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ABSTRACT

The end-Permian mass extinction (EPME) fundamentally reshaped marine ecosystems. However, the long-term
response of eukaryotic algae, a key foundation for marine primary production, is poorly understood. To address
this limited knowledge, we determine the long-term change in algal communities using molecular fossil steranes.
We use samples that span the uppermost Permian to the Lower Triassic from sections that were located in Boreal
Sea (Sverdrup Basin, Arctic Canada) as well as the tropical Tethys (Xiakou, South China), and complement these
new data with published datasets. Sterane to hopane ratios, reflecting the relative contribution of eukaryotic
algal to bacterial sources, vary in absolute values between sites but show no significant decrease in the earliest
Griesbachian compared to the pre-crisis Permian. However, Early Triassic ratios changed dramatically. In the
Sverdrup Basin, they were stable during the Griesbachian and, following an interval where both hopane and
sterane concentrations diminished, became much higher in the late Spathian. This confirms suggestions that
there was a major decline in algal productivity after the EPME that may have delayed recovery. Sterane Cag/Cag
ratios, which monitor algal composition, increase at the EPME level in Meishan and are generally higher in the
rest of the Early Triassic in the Sverdrup Basin and Chaohu. The increase shows that algae that preferentially
produce Cyg over Cyg sterols were thriving, possibly including those predominant in modern oceans. It further
implies a reorganized marine algal community-apparently in the tropics and in the post-crisis interval in the
Boreal realm. Our findings suggest that instead of a simple collapse and recovery, the Early Triassic saw a
complicated reorganisation for algae.

1. Introduction

ecological structures (Chen and Benton, 2012; Feng et al., 2022; Gal-
fetti et al., 2008; Knoll et al., 2007a).

The end-Permian Mass Extinction (EPME) severely impacted marine
and terrestrial organisms (Algeo et al., 2011; Benton and Newell, 2014;
Bond and Grasby, 2017; Chen and Benton, 2012; Dal Corso et al., 2020,
2022; Shen et al., 2011; Wignall, 2007; Wignall et al., 2020a), including
the primary producers that are the foundation of ecosystems (Falkowski
et al., 2004; Payne and van de Schootbrugge, 2007). Marine ecosystems
collapsed, and diverse communities were replaced by much-simplified

The Triassic biotic recovery lasted for 1-2 Myr for benthic commu-
nities (Song et al., 2011; Stanley, 2009) but up to 5-10 Myr for more
complex ecosystems (Chen and Benton, 2012). This biotic recovery is
unusually prolonged in comparison to other mass extinction recoveries
(Chen and Benton, 2012; Sahney and Benton, 2008). The mechanisms
driving this unusually prolonged recovery are debated, but various cli-
matic and environmental factors and/or interactions within the
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ecosystem are commonly invoked, including recurrent marine anoxia/
euxinia (e.g., Grasby et al., 2013; Grice, 2005; Lau et al., 2016; Wignall
and Twitchett, 1996, 2002), nutrient limitation (Grasby et al., 2016;
Knies et al., 2013, 2022), an ammonium ocean (Sun et al., 2019), a
protracted lethal hothouse (Joachimski et al., 2020; Sun et al., 2012),
and ocean acidification (Beauchamp and Grasby, 2012; Clarkson et al.,
2015; Fraiser and Bottjer, 2007; Payne et al., 2010; Song et al., 2021).

These proposed mechanisms invoke divergent views about post-
EPME primary productivity, including arguments for elevated (e.g.,
Algeo et al., 2013; Georgiev et al., 2015; Meyer et al., 2011; Suzuki et al.,
1998) versus suppressed primary production (e.g., Grasby et al., 2016,
2020; Knies et al., 2013; Twitchett, 2001). For example, a vigorous
biological pump was proposed by Meyer et al. (2011), while other
suggested uppression of primary production under nutrient limitation
(Grasby et al., 2016; Schobben et al., 2020). Marine primary production
during the Permian and Triassic was dominated by algae, especially
green algae (Payne and van de Schootbrugge, 2007). A near-total
dominance of (cyano)bacterial primary production has been invoked
across and/or after the mass extinction, based on the high abundance of
2-methylhopane biomarkers (Cao et al., 2002; Jia et al., 2012; Xie et al.,
2005, 2017), although the link between 2-methylhopanes and cyano-
bacteria is now debated (Naafs et al., 2022; Welander et al., 2010), as
well as the widespread proliferation of cyanobacterial microbialites (e.
g., Ezaki et al., 2003; Foster et al., 2020; Wu et al., 2014; Xie et al.,
2010).

The Early Triassic was a key period of algal evolution that initiated
the establishment of modern marine algal assemblages (e.g., de Clerck
etal., 2012; Falkowski et al., 2004). These modern algae expanded at the
expense of Chl a/b green algae (Falkowski et al., 2004), an evolutionary
step that has been reconstructed (albeit at low temporal resolution)
based on changes in sterol-derived (steranes) biomarker distributions
(Cag/Cy9 ratio; Schwark and Empt, 2006). This is supported by other
data. For example, dinoflagellates emerged in the Early Triassic with the
first occurrence of dinocysts (Mouradian et al., 2007) and increased
abundances of triaromatic dinosteranes, biomarkers for dinoflagellates
(Summons et al., 1992). Other modern algae include diatoms that first
appeared in the Early Jurassic (Nakov et al., 2018) and coccolithophores
that arose before the Carnian (de Vargas et al., 2007; Gardin et al.,
2012). Thus, not all of these modern algae emerged and/or expanded in
the Early Triassic, and they did not dominate marine plankton until the
late Mesozoic (Falkowski et al., 2004). Rather, this evolutionary step of
modern algal expansion has been attributed to the consequences of the
EPME, which opened ecological niches and created new ecosystems, as
well as the climatic conditions of the post-crisis Triassic (Falkowski
et al., 2004).

Here, we explore molecular records of steranes as biomarkers for
eukaryotic algae and hopanes as biomarkers for bacteria (Huang and
Meinschein, 1979; Moldowan et al., 1985; Volkman, 1986, 2005) to
investigate post-EPME ecological changes in ecosystem trophic foun-
dations. We develop a long-term record of sterane distributions (Cag/Cag
ratios; Schwark and Empt, 2006) and sterane to hopane [S/(S+H)] ra-
tios from the Boreal Sea, in sections from the Sverdrup Basin in Arctic
Canada that extends from the latest Permian to the earliest Middle
Triassic (Anisian). This boreal record is complemented by a tropical
record across the Permian/Triassic Boundary (PTB) from a section at
Xiakou, South China. By extending these records to global sites using
published data, we then test the hypothesis that the Early Triassic was a
protracted interval of suppressed primary productivity and the turning
point in algal community evolution.

