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Abstract—Orthogonal time-frequency space (OTFS) modula-
tion is considered a promising candidate for 6G wireless systems
due to its superior performance in high mobility scenarios and
resilience to Doppler and multipath effects. Reliable channel
estimation is crucial to fully realising the potential of OTFS,
but most of the existing methods suffer from limited accura-
cy and high computational complexity. This letter proposes a
channel estimation method exploiting generalized approximate
message passing sparse Bayesian learning with geometric mean
decomposition (GMD-GAMP-SBL). Unlike conventional methods
relying on iterative matrix inversion, the proposed approach
integrates GAMP and GMD to enhance estimation accuracy and
computational efficiency. Specifically, GAMP reduces complexity
by replacing expectation-maximization’s (EM) matrix inversion,
while GMD preconditions the model to reduce the impact of
sensing matrix correlations, which in turn improves the estima-
tion accuracy. Simulation results demonstrate that the proposed
GMD-GAMP-SBL achieves channel estimation accuracy that is
nearly identical to that of the conventional SBL algorithm, while
its computational complexity and runtime are substantially lower.
This favorable trade-off positions it as a practical and efficient
candidate for OTFS systems.

Index Terms—OTFS, channel estimation, GAMP, SBL, geo-
metric mean decomposition.

I. INTRODUCTION

With the growth of high-mobility scenarios, such as high
speed rail and vehicular networks, the demand for reliable
and efficient wireless communications continues to increase.
High mobility intensifies multipath fading and Doppler ef-
fects, challenging traditional modulation schemes. Orthogonal
time-frequency space (OTFS) mitigates these impairments by
mapping signals to the delay-Doppler (DD) domain, which
provides a more stable and resilient representation of the wire-
less channel [1]. Accurate channel estimation is essential for
OTES systems, as it directly affects communication reliability
and spectral efficiency, motivating continued efforts to improve
estimation accuracy and efficiency [2].
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Channel estimation in the DD domain is fundamentally a
sparse signal recovery problem due to the limited number of
dominant propagation paths in high mobility environments.
Sparse Bayesian learning (SBL) has been successfully applied
to solve the problem, as seen in [3][4], providing high estima-
tion accuracy by modeling channel taps with hierarchical pri-
ors. However, its reliance on iterative matrix inversion within
the expectation-maximization (EM) framework results in cubic
computational complexity, making it prohibitive for real-time
systems. To overcome this complexity bottleneck, message
passing (MP) frameworks offer a powerful alternative. By
decomposing the high-dimensional Bayesian inference into lo-
cal, scalar operations, MP algorithms achieve significant com-
plexity reduction. This principle has been effectively applied
to OTFS, with notable works including MP-based recovery
for fractional Doppler channels [5], superimposed-pilot-based
designs for joint channel estimation and data detection [6],
and approximation message passing (AMP) enhanced data
detection [7]. In addition, [8] proposed an improved algorithm,
namely the generalized univariate AMP (GUAMP) algorithm,
which improves the performance of the MP algorithm by
decomposing the matrix. However, it is not combined with
the SBL algorithm, and the performance improvement is not
ideal. And how to achieve estimation accuracy comparable to
SBL while maintaining the low complexity advantage of MP
in the presence of highly correlated OTFS sensing matrices
remains a challenge.

To address this specific challenge, this letter proposes a
sparse Bayesian OTFS channel estimation method with low
pilot overhead, exploiting DD domain channel sparsity. By
modeling it as sparse signal recovery problem, we integrate
GAMP into SBL to simplify covariance updates, avoiding
matrix inversion and reducing complexity. Applying geometric
mean decomposition (GMD) to the sensing matrix reduces co-
herence, and enables a two-stage estimation process: GAMP-
based sparse recovery followed by AMP refinement.

The novel contributions of this paper are summarised as
follows:

o To address the high computational complexity inherent in
SBL, this work proposes the GAMP-SBL algorithm. By
utilizing the iterative computation of GAMP, the proposed
method replaces the matrix inversion process in EM and
greatly reduces the computational overhead.

o To improve channel estimation accuracy, the proposed
GMD-GAMP-SBL algorithm applies GMD to the sensing
matrix to reduce its high mutual coherence.



II. SYSTEM MODEL

In the OTFS system, the symbol z[k,]
{k=0,..,N—-1,1=0,.,M —1} is a data sequence
of quadrature amplitude modulation (QAM), which is

mapped to the M x N DD domain [9]. N represents the
number of Doppler taps, and M represents the number of
delay taps. In this paper, the modulation symbols z[k,[] are
divided into data symbols z4[k, ] and pilot symbols z,[k,].
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where k, and [, are midpoints of N and M, respectively, and
k, and [. represent the maximum Doppler and delay taps.
Following guard pilot approach [10], we allocate different
power levels to pilot and data symbols.

