Deep Transfer Learning:

A Smarter Approach to

Wireless Communication Networks

Siling Wang, Member, IEEE, Syed Ali Raza Zaidi, Senior Member, IEEE, Maryam Hafeez, Member, IEEE, Li
Zhang, Senior Member, IEEE

Abstract—Next-generation cellular networks are evolving into
more complex and virtualized systems, utilizing machine learning
(ML) for enhanced optimization while leveraging higher fre-
quency bands and denser deployments to meet diverse service
demands. Although this evolution brings numerous benefits,
it also introduces significant challenges, particularly in radio
resource management (RRM). In such environments, effective
RRM becomes increasingly difficult due to several factors: more
intricate interference patterns, the need for rapid decision-
making across a growing number of base stations (BSs) and
the highly dynamic nature of user mobility. In addition, the
requirements of different types of services further complicate
resource allocation, necessitating more advanced and adaptive
RRM strategies to achieve optimal performance and maintain
high quality of service (QoS). To address these challenges, we
propose a ML algorithm that predicts the optimal future serving
cell using sequential user equipment (UE) measurements. Con-
ventional ML models require retraining for each environmental
change, leading to high complexity and energy consumption.
Thus, we also introduce the transfer learning (TL) approach to
accelerate model adaptation to dynamic networks and evolving
channel conditions, significantly reducing retraining time and
improving efficiency. Furthermore, it optimizes key network
objectives, such as load balancing and energy efficiency through
TL techniques. Our framework complies fully with the O-RAN
specifications and is designed to be deployable in a Near-Real-
Time RAN Intelligent Controller (RIC).

I. INTRODUCTION

Next-generation networks (NGNs) are designed to support
a wide variety of cell types, user devices, radio access tech-
nologies and communication paradigms. This multi-layered
heterogeneity is intended to support numerous use cases and
deployment contexts simultaneously. Consequently, mobile
network operators (MNOs) should manage and configure net-
work functionalities which operate across different timescales
and serve diverse objectives [1].
RRM within Radio Access Networks (RANs) is a complex
large-scale control problem that includes a variety of net-
work functions working at multiple timescales, from sub-
millisecond to several seconds. The current architecture that
handles RRM in modern RANs has evolved incrementally,
with new RRM features being continuously integrated to keep
pace with system advancements and requirements. RRM can
support different functionalities such as admission control,
packet scheduling, and link adaptation. In addition, it provides
functions related to power allocation, load balancing, beam-
forming and handover management, etc. The complexity of
RRM will increase in NGNs as optimization domains expand
and network demands grow stricter [2]. To address these
complexities, ML techniques have been widely used for closed

loop control, optimization, and automation, further enhancing
the network’s efficiency and adaptability. Recently, ML with
TL has gained more focus because of its capability to adapt
effectively to the dynamic nature of RANS such as fast-varying
channel conditions or changed network deployment [3]. The
authors in [4] designed and evaluated intelligent handover pre-
diction models for 5G networks to ensure zero downtime dur-
ing user transitions. In [5], the authors proposed an ML-based
algorithm for managing and predicting handovers in mobile
wireless networks, while also detecting abnormal handovers to
neighboring cells. Furthermore, work in [6] introduces a deep
transfer reinforcement learning framework based on multi-
agent deep Q-network (TL-MADQN) to address beamforming
and resource allocation challenges in downlink multicell multi-
input single-output OFDMA (MISO-OFDMA) systems. By
leveraging knowledge distillation, the TL-MADQN framework
utilizes the neural network parameters of pre-trained agents
and the experience gathered in new environments, enabling
agents to quickly adapt and efficiently train in the new
scenario. Experimental results demonstrate that this approach
significantly outperforms conventional methods in terms of
convergence speed and data rate, demonstrating its effective-
ness in dynamic wireless environments.

