

This is a repository copy of *Evaluating quality of care for dying patients from the perspective of bereaved relatives: validation of the Chinese version of the international care of the dying evaluation*.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/235852/>

Version: Accepted Version

Article:

Zheng, X., Zhou, L., Li, B. et al. (5 more authors) (2025) Evaluating quality of care for dying patients from the perspective of bereaved relatives: validation of the Chinese version of the international care of the dying evaluation. *Health and Quality of Life Outcomes*.

ISSN: 1477-7525

<https://doi.org/10.1186/s12955-025-02467-8>

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal article published in *Health and Quality of Life Outcomes* is made available via the University of Sheffield Research Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: <https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Evaluating Quality of Care for Dying Patients from the Perspective of Bereaved Relatives: Validation of the Chinese version of the International Care Of the Dying Evaluation

Xuejiao Zheng^{1*2}, Liying Zhou³, Baiyan Li⁴, Lei Dong¹, Yuna Li⁵, Catriona R. Mayland^{6,7}, Maho Aoyama^{1,8}, Mitsunori Miyashita¹

¹ Department of Palliative Nursing, Tohoku University Graduate School of Medicine, Sendai, Japan;

² Changchun Humanities and Sciences College, Changchun, China;

³ Department of Respiratory and Critical Care, The Second Norman Bethune Hospital of Jilin University, Changchun, China;

⁴ School of Nursing, Changchun Vocational College of Health, Changchun, China

⁵ Department of neurosurgery, The First Hospital of JILIN University, Changchun, China

⁶ Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, England;

⁷ Palliative Care Unit, University of Liverpool, Liverpool, England;

⁸ Department of Nursing, Yamagata Prefectural University of Health Sciences, Yamagata, Japan;

*Correspondence: zheng.xuejiao.r8@dc.tohoku.ac.jp.

Department of Palliative Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Japan

1 **Abstract**

2 **Background** Few recognized, valid and reliable tools are used to assess the current
3 quality of care at the very end-of-life from the bereaved relative's perspective in
4 Mainland China. The purpose of this study was to validate the Chinese version of the
5 international Care Of the Dying Evaluation (i-CODE) questionnaire by assessing its
6 reliability and validity.

7 **Methods** From June 2023 to January 2024, participants were 216 bereaved relatives
8 who were the primary caregivers of the deceased patients. Confirmatory Factor
9 Analyses (CFA) were conducted, concurrent and discriminant validity was examined
10 by correlating scores from the Chinese version of the i-CODE with Good Death
11 Inventory (GDI), Care Evaluation Scale (CES), and Patient Health Questionnaire
12 (PHQ-9). Internal reliability was assessed with Cronbach alpha (α) and test-retest
13 reliability was assessed using Intraclass Correlation Coefficients (ICC).

14 **Results** The Chinese version of the i-CODE had four dimensions and 27 items were
15 confirmed based on confirmatory factor analysis of the factor structure proposed by the
16 authors of the original version. The fit indices were acceptable: Root Mean Square Error
17 of Approximation (RMSEA) was 0.069, Standardised Root Mean Square Residual
18 (SRMR) was 0.063, Comparative Fit Index (CFI) was 0.879, and Tucker-Lewis Index
19 (TLI) was 0.864. The i-CODE was moderately correlated with the GDI ($r=0.50$,
20 $p<0.001$) and CES ($r=0.31$, $p<.001$) and not correlated with PHQ-9 ($r=0.02$, $p=0.765$).
21 The internal consistency was excellent (Cronbach's $\alpha=0.91$) and the test-retest
22 reliability was good (ICC=0.73).

23 **Conclusions** The Chinese version of the i-CODE demonstrated acceptable preliminary
24 psychometric properties and broadly supported the original four-factor structure,
25 indicating suitability for assessing the quality of care in the last days of life from the

26 perspective of bereaved relatives in Mainland China. Further validation in larger and
27 more diverse samples is needed, and the scale may be useful for clinical evaluation,
28 quality improvement and cross-cultural research in end-of-life care.

29 **Keywords:** palliative care; psychometrics; family members; quality of health care

30

31 **Background**

32 Approaching the very end of life is a unique and significant period for an individual
33 and those important to them [1]. In China, where annual deaths already exceed ten
34 million and are projected to rise further, the demand for palliative and end-of-life care
35 is steadily increasing [2,3]. However, recent evidence indicates that access to palliative
36 care remains limited and uneven across regions and levels of care, and that the quality
37 of death and dying is still lower than in many high-income countries [4,5]. These
38 disparities are driven by structural constraints, including fragmented policy
39 implementation [6], concentration of services in tertiary urban hospitals [7], workforce
40 shortages [8], and cultural barriers to discussing prognosis and death [9,10]. Therefore,
41 addressing these systemic disparities requires robust, validated tools for benchmarking
42 care quality and enabling evidence-based service improvement within China's specific
43 cultural and health-system context.

44 An internationally recognized approach to evaluating end-of-life care involves
45 assessing its quality through the perspectives of bereaved relatives, obtained via post-
46 bereavement surveys [11]. Several instruments have been developed to capture
47 different dimensions of end-of-life quality, including the international Care Of the
48 Dying Evaluation (i-CODE) [12,13], the Care Evaluation Scale (CES) [14], the Good
49 Death Inventory (GDI) [15], and the Views of Informal Carers Evaluation of Services
50 Short-Form (VOICE-SF) [16]. In Mainland China, Chinese versions of the CES and
51 GDI are available [17,18]. From a psychometric perspective, these instruments
52 represent important progress: they have been translated and validated in Chinese
53 samples of bereaved relatives of cancer patients, and either emphasise the structure and
54 process of care (CES) or broader attributes of a “good death” across the end-of-life
55 trajectory (GDI). However, they primarily focus on cancer populations, adopt a

56 broader temporal perspective (not restricted to the last days), and provide less detailed
57 assessment of acute symptom management and the peri-death period. Moreover, they
58 were not originally designed as international benchmarking tools. As such, they are
59 suboptimal for systematically evaluating hospital care in the final 48 hours of life across
60 both cancer and non-cancer conditions.

