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Abstract— Objective: Achieving effective and robust
free-living PD severity assessment with wearable intelli-
gence technologies requires a deep understanding of clin-
ically relevant features, representative activities, and ma-
chine learning algorithms. Methods: We designed a unified
analytic framework (PDWearML) to optimise wearable ML
approaches with simple daily activities for fast assessment
of PD severity. It comprises annotation criteria, feature im-
portance analysis, representative activity combination, and
PD severity assessment. We conducted a 12-month study,
developing a supervised PD wearable dataset containing
100 PD patients and 35 age-matched healthy controls using
Huawei smartwatches and Shimmer. PD severity, assessed
by trained physicians using the Hoehn and Yahr (H&Y)
scale. Results: The results reveal that through optimising
multi-level feature extraction and combining three repre-
sentative daily activities (WALK, ARISING-FROM-CHAIR,
and DRINK), our smartwatch-based machine learning ap-
proach can assess PD severity in supervised settings
within 2 minutes with an accuracy of up to 84.7%. Signif-
icance: This work holds significant clinical value, offering
a potential auxiliary tool for faster, more tailored interven-
tions in PD healthcare. Code is available at code ocean
platform and https://github.com/wang-xulong/PDWearML.

Index Terms— Parkinson’s disease, fast assessment,
subject adherence, wearable intelligence, activities of daily
living

I. INTRODUCTION

W ITH notable advancement of machine learning (ML)
techniques, wearable intelligence (WI) has made sig-

nificant strides in developing intelligent early-warning and
self-management solutions for patients both in hospital and
at home [1]–[3]. In particular, WI technology is transforming
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Parkinson’s disease (PD) management by shifting from tra-
ditional, hub-based healthcare systems to more personalised,
free-living healthcare environments. This approach allows for
continuous monitoring and accurate self-assessment, giving
clinicians a more comprehensive view of patient conditions
to support individualised care. For instance, Apple® engineers
have developed a smartwatch-based ambulatory monitoring
system that remotely tracks fluctuations in resting tremor and
dyskinesia [4]. Additionally, the Personal Kinetigraph(PKG®),
an FDA-cleared medical device, is designed to provide a
continuous, objective assessment of movement disorder symp-
toms, such as slowness of movement, stiffness, tremor, and
dyskinesias in free-living environments for PD patients [5],
[6]. Although these WI technologies are intended to provide
fast and accurate assessment of PD patients in real-life settings,
achieving high precision for detecting subtle motor fluctuations
across diverse PD activities remains a significant challenge.
This requires advanced, reliable ML algorithms, cost-sensitive
hardware, and clinically relevant data, including kinematic
analysis.

Theoretically, assessing PD in free-living conditions using
WI technologies can be framed as a human activity recognition
and fine-grained classification problem. This approach first re-
quires extracting and learning versatile, representative features
from wearable data, followed by the application of suitable ML
algorithms to tasks such as activity recognition and PD severity
classification. These tasks facilitate personalised assessments,
symptom monitoring, and anomaly detection for effective PD
self-management in real-world settings. Over recent decades,
ML techniques have shown considerable success in identify-
ing PD symptom characteristics when applied to large-scale,
multi-variable wearable datasets [7]. WI solutions powered by
ML have the potential to surpass standard clinical scales by
capturing subtle changes in real-time, enabling more precise
and sensitive tracking of motor function [8]. This advancement
has prompted the Food and Drug Administration (FDA) to
develop new protocols for evaluating the safety and efficacy
of ML-based healthcare technologies [9]. These protocols em-
phasise (1) supporting research on “patient-centred approaches
with transparency to users” and (2) developing methodologies
for evaluating and improving ML methods. Consequently,
creating analytical frameworks to evaluate the effectiveness
and robustness of ML algorithms in free-living environments
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will be crucial to advancing patient-centred PD healthcare.
To analyse the effectiveness of ML algorithms in PD

healthcare, researchers have evaluated classic ML methods
using extensive real-world data from daily living, combined
with clinical scores and patient profiles, both cross-sectionally
and longitudinally [10], [11]. Although valuable, these findings
are constrained by the limited availability and quality of
free-living wearable datasets. This progress has likely been
slowed by challenges related to feature reliability, activity
representation, and model estimation: i) Feature Reliability.
The reliability of key representative features of PD symptoms
in free-living environments remains largely untested. While
emerging digital features derived from wearable sensors offer
the potential for continuous and remote monitoring of PD
symptoms, their lack of specificity in free-living conditions
has limited their practical utility [4], [5], [12]–[15]. ii) Activity
Representation. Free-living environments encompass diverse
daily activities, yet it remains unclear which better assesses
PD severity. Although recent studies have identified certain
activities relevant for evaluating specific PD motor symptoms,
analysing PD symptoms in isolation has proven insufficient for
accurately assessing overall disease severity [16]–[21]. iii) ML
Model Estimation. Identifying the appropriate ML model for
accurate PD severity classification remains an open question.
Specifically, given the challenges of collecting and labelling
high-quality, balanced datasets in free-living conditions for
PD, many ML classifiers have focused on distinguishing PD
patients from healthy individuals rather than on classifying PD
severity grades, such as mild, moderate, or severe. Developing
a unified analytical framework to assess wearable intelligence
for severity classification will be crucial for enhancing PD
patient self-management.