Recent advances in the open radio access network (O-RAN)
architecture, as outlined in [7], facilitate the integration of
third-party ML applications within the RAN to improve net-
work automation and management. In the O-RAN architecture,
a BS is divided into a Central Unit (CU), a Distributed
Unit (DU), and a Radio Unit (RU), which provides flexibility
in terms of deployment and operational roles. Additionally,
the CU is further split into the CU User Plane (CU-UP)
and the CU Control Plane (CU-CP), each responsible for
managing user data traffic and control functions, respectively.
RICs introduce programmable elements which can support
closed-loop control and orchestration of the RAN by applying
ML algorithms. Several studies [8][9][10] have investigated
the RRM problem within the O-RAN framework. In [8],
the authors propose a deep reinforcement learning (DRL)
algorithm aimed at optimizing intelligent connection manage-
ment, with a focus on user—cell association and network load
balancing in O-RAN networks. The work in [9] leverages
an O-RAN platform to design and evaluate a RRM solution
based on reinforcement learning (RL), deployed as an xApp
within the O-RAN ecosystem. Their framework periodically
collects network status reports from the O-RAN DU and
adjusts resource allocation and modulation/coding schemes
for each traffic flow, thereby dynamically fulfilling the Key



Performance Indicator (KPI) requirements. Meanwhile, [10]
addresses the slow convergence of DRL-based RRM algo-
rithms in 5G networks by minimizing the exploration phase
and expediting policy learning, especially for RAN slicing.
However, when traffic patterns differ substantially between
source and target domains, the transferred knowledge may
become unsuitable for the target environment, leading to
suboptimal decision-making.

Therefore, there is still a gap in the literature regarding RRM
by using ML with TL scheme based on O-RAN architecture,
especially as network environments are becoming increasingly
complex and dynamic. Thus, our main contributions in this
work are recapped as follows:

+ We analyze and summarize the practical challenges faced
by deep TL-based RRM and the stochastic nature of
NGNs RAN environments. We believe that overcoming
these issues is crucial for enabling the adoption of deep
TL in real-world applications.

o We provide a clear classification of TL techniques, al-
lowing readers to have a deeper understanding of the
principles and definitions of TL. Additionally, it provides
valuable insights to help in selecting the most suitable
TL method for their specific needs.

« We introduce a case study about user mobility manage-
ment which can be deployed in O-RAN architecture for
real time decision. Our objective is to demonstrate the
significance of utilizing safe and accelerated ML with TL
approaches in NGNs. Our proposed scheme enables net-
work operators to dynamically update decision-making
rules for network optimization and adapt to new network
topologies to enhance capacity. This approach improves
network coverage while minimizing retraining time and
reducing computational costs.

II. A BRIEF OVERVIEW OF TRANSFER LEARNING

In the field of ML, one of the greatest challenges is training
models to perform effectively when faced with entirely new
data or environments. Traditional ML typically involves train-
ing models from scratch using a large amount of data, which
can be both time-consuming and computationally intensive.
The model learns patterns, rules, and representations from
the dataset and applies them to solve a specific problem.
However, when faced with a new, yet somewhat related
problem, traditional models often require retraining on entirely
new data, resulting in resource inefficiencies.

TL offers a powerful solution to this limitation. It represents
an evolution of ML paradigm, where instead of starting from
scratch, a model trained on one task is repurposed to solve a
different, but related task. In essence, TL is a technique which
transfers the learned knowledge from one task to a related task
to improve the learning process of the target task [11]. In other
words, TL leverages existing learned knowledge to acceler-
ate learning in new target domains. The difference between
traditional ML and TL is shown in Fig. 1. In addition, the
concept of TL is particularly appealing in situations where data
availability is limited or the computational cost of retraining
models is high. Instead of requiring massive labeled datasets

(a) Traditional Machine Learning
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Fig. 1: Differences in the learning process of (a) conventional
machine learning, (b) transfer learning.

for every new task, TL allows a model to adapt existing
knowledge to perform well in new situations with fewer data.
This efficiency makes TL ideal for many practical applications,
including computer vision, natural language processing, time
series prediction and, as we discuss in this context, RRM issue
in wireless communication networks.

Within the scope of next-generation wireless networks, TL
is particularly valuable due to the dynamic nature of the
environment [12]. For instance, different scenarios such as
urban, rural, or dense cities often share similar characteristics,
but also have unique distinctions. TL allows a model that has
learned to optimize resource allocation in an urban setting to
adapt quickly to a rural scenario without requiring exhaustive
retraining. This adaptability not only reduces computational
costs but also ensures that networks are more responsive to
changed channel conditions or changed network deployment.
Ultimately, TL expands the utility of ML by allowing pre-
trained models to accelerate adaptation and improve efficiency.
In the context of next-generation wireless networks, where
resource allocation is complex and conditions are constantly
changing, TL technique is providing a path toward smarter,
more flexible and efficient wireless networks.