61 The international Care Of the Dying Evaluation (i-CODE) is a post-bereavement
62 questionnaire specifically designed to assess care quality in the last 48 hours of life
63 across both cancer and non-cancer conditions. Grounded in core palliative care
64 principles[12,13,19], its four-factor structure captures key domains of palliative and
65 end-of-life care from bereaved relatives' perspective [13]. The instrument includes
66 detailed items on symptom control (pain, dyspnoea, restlessness), communication, and
67 emotional support. Its well-structured, moderate length makes the i-CODE sufficiently
68 comprehensive for assessment yet feasible for routine use in clinical and quality-
69 improvement settings. It has been implemented and validated in multiple countries and
70 languages, enabling cross-national comparisons of quality of care for dying
71 patients[12,13]. For the Chinese context—where structural and cultural factors strongly
72 influence end-of-life care—i-CODE therefore offers a conceptually coherent and
73 practically useful framework for evaluation, particularly in hospital settings.

74 The introduction of the i-CODE in China holds considerable potential for advancing
75 palliative care practices. As a crucial first step, a Chinese version must be developed
76 and its cultural and psychometric validity established. Therefore, the aim of this study
77 was to evaluate the psychometric properties of the Chinese version of the i-CODE. The
78 two objectives were to assess the: 1. Validity, including construct validity using
79 confirmatory factor analysis and concurrent validity using Pearson correlation analysis;
80 2. Reliability, including internal consistency and test-retest reliability.

81 **Methods**

82 **Study design**

83 A cross-sectional, post-bereavement survey was conducted to assess the psychometric
84 properties of the Chinese version of the i-CODE and reported in keeping with the
85 COnsensus-based Standards for the selection of health Measurement INstruments
86 (COSMIN) Study Design checklist for Patient-reported outcome measurement
87 instruments Version July 2019 [20].

88 **Participants**

89 Following common recommendations for psychometric validation studies, we
90 considered a minimum of 5 to 10 participants per item to be acceptable [21,22]. Based
91 on the 27-item i-CODE, the required sample size was therefore at least 135 to 270
92 participants. In addition, an a priori power analysis for confirmatory factor analysis
93 (CFA) indicated that approximately 160 participants would provide 80% power ($\alpha =$
94 0.05) to distinguish poor from acceptable model fit. On this basis, we aimed to recruit
95 at least 200 participants.

96 Inclusion and exclusion criteria followed our prior publication [23]. Eligible
97 bereaved relatives were adults (≥ 18 years) primary caregivers of patients during the last
98 two days of life. Additional criteria included a minimum 3-month bereavement period
99 and literacy in Chinese. Deceased patients were required to be adults (≥ 18 years) with
100 a hospital stay of at least 72 hours prior to death. We excluded cases where death
101 occurred in intensive care units or resulted from unexpected or sudden causes (e.g.,
102 surgical complications or acute allergic reactions). Eligibility criteria targeted adult
103 populations to align with original validation of i-CODE [12,13] and comparable
104 Chinese tools (CES, GDI). A minimum 72-hour hospital stay ensured meaningful

105 exposure to inpatient care [24], while the 3-month post-bereavement survey balanced
106 recall accuracy with emotional readiness [25].

107 **Instruments**

108 The instruments included the evaluation of demographic characteristics and the Chinese
109 version of the following tools: the i-CODE, the CES, the GDI and the PHQ-9.

110 ***The international Care Of the Dying Evaluation questionnaire (i-CODE)***

111 The Chinese version of the i-CODE was developed in a previous study following the
112 EORTC Quality of Life Group translation procedure, involving forward-backward
113 translation, expert review, and cognitive interview [23], resulting in a 32-item Chinese
114 version consistent with the original structure. Of these, 27 items contribute to four
115 composite factors and to the overall score: Factor 1 “Overall care” (8 items), Factor 2
116 “Communication and support” (8 items), Factor 3 “Trust, respect and dignity” (8 items)
117 and Factor 4 “Symptom management” (3 items) [13]. The response options comprise
118 both nominal and ordinal response options (5-point (0–4), 4-point (0–3) or 3-point (0–
119 2) Likert scale), and the total score is calculated by summing the 27 factor items (range
120 0–66), with higher scores indicating better quality of care. The i-CODE was originally
121 validated as a post-bereavement measure of care in the last 48 hours of life and has
122 shown good internal consistency and acceptable construct validity across seven
123 countries [12,13,19], and was acceptable to complete in a single sitting.

124 ***Care Evaluation Scale (CES)***

125 The CES was developed to measure end-of-life care for cancer patients from the
126 bereaved family member’s perspective especially focusing on structure and process of
127 care [14]. The short version of the CES consisted of 10 items with a 6-point Likert scale
128 (1 = highly disagree to 6 = highly agree; 7 = N/A, if no other options were applicable)
129 was used to assess concurrent validity. The score was transformed to a 0-100 point scale,

130 with a high score indicating excellent care. The Chinese version of the CES has
131 demonstrated good reliability and validity [17].

132 ***Good Death Inventory (GDI)***

133 The GDI was developed to evaluate end-of-life care for cancer patients from the
134 perspective of the bereaved family members [15]. The short version of the GDI
135 consisted of 18 items with a 7-point Likert scale (1=absolutely disagree to 7=absolutely
136 agree) was used to assess concurrent validity. Total score is calculated by summing all
137 items. The higher score indicates higher quality of life. The Chinese version of the GDI
138 has demonstrated good reliability and validity [18].

139 ***Patient Health Questionnaire-9 (PHQ-9)***

140 The PHQ-9 is a self-administered instrument developed to assess depression severity
141 [26]. Each item is rated on a 4-point Likert scale (0 =not at all to 3=nearly every day).
142 The Chinese version of the PHQ-9 has demonstrated good reliability and validity [27].