This study addresses these gaps by introducing PDWearML,
a unified analytic framework to optimise wearable ML for
fast PD severity assessment using minimal data and simplified
interactions. It encompasses standardised annotation criteria
linking UPDRS-inspired daily activities to H&Y severity
grading [22], [23]; multi-scale feature importance analysis
to pinpoint clinically relevant signals; representative activity
selection for efficient proxies; and a comprehensive evaluation
across 12 SOTA ML models to ensure robustness in supervised
daily activities settings.

To validate PDWearML, we conducted a 12-month recruit-
ment study, yielding a supervised wearable dataset of daily
activities from 100 PD patients and 35 age-matched healthy
controls. These participants are primarily older adults from
minoritised groups and rural areas of Yunnan Province, China.
We used Huawei smartwatches and Shimmer sensors. The
PDWearML dataset and code are publicly available at Code
Ocean and github. This availability empowers further research
on health inequities via accessible digital tools.

The remainder of this paper is organised as follows. Section
II details the PDWearML methodology, including data collec-
tion and annotation criteria, multi-scale feature extraction and
selection, representative activity identification, and severity
assessment procedures. Details of the experimental results are
reported and analysed in Section III. In Section IV, we discuss
our findings and conclude in Section VI.

II. METHODS

A. Study design

As shown in Fig. 1, the PDWearML framework, from
activity collection to PD severity assessment, is divided into
four steps: Step 1: Data collection and annotation. Four
task types—clinical, functional, gross motor, and fine mo-
tor—comprising 16 activities were collected using Shimmer
and Huawei GT3 devices. At the same time, physicians
scored participants using the H&Y scale from 0 to 4. Step
2: Feature extraction and selection. For each activity, features
were extracted from the accelerometer X, Y, and Z signals
using the sliding window method. A subset of key features was
then selected based on their importance for subsequent activity
correlation analysis and modelling. Step 3: Representative
activities selection. First, we identified representative single
activities. Then, we used a combination of strategies to achieve
a more comprehensive evaluation. Step 4: Severity assessment.
We employed five categories of machine learning models to
evaluate the effectiveness of using representative activities for
PD severity assessment.

Our PDWearML framework adopts a feature engineering
approach combined with traditional machine learning models.
This strategy prioritises clinical practicality, data efficiency,
and model interpretability over end-to-end deep learning
paradigms. The PDWearML dataset includes 135 participants.
This scale represents a typical small-sample medical sce-
nario. Deep learning often struggles here due to its need
for extensive annotated data. Feature engineering counters
this limitation. It pre-extracts multi-domain signals such as
time-domain means, frequency-domain spectral energy, and
autocorrelation peaks. It also incorporates domain knowledge
from UPDRS and H&Y scales. Traditional models like random
forests or LightGBM thus converge effectively on limited data.
The method follows hybrid intelligence principles. It merges
human expertise in clinical activity selection with algorithmic
automation. This reduces noise and boosts robustness. The
approach sacrifices some automatic representation learning
for strong interpretability and easy deployment. These traits
support fast detection in free-living settings. They also enable
clinicians to verify decisions quickly via tools like SHAP
analysis.

B. Data collection and annotation

The process of data collection is presented in Fig. S2 a.
Participants performed specific tasks categorised into clinical,
functional, fine motor, gross motor, and fine motor groups,
each lasting 20–60 seconds. The entire process was video-
recorded. Fig. S2 b displays the sensor details used to collect
the data. Two wearable sensor devices were used in our
study. The first device, a professional-grade wearable known
as Shimmer, was attached to both wrists and operated at a
sampling rate of 200Hz. The second device, the commercially
available Huawei GT3 watch, was worn on the wrist with
more severe symptoms and operated at a sampling rate of
100Hz. Both devices were equipped with accelerometers and
gyroscopes. Further details about the devices can be found in

https://github.com/wang-xulong/PDWearML
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Fig. 1. The PDWearML framework for PD severity assessment. The process is divided into four steps: (1) Data collection and annotation: Four
types of activities (clinical, functional, gross motor, and fine motor) are collected using wearable sensors, followed by annotation from physicians
and researchers using standardised scales. (2) Feature extraction and selection: For each activity, features are extracted from accelerometer
data in multiple domains (time, frequency, PSD, and autocorrelation) using a sliding window approach, with key features selected based on
importance thresholds. (3) Representative activities selection: A combination strategy (horizontal, vertical, or weighted concatenation) is used
to identify representative activities. (4) Severity assessment: Machine learning models from various classes (linear, non-parametric, tree-based,
deep learning, probabilistic) are applied to predict Parkinson’s disease severity, with the final score indicating the likelihood of severity grades.

Table S3. Fig. S2 c statistics on the distribution of PD severity
among subjects.

Participants. Strict screening criteria were applied to all
participants. As shown in Fig. 2, a total of 321 participants
(193 with PD and 128 healthy controls, HC) were involved
in the study. Based on age-matched and sensor frequency
consistency, 83 younger participants and 19 individuals with

PD were excluded. Further inspection of the videos and data
resulted in the exclusion of an additional 19 PD participants
due to lost video recordings. Ultimately, 100 PD patients and
35 HC were selected for the final experimental dataset.