A. Transfer Learning: Terms and Definitions

The field of TL explores and advances machine learning
techniques that utilize knowledge gained from previously
addressed source tasks to effectively solve new target tasks.
According to [13][14], TL can be categorized by either ex-
amining the issues it addresses or the strategies it employs.
The categorization based on problems focuses on defining
different types of TL depending on the nature of the challenges
they solve. More specifically, it considers factors such as the
availability of labeled data in the source or target domains, as
well as the similarity between the feature spaces of the source
and target inputs.

Besides, three core research questions in TL are: What to
transfer, How to transfer, and When to transfer.

o What to transfer: this question involves identifying which
specific elements of knowledge or information should be
shared or transferred across tasks or domains. Not all
information is suitable for transfer. Choosing the right
information to transfer is essential, as it can enhance the
performance of the target domain.

« How to transfer: once the suitable information has been
identified, the next step is to determine the learning



algorithms or mechanisms to facilitate the transfer. This
addresses the "How to transfer” question, focusing on
designing effective methods that allow the transfer of
identified knowledge to be successful.

e When to transfer: this question is concerned with de-
termining the right conditions under which knowledge
transfer is appropriate. If the source and target domains
are significantly different or unrelated, the transfer may
not be beneficial and could even lead to a significant
failure which is called negative transfer.

In terms of labeled data availability, transfer learning can
generally be divided into three distinct categories:

o Inductive Transfer Learning: Refers to scenar-
ios where labeled data in the target domain is
available[13][14]. Depending on the additional
availability of source domain labels, inductive TL
can be further divided into: (i) self-taught learning
and (ii) multi-task learning[11].

o Transductive Transfer Learning: Involves cases
where only the labeled data from the source
domain is accessible.

o Unsupervised Transfer Learning: Involves
cases that labeled data are not available at both
the target and the source domains. Moreover, the
target task is not the same as the source task.
Compared to other TL approaches, unsupervised
TL has little research work[13][14].

According to the similarity of feature spaces, TL can be
divided into two different categories:

+ Homogeneous transfer learning: Refers to sce-
narios where source and target feature spaces are
identical.

o Heterogeneous transfer learning: Refers to sce-
narios where source and target feature spaces are
distinct.

ITI. DEEP TRANSFER LEARNING FOR RADIO RESOURCE
MANAGEMENT: CHALLENGES AND OPPORTUNITIES

The effective implementation of ML-based TL algorithm
for RRM in modern O-RANSs can tackle numerous challenges
arising from the complex and highly dynamic characteristics
of these environments.

A. Challenges

The first challenge is the Complexity of Model Adaptation.
For example, when applying deep learning (DL) combined
with TL in RRM, adapting pre-trained models to different
network scenarios remains challenging due to the highly vari-
able and dynamic nature of wireless environments. Meanwhile,
determining which aspects of the pre-trained knowledge are
also vital, and which need adjustment, adds further complexity
to the model adaptation process.

Another challenge is the Negative Transfer Risk. TL tech-
nique poses the risk of negative transfer, where knowledge
transferred from a source domain may not be applicable or
beneficial in the target domain. This is particularly problematic
in radio resource management, where differences between
source and target environments (e.g., varying user densities,
interference levels, or hardware configurations) can lead to
suboptimal performance, ultimately degrading network quality.
Additionally, TL generally works well when there is at least
some labeled data in the target domain to fine-tune the pre-
trained model. In wireless networks, obtaining labeled data is
often challenging because the conditions are constantly chang-
ing, and the labeling process requires significant resources.
Lack of sufficient labeled data in the target domain can make
it difficult for the transfer learning model to be accurately
adapted.

Lastly, the scale of modern wireless networks is immense,
with numerous cells, users, and access points, all requiring
continuous management. The fine-tuning process of the trans-
fer model required for adaptation can become computationally
expensive, particularly when dealing with thousands of cells
and heterogeneous data.