143 **Data collection**

144 A convenience sampling method was used to recruit participants between June 25, 2023
145 and January 31, 2024. An online survey was used as the primary mode of data collection,
146 supplemented by a small number of paper questionnaires in cases where online
147 completion was not possible. During the data collection period, bereaved relatives from
148 five medical institutes (three public tertiary hospitals, one private tertiary hospital, and
149 one public secondary hospital) were recruited. Ward nurses at these hospitals contacted
150 the primary bereaved relative via telephone or WeChat, explained the study, and
151 provided a QR code for the online questionnaire. The first page of the questionnaire
152 provided information about the study purpose and procedures, emphasised voluntary
153 participation, and obtained informed consent. In the survey, respondents were prompted
154 if any items were left unanswered, and the questionnaire could only be submitted once

155 all items had been completed. This procedure reduced item-level missing data but also
156 meant that some partially completed questionnaires could not be submitted and were
157 therefore not available for analysis. Participants who returned a valid initial
158 questionnaire were asked to complete it again online two weeks later to assess test-
159 retest reliability.

160 **Data analysis**

161 All data were analysed using SPSS 26.0 and Amos 24.0. A two-tailed P-value ≤ 0.05
162 was considered statistically significant. Descriptive statistics summarized the
163 demographic characteristics of deceased patients and bereaved relatives. Confirmatory
164 Factor Analysis (CFA) was conducted to evaluate the fit of the four-factor i-CODE
165 model. Model fit was considered acceptable if the the Root Mean Square Error of
166 Approximation (RMSEA) and Standardised Root Mean Square residual (SRMR) <0.08
167 and Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI) ≥ 0.90 [28]. Model
168 modification was performed based on modification indices (MIs) to improve model fit.
169 Residual correlations and MIs were first examined to identify potentially redundant
170 items. Only item pairs with high MI values (MI > 50) [29] were considered as candidates
171 for releasing correlated residuals, and each modification was introduced sequentially,
172 freeing one pair of items at a time. In addition to MI magnitude, standardised expected
173 parameter change and theoretical justification [30] were also taken into account when
174 deciding which residual covariances to free. This stepwise, conceptually guided
175 procedure was adopted to enhance model fit indices (CFI and RMSEA) while
176 minimizing the risk of overfitting and maintaining the interpretability of the
177 measurement model. Factor loadings were classified as low (<0.30), moderate (0.30–
178 0.59), and high (≥ 0.60) [31]. Pearson correlation analysis was performed between the
179 i-CODE total score and CES [17], GDI [18], and PHQ-9 [27] to assess concurrent

180 validity and discriminant validity. Correlation coefficient ≤ 0.30 , > 0.30 , > 0.70 indicated
181 low, moderate and high correlations, respectively [32]. Internal consistency was
182 assessed using Cronbach's α for i-CODE total score and four factors. A Cronbach's α
183 ≥ 0.70 indicates acceptable internal consistency and ≥ 0.80 indicates good internal
184 consistency [33,34]. Test-retest reliability was evaluated using intraclass correlation
185 coefficient (ICC), with < 0.50 , ≥ 0.50 , and > 0.70 indicating poor, moderate, good
186 reliability, respectively [35,36].

187 **Results**

188 In total, 242 participants completed the survey (222 online and 20 paper). After
189 excluding 26 questionnaires due to response patterns or obvious internal inconsistencies,
190 216 valid responses were included in the psychometric analyses (effective response rate,
191 89.3%). Of the 216 participants invited for the retest survey, 107 provided valid
192 responses (effective response rate, 49.5%). The overall response rate could not be
193 estimated because the sampling frame did not allow calculation of an accurate
194 denominator.

195 **Participant characteristics**

196 Deceased patients were predominantly male (68.5%; mean age 58.70 ± 20.08 years),
197 with cancer, cerebrovascular disease and cardiovascular disease as the leading causes
198 of death. Bereaved relatives were also more often male (53.7%; mean age 33.16 ± 11.75
199 years), most commonly the patients' children (38.4%); additional characteristics are
200 presented in Table 1.

201 **Construct validity**

202 Confirmatory Factor Analysis (CFA) was conducted to examine the construct validity
203 of the original four-factor i-CODE model (Figure 1). The model showed suboptimal fit:
204 RMSEA = 0.087, CFI = 0.808, TLI = 0.786, and SRMR = 0.068 (Table 2). After freeing

205 two theoretically justified residual covariances—between Q6 (confidence and trust in
206 the nurses) and Q7 (confidence and trust in the doctors) and between Q3 ((environment
207 was comfortable) and Q4 (environment had adequate privacy)—model fit improved to
208 an overall acceptable, though not optimal: RMSEA = 0.069, CFI = 0.879, TLI = 0.864,
209 and SRMR = 0.063 (Table 2). RMSEA and SRMR met commonly cited criteria (<0.08),
210 whereas CFI and TLI remained slightly below the conventional 0.90 threshold.

211 Standardised factor loadings for all 27 items are presented in Table 3. With the
212 exception of one item, all loadings were ≥ 0.30 , ranging from 0.309 to 0.890 across the
213 four factors. Item 23 (“Before they died, were you told they were likely to die soon?”)
214 showed a very low loading (0.135) on the Factor 3 “Trust, respect and dignity” but was
215 retained due to its conceptual importance and to maintain comparability with the
216 original i-CODE. Inter-factor correlations ranged from 0.605 to 0.945 (Table 4),
217 indicating moderate to high associations among the latent constructs, with particularly
218 strong correlations between Factor 1 and 3, and between Factor 2 and 3.

219 **Concurrent and discriminant validity**

220 Pearson correlation analysis was employed to explore the correlation between the i-
221 CODE total score and the other validated scales. The i-CODE total score was
222 moderately correlated with the GDI ($r = 0.502$, $p < 0.001$) and low-to-moderately
223 correlated with the CES ($r = 0.311$, $p < 0.001$). In contrast, its correlation with the PHQ-
224 9 was negligible and not statistically significant ($r = 0.015$, $p = 0.765$), indicating that
225 higher perceived quality of care in the last days of life was largely independent of
226 relatives' depressive symptom severity (Table 5).