Activities. Referring to the UPDRS guidelines (Table I),
we selected 16 easy-to-execute activities categorized into four
types: clinical, functional, gross motor, and fine motor. The
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Sensor data collected from 321 participants
193 Parkinson’s disease participants
128 healthy controls

102 participants excluded
83 young healthy controls
19 Parkinson’s disease participants due

to sensor frequency inconsistencies

219 participants included
184 Parkinson’s disease participants
35 healthy controls

200 participants included
165 Parkinson’s disease participants
35 healthy controls

19 participants excluded
19 Parkinson’s disease participants

due to video damage

65 participants excluded
65 Parkinson’s disease 

participants unannotated

135 participants  included
100 Parkinson’s disease participants

35 healthy controls

Fig. 2. Flowchart of participant screening. A total of 321 participants
were initially recruited, consisting of 193 Parkinson’s disease partici-
pants and 128 healthy controls. After several exclusion steps due to fac-
tors such as young healthy controls, sensor frequency inconsistencies,
video damage, and lack of annotation, 135 participants (100 Parkinson’s
disease participants and 35 healthy controls) were included in the final
analysis.

duration of these activities is provided in Table S4. Most
activities were performed in approximately 24 seconds, except
for WALK.

TABLE I
ACTIVITIES PERFORMED BY PARTICIPANTS FOR THE PD ASSESSMENT

ID Abbv. Motor task Type of task UPDRS Time(s)

1 FT Finger tapping Clinical 3.4 24.4
2 FOC Fist open close Clinical 3.5 24.1
3 PSM Pro/Sup movements∗ Clinical 3.6 24.3
4 RHF Right hand flip Clinical 3.6 34.3
5 LHF Left hand flip Clinical 3.6 24.7
6 FN-L Finger to nose left Clinical 3.16 24.3
7 FN-R Finger to nose right Clinical 3.16 24.0
8 FRA Front raise arms Clinical 3.17/18 25.1
9 WALK Walking Functional 3.10/11 47.6

10 AFC Arising from chair Functional 3.9 25.4
11 DRINK Drinking Gross motor 2.3 26.4
12 PICK Pick up something Gross motor 2.9/11 28.2
13 SIT Sitting Functional 3.17/18 24.1
14 STAND Standing Functional 3.17/18 24.2
15 SWING Stand–Swing arms Fine motor 3.14 24.1
16 DRAW Drawing on paper Fine motor 2.7 26.8
* Pro/Sup movements: Pronation supination movements

Annotation. Annotations employed two schemes: physi-
cians used the H&Y scale for clinical assessments, whereas
non-clinical researchers applied Table S2, which references the
UPDRS-III scoring criteria to capture more granular activity
details. The mapping between these annotations is provided
in Table S6. The H&Y scale provides expert-driven precision
but is difficult to scale in real-world settings owing to scarce
clinical annotators. In contrast, the Table S2 scheme sup-

ports flexible simulations of home environments akin to self-
assessments. Recent studies utilised signal expert annotation
to alleviate data scarcity for ’in-the-wild’ environments [24],
[25]. However, it lacks physicians’ expertise, which elevates
task complexity. Given these trade-offs, we designate the
Table S2 annotations as ground truth for training, validating,
and testing our machine learning models. Accordingly, the
class distribution of the labels was Normal (N=35), Mild
(N=63), Moderate (N=21), and Severe (N=16). To address the
potential class imbalance, we employed a random oversam-
pling strategy. This researcher-annotated(RA) standard was
demonstrated in our prior foundational work to be effective
for identifying features correlated with disease severity [23].
Furthermore, we conducted a separate experiment to analyse
the feasibility of whether representations learned using our
practical RA standard (Table S2) effectively generalise to pre-
dict the scarce, clinical H&Y standard. We trained a machine
learning model using RA as ground truth. We then assessed the
clinical relevance of this model by evaluating its performance
on the clinical H&Y standard.

Ethics. All ethical and experimental procedures adhered to
the guidelines outlined in the Code of Ethics of the World
Medical Association (Declaration of Helsinki). The experi-
mental protocol and all procedures received full ethical ap-
proval from both the Ethics Committee of Yunnan University
and the Ethics Committee of Yunnan First People’s Hospital.
All subjects provided informed consent and signed the consent
form.

C. Feature extraction and selection

Fig. S4 presents the workflow of feature extraction and
selection.

Data Preprocessing. As the collected data showed in-
consistent initial values, we applied Z-score normalisation
(transforming a data point by subtracting the mean of its
feature and dividing the result by the standard deviation) for
short-duration motor tasks to centre the signals around 0 [26].
Next, we applied band-pass filtering(filter between 0.3 Hz and
17 Hz) to isolate the most representative signal components
[27]. The data were segmented using a 1.5-second sliding
window with a 50% overlap to avoid splitting activity cycles
across windows [28].