B. Opportunities

Advancements in computer hardware technology, efficient
data storage solutions, and more sophisticated machine learn-
ing tools provide an opportunity to improve the design of RRM
algorithms. The leap in graphical processing units (GPUs) and
multi-core central processing units (CPUs) has made large-
scale parallel computing widely accessible at relatively low
costs. Specifically, GPUs accelerate the convergence speed of
artificial intelligence (AI) models by leveraging their immense
parallel processing capabilities, enabling faster training and
more efficient model updates. This progress allows for lever-
aging the massive amounts of data continually gathered in
radio networks as the foundation for RAN intelligence, from
which RRM algorithms can be progressively updated. Modern
networks are collecting data related to user mobility, traffic
patterns, and user actions (e.g., how, when, and what users
do in the network) at significantly higher rates than before,
providing even richer datasets to intelligent training model.
Moreover, by integrating Al capabilities directly into the
RAN infrastructure, networks can achieve more autonomous
and intelligent resource management, leading to improved
efficiency and adaptability.

Furthermore, wireless networks are highly heterogeneous, in-
volving multiple types of cells, frequency bands, and user
equipment. TL offers the opportunity to share knowledge
across different emerging use cases such as ultra-reliable low-
latency communications (URLLC), massive IoT, and vehicular
communication (V2X) which can help enhance the efficiency
of RRM algorithms and reduce redundant learning processes.

IV. DEEP TRANSFER LEARNING-BASED RADIO
RESOURCE MANAGEMENT IN WIRELESS NETWORKS

In this section, we present a case study which investigate
the aforementioned ML-based TL challenges in the NGNs



field. We believe that the proposed scheme can assist fel-
low researchers in further addressing the discussed issues
systematically. Our focus is on DL, a subset of ML which
uses neural networks with multiple layers to learn complex
patterns in data. This type of learning involves training the
model using a large set of examples consisting of input-output
pairs, also known as labeled samples. During training, the
model uses forward propagation to generate predictions and
compares them with the actual output to calculate errors. These
errors are then used in back propagation, a process that helps
refine the model by adjusting its internal parameters using
gradient descent, ultimately reducing the overall error. Then,
we evaluate the trained model’s performance using the test set
to assess its ability to make accurate predictions on future new
data. After, when the network topology or channel condition
is changing, TL will used to reconfigure the pre-trained model
in the new scenarios.

A. System Architecture

We consider a heterogeneous dense cell network deployed
for urban scenario, as depicted in Fig. 2. The network consists
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Fig. 2: System model.

of two layers. The first layer utilizes macro BS operating
at a carrier frequency of 3.8 GHz to ensure uninterrupted
coverage. The second layer employs small BS operating at
Millimeter Wave (mm-Wave) frequency of 24 GHz, which
offers high-speed data services to UEs thanks to their abundant
bandwidth resources. Thus, the mm-Wave technology can sup-
port a massive number of connected devices simultaneously,
especially in dense urban environment. Additionally, based
on the disaggregated RAN architecture, 3GPP has introduced
new types of handover [15] considering gNB-CU and gNB-
DU implementations. Intra-gNB-DU handover occurs within
the same gNB-DU, while an inter-gNB-DU and intra-gNB-
CU handover involve transitions between different gNB-DUs
under the same gNB-CU. Inter-gNB-CU handovers involve
transfers between different gNB-CUs, executed via Xn or N2
interface. In Fig. 2, it illustrates a scenario of an inter-gNB-
DU and intra-gNB-CU handover, where cell 1 (O-RU1) is
connected to O-DU1, and cell 2 (O-RU2) is connected to O-
DU2, where both of the cells are managed by the same O-CU.
This figure illustrates the process where the UE transitions
from RU1 to RU2.

B. Deep Learning Algorithm

To provide a concrete solution to the challenges of devel-
oping RRM algorithms in a radio environment, we propose
a general learning framework consisting of two main compo-
nents: a Long Short-Term Memory (LSTM) learning algorithm
and transfer learning. Our approach involves using offline
experience to train the model in the Non-RT RIC Layer before
deploying it in a live network setting. This offline training
utilizes recurrent neural networks (RNNs) that leverage created
datasets based on a simulated network environment which
takes into account real-world scenarios.

In this work, we specifically address the problem of pre-
dicting the optimal target BS for users as it approaches the
intersection of edge BSs. This problem is formulated as a
multi-class classification task. To predict the most suitable
target BS, we utilize sequential channel quality measurements,
such as Reference Signal Received Power (RSRP) and Signal-
to-Interference-plus-Noise Ratio (SINR), which are collected
from the UE over a predefined time window size W. These
measurements are reported to the serving BS and used to
predict the target BS for the subsequent time window W.
Additionally, we take into consideration other parameters, such
as available Physical Resource Blocks (PRBs) and the number
of users in each BS, to ensure effective load balancing and
energy efficiency.