227 **Internal consistency**

228 The overall i-CODE and four factors showed moderate to excellent reliability scores
229 (Factor 1 ‘Overall care’ $\alpha = 0.832$; Factor 2 ‘Communication and support’ $\alpha = 0.778$;

230 Factor 3 ‘Trust, respect and dignity’ $\alpha = 0.698$; Factor 4 ‘Symptom management’ $\alpha =$
231 0.769; Overall $\alpha = 0.913$).

232 **Test-retest reliability**

233 Moderate to good test-retest reliability was evaluated with ICC for overall i-CODE and
234 four factors. Overall ICC = 0.734 ($p < 0.001$); Factor 1 ‘Overall care’ ICC = 0.697
235 ($p < 0.001$); Factor 2 ‘Trust, Respect & Dignity’ ICC = 0.616 ($p < 0.001$); Factor 3
236 ‘Communication and Support’ ICC = 0.645 ($p < 0.001$), Factor 4 ‘Symptom Management’
237 ICC = 0.676 ($p < 0.001$).

238 **Discussion**

239 The i-CODE has been increasingly used internationally to evaluate care in the last days
240 of life, but evidence on its measurement properties in Mainland China has been lacking.
241 This study provides the first evaluation of the Chinese i-CODE in a hospital-bereaved
242 sample, showing acceptable preliminary reliability and validity and broadly supporting
243 the original four-factor framework.

244 **Construct validity and factor structure**

245 Our findings provide partial support for the four-factor structure originally proposed
246 for the i-CODE [12,13]. These domains are grounded in palliative care quality
247 frameworks that emphasise the interplay between care processes and family-reported
248 outcomes [19]. In our CFA, RMSEA and SRMR met conventional criteria (< 0.08),
249 whereas CFI and TLI fell slightly below 0.90. This pattern is not uncommon in complex,
250 multifactorial models evaluated in relatively modest samples, where absolute and
251 residual-based indices may indicate acceptable fit while incremental indices remain
252 below “excellent” thresholds; therefore, fit indices should be interpreted collectively
253 and in context rather than as rigid cut-offs [37-39].

254 Model modifications in this study were deliberately conservative and theory-driven.
255 Residual covariances were freed only for item pairs with high modification indices and
256 clear conceptual overlap, which improved model fit while preserving the original factor
257 framework and limiting data-driven re-specification, thereby supporting the
258 interpretability and reducing the risk of overfitting [40].

259 Compared with the original i-CODE validation, which also applied theory-guided
260 modifications and reported stronger global fit ($RMSEA = 0.057$, $CFI = 0.962$) [13], our
261 Chinese validation yielded acceptable but comparatively lower indices. To our
262 knowledge, the German version of i-CODE (CODE-GER) has been published to date,
263 but its validation focused on concurrent validity and did not report a separate CFA for
264 the four-factor structure, limiting direct comparisons of model-fit indices with our
265 findings [41]. In the Chinese context, related family-reported end-of-life care
266 instruments such as the CES ($RMSEA = 0.047$, $CFI = 0.952$, $TLI = 0.946$) [17] and GDI
267 ($RMSEA = 0.044$, $CFI = 0.900$, $TLI = 0.892$) [18] have shown acceptable factor
268 structures with slightly stronger fit than observed here. The i-CODE, however, targets
269 the last 48 hours of life and includes more heterogeneous items on acute symptom
270 management and circumstances around death, which may partly explain the
271 comparatively less optimal global fit in our sample.

272 High inter-factor correlations were also observed. Although this pattern may indicate
273 partial construct overlap statistically, it is conceptually understandable in the Chinese
274 context, where overall care, respectful treatment and supportive communication are
275 often experienced as closely intertwined facets of a single care experience [42,43].
276 Similar high correlations were reported in the original validation, where bifactor model
277 was explored as alternative structure [13]. Given the multidimensional nature of
278 palliative care and the practical value of domain-level feedback for quality

279 improvement, we retained four-domain model. Future studies with larger samples
280 should formally compare correlated four-factor, bifactor and higher-order models to
281 assess whether adding a general “overall quality of care” factor provides a better
282 representation of the construct in Chinese settings.

283 The low loading item 23 may have contributed to the less-than-optimal global fit.
284 Prognostic communication and timely recognition of dying are widely recognised as
285 core elements of high-quality end-of-life care and are central to the construct that the i-
286 CODE seeks to capture [44-46]. Removing this item would also reduce comparability
287 with international datasets using the full i-CODE item set. The weak loading may
288 therefore reflect sociocultural influences on prognostic disclosure and recall rather than
289 irrelevance of the construct. Further qualitative and quantitative research is warranted
290 to explore culturally specific interpretations of this item and to determine whether
291 refinement is needed in future Chinese applications.

292 **Concurrent and discriminant validity**

293 The pattern of correlations observed in our study was similar to that reported in the
294 CODE-GER, which found a moderate correlations ($r=-0.41, p<0.001$) with established
295 palliative care measures [41]. As hypothesized, the Chinese i-CODE showed a low-to-
296 moderate correlation with the CES, which emphasises the structure and process of care
297 [17], and a moderate correlation with the GDI, which focuses on broader attributes of
298 a “good death” across the end-of-life trajectory) [18]. Notably, The relatively low
299 correlation between the i-CODE Symptom Management subscale and the GDI further
300 underscores the i-CODE’s specific focus on symptom management in the last 48 hours
301 of life. Conversely, the negligible and non-significant correlation with the PHQ-9 ($r =$
302 $0.015, p = 0.765$) [27] supports discriminant validity, indicating that relatives’
303 evaluations of end-of-life quality are independent of depressive symptoms severity.

304 Therefore, these findings provide evidence of concurrent and discriminant validity and
305 support the structure validity of the Chinese i-CODE.