Feature Extraction. To minimise device and computa-
tional demands, feature extraction focused exclusively on
accelerometer-derived signals. Multi-scale and multi-level fea-
ture selection methods were adopted to ensure the full scope of
the assessment [23]. Sample-level features were extracted from
the full 20-50 second signals, capturing mean and variance
trends along with windowed mean/variance differences (Table
S5). However, calculating tremor displacement based on a
single axis is often affected by motion drift or gravity. To
mitigate this, spatial fusion is applied by combining data
from different orientations of the accelerometer. Specifically,
A signal magnitude vector (SMV), called as A-axis, is a
calculated value representing the overall magnitude or length
of a multi-axis signal. A-axis is calculated as the square root
of the sum of squares of the three raw axes, providing a more
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robust measure. In addition, axial correlations between various
pairs of axes(XY, YZ, XA, YA, and ZA) were computed
for each activity. At the segment level, selecting an optimal
activity window size is crucial, as it must capture at least one
full activity cycle. Thus, the window size depends on the fun-
damental time period of each activity. At this stage, raw time-
series signals are transformed into autocorrelation signals,
frequency-domain signals, and power spectral density (PSD)
signals. Additionally, time-domain features are commonly ex-
tracted, including statistical metrics such as mean, maximum,
minimum, standard deviation (Std), root mean square (Rms),
peak-to-peak amplitude (Ptp), zero-crossing rate (Czr), log-
energy, percentiles, and interquartile range (Interq). In contrast,
frequency-domain features, which represent signal periodicity,
are obtained by applying the Fast Fourier Transform (FFT)
to the raw data. These features include kurtosis, skewness,
dominant frequency (Domifq), spectral energy (SpecEgy),
spectral entropy (SpecEnt), and mode. Finally, we extracted
220 features across all activities (Table S5).

Feature Selection. To identify key feature attributes that
distinguish disease severity, we employed six complementary
feature selection methods: LightGBM Feature Importance
Scores, XGBoost Feature Importance Scores, Random Forest
Feature Importance Scores, Permutation Importance Scores
(with LightGBM as the estimator), RFECV Rankings (using
LightGBM), and Boruta Rankings (with Random Forest as the
estimator). We achieved stable feature selection by calculating
an average rank for each feature across all six methods, an
approach that significantly reduced redundant features and
improved classification accuracy. Each method offers unique
contributions. For instance, LightGBM and XGBoost are fast
and effective at identifying high-impact features but may
overlook features of medium importance. In contrast, Random
Forest excels at handling complex interactions, although it can
be more sensitive to noise. Permutation Importance provides
unbiased feature relevance estimates but is computationally
intensive. RFECV systematically eliminates weaker features
by evaluating model performance with feature subsets, though
it may struggle with larger datasets. Lastly, Boruta excels at
identifying all relevant features, ensuring no critical variables
are missed, but it can be time-consuming due to its thorough-
ness. Finally, by integrating these methods, we leverage their
complementary strengths, selecting only the most important
features, minimising redundancy, and enhancing model accu-
racy.

D. Representative activities selection

We employed a process to identify representative activi-
ties and their combinations (Fig. S5). For the identification
of a single representative activity, 16 activities (Fig. S5 a)
were input into machine learning models (Fig. S5 e), and
their performance on severity assessments was evaluated (Fig.
S5 c). For identifying representative activity combinations,
we first applied a branch-and-bound method (Fig. S5 d) to
search for optimal combinations. Then, three data combination
strategies (Fig. S5 b) were employed for combining activities.
The combined data were subsequently fed into the machine

learning models and their performance was evaluated (Fig.
S5 e, c). The three combination strategies were based on
heuristics(supplementary material: combination strategy). The
horizontal and vertical strategies expanded the feature space of
the dataset and increased the number of samples, respectively,
while the weighted combination method assigned weights to
activities based on their F1 scores.

E. Severity assessment
In this study, we evaluated five categories of models across

twelve different methods. Each method was described in the
supporting material: machine learning algorithm. A 5-fold
cross-validation process was used to ensure the reliability of
the model assessments. The linear models included Logistic
Regression with L2 and L1 penalties, as well as Support Vector
Machines (SVM) with L2 and L1 penalties. Non-parametric
methods were represented by K-nearest Neighbors (KNN),
while probabilistic methods included the Naive Bayes clas-
sifier. Tree-based methods consisted of Random Forest, XG-
Boost, and LightGBM. Deep neural networks were represented
by 2-layer, 4-layer, and 8-layer neural networks. Each model
was assessed using seven key metrics: Accuracy, Precision,
Specificity, F1 score, Recall, AUC (Area Under the Curve),
and ROC (Receiver Operating Characteristic) curves(the met-
ric formula is detailed in supplementary material: evaluation
metric). These metrics provided a comprehensive evaluation
of model performance, capturing overall classification ability,
precision, handling of imbalanced classes, and the model’s
sensitivity and specificity in detecting true positive and true
negative cases.

III. RESULTS

A. Data quality and distribution
A cross-sectional study recruited 321 participants over 12

months. After excluding subjects failing to match the baseline
criteria (Methods II-B participants), 100 patients with varying
disease severity (mild, moderate and severe) and 35 age-
matched healthy controls were included. Demographics and
clinical characteristics are presented in Table S1. Supple-
mentary tables and figures are denoted with an ’S’ prefix
(e.g., Table S1). No significant demographic differences were
found between the two cohorts. The affected side (the hand
with the dominant symptoms) was determined by patient
self-assessment and was evenly distributed across the cohort.
Sensor signal data were collected for 16 activities based on the
UPDRS scale, with two sets of criteria used for annotation.
To validate our annotation, we conducted an independent
experiment to assess the clinical relevance of our model,
which was trained exclusively on the Researcher’s Annotation
(RA) standard. We evaluated this single model against the
independent test set, using the physician-provided H&Y scale
as the external clinical benchmark. This experiment yielded
two critical, contrasting insights. The result was shown in Fig.
S1. First, on key functional tasks (e.g., WALK, AFC, DRINK),
the model demonstrated exceptionally strong performance.
This finding is crucial, as it suggests that our RA standard
(Table S2) provides a cleaner and more optimised supervisory
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signal for these high-noise activities, enabling the model to
learn generalisable feature representations that effectively map
to the true clinical (H&Y) state. Conversely, on tasks that were
more holistic or purely clinical (the source of the physicians’
excellent... observation), the model’s performance declined.
This indicates that the feature representations learned from
our functional proxy are task-specific and do not generalise as
effectively to these non-functional domains, thus defining the
clear boundaries of our current annotation strategy.