2. Geological settings

We generated two novel biomarker records. The first is from the
Sverdrup Basin, Arctic Canada (Bond et al., 2020; Grasby and Beau-
champ, 2008, 2009; Grasby et al., 2026; Knies et al., 2013; Wignall et al.,
2020Db), and the second is from Xiakou [or Daxiakou as in Zhang et al.,
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2009], South China (Shen et al., 2016; Sun et al., 2019; Zhang et al.,
2021). Both sites were previously described, logged, and characterized
geochemically. We integrate these new records with previously pub-
lished Boreal S/(S+H) data from Kap Stosch in East Greenland (Hays
etal., 2012) and a tropical record from Meishan, South China (Cao et al.,
2009) along with Cag/Cyg ratios from sections in South China, including
Meishan (Cao et al., 2009) and Chaohu (Saito et al., 2016).

2.1. Study sections

2.1.1. Sverdrup Basin, Arctic Canada

The Sverdrup Basin, located in the Canadian High Arctic, lay at a
mid-palaeolatitude setting on the northwestern margin of Pangea during
the Permian and Triassic (Fig. 1a). The strata in the Sverdrup Basin were
deposited on a generally deep-water ramp in the latest Permian
(Beauchamp et al., 2009; Embry and Beauchamp, 2019; Embry, 1989),
but during the Early Triassic, conditions ranged from fluvial plain to
offshore basin (Beauchamp et al., 2009; Embry and Beauchamp, 2019;
Embry, 1989).

Our composite section from the Sverdrup Basin is composed of sec-
tions from Borup Fiord (N81°00'33.4", W 81°30'51.0"), Griesbach Creek
(N80°54'27.8", W89°11'34.3") and Spath Creek-Cape St. Andrews
(N80°55'4.3", W89°14'29.5") (Figs. 1b; S1; Bond et al., 2020; Grasby
et al., 2026; Wignall et al., 2020b), located in the northern part of the
basin. It broadly represents an outer shelf setting (Fig. 1b; Bond et al.,
2020; Wignall et al., 2020b). The Borup Fiord section starts from the
middle Permian Capitanian and extends to the Spathian, from which our
succession comprises 15 samples for the Permian strata (Bond et al.,
2020; Grasby and Beauchamp, 2008). The 12 samples from Griesbach
Creek cover the basal 50 m of the Griesbachian in our profile. Above
these, 35 samples from the Spath Creek-Cape St. Andrews section
(Wignall et al., 2020b), extend from around 80 m in our profile up
through the Dienerian to the earliest Middle Triassic (Anisian), with two
unlogged horizons that are poorly exposed from the early Smithian
(Wignall et al., 2020b). The chemostratigraphy (613C0rg) of the succes-
sion (Fig. S1) is well established (Grasby et al., 2026; Wignall et al.,
2020b) and the sedimentary log and ichnofabrics have been previously
reported (Bond et al., 2020; Wignall et al., 2020b).

2.1.2. Xiakou, South China

The Xiakou outcrop, or Daxiakou in some literature (e.g., Gao et al.,
2013; Zhang et al., 2009; Zhao et al., 2013), is in Xinshan, Western
Hubei, China (N31°06'52.4", E110°48'12.5"; Shen et al., 2016). It ex-
poses continuous stratigraphy from the latest Permian to the Dienerian,
constrained by a well-established biostratigraphy via conodont,
ammonoid and bivalve biozones (Zhao et al., 2013, 2015, 2019; Wu
et al., 2012). During the Permo-Triassic transition, Xiakou was in the
centre of the Yangtze Platform, within the South China Block (Fig. 1c).
This tropical area lay in the eastern Paleo-Tethys (Fig. 1a), representing
a deep-water offshore setting (Lei et al., 2017; Shen et al., 2016; Sun
et al., 2019). No long-term 613C0rg record (Zhang et al., 2021) is avail-
able for the section but a published 613Cwb record (Sun et al., 2019)
spans our biomarker profile, aiding the biostratigraphy for our corre-
lation (Fig. S1). Among the 16 samples we analysed from Xiakou, only
two are from the latest Permian, and the rest were are from the Early
Triassic, with the uppermost samples likely of early Smithian age (Wu
et al., 2012; Zhao et al., 2013, 2015, 2019).

2.2. Previously published sections

2.2.1. Kap Stosch, East Greenland

During the Permo-Triassic interval, the Kap Stosch section was
deposited on a deep-water ramp on the margin of the Boreal Sea in
northwestern Pangea (Fig. 1a; Sanson-Barrera et al., 2015; Shen et al.,
2016). The EPME has been identified via fossil assemblages (Sanson-
Barrera et al., 2015; Schneebeli-Hermann et al., 2017; Twitchett et al.,
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Fig. 1. The palaeolocations around end-Permian mass extinction for the sites mentioned in this manuscript.

The figure presents (a) the palaolocations of Sverdrup Basin, Kap Stosch and South China Block, and the inset (b) represents the detailed palaeolocations of the
Xiakou, Chaohu, and Meishan sections in the South China Block, and inset (c) represents the palaeolocations of sections in Sverdrup Basin, Arctic Canada. The
palaeomap of the globe is based on Scotese (2014). The palaeogeography for the South China Block and the Sverdrup Basin is modifed from Feng et al. (1997) and

Beauchamp and Grasby (2012), respectively.

2001). The section spans from the latest Permian to the earliest Gries-
bachian (Hays et al., 2012) with a notable Changhsingian unconformity
(Twitchett et al., 2001). Here, we utilise previously published S/(S+H)
profiles (Hays et al., 2012) focusing on the EPME interval and imme-
diately overlying sediments. No published Cyg/Cayg records are available
for this section.

2.2.2. Meishan, South China

The Global Stratotype Section and Point for the base of the Triassic is
located at Meishan, a section located on the Yangtze Platform of the
South China block (Fig. 1b; Yin et al., 2001). This section was deposited
in a deep-water setting, transitional from platform to slope through the
Permian and Triassic (Yin et al., 2001). The age and stratigraphy of
Meishan are well established through extensive zircon and sanidine
dating (Burgess et al., 2017) and several high-resolution organic and
inorganic stable carbon isotope records (Cao et al., 2002; Huang et al.,
2007; Luo et al., 2010; Shen et al., 2011; Wang et al., 2005; Xie et al.,
2007). The specific section analysed by Cao et al. (2009) is Meishan
Core-1 from a borehole drilled ~550 m west of the original Meishan
section. Here we recalculated the published data from Cao et al. (2009)
and compiled them into S/(S+H) and Cyg/Cgg records extending from
the late Wuchiapingian to the early Dienerian.