306 **Internal consistency and test–retest reliability**

307 The Chinese i-CODE showed good internal consistency ($\alpha = 0.91$) for the total score,
308 comparable the original international validation ($\alpha = 0.92$) [13] and the CODE-GER
309 study ($\alpha = 0.86$) [41]. Across the four domains, internal consistency ranged from
310 satisfactory to good, consistent with COSMIN guidance that reliability should be
311 assessed at the subscale level in multidimensional instruments [20]. Test–retest
312 reliability (ICC) was moderate to good but slightly lower than that reported in the
313 German study (ICC = 0.85) [41]. This difference may reflect population-specific
314 response patterns as well as measurement characteristics of the source instrument that
315 can influence temporal stability across cultural contexts [47]. In addition, subtle
316 linguistic or conceptual shifts introduced during translation may affect the stability of
317 respondents’ interpretations over time, a recognized challenge in cross-cultural
318 validation research [48]. Nevertheless, the ICC values indicate that the Chinese i-CODE
319 yields reasonably stable ratings among bereaved relatives, supporting its use in both
320 clinical and research settings.

321 **Implications, limitations and future directions**

322 These findings suggest that the Chinese i-CODE provides a practical means of
323 capturing bereaved relatives’ views on care in the last two days of life, helping
324 healthcare teams identify specific strengths and targets for improvement (e.g. symptom
325 relief, communication and family support, and perceived dignity). More broadly, a
326 validated i-CODE can facilitate cross-study and cross-country comparisons and support
327 more patient- and family-centred monitoring of end-of-life care quality as palliative
328 care services continue to develop in China.

329 This study has several limitations. First, data were collected primarily via a voluntary
330 online survey, which may over-represent younger and more digitally literate relatives
331 and limit generalisability. Second, although the sample size was sufficient for testing
332 the four-factor CFA model, it may be underpowered for more complex structures,
333 warranting replication in larger and more diverse samples. Third, the very low loading
334 of Q23 highlights the need to further explore culturally specific understandings of
335 prognostic communication. Finally, as the sample was restricted to relatives of adult in-
336 hospital decedents, future studies should evaluate the Chinese i-CODE in home and
337 community settings. Overall, these findings provide preliminary support for the
338 Chinese i-CODE as a measure of care quality in the last days of life.

339 **Conclusion**

340 This study provides preliminary evidence that the Chinese version of the i-CODE is a
341 culturally appropriate instrument with acceptable psychometric properties for assessing
342 the quality of care in the last days of life from the perspective of bereaved family
343 members in Mainland China. The original four-factor structure was broadly supported,
344 with satisfactory internal consistency, moderate test-retest reliability, and adequate
345 concurrent and discriminant validity. However, a modest sample size, slightly
346 suboptimal global fit indices, and one low-loading item indicate that further refinement
347 and replication in larger and more diverse samples are warranted. Despite these
348 limitations, the Chinese i-CODE has potential to support clinical evaluation, quality
349 improvement, and cross-cultural research in end-of-life care.

350 **Declarations**

351 **Ethics approval and consent to participate**

352 This study was carried out in line with the principles of the Declaration of Helsinki, including
353 subsequent revisions, and was approved by the Institutional Review Board (IRB) of the Tohoku

354 University (Approval Number: 2022-1-1022). Consent was secured from all individuals after they
355 were fully informed prior to their involvement in the research.

356 **Consent for publication**

357 Not applicable.

358 **Availability of data and materials**

359 The datasets used and/or analyzed during the current study are available from the corresponding
360 author on reasonable request.

361 **Conflicts of interest**

362 The authors declare no potential conflicts of interest.

363 **Funding**

364 This study was supported by JST SPRING, Grant Number JPMJSP2114. The authors have no
365 relevant financial or non-financial interests to disclose. The funders had no role in study design,
366 data collection and analysis, decision to publish, or preparation of the manuscript.

367 **Authors' contributions**

368 XZ conceived and designed the study, conducted the statistical analyses, and drafted the initial
369 manuscript. LZ, BL, LD and YL coordinated participant recruitment, data collection. CRM, MA
370 and MM provided methodological guidance, supervised the study design and analysis, and critically
371 revised the manuscript. All authors contributed to the interpretation of data, reviewed the manuscript,
372 and approved the final version for submission.

373 **Acknowledgments**

374 We gratefully thank all the members of the research team for making the study progress smoothly.
375 Additionally, we would like to thank all the bereaved relatives for sharing their views.

376 **References**

- 377 1. Radbruch L, De LL, Knaul F, et al. Redefining Palliative Care-A New Consensus-Based Definition
378 J Pain Symptom Manage. 2020;60(4):754-764.
- 379 2. Central People's Government of the People's Republic of China. Interpretation of the main econ
380 omic data for 2023 by the head of the relevant department of the National Statistical Office (i

381 n Chinese). 2024. https://www.gov.cn/lianbo/bumen/202401/content_6926737.htm. Accessed
382 3 November 2024.

383 3. Department of Economic and Social Affairs Population Division of United Nation. World Popul
384 ation Prospects 2024. <https://population.un.org/wpp/Graphs/Probabilistic/MORT/Deaths/156>.
385 Accessed 3 November 2024.

386 4. Li L, Gong X. Developing supportive policy environments for hospice care in china: a quantitati
387 ve policy evaluation based on the PMC-Index model. *BMC Palliat Care*. 2025;24(1):248.

388 5. Tripodoro VA, Fidalgo JFL, Pons JJ, et al. First-Ever Global Ranking of Palliative Care: 2025
389 World Map Under the New WHO Framework. *J Pain Symptom Manage*. 2025;70(5):447-45
390 8.

391 6. Shi Z, Du M, Zhu S, et al. Factors influencing accessibility of palliative care: a systematic revie
392 w and meta-analysis. *BMC Palliat Care*. 2025;24(1):80.

393 7. Lin H, Huang Y, Wang Y. Facilitators and barriers to palliative care delivery in rural China: a q
394 ualitative study of the perceptions and experiences of rural healthcare professionals. *BMC Pal
395 liat Care*. 2025;24(1):211.

396 8. Wang J, Song S, Mai G, et al. The comparison of spatial patterns and factors associated with he
397 althcare provider knowledge in palliative care in various regions of China. *Humanit Soc Sci C
398 ommun*. 2024; 11:510.

399 9. He L, Liao H, Pan Y., et al. Current public perception of, and barriers to, palliative care in Chin
400 a: a mixed-methods study. *The Lancet Oncology*. 2022; 23:S8.