During transmission, DD domain symbols x[k, ] are trans-
formed into time-frequency domain signals X [n, m] using the
inverse symplectic finite Fourier transform. The signals are
then converted into continuous time-domain waveforms s(t)
through the Heisenberg transform. The signal convolves with
the channel response h(r,v) to produce the received time
domain signal r(t). The h(7,v) is expressed as follows:

K
v) =Y hib(r = 7)(v — vy), )
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where K refers to the number of taps of the channel, h;
represents the complex channel gain of the ¢-th tap, and
T = ll v; = k]\fj’?% are the time delay and Doppler
frequency shrft of the i-th tap, where [; and k; are the delay
and Doppler taps for the ¢-th path respectively. Since the model
established in this paper is an integer-order Doppler frequency
shift, we set x; = 0 [11]. By applying a series of inverse
transformations to r(t), we obtain the received signal y[k, (]
in the DD domain [12]
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and wlk, ] is the channel noise, [.]5s and [.]y are the modulo
M and modulo N operations.

In high-speed rail and vehicular communications, despite
the complex environments, rapid movement limits the number
of effective signal paths, resulting in a sparse channel impulse
response. According to (3), to achieve channel estimation in
the DD domain with P = (2k, + 1)(I; + 1) received signals,
it is essential to embed correlative @ = (2k, +1)(l, + 1) pilot
symbols according to the location of each received signal, the

OTFS channel estimation can be modeled as a compressive
sensing problem:

Y=(X,©Ah+W==®&h+W, (5)

the observation vector Y € CP*! is formed by collecting
all received symbols y[k,[] that fall within the guard region
surrounding the pilot, where non-zero energy is received.
The unknown sparse channel vector h € C@*! represents
the complex gains of all potential paths within the maxi-
mum delay-Doppler spread grid. The sensing matrix ® is
then built to capture the linear relationship between h and
Y. Each element of ® accounts for the contribution of a
specific channel tap to a specific received measurement. A
matrix where each element X, [4, ] contains the value of the
transmitted data or pilot symbol that contributes to the j-th
measurement via the ¢-th channel tap. A matrix where each
element A[j, ] = conj(Bi(k,l)) compensates for the phase
shift derived in (4) for the corresponding measurement and
channel tap. W € CP*! is the Gaussian noise vector, ® is
the Hadamard product.

III. GMD-GAMP-SBL FOR OTFS CHANNEL ESTIMATION

The GAMP-SBL algorithm is utilised for the purpose of
channel estimation, thereby circumventing the necessity for
matrix inversion [13]. Despite its efficiency, the system is
subject to accuracy loss due to a correlated sensing matrix. In
order to address this issue, a pre-processing step is required.
This pre-processing step involves the implementation of GMD.
The purpose of GMD is to address the ill-conditioning that
undermines the performance of GAMP [8].

The primary motivation for employing GMD preprocessing
lies in its ability to mitigate the inherent ill-posedness of least-
squares estimation problems. Taking the standard linear model
Y = ®h + W as an example, the mean squared error (MSE)
of the estimator is closely tied to the properties of the sensing
matrix ®. High condition numbers typically stem from strong
correlations among the columns of matrix ®, a characteristic
that amplifies noise effects and leads to unstable solutions.
The geometric mean decomposition constructs an equivalent
system:

Y = GRQ”"h+ W =Gb+ W, (6)

b =RQ"h £ Fh, )

where G € CP*" and Q € C"™*? are semi-unitary matrices
(GTG =1,, Q'Q = 1,), and R € C"™ " is a novel
upper-triangular matrix. The defining feature of R is that
all its main diagonal elements are identical and equal to the
geometric mean of the positive singular values of @, i.e.,
ri = (o109 ---0,)Y/" for all i, o,is the maximum singular
value of the sensing matrix ®. The diagonal elements of the
decomposed matrix are equal to the geometric mean of all
positive singular values of matrix ®. This operation effectively
improves the system’s condition number by reducing the
dynamic range of the diagonal elements in the equivalent
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Fig. 1: Modular representation of the GMD-GAMP-SBL al-
gorithm.

channel matrix, resulting in a lower condition number than
the original system.