2.2.3. Chaohu, South China

Chaohu is another section from the Yangtze Platform in the South
China block that was generally deposited in deep water (Fig. 1b; Chen
et al., 2011; Saito et al., 2016; Yang et al., 2011). High-resolution cor-
relation of conodont and ammonoid zones is available (Tong and Zhao,
2011; Zhao et al., 2008), alongside a detailed description of ichnotaxa
(Chen et al., 2011). Published inorganic and organic stable carbon
isotope profiles (Du et al., 2021) allow integration of previously pub-
lished Early Triassic Cag/Cag ratios from this site (Saito et al., 2016) with

our new data. No hopane data are available for this section, precluding
determination of S/(S+H) ratios.

3. Approach
3.1. Experimental methods for biomarker reconstructions

3.1.1. Extraction and separation

All organic analyses were performed at the Organic Geochemistry
Unit (OGU), University of Bristol. Weathered surfaces of original rock
samples were removed before the samples were crushed into fragments
(<1 cm®). The fragments were agitated in an ultrasonic bath in
dichloromethane:methanol (DCM:MeOH) (9:1 v/v) for 5 min to remove
potential contaminants. The fragments were then ground to fine pow-
ders in a ball mill at 500 rpm for 5 min. Low-ion sand (3 min, 500 rpm)
and ethanol were used to clean the ball mill between samples to avoid
cross contamination.

Lipids were extracted from powdered rock (~30 g) using a Soxhlet
apparatus with a DCM:MeOH (2:1 v/v, 200 mL) azeotrope for 48 h. An
internal standard (5a-androstane) was added to the sediment prior to
extraction. Total lipid extracts (TLEs) were concentrated through a
Turbovap device under a gentle N5 flow at 40 °C. Half of the TLE was
separated using silica open column chromatography into saturated, ar-
omatic, and polar fractions successively by 3 mL of hexane, 4 mL of
hexane:DCM (3:1 v/v) and 4 mL of DCM: MeOH (1:2 v/v).

3.1.2. GC-MS

Saturated fractions were dried under a gentle N, flow and dissolved
in ethyl acetate before analysis with a Thermo ISQ gas chromatogra-
phy-mass spectrometry (GC-MS) instrument. After injection of 1 pL
onto a Zebron-I non-polar column (50 m x 0.32 mm x 0.10 pm), the GC
oven was heated from 70 °C (held for 1 min) to 130 °C at 20 °C/min,
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then to 300 °C (held for 25 min) at 4 °C/min. The mass spectrometer
continuously scanned between m/z 50 and 650. Biomarkers were
identified and quantified based on published spectra and retention
times: steranes (Wang and Fingas, 1995) and diasteranes (Peters et al.,
2014) were identified and quantified using the m/z 217 fragment;
hopanes were identified and quantified using the m/z 191 fragment
(Wang and Fingas, 1995).

3.2. Biomarker proxies

Steranes and hopanes are classes of cyclic triterpenoids. Steranes, the
diagenetic products of sterols, are nearly exclusively synthesized by
eukaryotes via the oxygenated pathways of sterol synthases (Barton
etal., 1975; Belin et al., 2018; Volkman, 2003, 2005), although a limited
number of bacteria are known to make sterols (Hoshino and Gaucher,
2021; Pearson et al., 2003). As such, they are biomarkers for eukaryotes,
inferred in non-marginal marine settings to be predominantly derived
from eukaryotic algae, especially algal photoautotrophs, although they
can have a range of sources given their biological ubiquity. Hopanes,
derived from bacteriohopanepolyols and diploptene/diploterol, appear

S >~ sterane (m/z 217) + 3 diasterane (m/z 217)
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bacterial biomass (Belin et al., 2018; Saenz et al., 2012; Septilveda et al.,
2009). Given the sources of steranes and hopane in marine settings,
where terrestrial plant inputs are minimal, the ratio largely reflects the
relative abundances of eukaryotic algal over heterotrophic/(cyano)
bacterial inputs, and therefore eukaryotic primary production varia-
tions. In conditions where cyanobacteria play a minor role, the ratio
represents algal over heterotrophic bacteria and qualitatively changes in
total primary production.

However, analytical caveats can arise via the thermal and diagenetic
rearrangement of steranes into diasteranes (Rubinstein et al., 1975). In
our sections, in particular in the Sverdrup Basin, diasteranes are abun-
dant. Similar but less abundant, diasteranes were observed in Xiakou
(this study), and reported in the Kap Stosch (Hays et al., 2012), Meishan
(Cao et al., 2009) and Chaohu sections (Saito et al., 2016). To best
represent source change and align our newly measured data with that
from the literatures, we modified the S/(S+H) ratios by including dia-
steranes. This is essential because the relative abundance of diasteranes
and steranes varies significantly through the section, likely due to dif-
ferences in lithology (Riolo et al., 1986). Our S/(S+H) ratios, therefore,
are expressed as below:

StH >~ sterane (m/z 217) + Y diasterane (m/z 217) + > hopane (m/z 191)’

to be bacterial analogues to eukaryotic sterols (Saenz et al., 2015).
Sharing a common squalene precursor with sterols, hopanoids are nearly
exclusively synthesized by bacteria to either Cso diplopterol or dip-
loptene and then extended into the Css-bacteriohopanepolyol-like core
structure (Ourisson et al., 1979, 1987; Rohmer et al., 1984). These
hopanoids are then diagenetically and catagenetically transformed into
Co7 to C35 hopanes.

Although an internal standard (5a-androstane) was added, we have
not converted peak areas to true concentrations given the variation in
response factors, especially among hopane isomers, which would be
further impacted by differences in thermal maturity between sections.
The m/z 217 to TIC response factors differ between steranes and dia-
steranes, introducing minor differences when converting to true con-
centrations. Therefore, relative abundances are present here to track
changing trends. Abundances, normalised to nCjg-alkanes, are also
included to explore the potential influence from lithological changes
and/or preservation variability.