401 10. Zuo T, Yeap SY, Lu G. Navigating the delicate balance of autonomy and harmony: a case stud
402 y on the cultural adaptation of palliative care interventions in China. *BMC Palliat Care*. 2025;
403 24(1):168.

404 11. Haugen DF, Hufthammer KO, Gerlach C, et al. Good Quality Care for Cancer Patients Dying i
405 n Hospitals, but Information Needs Unmet: Bereaved Relatives' Survey within Seven Countri
406 es. *Oncologist*. 2021;26(7):e1273-e1284.

407 12. Mayland CR, Gerlach C, Sigurdardottir K, et al. Assessing quality of care for the dying from
408 the bereaved relatives' perspective: Using pre-testing survey methods across seven countries
409 to develop an international outcome measure. *Palliat Med*. 2019;33(3):357-368.

410 13. Mayland CR, Keetharuth AD, Mukuria C, et al. Validation of 'Care Of the Dying Evaluation'
411 (CODETM) within an international study exploring bereaved relatives' perceptions about
412 quality of care in the last days of life. *J Pain Symptom Manage.* 2022;64(1):e23-e33.

413 14. Miyashita M, Aoyama M, Nakahata M, et al. Development the Care Evaluation Scale Version
414 2.0: a modified version of a measure for bereaved family members to evaluate the structure
415 and process of palliative care for cancer patient. *BMC Palliat Care.* 2017;16(1):8.

416 15. Miyashita M, Morita T, Sato K, et al. Good death inventory: a measure for evaluating good
417 death from the bereaved family member's perspective. *J Pain Symptom Manage.* 2008; 35(5):
418 486-498.

419 16. Hunt KJ, Richardson A, Darlington AE, et al. Developing the methods and questionnaire
420 (VOICES-SF) for a national retrospective mortality follow-back survey of palliative and end-
421 of-life care in England. *BMJ Support Palliat Care.* 2019;9(1):e5.

422 17. Zhao J, You L, Tao H, et al. Validation of the Chinese version of the Care Evaluation Scale for
423 measuring the quality of structure and process of end-of-life care from the perspective of
424 bereaved family. *BMC Palliat Care.* 2021;20(1):85.

425 18. Zhao J, Wong FKY, You L, et al. Validation of the Chinese Version of the Good Death Inventory
426 for Evaluating End-of-Life Care From the Perspective of the Bereaved Family. *J Pain*
427 *Symptom Manage.* 2019;58(3):472-480.

428 19. Mayland CR, Lees C, Germain A, et al. Caring for those who die at home: the use and validation
429 of 'Care Of the Dying Evaluation' (CODE) with bereaved relatives. *BMJ Support Palliat Care.*
430 2014;4(2):167-174.

431 20. COSMIN [homepage on the internet]. COSMIN Study Design checklist for Patient-reported
432 outcome measurement instruments. Version July 2019. https://www.cosmin.nl/wp-content/uploads/COSMIN-study-designing-checklist_final.pdf. Accessed 1 April 2024.

433 21. Terwee CB, Bot SD, de Boer MR, et al. Quality criteria were proposed for measurement
435 properties of health status questionnaires. *J Clin Epidemiol.* 2007;60(1):34-42.

436 22. Streiner DL, Norman GR, Cairney J. *Health measurement scales: A practical guide to their*
437 *development and use (5th ed.).* Oxford University Press.2015.

438 23. Zheng X, Zhao J, Mayland CR, et al. Translation and cultural adaptation of the Chinese version
439 of the International 'Care Of the Dying Evaluation' (CODE™) tool for assessing the quality
440 of care for dying patients from the perspective of bereaved family members. *BMC Palliat Care.*
441 2025;24(1):128.

442 24. Zhou P, Tang C, Wang J, et al. Assessing the relationship between the distress levels in patients
443 with irreversible terminal delirium and the good quality of death from the perspective of
444 bereaved family. *BMC Palliat Care.* 2025;24(1):14.

445 25. Ham L, Fransen HP, van den Borne B, et al. Bereaved relatives' quality of life before and during
446 the COVID-19 pandemic: Results of the prospective, multicenter, observational eQuiPe
447 study. *Palliat Med.* 2021;35(8):1502-1507.

448 26. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-
449 MD: the PHQ primary care study. *Primary Care Evaluation of Mental Disorders. Patient Health*
450 *Questionnaire. JAMA.* 1999;282(18):1737-1744.

451 27. Bian C, He X, Qian J, et al. Application of the Patient Health Questionnaire Depressive
452 Symptom Cluster Scale in a general hospital (in Chinese). *Journal of Tongji University*
453 *(Medical Edition).* 2009;30 (05):136-140.

454 28. Wang J, Wang X, Jiang B. *Structural equation models: Methods and applications.* Beijing:
455 Higher Education Press; 2011.

456 29. Rodríguez-Jiménez MC, Pérez Jorge D, González-Contreras AI, et al. Development and
457 validation of EDU-COV-NEE-NEAE questionnaire to measure educational response, ICT
458 usage and impact of COVID-19 pandemic on students with special educational needs. *Heliyon.*
459 2023;9(9):e19231.

460 30. Garnier-Villarreal M, Jorgensen DT. Evaluating Local Model Misspecification with
461 Modification Indices in Bayesian Structural Equation Modeling. *Structural Equation Modeling:*
462 *A Multidisciplinary Journal.* 2025; 32(2): 304-318.

463 31. Kamaruzzaman S, Ploubidis GB, Fletcher A, et al. A reliable measure of frailty for a community
464 dwelling older population. *Health Qual Life Outcomes.* 2010;8:123.

465 32. Weber JC, Lamb DR. *Statistics and Research in Physical Education.* St. Louis: The C.V.Mosby
466 Company; 1970.

467 33. Devellis R F. Scale Development: Theory and Applications. 4th ed. Los Angeles: Sage
468 publications; 2017.

469 34. Pourmomeny AA, Ghanei B, Alizadeh F. Reliability and Validity of the Persian Language
470 Version of the International Consultation on Incontinence Questionnaire-Male Lower Urinary
471 Tract Symptoms (ICIQ-MLUTS). Lower Urinary Tract Symptoms. 2018; 10(2): 190-192.

