long-term effects of these dietary interventions, together with personalised recommendations
for physical activity and exercise [190,211-216], may further benefit long-term CLMH out-
comes in the context of a holistic and individualised therapeutic approach for patients with
MASLD/MASH (Figure 3).
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Figure 3. Clarifying the mechanisms which mediate the pathophysiology of metabolic dysfunction-
associated steatotic liver disease (MASLD) and its links to cardiovascular disease (CVD) is expected
to improve precision medicine approaches for MASLD diagnostics [e.g., blood-based and imaging-
based non-invasive liver disease assessment(s) (NILDAs) together with artificial intelligence and
multi-omics technologies], as well as for both pharmacological [e.g., glucagon-like peptide-1 receptor
agonists (GLP-1RAs); GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists;
triple hormone agonists of GLP-1, GIP, and glucagon receptors; sodium glucose cotransporter-2
inhibitors (SGLT2i); fibro-blast growth factor 21 analogues; proliferator-activated receptor (PPAR)
agonists; farnesoid X receptor (FXR) agonists; and resmetirom, a selective thyroid hormone receptor
beta (THR-f3) agonist] and non-pharmacological (e.g., personalised dietary and exercise recommenda-
tions) interventions for patients with MASLD who are at high risk for adverse cardiovascular-liver—
metabolic health (CLMH) outcomes.
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8. Conclusions

Consistent evidence supports a significant association between metabolic-related
steatosis/steatohepatitis and CVD, including not only CAD, but also AF and HF. This asso-
ciation appears to be independent of other known CVD risk factors (despite the synergy
and significant overlap between all these cardio-metabolic diseases), thus highlighting
this highly prevalent hepatic disease as a key cardio-metabolic risk factor, which merits
early diagnosis and treatment in order to promptly reduce the related CVD risk. Indeed,
development of NAFLD/MAFLD/MASLD-related cardiovascular morbidity appears to
progressively increase with the severity of the underlying hepatic pathology, particularly
with the progression to steatohepatitis and fibrosis. The evidence presented in this review
highlights the links between NAFLD/MAFLD/MASLD and CVD through cardiac struc-
tural, electrical, and functional alterations which can progress to clinical manifestations
of CAD, AF, and new-onset HF. Recognising these links in routine clinical practice fur-
ther underscores the importance of early detection and multi-disciplinary management
of metabolic-related steatosis/steatohepatitis (e.g., by hepatologists, endocrinologists and
cardiologists) in order to prevent both disease progression and CVD complications. In
this context, further clinical and translational research is also warranted to explore novel
biomarkers and pharmacotherapies for MASLD which can be utilized, respectively, for the
early diagnosis/monitoring and effective treatment of cardio-metabolic complications in
these patients.
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