We also calculate sterane to hopane [S/(S+H)] ratios and sterane
distributions (Cgg/Cgg ratios) to reconstruct past changes in algal pro-
ductivity and ecology. Both must be interpreted with caution. Sterols are
produced by all eukaryotes and a very limited group of bacteria. The Cy;
sterols are abundant in animal heterotrophs, including zooplankton and
metazoans (e.g., Idle and Wisman, 1971). The Cgg (and to a lesser de-
gree, Cog) sterols are also abundant in higher plants (Nes, 1977; Volk-
man, 1986, 2005), although our sites appear to be dominated by marine
organic matter inputs based on the overall biomarker distributions.
Similarly, hopanes derive from a variety of bacteria, including cyano-
bacteria (Collister et al., 1992; Simonin et al., 1992, 1996; Summons
et al., 1999; Welander et al., 2010). As such, the S/(S+H) ratio cannot be
interpreted strictly as an algal productivity proxy, especially given the
likely importance of cyanobacterial production at the EPME and its
aftermath (Wu et al., 2014; Xie et al., 2005, 2010). Aerobic sedimentary
reworking can also impact biomarker ratios (Bobrovskiy et al., 2024).
Additional caveats that apply to the specific indices are discussed below.

3.2.1. (Dia)Sterane to hopane ratios
The ratio of steranes to hopanes [S/(S+H)] (Moldowan et al., 1985)
has been commonly applied as an indicator of relative eukaryotic/

where the steranes include Cy7-Cgg regular steranes with 5a,14a,17a
(20S+20R) and 5,144,178 (20S+20R) isomers (Moldowan et al.,
1985), and the diasteranes include both the 134,17a (20S+20R) and
132,17 (20S+20R) isomers. For the hopanes, the calculations
encompass all Ca9-C3s components, with both the 22S and 22R epimers
for the C3;—C35 homologues (Moldowan et al., 1985); we note, however,
that the abundances of C. 32 homohopanes are near the detection limits
in the Sverdrup Basin succession. Previously published S/(S+H) ratios
appear to have been generated using the same approach but vary in the
specific compounds included. For example, Cao et al. (2009) also
included C3g steranes and Co7—Cag hopanes. To be consistent, we revised
the Meishan S/(S+H) ratios from Cao et al. (2009) to exclude the Cs3q
steranes. Unfortunately, the data were not available to recalculate their
ratios without the Cy; and Cyg hopanes. Although this will shift the
Meishan S/(S+H) ratios towards slightly lower values, this has only a
minor impact on the ratios given the relatively low abundances of these
short-chain components.

The biomarkers were integrated using m/z 217 (sterane and dia-
sterane) and 191 (hopane) mass chromatograms, respectively. The
specific abundance of m/z 217 and 191 in isomers of (dia)steranes and
hopanes depends on thermal maturity, which differs among the sections,
so that the variant response factors discussed above could introduce
minor differences in S/(S+H) ratios among sections. Therefore, the ra-
tios are reported in their traditional forms based on the respective mass
chromatograms and are not true concentration ratios; we have included
all Cy7—Cag (dia)steranes and Co9—C35 hopanes; and we avoid comparing
absolute values of S/(S+H) ratios among sections, focussing on trends
instead.

3.2.2. Cyg/Ca9 sterane ratio

The distributions of algal (4-desmethyl) sterols differ among major
groups, such that the (4-desmethyl) sterane distributions can be used to
reconstruct the dominant algal community. Red algae preferentially
produce Cy;y relative to the Cpg and Cag sterols (e.g., Kodner et al., 2008;
Nes, 2011; Volkman, 2005). Other algal groups preferentially produce
Cog and Cyg sterols. The algal groups prevailing in the modern ocean (e.
g., dinoflagellates, diatoms and coccolithophores), usually the Chl a/c
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users, synthesize predominantly Cyg sterols over the Co9 components
(Haubrich et al., 2015; Knoll et al., 2007b; Nes, 2003; Rampen et al.,
2010). Green algae including Chlorophyceae and Charophyceae are
almost all Chl a/b users and synthesize relatively abundant Cyg sterols
(Kodner et al., 2008; Nes, 1977, 2000; Volkman, 1986; Volkman and
Maxwell, 1986). Nevertheless, a noteworthy exception is the Prasino-
phyceae, which is frequently referred to as “disaster taxa” in the Early
Triassic. This group preferentially produces Cog over Cog sterols (Kodner
et al., 2008; Volkman, 2005). Hence, despite significant variance of
sterol distributions among species, proportions of Cg7, Cag and Cag
steranes have been used to reconstruct changes in algal community
structure, both over long timescales to explore algal evolution
(Grantham and Wakefield, 1988; Knoll et al., 2007b) and across biotic
crises such as the Cretaceous-Paleogene Mass Extinction (Septlveda
et al., 2009; Sosa-Montes de Oca et al., 2023), the EPME (e.g., Saito
et al., 2016), and Oceanic Anoxic Event (OAE) 2 (e.g., Forkner et al.,
2021). Such interpretations require caution, as the sterol source
assessment reflects only general trends rather than diagnostic signatures
(e.g., Nes, 2011; Volkman, 2005), and they can also be influenced by
diagenetic and catagenetic processes.

Here, we focus on the proportion of Cog relative to the Cyg steranes as
a tracer for changes in algal communities (Schwark and Empt, 2006).
Our Cy7 components are partially obscured by co-eluting Cyg diasteranes
and are therefore excluded from our analysis and interpretation. Ther-
mal maturity can impact the Cog and Cp9 compounds, and the ratio

Sverdrup Basin
Arctic Canada

m
950 q
900 1
850 1
800 A
750 A
700 1
650 1
600 1
550 1

a

S/(S+H)

b

Relative
Abundances

0.5
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exhibits consistency with their rearranged products (Cag/Cog diaster-
anes; Peters et al., 2004). Nonetheless, the Cyg steranes are relatively
susceptible to microbial degradation compared to the Co9 components
such that the original signals would be obscured under intense biodeg-
radation (e.g. Seifert and Moldowan, 1979; Peters et al., 2004).

4. Results
4.1. Thermal maturity proxies

In the samples from the Sverdrup Basin sections, the regular steranes
are characterized by a slight dominance of 5a,14a,17a over 5a,1453,17
stereoisomers, but this varies among samples (Fig. S3a). Diasteranes are
present as 13$,17a and 13a,17p isomers with varying abundances
relative to the regular steranes (Fig. S3a). The hopanes show a thermally
mature distribution, characterized by a lack of 17p(H),21a isomers
(Fig. S3b) and Csy 225/(225+22R) ratio (Seifert and Moldowan, 1980)
that ranges from 0.3 to 0.7 (average ~0.6). The thermally mature dis-
tribution is consistent with Cyg sterane ff/(Sp+aa) ratios between 0.4
and 0.6, and Co9 20S/(20S+20R) ratios (Mackenzie, 1984) between 0.2
and 0.7 (Fig. S2). These data all suggest that the organic matter is
mature with respect to oil generation, with many ratios having reached
their thermal equilibrium distribution (Fig. S2; Mackenzie et al., 1980;
Peters and Moldowan, 1991; Seifert and Moldowan, 1980). Thid inter-
pretation is also consistent with phytane/nCsg ratios being comparable,
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~0.3, throughout the Borup Fiord, the Griesbach Creek and the Spath
Creek samples; however, they are much higher, ~1.2, within parts of the
Cape St. Andrews section between 640 and 730 m, suggesting a different
diagenetic history (Fig. S2a; e.g., Pirnik et al., 1974).