The GMD-GAMP-SBL algorithm improves the channel
estmiation process based on the original generalized linear
model (GLM) (5) by decomposing the problem into two
modules: AMP (7) and GAMP (6) [8]. Module A (AMP)
handles standard linear models with pseudo measurement
matrices F and h, while Module B (GAMP) deals with the
GLM using pseudo measurement matrix G and b. Compared
to the original GAMP algorithm that performs iterative in-
formation updating among variables, our proposed method
prioritizes the structural decomposition of the measurement
matrix, and cross-domain error correction rather than relying
directly on channel sparsity, making GMD-GAMP robust to
correlated measurements in GLM inference, thus enhancing
the estimation process.

The GMD-GAMP algorithm first performs module B and
use I and 7" as the external mean and variance passed from
module B to module A. Afterwards, it executes module A
and return the mean and variance of module A to module
B. Therefore, in the GMD-GAMP model, the approximate
posterior distribution of the channel matrix h is

p(hl|Bv?A,2a7—:§,m®) :CN(hlLu‘?a(ﬁ?)a ®)
in which
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where 74,; = h; + 0;, 7'271- is the variance of w; according to
the formula b = Fh + £. Both @w; and & are noise variables.
This step is performed in the AMP algorithm.

p(v;|Y, DB j: Tp 5 ©) = CN (vi|u, ¢7), (10)
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where Dp ; = v; + 0y, ng is the variance of w; according to
the formula Y = Gb+w. Both w; and w are noise variables.
This step is performed in the GAMP algorithm.

Fig.1 illustrates the block diagram structure of the GMD-
GAMP-SBL algorithm. Next, we describe the implementation
details of the GMD-GAMP-SBL algorithm, starting with Mod-
ule B and then Module A.

A. GAMP Module

The external mean b&’* (¢) € R" and variance 25" (t) €
R" transmitted from Module A to Module B can be regarded
as the prior mean and variance of b. That is:

p(b) = CN (b; bt (t) , diag (szt"b (t))) .

Additionally, v = Gb and Y|v ~ p (Y|v). Therefore, we
apply the GAMP algorithm to this equation, treating b as the
unknown signal and G as the measurement matrix, as shown
below.

12)

« Execute the linear step of the output line to obtain 7% (¢)
and pp (t). The detailed calculation formula is shown in
Algorithm 1 in the appendix. Subsequent steps are the
same.

« Next, continue executing the linear output step to obtain
§p (t) and 7% (t).

« Execute the input linear step in GAMP to obtain #5 (t)
and 7 (1).

o Perform the input nonlinear step in Module B to obtain
the posterior mean b (t) and variance 7° (t) of variable
b.

After running T iterations, the external mean b%y"* (¢) and
variance z%'* (t) from module B to module A can be obtained
as follows [8]:

b (t) = 5(t), 25" (t) = T(1). (13)

B. AMP Module

The extrinsic mean b%* (¢) and variance z%" (t) can be
interpreted as pseudo-observations and their corresponding
variance for variable b in Module A:

b(t)=Fh+£(t), (14)
where b (t) = b (t), € (t) ~ CN (0, diag (2 (t))). Con-
sequently, we can execute the standard AMP algorithm with
T, iterations on this pseudo-linear model, with the detailed
procedural steps outlined as follows.

« Execute the nonlinear step to obtain §4 (¢) and 75 (¢).
« Next, continue executing the linear input step to obtain
£ (t) and 77, (¢). These two parameters can be obtained
through the following pseudo-model:
fa(t)=h+w(t), (15)
where W (t) ~ CN (0, diag (774 (t))).

o Perform the input nonlinearity step in module A to obtain
the posterior mean g (t) and variance ¢" (t) of the
channel.

o Perform the output linear step to obtain Py (¢) and
T (1).

After running the T4 iteration of AMP on module A, obtain

the extrinsic mean b4 (¢) and variance z5™* (¢):

b (t) = pa(t), 25 (t) = T4 (¢). (16)



C. SBL Module

o Update the hyperparameters ¢ of the channel based on
the p” (t) obtained from module A.

o Update the hyperparameters «; controlling the noise
based on the estimated value of v obtained from module
B.

Our approach separates the problem into two modules:
Module B (GAMP) for the observation model and Module
A (AMP-SBL) for the sparse prior. These modules iteratively
pass extrinsic means and variances, with hyperparameters
updated after inner loops converge. This structure, enhanced
by GMD preprocessing to reduce matrix correlation, maintains
high accuracy while significantly lowering complexity.