In order to solve the multi-class classification problem and
incorporate dynamic decision-making rules, we propose a
scheme that employs both DL and TL techniques. DL is
particularly effective for identifying and learning complex
patterns in sequential data, which is crucial for predicting cell
handovers in telecommunications—an area where traditional
machine learning models often fall short. DL models are
highly capable of learning and handling long-term dependen-
cies, which is essential for forecasting network behavior and
predicting cell transitions. These models autonomously dis-
cover useful representations for feature selection, significantly
improving the accuracy of handover predictions. Moreover, DL
models can adapt to emerging patterns in dynamic network
environments, thereby enhancing the decision-making process
during user mobility.

C. Transfer Learning Algorithm

We employ TL because it enables rapid adaptation to new or
evolving tasks and environments by utilizing knowledge from
previously trained models. By leveraging this prior knowledge
and TL weights from the original model, we can significantly
reduce training time and computational costs while maintain-
ing a high level of prediction accuracy.

In our system model, TL is particularly useful when new con-
trol parameters are introduced or when new BSs are deployed.
Our algorithm is UE-centric and is designed to be deployed as
an xApp in a near-RT RIC for mobility management. The near-
RT RIC collects and pre-processes data from the E2 nodes
(such as O-DU and O-CU) and forwards this data through
internal interfaces to the xApp. For near-real-time decision
making, we assume that the O-DU nodes and the near-RT
RIC are deployed in an edge cloud, while the O-CU nodes are



deployed in a regional cloud. Fig. 3 illustrates the deployment
of our mobility management xApp within the near-RT RIC,
and shows the process for making handover decisions. More
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Fig. 3: Framework of our proposed mobility management
algorithm.

information about our implemented algorithm can be found in
Algorithm 1.

D. Evaluation Study Cases

For training our model, we created datasets based on a
simulated network environment, as described in Fig. 2. We
generate a dataset in which user mobility decisions are not
only made based on channel quality measurements reported
by the UE but also by the availability of radio resources
at the target BSs, following Multi-Criteria Decision Making
(MCDM) algorithm. we collect a dataset of size 5000 samples
in this scenario, from which 4000 are used for training purpose
(80%), and 1000 samples for test purpose (20%).

The performance of our proposed scheme was evaluated by
comparing it with two different ML algorithms: Support Vector
Machine (SVM) and Convolutional Neural Network (CNN).
Initially, the performance comparison of our model utilized UE
and cell-specific measurements in scenarios without dynamic
events.

Fig. 4(a) and 4(b) illustrate the accuracy of algorithms and
training losses before a transfer learning event occurs, respec-
tively. Specifically, Fig. 4(a) and 4(b) display the accuracy and
training losses when our model is initially trained using UE
channel quality features and cell load feature. We assume that
a transfer learning event is initiated, i.e., a dynamic UAV BS is
added to the network. Initially, the training accuracy decrease
to a relatively low value, but eventually, the model converges
near to the optimal accuracy and training loss like the model
was trained initially with all the features and the retraining
process only requires less epochs, saving the retraining time.
The integration of a new UAV BS into the existing network
topology introduces dynamic changes that require updating the
LSTM-based model to adapt to the altered configuration. Re-
training the model from scratch is computationally expensive
and time-consuming. Therefore, transfer learning is employed
to leverage the knowledge embedded in a pre-trained model
and adapt it efficiently to the new scenario. In our scheme, the
process begins by loading the pre-trained LSTM model, which
has already been trained on the original network topology.
In our experiment, we remove its final three layers: the
fully connected layer, the softmax layer, and the classification
layer. These layers are specific to the original topology, and

Algorithm 1 Cell Prediction using Transfer Learning
Inputs:

o 0: Initial parameters of the model

e N: Number of neighboring cells

o Xyw, et Sequence of size W with M features at each time
step

Output: Cyy, y: Cell prediction over the next W window
Algorithm:
1: Initialize model parameters 6. Define LSTM network
structure:
o Input layer: Xy ar
o« LSTM layer: Extracts features from the sequence,
outputs the hidden state of the last time step hjag
o Fully connected layer: Maps hj, to N neighboring
cells
o Softmax layer: Converts the outputs to probability
distributions
« Classification layer: Handles supervised learning
2: Training:
e Fori=1to K:

1) Preprocess the input X;w i Xscaled 4
SC&]GI‘(XZ‘:WJ\/[).
2) Extract features wusing LSTM: Ay, —

LSTM(Xscaleda h, C). R

3) Compute cell predictions: Cip1).w,n —
Softmax (FC(hyuy))-

4) Optimize the cross-entropy loss L(6) and update
parameters: 6 < 0 —nVyL.