Our biomarker data for thermal maturation complement published
vitrinite reflectance and Rock-Eval Tp,x data, together indicating that
the Borup Fiord, the Griesbach Creek and the Spath Creek have pro-
gressed into the late oil to gas generation window and are higher in
maturation than the Cape St. Andrews section (Dewing and Obermajer,
2011; Galloway et al., 2018). As discussed above, the lower thermal
maturity at the Cape St. Andrews section, representing the mid Spathian,
could impact S/(S+H) trend of the Sverdrup Basin and this is considered
in our subsequent discussion.

The biomarkers and isomerization are similar in Xiakou. The Cs3s
hopane 22S/(22S+22R) ratio ranges from 0.5 to 0.7, consistent with Cag
BB/ (pp+aa) (0.5-0.7) and Czg9 20S/(20S+20R) (0.4-0.8) sterane ratios
(Figs. S2, S4). The Xiakou succession is close to the margin of the oil
window and presents stable thermal maturity throughout, suggesting
robust stratigraphic trends of sterane and hopane proxies. The phytane/
nCig ratios maximize at the PTB, suggesting enhanced microbial
degradation (Pirnik et al., 1974). In the overlying Early Triassic, the
ratios are variable (Fig. S2), likely due to changes in lithologies (Peters
et al., 2004) as shales are interbedded with limestones (Shen et al., 2016;
Sun et al., 2019).

4.2. Relative abundances of (dia)steranes and hopanes

In the Sverdrup Basin, abundances of (dia)steranes and hopanes in-
crease from the middle to late Permian, peaking in the late Permian
(Fig. 2b). Abundances in the earliest Griesbachian samples are similar to
those recorded in Permian samples, lower than the pronounced peak at
around PTB (Fig. 2b), although we note that this represents a compari-
son of samples from two sections in our composite record. The abun-
dances at Xiakou through the latest Permian into the PTB (Fig. 2d),
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although diagenesis could obscure the original levels. In the Griesba-
chian, abundances decrease and then become stable (Fig. 2d).

On a longer timescale, abundances of (dia)steranes and hopanes in
the Sverdrup Basin decrease dramatically from the middle Dienerian,
and then maintain these low values until the late Spathian (Fig. 2b). This
is probably not due to the different thermal maturation of the composite
sections, which instead would result in higher abundances in the less
mature Spath Creek-Cape St. Andrews (Dewing and Obermajer, 2011).
In the late Spathian—earliest Anisian interval (dia)steranes and hopanes
in the Sverdrup Basin rebound to abundances comparable to those in the
Permian (Fig. 2b). In contrast, (dia)sterane and hopane abundances at
Xiakou increase since the late Griesbachian and the high values persist
through the Dienerian and into the early Smithian (Fig. 2d).

Caution is required in these interpretations, because somewhat
different trends emerge in nC;g-normalised abundances of (dia)steranes
and hopanes. In the Sverdrup Basin, the normalised abundances follow
the non-normalised trends, except for the late Spathian where they are
low. At Xiakou, nC;g-normalised abundances exhibit trends opposite to
those of the non-normalised biomarkers, suggesting at least some of the
variation in the latter could be due to organic matter preservation
(Fig. S5d).

4.3. Sterane to hopane ratios

From the middle to late Permian, the S/(S+H) ratios from the
Sverdrup Basin (Figs. 2a, 3c) and the single datum from Xiakou (Figs. 2c,
3d) are ~0.3. At Meishan, where higher resolution records have been
obtained, ratios are similar but more variable (0.1-0.35) with highest
values occurring during the Wuchiapingian/Changhsingian transition
and the latest Changhsingian (Fig. 3b). The Kap Stosch section, which
spans the latest Changhsingian, is characterized by an increasing trend,
from a low value similar to those of other sites (~0.3), to a maximum of
~0.8 just below the Permo-Triassic unconformity (Fig. 3a).

Following the PTB in the Sverdrup Basin, the S/(S+H) ratios are
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Fig. 3. 8'3C records and S/(S+H) ratios for the study sites and published sections mentioned in this manuscript.

The figure includes datasets from (a) Kap Stosch, East Greenland, (b) Meishan, South China, (c) Sverdrup Basin, Arctic Canada and (d) Xiakou, South China during
the Late Permian-Early Triassic interval. The cross symbols represent samples high in thermal maturation (Fig. $2), and the abundances are untrustworthy. Note that
at Kap Stosch and Meishan S/(S+H) ratios were calculated using different steranes and hopanes, precluding comparison of absolute values (see text). The orange line
denotes the Permo-Triassic boundary (PTB). Ca.: Capitanian; Wu.: Wuchiapingian; Ch.: Changhsingian; Gr.: Griesbachian; Di.: Dienerian; Sm.: Smithian; Sp.: Spa-
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similar to or higher than the value averaged from the Wuchiapingian-
Changhsingian strata (Figs. 2a, 3c). Ratios then increase to >0.5 in
the later Griesbachian. At Xiakou, the ratios decrease during the earliest
Triassic but increase in the later Griesbachian into the Dienerian
(Figs. 2¢, 3d). In contrast, S/(S+H) ratios in the Kap Stosch and Meishan
sections decrease into the earliest Griesbachian from their maxima at the
EPME (Figs. 3a, b). Although the data from the Sverdrup Basin are
sparse, they provide no evidence for a decrease in S/(S+H) ratios
following the EPME.

Our Sverdrup Basin data are the first S/(S+H) record throughout the
Early Triassic, albeit with gaps due to low biomarker abundances. The
record documents an increase in the S/(S+H) ratio from a value of ~0.3
to ~0.4 through the early Dienerian (Figs. 2a, 3c). Given the low
abundances of steranes and hopanes in our samples, we are reluctant to
over-interpret variations based on a single datum, but the long-term
trend is robust, culminating in high values, ranging from 0.6 to 0.8, in
the uppermost Spathian and Anisian intervals. The Xiakou section only
extends into the earliest Smithian, but it also records a rise in S/(S+H)
ratios (from ~0.2 to 0.35) following the EPME (Figs. 2¢c, 3d).