B. Feature importance analyses

We analysed the feature importance in terms of the number
of features, the ranking of important features and the most
important features, respectively. Due to space constraints,
we present only two activities (PSW, DRINK) in Fig. 3.
These activities also serve as representative examples in the
subsequent Fig. 4, facilitating a consistent analysis. First, we
observed the effect of the number of features on the perfor-
mance of the model. The performance of the model reaches
a milestone quickly after the number of important features
has accumulated to 20. After this point, the F1 score trend
stabilised and peaked after adding up to 20 features (Fig.3a),
indicating that a small feature set largely drives severity assess-
ment. In both PSM and DRINK activities, second, the feature
“autocorrelation coefficient of y-axis”(fea autoy) consistently
ranked as the most important feature, with the highest mean
SHAP value in both cases (Fig.3b,c). This suggests that the
feature domain of autocorrelation plays a critical role in both
types of activity. The difference in feature importance rankings
between the two activities implies that certain features are
more suited for specific activities. For example, in the PSM
activity, axis-based correlation features such as “t zaCor” and
“t xzCor” are important, while in the DRINK activity, peak-
related features(peaks abnormal, peaks normal) and energy-
related features(“p lgEnergy y”, “p lgEnergy x”) are more
dominant (Fig.3b, c). Further, the panel feature importance
offered deeper insight into the variability of each feature’s
contribution to individual predictions. For “fea autoy” in PSM,
the SHAP values are consistently positive and relatively high
for most predictions, indicating that higher values of this
feature generally push the model towards higher predictions.
In contrast, some other features (e.g., “f skew a”) show a
broader range of SHAP values, indicating a more variable
influence on the model’s predictions(Fig.3d). Finally, the panel
of most important feature provides detailed insights into the
behaviour and importance of the “fea autoy” feature across
different severity grades of PD for two representative activities:
PSM and DRINK. The “fea autoy” values were significantly
different across all severity grades, showing a noticeable down-
ward trend as severity increases(Fig. 3f, k). This suggests that
“fea autoy” plays an important role in distinguishing different
severity grades. There was a strong positive correlation (R =
0.74) between “fea autoy” values and SHAP values, indicating
that higher “fea autoy” values positively influence the predic-
tion of the normal class(Fig.3g). As the severity increases, the
importance of “fea autoy” became more negative, indicating
that higher values of this feature decrease the likelihood of

more severe classifications, particularly in the moderate and
severe class(Fig.3h, i and j).

Following this analysis, we identified the top 20 features
per activity. This selected feature set was then used for the
representative activity and comprehensive severity assessments
in subsequent sections.

C. Representative activities
A representative activity is defined as one that consistently

outperforms other activities of the same category across most
models. Pronation supination movements (PSM) was the most
representative activity in the clinical type, and it outperformed
other clinical-type activities by 4-20% on the logistic regres-
sion model(Fig.4a: Logistic regression). PSM also achieved F1
scores of 60%, 65%, 54%, 64%, and 52% on other algorithms
(SVM, MLP, LightGBM, and KNN), positioning it as the
optimal clinical-type activity (Fig.4a). WALK was the most
representative functional activity, achieving optimal F1 scores
of 57%, 55%, 63%, 46%, 58% and 55% across six models. For
gross motor activities, DRINK outperformed PICK, achieving
optimal F1 scores of 61%, 61%, 63%, 57%, 67% and 59% on
six models. DRINK had a better F1 score than PSM, implying
that the short-term activities of the daily living type have
comparable severity assessment performance as the clinic-type
activities(Fig.4a). Overall, the representative activities(with ID
in Table.I) of clinical, functional, gross and fine are PSM(3),
WALK(9), DRINK(11) and SWING(15) respectively. They are
dynamic activities and cover the detection of symptoms of
kinetic tremor, bradykinesia and gait(Table.I).

Each UPDRS activity typically aims to assess a specific
function. Thus, we aimed to identify the minimal set of
activities that most effectively enhances PD severity assess-
ment. Combining activities (AFC, DRINK) could provide a
better performance, delivering 77% of the F1-score(Fig.4e).
Combining activities (WALK, AFC, DRINK) gained 81.4% F1
score as the optimal three-activity combination, significantly
outperforming the most representative single-activity(DRINK,
9) by 18%(Fig.4f). Meanwhile, combining activities (FN-R,
WALK, AFC, DRINK) presented an 81.8% F1 score as the
optimal four-activity combination(Fig.4g). In summary, when
combining activities to assess severity, the best activity groups
are FN-R, WALK, AFC, and DRINK. These cover clinical,
functional, and gross activity tasks and can typically be done
in less than 2 minutes.