IV. PERFORMANCE EVALUATION

In OTFS systems, normalized mean square error (NMSE) is
used to evaluate the system’s performance. In the simulation,
we set the carrier frequency to 4 GHz and the subcarrier
spacing to 15 KHz. 4-QAM and 64-QAM modulation is used.
We choose the extended vehicular A (EVA) and extended
typical urban (ETU) channel model, and the maximum user
speed of 500 Km/h.

We evaluate the NMSE of the GMD-GAMP-SBL in com-
parison with minimum mean squared error (MMSE), maxi-
mum a posteriori (MAP), expectation propagation (EP), it-
erative reweighting (IR), SBL-variational expectation maxi-
mizationand (SBL-VEM) and SBL estimators. It is important
to note that the scope of this work focuses primarily on
improving the model-driven Bayesian inference framework,
particularly addressing the computational complexity and cor-
relation issues within the SBL family of algorithms. Therefore,
our comparative analysis is deliberately centered on classical
model-based methods that share the same theoretical founda-
tion.

The proposed GMD-GAMP-SBL algorithm demonstrates
robust performance across both EVA and ETU channel model-
s, as evidenced in Fig. 2. It effectively bridges the performance
gap between GAMP-SBL and the computationally intensive
SBL method. At SINR; = 40 dB, it delivers a 2 dB improve-
ment over GAMP-SBL and comes within 0.3 dB of the SBL
benchmark. This performance advantage stems from the GMD
preprocessing, which successfully mitigates the correlation
in the sensing matrix. This is because the proposed GMD
preprocessing can reduce the correlation between sensing
matrices and maintain the low complexity of GAMP.

As shown in Fig. 3, the proposed GMD-GAMP-SBL algo-
rithm exhibits near-optimal NMSE performance under both 4-
QAM and 64-QAM modulations. Notably, at SN R, = 35 dB,
it reduces the performance gap with SBL to less than 0.3 dB
while outperforming GAMP-SBL by 11-13 dB. Crucially, it
maintains this high accuracy with 64-QAM, demonstrating its
robustness and suitability for high-throughput 6G applications.
This consistent performance stems from the GMD prepro-
cessing, which effectively decorrelates the sensing matrix and
thereby stabilizes the GAMP inference process. As a result,
the estimation accuracy becomes inherently less sensitive to

variations in modulation schemes, even when using higher-
order constellations that are more susceptible to channel
estimation errors.

As plotted in Fig. 4, the proposed GMD-GAMP-SBL al-
gorithm demonstrates strong robustness against an increas-
ing condition number of the sensing matrix, outperforming
GAMP-SBL by more than 6 dB when the condition number
reaches 500. Attributed to the GMD’s generation of matrices
G, Q, and R with improved properties, the method effectively
mitigates ill-conditioning. Consequently, as shown in Table
I, it achieves substantially reduced computational complexity
and runtime compared to SBL. The primary reason is that
GMD proactively balances singular values prior to channel
estimation, thus eliminating ill-conditioned states and ensuring
subsequent robustness. Meanwhile, the GAMP framework
avoids the costly matrix inversion required by SBL, retaining
only low complexity vector operations. The one-time cost
of GMD decomposition is very small, thus maintaining low
complexity.
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Fig. 2: NMSE versus SN R, performance of channel estima-
tion under SNR, = 18dB, N = 64 and M = 128 (a) EVA,
(b) ETU.
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Fig. 3: NMSE versus SNR, performance of channel esti-
mation under N = 64, M = 128 and SNR; = 35dB. (a)
4-QAM, (b) 64-QAM.

V. CONCLUSIONS
This letter presents GMD-GAMP-SBL for OTES channel
estimation, which integrates GAMP to eliminate matrix inver-
sion and GMD preprocessing to counteract performance degra-
dation in correlated channels. Simulation results demonstrate
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TABLE I: Computational complexity and runtime of channel
estimation algorithms under the ETU channel model

Alogirthm Computational Complexity | Runtime (s)
SBL-VEM o>+ Q?P) 26.9997
SBL 0(Q%) 24.1844
GAMP-SBL 0(Q? 0.7804
GMD-GAMP-SBL 0(Q?) 0.8914

that our method bridges the accuracy-complexity gap between
SBL and GAMP-SBL, achieving near-identical performance
to SBL while maintaining O(Q?) complexity. By effectively
combining message passing with Bayesian learning, this work
provides a practical high-precision, low-complexity solution
for 6G systems in high-mobility environments. In addition,
we plan to explore hybrid approaches that combine the theo-
retical advantages of model driven methods with the adaptive
capabilities of data-driven technologies in the future.

APPENDIX

The detailed process of the GMD-GAMP-SBL algorithm is
as described in Algorithm 1.
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