4.4. Cgg/Cy9 sterane ratios

During the pre-EPME Permian, the Cyg/Cyg ratios from the Sverdrup
Basin (~0.6) and the two samples from Xiakou (~0.8) are low, although
our sampling resolution is also low compared to the Early Triassic sed-
iments (Fig. 4a). Meishan presents values between 0.2 and 0.4, while
there are no available data from Chaohu for the late Permian. Thus, our
compiled late Permian Cyg/Cog ratios are ~0.4 (ranging from 0.2 to 0.8).
Although our data are dominated by those from Meishan, all sites have

EPME
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relatively low values.

Relative to the late Permian, Cyg/Cag ratios of the Early Triassic in-
crease, although the trends differ among sections. In the Sverdrup Basin,
ratios increase from pre-EPME values of ~0.6 to ~0.8 in the earliest
Griesbachian. In contrast, no obvious change is observed at Xiakou (by
~0.1). Any change in this section could have been smoothed by
enhanced biodegradation around the PTB which preferentially degraded
the Cyg steranes (e.g. Peters et al., 2004; Seifert and Moldowan, 1979)
(also associated with the highest phytane/nCig ratios, Fig. S2e). In
Meishan, they increase from ~0.3 in the Changshingian to ~0.7 in the
earliest Griesbachian. Although Xiakou and Chaohu lack Permian re-
cords, ratios from the earliest Triassic are generally high, being above
the average ~0.4 for the late Permian.

On longer timescales, Cag/Cog ratios from the Sverdrup Basin and
Chaohu both record a maximum during the Dienerian, with values up to
1.3, and they remain high until the Smithian/Spathian boundary (SSB).
We lack data for most of the Spathian from the Sverdrup Basin due to
low sterane abundances during this interval, but even higher values
(average ~1.0, from 0.7 to 1.5) occur in the upper the late Spathian-
Anisian strata. At Chaohu, Cpg/Cag sterane ratios decrease in the Spa-
thian, to ~0.3. They then increase to values ranging from 0.6 to 1.4
during the latest Spathian and Anisian.

5. Discussion
5.1. Variable productivity in post-crisis Griesbachian successions

The latest Permian interval is characterized by relatively low sterane
to hopane [S/(S+H)] ratios and a dominance of Cp9 over Cyg steranes,
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Fig. 4. Sterane C,g/Cog ratios (a) compiled with climate indicators [(b) 813C0,g, (c) pCO, (Retallack and Conde, 2020; Wu et al., 2021), and SIBOapetite—surface sea
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especially in the Sverdrup Basin (Cpg/Cag ratio of ~0.6). These data
indicate low eukaryotic (algal) over bacterial production and a phyto-
plankton structure dominated by cyanobacteria and green algae. This is
consistent with negative bulk 8'°N values observed in the Sverdrup
Basin that indicate a high abundance of (N-fixing cyanobacterial)
diazotrophy (Grasby et al., 2016; Knies et al., 2013). Reworked pollen
and spores have been reported in the Middle Permian Roadian and
Wordian strata as well as the Early Triassic Griesbachian (Utting et al.,
2004), which could yield high proportions of Cyg steranes via this
external contribution from higher plants (Isaksen, 1995). Despite no
palynological evidence suggesting similar contributions to latest
Permian strata (Utting et al., 2004), we cannot exclude terrestrial input
due to the regression-transgression across the Permo-Triassic transition
(Embry and Beauchamp, 2019).

Collectively, we do not observe a general decrease in S/(S+H) ratios
from the Permian to the earliest Griesbachian (Fig. 3). Acknowledging
the low resolution, it suggests no declined in S/(S+H) across the EPME.
This observation contrasts with previous claims for a global collapse in
eukaryotic phytoplankton in the post-EPME oceans (e.g., Knoll et al.,
2007a; Payne and van de Schootbrugge, 2007; Tappan, 1970; Twitchett,
2001). In detail, an abrupt decline across the EPME is not observed in the
Sverdrup Basin (Figs. 2a, 3c) and the Meishan and Kap Stosch sections
document only transient S/(S+H) declines across the EPME, the former
quickly rebounding to pre-EPME levels (Fig. 3a, b).

The relatively stable S/(S+H) ratios observed in the Sverdrup Basin
suggest similar levels of algal production in the earliest Griesbachian
compared to the late Permian. Note that other proxies, including TOC
contents and nutrient concentrations (N, P), suggest a declined in pri-
mary production at the EPME in the Boreal Realm (Grasby et al., 2016,
2020; Knies et al., 2013). This contrast might be due to our lower res-
olution S/(S+H) dataset across the EPME horizon. Our S/(S+H) ratios,
therefore, suggest that the impact of the EPME on phytoplankton com-
munities was minimal, or at least transient in the Sverdrup Basin.
Alternatively, it could indicate consistent productivity during an algal
reorganization, since the previously inferred phytoplankton collapse
was also accompanied by widespread “disaster taxa” comprising acri-
tarchs and prasinophytes in a restructured post-EPME algal community
(Algeo et al., 2011; Payne and van de Schootbrugge, 2007; Tappan,
1970; van Soelen and Kiirschner, 2018). This is explored using Cog/Cog
sterane distributions below.

The relative stability of the S/(S+H) ratios in the Sverdrup Basin is
also surprising given the likely role of cyanobacteria in post-EPME pri-
mary production. The expansion of cyanobacteria in the Permo-Triassic
interval is documented by widespread cyanobacterial microbialites
(Ezaki et al., 2003; Foster et al., 2020; Heindel et al., 2018; Senowbari-
Daryan et al., 2006; Wu et al., 2014; Xie et al., 2010; Yang et al., 2011).
This is also documented by high proportions of 2-methylhopanes (Luo
etal., 2013; Xie et al., 2005, 2010), although recent research shows that
2-methylhopanes during the Phanerozoic could have been produced by
other bacteria (Naafs et al., 2022; Welander et al., 2010). The cyano-
bacterial blooms imply suppression of eukaryotic algae given their
competition for nutrients (Knoll et al., 2007a, 2007b) and the former’s
tolerance of environmental stresses such as oxygen restriction (Fay,
1992) and high temperatures (Nalley et al., 2018), as well as reduced
light penetration and toxic secondary metabolites once the harmful
bloom built up (e.g., Paerl and Otten, 2013; Visser et al., 2016). Cya-
nobacteria including diazotrophic (N-fixing) species are expected to
have thrived in the Permo-Triassic nitrate-depleted euxinic oceans
(Grasby et al., 2016, 2020; Luo et al., 2011; Saitoh et al., 2014; Sun et al.,
2019), although ammonium could also be a source for nitrogen in anoxic
oceans (Higgins et al., 2012; Naafs et al., 2019). In terrestrial settings, a
harmful microbial bloom with inferred cyanobacterial contribution was
also reported in the Sydney Basin (Mays et al., 2021).