On the other hand, three heuristics including horizontal
combination, vertical combination and weighted combination
were utilised to assess the performance of the activity com-
binations. The horizontal combination was observed to have
overall better performance than the vertical and weighted
combination(Fig.4b, c and d). This reveals that increasing the
dimensions of the feature space helps the model to classify
PD severity. Therefore, the horizontal combination of activity
data should be prioritised as the preferred strategy.

D. Comprehensive severity assessment
We investigated 12 typical ML models. To thoroughly

estimate the reliability of the model, five metrics—accuracy,
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Fig. 3. Feature importance analysis. a. Trend of F1 score with the number of features. The increasing number is in descending order of feature
importance. The solid lines represent the mean F1 score and the shaded regions indicate the standard deviation. (b-c). Top feature rankings in
selected activities. (d-e). The SHAP importance of features in representative activities. Large SHAP values indicate that the feature is important to
the severity assessment. (f-o). Violin plots display the distribution of “fea autoy” values for different PD severity grades (Normal, Mild, Moderate,
Severe). Scatter plots show the relationship between “fea autoy” values and their corresponding SHAP values for different PD severity grades. The
Mann-Whitney-Wilcoxon test (M.W.W.) is used to determine if there is a significant difference in the distribution of the two feature sets.

precision, specificity, F1 score, and recall—were used to
evaluate its classification performance. Owing to space lim-
itations, results are presented for only the most representative

activities and their combinations. The deep learning model
was found to yield the best overall performance. Subsequently,
a separate, fine-grained analysis of the classification results
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a
Single	representative	activities

Representative	activity	combinations
b

c

d

e f g

Fig. 4. Representative activities and their combinations. a. The severity assessment of all 16 activities was evaluated by their F1-scores, using
six classifiers (Logistic Regression, SVM, MLP, Naive Bayes, LightGBM, and KNN). Different colours denote activity types: clinical , functional ,
gross motor , and fine motor . Darker colours highlight the activity with the highest assessment performance within each task category. b-
d. Representative activity combination. COMB * indicates the number of combinations of activities; the darker colours represent the optimal
activity combinations. e-g.Three activity combination strategies were evaluated: horizontal, vertical, and weighted. The horizontal approach proved
significantly better than the others. Significance levels are denoted as ns(not significant) for P > 0.05; *P ≤ 0.05, **P ≤ 0.01

for these activities was conducted in the context of identity
learning. For the most representative activity, DRINK, the

MLP network with 8 hidden layers was identified as the
optimal model with 75.3% accuracy, 73.6% precision, 94%
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Comprehensive	severity	assessment

Deep	learning	model	performance

A B

C D

E F G H

Fig. 5. The performance of various machine learning models in predicting PD severity based on representative activities(DRINK, and COMB 3).
a, c. The accuracy, precision, specificity, recall, and F1 score for twelve ML models. Each bar’s total height reflects overall performance (higher
is better), while colored segments indicate contributions from each metric. b, d. ROC curves for five types of ML models, with the area under the
curve(AUC) showing model performance in different prediction tasks. The ”deep learning model performance” section highlights the best-performing
models(MLP), with e, f showing ROC curves for different severity grades(Normal, Mild, Moderate, Severe), and g, h depicting the confusion matrices,
indicating how well the model differentiates between these severity grades.

specificity, 69.3% F1 score and 69.1% recall respectively(Fig.
5a). An accuracy of 75.3% reflects the overall correctness
of the model’s predictions and serves as a baseline for
comparison with other metrics. Compared to a precision of
73.6%, the higher specificity (94.3%) indicates the model’s
better ability to correctly identify non-PD cases, which is
crucial in scenarios like disease screening that require a

reduction in the false positive rate. This trend was consistent
across other models as well. Deep learning models (MLP 2,
MLP 4, MLP 8) demonstrated the best overall performance,
followed by gradient boosting tree models (LightGBM and
XGBoost). The model’s superior specificity (94.3%) and accu-
racy (≥73%) primarily explain why MLP outperformed others.
Deep learning models were identified as optimal in the activity
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combination. The combination of three activities—WALK,
Arising from Chair, and DRINK—achieved 84.7% accuracy,
83% precision, 88.6% specificity, 81.4% F1 score, and 83.5%
recall with this model (Fig. 5c,d). The deep learning model
performed well in predicting both normal and severe PD cases,
with AUC values exceeding 0.90 for both activity sets (Fig.
5e, g). Including multiple activities improved classification
accuracy for moderate cases, which are typically more chal-
lenging to classify and were most frequently confused with the
’Mild’ class, highlighting the difficulty in distinguishing these
adjacent stages. (Fig. 5f, h). However, further refinement may
be needed to improve the model’s predictions for moderate
cases.

E. Justification on Huawei GT3 Watch

The pipeline for the smartwatch is identical to that of Shim-
mer. This includes data collection protocols, feature extraction
and selection (Top 20 features), representative activities and
their combinations, model training, and evaluation procedures,
ensuring a direct and fair comparison. In feature importance
analysis, “fea autoy” was identified as the most important
feature (Fig.6b). Higher values of “fea autoy” to FT were
associated with more severe grades of PD severity (Fig.6a,c).
Consistent with findings from shimmer sensors, autocorrela-
tion features play a key role in severity assessment. Among the
representative activities, clinical-type activities outperformed
other activity types, suggesting that clinical activities remain
a crucial foundation for self-assessment (Fig.6d,e, and f).
Notably, unlike PSM, which was the best clinical classification
on the Shimmer device, FT performed best on the watch.
This difference may be attributed to the varying abilities
of the devices to capture subtle disease signals. In severity
assessment, deep learning models outperformed other types
of machine learning models in overall performance, while
the LightGBM model demonstrated strengths in precision, F1
score, and recall (Fig.6g, h). These findings underscore the
complexity of consumer-grade sensors, and PDWearML can
effectively assist researchers in selecting appropriate models
for severity assessment in various scenarios.