472 35. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for
473 Reliability Research. Journal of chiropractic medicine. 2016; 15(2): 155–163.

474 36. Webb KL, Ryan J, Wolfe R, et al. Test-Retest Reliability and Minimal Detectable Change of
475 Four Cognitive Tests in Community-Dwelling Older Adults. J Alzheimers Dis.
476 2022;87(4):1683-1693.

477 37. Shi D, Lee T, Maydeu-Olivares A. Understanding the Model Size Effect on SEM Fit
478 Indices. Educ Psychol Meas. 2019;79(2):310-334.

479 38. McNeish D, An J, Hancock GR. The Thorny Relation Between Measurement Quality and Fit
480 Index Cutoffs in Latent Variable Models. J Pers Assess. 2018;100(1):43-52.

481 39. Lai K, Green SB. The Problem with Having Two Watches: Assessment of Fit When RMSEA
482 and CFI Disagree. Multivariate Behav Res. 2016;51(2-3):220-239.

483 40. Kline RB. Principles and Practice of Structural Equation Modeling (5th ed.). New York:
484 Guilford Press; 2023.

485 41. Vogt A, Stiel S, Heckel M, Goebel S, Mai SS, Seifert A, et al. Assessment of the quality of end-
486 of-life care: translation and validation of the German version of the “Care of the Dying
487 Evaluation” (CODE-GER) - a questionnaire for bereaved relatives. Health Qual Life Outcomes.
488 2020;18(1):311.

489 42. Prince M. Measurement validity in cross-cultural comparative research. Epidemiol Psichiatri Soc.
490 2008;17(3):211-220.

491 43. Lopez-Vergara HI, Yang M, Weiss NH, et al. The cultural equivalence of measurement in
492 substance use research. Exp Clin Psychopharmacol. 2021;29(5):456-465.

493 44. National Clinical Guideline Centre (UK). Care of Dying Adults in the Last Days of Life. London:
494 National Institute for Health and Care Excellence (NICE); 2015.

495 45. Clayton JM, Hancock KM, Butow PN, et al. Clinical practice guidelines for communicating
496 prognosis and end-of-life issues with adults in the advanced stages of a life-limiting illness,
497 and their caregivers. *Med J Aust.* 2007;186(S12):S77-S105.

498 46. Maya S, Chittem M, Chawak S, Parker PA, Banerjee SC. Experiences of prognosis disclosure
499 versus nondisclosure among family caregivers of persons with advanced cancer. *Death Stud.*
500 2024;48(9):905-915.

501 47. Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best Practices for
502 Developing and Validating Scales for Health, Social, and Behavioral Research: A
503 Primer. *Front Public Health.* 2018;6:149.

504 48. Sousa VD, Rojjanasrirat W. Translation, adaptation and validation of instruments or scales for
505 use in cross-cultural health care research: a clear and user-friendly guideline. *J Eval Clin Pract.*
506 2011;17(2):268-274.

507

Table 1 General characteristic of deceased patients and bereaved relatives (*n*=216)

Characteristic	n	%	Characteristic	n	%
<Deceased patients>			< Bereaved relatives>		
Age, years (mean+SD,range)			Age,years (mean+SD,range)		
58.7±20.08 (18~96)			33.16±11.75 (18~76)		
18~44	57	26.4	18~30	109	50.5
45~59	33	15.3	31~40	65	30.1
60~74	72	33.3	40~50	25	11.6
75~	54	25	50~	17	7.9
Gender			Gender		
Male	148	68.5	Male	116	53.7
Female	68	31.5	Female	100	46.3
Marital status			Marital status		
Married	174	80.6	Married	116	53.7
Unmarried	24	11.1	Unmarried	92	42.6
Widow	15	6.9	Widow	4	1.9
Divorce	3	1.4	Divorce	4	1.9
Religious belief			Religious belief		
No specific religious beliefs	160	74.1	No specific religious beliefs	177	81.9
Buddhism	33	15.3	Buddhism	19	8.8
Islam	5	2.3	Islam	8	3.7
Catholicism · Christianity	6	2.8	Catholicism · Christianity	5	2.3
Other	12	5.6	Other	7	3.2

Table 1 Continued

Characteristic	n	%	Characteristic	n	%
Hospitalisation days		Educational level			
3~6days	36	16.7	Primary school · junior high school	11	5.1
7~10days	27	12.5	High school	43	19.9
11~15days	56	25.9	College	64	29.6
16~30days	41	19.0	Undergraduate · graduate	94	43.5
31days or more	56	25.9	Other	4	1.9
Cause of death		Relationship to patient			
Cancer	73	33.8	Spouse	37	17.1
Cerebrovascular disease	26	12.0	Children	83	38.4
Cardiovascular disease	34	15.7	Son-in-law · daughter-in-law	15	6.9
Chronic obstructive pulmonary disease (COPD)	11	5.1	Parents	5	2.3
Diabetes	6	2.8	Siblings	42	19.4
Cirrhosis	10	4.6	others	34	15.7
Hypertension	10	4.6	Per capita monthly family income(yuan)		
End stage renal disease	5	2.3	<1000	8	3.7
Dementia	2	0.9	1000~1999	10	4.6
Motor neuron disease	3	1.4	2000~2999	25	11.6
Senility	12	5.6	3000~3999	23	10.6
Don't know	9	4.2	4000~4999	33	15.3
Other	15	6.9	5000 or more	117	54.2

Table 2 Model Fit Indices for Chinese Version of the i-CODE

Fit index	Recommended Cutoff	Initial Model	Modification Model	Final Model
χ^2/df	<3.00	2.611	2.303	2.027
RMSEA	<0.08	0.087	0.078	0.069
CFI	≥ 0.90	0.808	0.845	0.879
TLI	≥ 0.90	0.786	0.827	0.864
IFI	≥ 0.90	0.811	0.847	0.880
SRMR	<0.08	0.068	0.068	0.063

Note: χ^2/df =Chi-Square to Degrees of Freedom; RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; IFI = Incremental Fit Index; SRMR = Standardised Root Mean Square Residual.