Thus, cyanobacteria likely acted as an additional contributor to
primary production not represented by sterane abundances and likely
suppressed S/(S+H) ratios, especially in the post-crisis Griesbachian
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oceans. In the Sverdrup Basin and Xiakou sections, 2-methylhopanes
were not found (they are below or near detection limits in mass chro-
matograms of m/z 191 and 205) and cyanobacterial mocrobialites have
not been reported. Nonetheless, if cyanobacteria did thrive in the
Sverdrup Basin, then the sustained S/(S+H) ratios reflect similarly
robust sterane contributions and presumably algal production.

This spatially heterogeneous response of S/(S+H) ratios to the EPME
could reflect global variance in the algal response. Palaeogeographical
variation among algal (and wider ecological) communities could have
affected organic matter production and/or the biological pump, and
therefore the trends in S/(S+H) ratios across different sites. Previous
studies reached contradictory conclusions on the nature of post-EPME
primary productivity. For example, in South China elevated productiv-
ity is inferred from several bio-elements (Ba, Ni, Cu, etc., Liu et al., 2019;
Shen et al., 2014) while a collapse in productivity is inferred from
element concentrations (Zn, Cu, Liao et al., 2020) and inorganic isotope
data (5''*Cd and 8%0Zn, Liu et al., 2017; Zhang et al., 2018). Other
studies have argued for a sustained (e.g., Ge et al., 2022; Schoepfer et al.,
2013; Takahashi et al., 2009) or temporary increase in primary pro-
duction, both regionally and globally (e.g., Georgiev et al., 2015; Meyer
et al., 2011; Qiu et al., 2019; Schobben et al., 2015; Zhang et al., 2007).

In summary, it is likely that post-EPME primary productivity change
is complex and regionally variable (Grasby et al., 2023; Shen et al.,
2015).

5.2. Diminished primary producers in the Dienerian—early Spathian

In the Sverdrup Basin, (dia)sterane and hopane abundances do not
decrease in the early Griesbachian but they are low from the middle
Dienerian to the late Spathian (Fig. 2b). The low biomarker abundances
in this interval are unlikely to have been a result of sedimentological or
lithological change given the similarity between the relative and the
nCjg-normalised abundances (Fig. S5a). Sedimentation rates were high
(Embry and Beauchamp, 2019), such that low biomarker abundances
could reflect dilution, but this would also enhance preservation. The
different thermal maturity among the composite sections could be an
explanation; however, if that was the case, then the middle Dienerian
strata (represented by the Spath Creek-Cape St. Andrews section) which
is less mature (Beauchamp and Grasby, 2012; Embry and Beauchamp,
2019) should have higher rather than lower biomarker abundances.
Intensified biodegradation (between ~640 and 730 m, inferred from
elevated phytane/nCsg ratios, Fig. S2a) could have reduced biomarker
abundances during the early Spathian, but it cannot readily explain the
longer-term increase for the entire Sverdrup Basin record (Fig. 2b). If
low biomarker abundances were not caused by sedimentology and/or
diagenesis, then they likely indicate that following the earliest Gries-
bachian much of the Early Triassic in the Sverdrup Basin was charac-
terized by low primary productivity, as previously argued by Knies et al.
(2013, 2022) and Grasby et al. (2016, 2020). This could have contrib-
uted to the observed protracted recovery from the EPME (Grasby et al.,
2016).

If algal communities persisted or recovered directly after the EPME
but diminished later, it was likely due to environmental factors rather
than being directly linked to the biotic crisis. Intense denitrification and
a reduced nutrient-N inventory have been inferred from 5'°N values for
the Sverdrup Basin from the pre-EPME to the Dienerian (Grasby et al.,
2016; Fig. 81), and this did not recover until the SSB (Du et al., 2023,
2024; Grasby et al., 2016; Sun et al., 2019). Full recovery of the marine
nitrogen cycle did not occur until the Ladinian (Knies et al., 2022). 515N
records vary globally and indicate regionally diverse responses (Luo
et al.,, 2011; Saitoh et al., 2014; Sun et al., 2019); for example, at
Meishan and Xiakou, extensive denitrification appears to have ceased
before the Dienerian (Sun et al., 2019), while nitrogen fixation has been
proposed to be dominant in anoxic waters depleted in trace elements
(Sun et al., 2019). Unlike sites from the Tethys, a perturbaed nitrogen
cycle in the Sverdrup Basin appears to have persisted through ocean
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stratification that slowed the vertical circulation of nutrients (Knies
et al., 2022) or deoxygenation (Grasby et al., 2016) that caused nutrient
sequestration (Knies et al., 2022; Sun et al., 2019). However, given the
distinct deoxygenation states of the late Dienerian and the Smithian
strata (Grasby et al., 2016; Wignall et al., 2020b), nutrient sequestration
is unlikely to have been a long-lasting control for the Dienerian—early
Spathian productivity suppression. Therefore, regional environmental
records cannot explain all of the biomarker record, but they are largely
consistent with respect to indicating persistent low algal and bacterial
productivity in the Sverdrup Basin from the Dienerian to early Spathian,
in contrast to Xiakou, which recovered from the late Griesbachian.

Alternatively or additionally, sea surface temperature could have
also exerted a profound impact. Various records indicate that tempera-
tures rose to some of the highest levels in the Phanerozoic, peaking in
the tropics during the latest Griesbachian and late Smithian at even
higher temperatures than at the EPME, potentially to levels lethal to
certain phytoplanktonic groups (Song et al., 2019; Sun et al., 2012) and
diminishing primary production. Furthermore, thermocline deepening
during warming could have led to the development of nutrient traps
(Grasby et al., 2016), reflected in diminished TOC contents (<0.1 %) in
the late Dienerian-Smithian of Smith Creek and Festningen sections; this
appears to have occurred despite cooling-induced upwelling (Grasby
etal., 2020). Therefore, warming could have exacerbated and prolonged
the interval of diminished primary production (Grasby et al., 2016).