IV. DISCUSSION

This work presents PDWearML, a unified framework for
assessing PD severity, and evaluates its effectiveness across
both Huawei and Shimmer sensors. By identifying key digital
features and representative activities through comprehensive
machine learning evaluation, PDWearML efficiently classifies
motor grades, leading to significant improvements in the speed
and accuracy of PD severity assessments. Our key findings are:
(1). Autocorrelation is a critical feature domain for recognising
severity. (2). PD severity assessment using the daily living
activity (DRINK) shows performance comparable to clinical-
type activity (PSM). (3). Deep learning models outperform
other ML models, with the F1 score being a better evaluation
metric. (4). The proposed framework is equally effective on the
Huawei GT3 watch for analysing key features, representative
activities, and comprehensive severity assessments.

Although numerous features have been proposed for PD
recognition, identifying activity-specific keys in free-living
settings remains challenging. Recent studies indicate that
axis-related and autocorrelation features contribute valuable
information for activity recognition and quantifying motor
symptoms. [29], [30]. Our study similarly found that features
reflecting overall autocorrelation, such as “fea autoy” and
“fea auto num”, as well as axis-related features like “xzCor”
and “yzCor” were effective in assessing severity (Fig.3b,c
and Fig.6b,c). These results were consistent even with data
collected from a smartwatch, demonstrating the stability and
reliability of these features.

We have the following analyses of representative activities.
First, the clinical type of activity across all algorithms was
significantly higher than that of the others. This suggests that
clinical activities are reliable for assessing disease severity.
Second, the activity combination provides a more compre-
hensive symptom view of estimating severity. In two-activity
combinations, DRINK combined with AFC or LHF improved
classification performance compared to using DRINK alone.
In three-activity combinations, DRINK and AFC combined
with FT, FN-L, LHF, RHF, or WALK improved classification
performance compared to using DRINK alone. Therefore, the
introduction of clinical-type activities significantly improved
performance, suggesting their ability to classify fine-grained
severity grades. However, we observed the slow performance
increase of this heuristic combination strategy, which inspired
the future proposed use of more effective data fusion strate-
gies: e.g. multi-task learning and multi-modal fusion. Gener-
ally, classifying severity is a more complex problem than PD
detection. Lonini et al. found that the detection of bradykinesia
and tremors from fine motor tasks or WALK has comparable
accuracy to the PD detection utilising clinical type [31].
However, in the present study, fine motor tasks are difficult
to have the same ability to tackle fine-grained classification
problems as clinical activities. We reserve this discussion
for ‘representative activities’ and ‘severity assessment’ in the
Supplementary Information.

It is important to contextualise our study’s protocol. The
literature defines “free-living” monitoring as the capture of
spontaneous, non-structured activities over extended periods
in a patient’s natural, unconstrained environment, without
external prompts or clinical supervision [32], [33]. This stands
in contrast to traditional, rigid laboratory assessments, which
often involve highly instructed tasks (e.g., specific gait proto-
cols) using specialised multi-sensor equipment. Our protocol
was designed as a translational bridge between these two
paradigms. While conducted in a supervised setting, our “daily
activities” design moves beyond rigid protocols by minimising
participant burden. We focused on capturing short, minimally
guided activities (e.g., DRINK, ARISE-FROM-CHAIR) using
only a single wrist-worn device. This design, validated on
consumer-grade smartwatches, facilitates fast assessment (¡2
min) and prioritises the real-world feasibility and patient
compliance necessary to pave the way for effective at-home
deployment.

Our PDWearML framework employs feature engineering
combined with traditional machine learning, rather than end-
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Fig. 6. Feature, activity and assessment analysis of PDWearML on Huawei GT3. a-c Important features analysis in FT activities. d-f Representative
activities on three types of ML models. g presented the performance of FT for all ML models using five metrics, while the confusion matrix of the
optimal ML model on FT is shown in h. i ROC curves and the corresponding AUCs for five categories of machine learning models.

to-end deep learning, to balance interpretability, data effi-
ciency, and deployment feasibility in resource-constrained PD
wearables. This choice stems from key considerations in
PD wearable studies, including small-sample challenges and
clinical needs for transparency [26]. Interpretability stands
out as a core advantage. Feature engineering enables SHAP
analysis to highlight clinically relevant signals. For instance,

it reveals tremor peaks linked to H&Y stages. This aids physi-
cian validation. In contrast, end-to-end DL produces opaque
decisions. These limit traceability and erode trust [34]. Data
efficiency further justifies the method. Embedding UPDRS
domain knowledge fits our n=135 cohort well. It curbs over-
fitting effectively. DL, however, demands massive annotated
data. This leads to poor generalisation in the wild. Robustness
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completes the rationale. Hybrid intelligence blends expert
activity curation with automation. It dampens noise reliably, as
our consistent F1 scores demonstrate. DL automates features
but struggles with sparse datasets [35]. Overall, these trade-
offs promote transparent PD interventions. This study does
not discourage deep learning; on the contrary, it encourages it.
Systematic experiments reveal that the MLP model delivers the
strongest overall performance. This underscores the nonlinear
mapping between signal features and disease classification.
Thus, future work should prioritise establishing the importance
of key wearable signals for disease grading in free-living
settings. Hybrid feature-DL models hold promise for these
advancements.