3: Prediction:
o If no dynamic features or events are detected:
— Predict the next window:

Cnext, W,N Softmax(FC (LSTM(Xprevious,W,M ) ))

« If dynamic features or events are detected:

— Reconfigure the model by adding new randomized
parameters:

¢’ < 6 U {randomized new parameters}

— Retrain the model.
4: Output the prediction Cyy, .

their removal allows the remaining layers to act as a feature
extractor for the new topology. Next, new layers are appended
to the truncated model. A new LSTM layer with 50 units
is added to provide flexibility for adapting to the unique
characteristics of the updated topology, such as dynamic UAV
interactions. Additionally, a new fully connected layer is
introduced to output probabilities for the updated set of BSs
such as UAV. The architecture is completed with a softmax
layer for normalizing the output and a classification layer for
final predictions. The modified model is then trained on the
updated dataset. The training process reuses the weights of the
pre-trained layers as a starting point, focusing on refining the
knowledge for the new topology instead of relearning general
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Fig. 4: Training process of (a) CNN, (b) LSTM.

sequential features. This significantly reduces training time and
computational requirements.

With the increase of user velocity, the throughput of users
for all methods is decreased as illustrated in Fig. 5. CNN-
based method has the worst throughput performance when
compared with other ML algorithms. In addition, the LSTM-
based TL scheme clearly outperforms the other classification
learning algorithms. Specifically, when the speed of users is 60
km/h, the throughput of the proposed scheme outperforms by
about 23.8% and 29.9% respectively in comparison to SVM
and CNN algorithms. Moreover, the increased number of HO
can reduce the throughput when the user velocity increases.
Since frequent handovers can lead to temporary disruptions
(handover time) in data transmission. Each handover process
involves control signaling and potential latency, which can
lower the effective desired data throughput.

In Fig. 6, the abscissa is the user velocity. It is clear that the
proposed scheme has the lowest delay time and also achieves
the best user QoS when compared with other ML algorithms
such as SVM and CNN.

Additionally, the performance of our proposed algorithm,
SVM and CNN are evaluated by using different metrics such
as Precision, Recall, accuracy and F1 score. The performance
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metrics obtained during the test phase are summarized in
Table I. The trained model is assessed on the test set of the

TABLE I: Performance metrics obtained on the test set of
dataset

Algorithm | Accuracy | Precision | Recall | F1 score
SVM 82.3% 0.85 0.71 0.72
CNN 94.7% 0.94 0.932 0.935
Our Model | 98.4% 0.978 0.96 0.97

dataset. Table I shows that our proposed algorithm and CNN
can achieve better accuracy and outperform in general when
compared with SVM classification methods.

V. CONCLUSION

This paper has investigated the user mobility problem in the
next generation wireless communication systems. We propose
a case study about mobility management scheme based on ML
with TL techniques to predict the optimal target BS. Here, we
approach the prediction task as a multi-classification problem



by applying the ML algorithm on available information in
RAN environment. At the same time, the proposed predictive
algorithm is deployed as an xApp in the near-RT RIC. This
paper establishes an effective classifier model for optimal
user mobility management by considering multiple criteria
within the wireless network. In addition, when the network
deployment or channel condition is changing, our experiment
highlights the potential of using TL to guide the reconfigura-
tion of model structure. As demonstrated by the simulation
results, the proposed scheme outperforms other ML-based
algorithms in terms of average user throughput and delay
time. In addition, we also use various performance metrics
to evaluate their accuracy. The results show that the LSTM-
based TL and CNN models can achieve higher accuracy
which are found to be 98.4% and 94.7%. However, during the
actual implementation process (user mobility decision making
process), our proposed scheme and SVM can perform better in
terms of the average user throughput and delay time. Thus, the
hybrid approach (LSTM-based TL) can be considered as an
example of speeding up the training process when the network
environment is altering and the proposed prediction framework
holds great promise and deserves further investigation in real-
world scenarios.
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