Table3 The Standardised Factor Loadings of Each Item and the Assigned Factor

Item No.	Item Content (Short Description)	Assigned Factor	Standardised Loading
Q1	<i>Personal care needs</i>	Factor 1: Overall Care	0.667
Q2	<i>Nursing care needs</i>	Factor 1: Overall Care	0.670
Q3	<i>Environment was Comfortable</i>	Factor 1: Overall Care	0.583
Q4	<i>Environment had Adequate privacy</i>	Factor 1: Overall Care	0.635
Q5	<i>Cleanliness of the ward area</i>	Factor 1: Overall Care	0.502
Q8	<i>Nurses had time to listen and discuss</i>	Factor 1: Overall Care	0.761
Q27	<i>Died in the right place</i>	Factor 1: Overall Care	0.548
Q32	<i>Willingness to recommend the organization</i>	Factor 1: Overall Care	0.529
Q6	<i>Confidence and trust in nurses</i>	Factor 2: Trust, Respect and Dignity	0.623
Q7	<i>Confidence and trust in doctors</i>	Factor 2: Trust, Respect and Dignity	0.535
Q23	<i>Informed about impending death</i>	Factor 2: Trust, Respect and Dignity	0.135
Q24/25	<i>Discussion about dying process helpful</i>	Factor 2: Trust, Respect and Dignity	0.436
Q29	<i>Sensitivity from team after death</i>	Factor 2: Trust, Respect and Dignity	0.309
Q30a	<i>Treated with respect and dignity (doctors)</i>	Factor 2: Trust, Respect and Dignity	0.848
Q30b	<i>Treated with respect and dignity (nurses)</i>	Factor 2: Trust, Respect and Dignity	0.890
Q16	<i>Involvement in care decisions</i>	Factor 3: Communication and Support	0.509
Q17/18	<i>Discussion about fluids via drip</i>	Factor 3: Communication and Support	0.527
Q19	<i>Clarity of explanation about condition</i>	Factor 3: Communication and Support	0.654
Q20	<i>Emotional support from team</i>	Factor 3: Communication and Support	0.653
Q21	<i>Religious/spiritual needs met</i>	Factor 3: Communication and Support	0.584
Q28	<i>Support at time of death</i>	Factor 3: Communication and Support	0.746
Q31	<i>Supported during last two days</i>	Factor 3: Communication and Support	0.396
Q11	<i>Relief of Pain</i>	Factor 4: Symptom Management	0.725
Q13	<i>Relief of restlessness</i>	Factor 4: Symptom Management	0.693
Q15	<i>Relief of noisy rattle (breathing)</i>	Factor 4: Symptom Management	0.760

Table 4 Correlations between factors

Factor	Factor 1	Factor 2	Factor 3	Factor 4
Factor 1	1.000	0.783	0.945	0.605
Factor 2		1.000	0.913	0.619
Factor 3			1.000	0.657
Factor 4				1.000

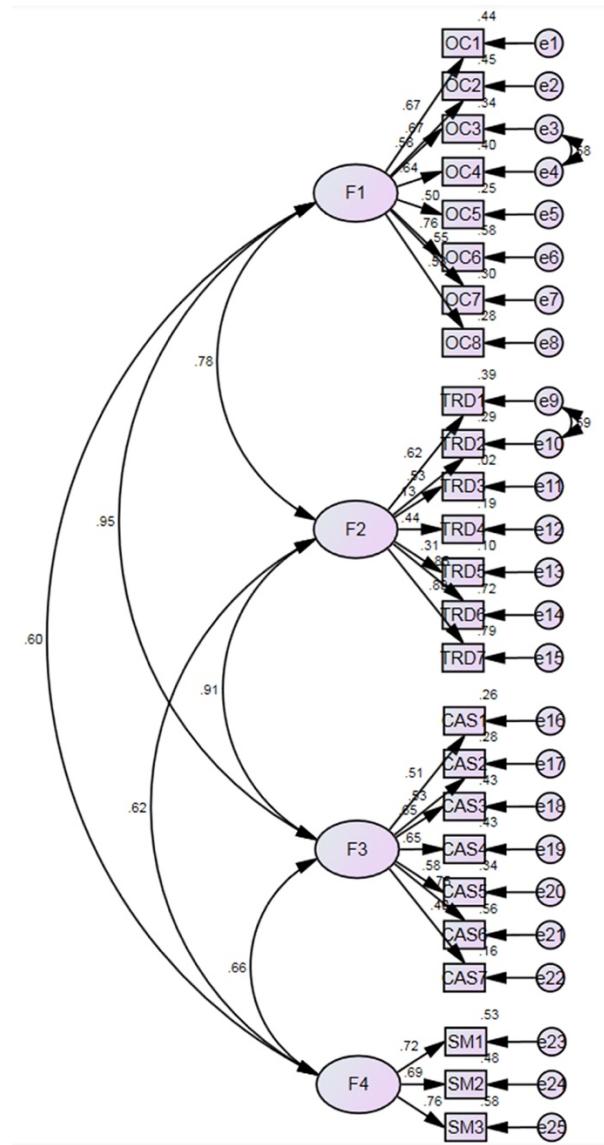

Note: F1: Overall care; F2: Trust, respect and dignity; F3: Communication and support; F4: Symptom management.

Table 5 Concurrent validity and discriminant validity of Chinese version of i-CODE

Factors	GDI	CES	PHQ-9
Overall Care	0.416***	0.272***	0.035
Trust, Respect & Dignity	0.446***	0.283***	-0.058
Communication and Support	0.483***	0.280***	0.010
Symptom Management	0.357***	0.213***	0.092
i-CODE	0.502***	0.311***	0.015

Note: Table are Pearson's correlation coefficients. CES = Care Evaluation Scale; GDI = Good Death Inventory; PHQ-9 = Patient Health Questionnaire - 9 items.

*** $P<0.001$

Fig 1. Confirmatory Factor Analysis Model of Chinese Version of the i-CODE

Note: F1: Overall care; F2: Trust, respect and dignity; F3: Communication and support; F4: Symptom management.