A key challenge in extending our observed clinic-based
assessments to in-the-wild home environments lies in bridging
controlled protocols with unstructured daily life. Our results
on the Huawei Watch demonstrate the feasibility of consumer-
grade devices for classifying PD severity during short-term
activities. Hence, the core obstacle in home monitoring is
not sensor precision, which our Huawei experiments partially
affirm, but data context deficiency: distinguishing meaningful
segments, such as walking or drinking, from 24/7 noise
streams [36]. Our study simplifies this by identifying WALK,
AFC, and DRINK as efficient proxy activities that capture
PD severity in under 2 minutes [37]. This enables a two-stage
deployment on devices like the Huawei Watch. Stage 1 deploys
a lightweight, always-on activity recogniser to capture these
proxies from continuous data. Stage 2 then activates a variety
of ML models for fast, precise severity scoring on isolated
segments [38]. Thus, it leverages scalable consumer hardware
while defining precise measurement targets [24].

Our study underscores a pivotal paradigm shift from spo-
radic clinical snapshots to remote, high-frequency clinical
spot-checks. Unlike continuous passive monitoring, which of-
ten struggles with context identification, annotation and noise,
We validate the utility of short-term, specific daily activities
(e.g., drinking, walking) as standardised tasks. This approach
shows the feasibility of effectively migrating the rigour of
standardised clinical tasks into the home environment [39].
Critically, this strategy of activity combination addresses the
inherent limitations of widely used scales like the UPDRS,
specifically inter-rater variability and subjective bias [40]. By
integrating complementary motor tasks (COMB 3: WALK,
AFC, DRINK), our models achieved clinical-grade precision
in severity grading, with MLP demonstrating robust perfor-
mance (AUC ≈ 0.94). This confirms that combining brief,
targeted motor protocols significantly enhances the objective
quantification of disease severity compared to single-task
assessments or subjective ratings. The most significant transla-
tional implication lies in the feasibility of fast severity assess-
ment. Existing research highlights the difficulty of capturing
motor fluctuations and ”On-Off” phenomena using infrequent
clinical visits [41]. We demonstrate that precise pathological
features can be decoded within short time windows, validating
the capability for high-frequency evaluations. This allows for
the granular mapping of intraday symptom curves, providing
a vital tool for detecting subtle motor fluctuations that tradi-
tional scales often miss. Consequently, this paradigm offers

a scalable digital health solution for optimising personalised
medication regimes.

V. LIMITATIONS

While PDWearML demonstrates promising potential, sev-
eral limitations warrant objective discussion. First, regarding
data annotation, the reliance on video-based labelling by raters,
as opposed to face-to-face interactions, presents a constraint.
This approach risks overlooking subtle clinical signs (e.g.,
rigidity tone) and non-verbal cues essential for precise severity
evaluation, potentially introducing labelling noise. Second,
we observed inconsistent feature performance across hard-
ware platforms. As shown in our comparative analysis, the
”representative activities” identified differed between devices:
research-grade sensors (Shimmer) prioritised gross motor tasks
(e.g., walking, drinking), whereas the consumer smartwatch
(Huawei GT3) showed higher sensitivity to distal movements
(e.g., finger tapping). This discrepancy indicates that feature
efficacy is currently device-dependent, and the framework’s
cross-device robustness requires further optimisation. Third,
the management of noise in free-living environments re-
mains a challenge. Extraneous factors stemming from varying
sensor placement, diverse activity contexts, and participant
non-compliance can introduce significant signal artifacts. The
current absence of robust, automated noise detection and cor-
rection mechanisms may undermine assessment reliability in
completely uncontrolled settings. Finally, the study population
limited the model’s generalizability regarding PD subtypes.
While we covered various severity stages, the dataset may
not fully represent the distinct kinematic signatures of tremor-
dominant versus akinetic-rigid subtypes. Future work will
focus on multi-centre data collection to enhance population
diversity and develop unified feature frameworks that gener-
alise across heterogeneous devices and environments.

VI. CONCLUSION

In this work, we introduce PDWearML, an accessible ma-
chine learning framework designed to support real-world evi-
dence studies for fast and accurate assessment of PD severity
in supervised conditions. To minimise participant burden, we
designed a brief and intuitive data collection protocol based
on simple daily activities and simplified device interactions,
reducing fatigue for older adults with limited digital literacy
and enhancing long-term adherence. We validated PDWearML
by comprising 100 PD patients and 35 age-matched con-
trols, demonstrating that optimised multi-scale feature extrac-
tion (notably autocorrelation) and combining representative
activities (WALK, Arising-from-Chair, and DRINK) enable
fast severity assessment in under two minutes with accuracy
up to 84.7%. By publicly releasing the dataset and code,
we ensure reproducibility, provide baseline results for future
comparisons, and encourage further development of wearable-
based PD assessment tools. Future work should address noise
detection and processing in free-living data, explore richer data
fusion strategies, and refine annotation processes to capture
subtle clinical cues.
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