The late Dienerian-Smithian appears to mark a change in biotic re-
covery, at least in the Sverdrup Basin, perhaps caused by a combination
of water column deoxygenation, nutrient depletion and elevated tem-
peratures. Regardless of the mechanism(s), it remains unclear why a
similar dearth of biomarkers does not occur in the Dienerian in the
aftermath of the EPME which was also associated with extremes of
temperature (Sun et al., 2012) and nutrient depletion (Grasby et al.,
2016; Knies et al., 2013, 2022; Sun et al., 2019). However, this could be
an artefact of sedimentation rates, and we suggest that protracted high
temperatures and nutrient limitation caused long-term suppression of
primary production during the Early Triassic, at least in the Sverdrup
Basin.

Following the SSB, the denitrification nutrient sink in the Sverdrup
Basin reduced (Grasby et al., 2016, 2020; Sun et al., 2019), and this
would have presumably facilitated a eukaryotic algal recovery (Du et al.,
2021; Grasby et al., 2016; Song et al., 2019). Moreover, cooling at the
SSB, inferred for example from a calcite 520 increase in South China
(Sun et al., 2012), appears to have been associated with a resumption of
eukaryotic primary productivity attributed to improved ocean circula-
tion and water column oxygenation (Song et al., 2019; Sun et al., 2012).
These factors are not immediately recorded by an increase in biomarker
abundances, which remain low until the late Spathian (Fig. 2f). This
could reflect a delayed response, perhaps due to the persistence of
nutrient limitation indicated by low sedimentary N/P ratios (<3)
(Grasby et al., 2016).

Biomarker evidence indicates that the algal recovery in the Sverdrup
Basin occurred in the late Spathian—earliest Anisian (Fig. 2). Both ster-
ane relative abundances and S/(S+H) ratios reach their highest values at
this time (Fig. 2a, b), suggesting high algal productivity and a pre-
dominance of eukaryotes (algae) over bacteria. The nC;g-normalised
abundances are decoupled from non-normalised abundances and only
recover to low levels (Fig. S5b). This interval is associated with elevated
S/(S+H) and Cyg/Cqg ratios (Fig. 4a), indicating that the main source for
the organic matter remain marine. Thus, it appears that the late
Spathian-earliest Anisian was associated with enhanced algal produc-
tion (and potentially preservation) as suggested by Chen and Benton
(2012). The recovery co-occurs with the shift towards higher 5'%0
values that are associated with cooling into the Middle Triassic Anisian
(Sun et al., 2012; Trotter et al., 2015). Intriguingly, previous work
suggests that the pre-Anisian or earliest Anisian reflects another envi-
ronmental crisis. There is evidence for globally widespread marine
deoxygenation, namely abundant aromatic carotenoids indicating
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surface-water euxinia at Chaohu (Saito et al., 2014), peaks in Mo con-
centrations in the Sverdrup Basin interpreted as evidence for deoxy-
genation (Grasby et al., 2016), as well as an acidification event (Song
etal., 2021). These changes could have contributed to higher production
and better biomarker preservation. Moreover, increased abundances
and S/(S+H) ratios might underestimate the primary productivity given
the potential contribution by cyanobacteria and/or green sulphur bac-
teria (although we could not detect their associated biomarkers). Thus,
we suggest that in the Sverdrup Basin, eukaryotic algal production
increased both absolutely and relative to bacteria around the earliest
Anisian, following the long interruption during the Dienerian-Smithian.

5.3. EPME and the Early Triassic reshaping of marine algal ecosystems

Although algae produce a diverse suite of steroids, Chl a/c or a/b
users preferentially produce Cpg and Cyg sterols, respectively, and this
has been used to track algal evolution (Knoll et al., 2007b; Kodner et al.,
2008; Schwark and Empt, 2006). The predominant modern Chl a/c-
containing algae include dinoflagellates, diatoms and coccolithophores
(Bachvaroff et al., 2005; de Clerck et al., 2012; Falkowski et al., 2004;
Khan et al., 2020), whereas Chl a/b-utilizing green algae are relatively
ancient (Biichel, 2020; Falkowski et al., 2004; Khan et al., 2020).
Consequently, the rise of Chl a/c users (or modern algae) has been
invoked as the main driver of the gradual Phanerozoic increase in Cyg/
Cog sterane ratios (Knoll et al., 2007b; Schwark and Empt, 2006). In
addition to this long-term change, Schwark and Empt (2006) showed
that significant fluctuations occurred in Cyg/Cog ratios during major
biotic crises, for example increasing from ~0.5 during the Permian to a
higher value of >0.7 at the end of the Triassic, with the EPME perhaps
being an important accelerator.

Our new data elaborate on these previous findings. In our dataset,
Coyg/Cog ratios are indeed lower in Permian sediments but the increase to
higher values occurs rapidly across the PTB (Fig. 4a). Focusing on the
Meishan section, the ratio increases by ~0.4 (from ~0.3 in the Chang-
shingian to ~0.7 in the earliest Griesbachian), suggesting an abrupt
increase in the proportion of algae that produce higher Cyg to Cog sterol
ratios. In the Sverdrup Basin, Cg/Cyg ratios are variable during the
Griesbachian—Anisian, but typically higher than in Permian intervals. In
Chaohu, the Cyg/Cgg ratios are also high during the Smithian (Saito
et al., 2016), although they decrease towards the end of the Spathian
(Fig. 4a), which could reflect the radiation of calcareous algae (green
algae species) in the South China sections (Song et al., 2011). Crucially,
although Cyg/Cyg ratios vary among sites during the Early Triassic, they
are generally high compared to the Permian values, suggesting that
despite local variations, the Triassic marked a global change in algal
assemblages, although the magnitude of changes differs between loca-
tions. This suggests that either Chl a/c algae had already expanded in the
Early Triassic predating their abundant fossil records (dinocysts or
coccoliths), or other algae synthesizing higher proportions of Cag sterols,
such as the Prasinophyceae, became dominant as part of the post-EPME
algal assemblage, as indicated by palynology in other Boreal sections
(Finnmark Platform and Jameson Land; van Soelen and Kiirschner,
2018).

Secondary endosymbiotic events have been invoked to explain the
rise of modern algal species during the Mesozoic, including photosyn-
thetic dinoflagellates, diatoms and coccolithophores (Grisdale and
Archibald, 2017). Through loss of previously dominant plankton, the
EPME may have created niches for these innovations (Falkowski et al.,
2004), as might have subsequent climate/biogeochemical variations.
Indeed, the Cyg/Cy9 ratios appear to co-vary with aspects of the Early
Triassic 5'3C record, with elevated ratios following the EPME, at the SSB
and in the latest Spathian and Anisian (Fig. 4b). Global negative carbon
isotope excursions are usually attributed to carbon cycle perturbations,
and specifically the release of 13C—depleted carbon and elevated pCO,
(Cui et al., 2021; Joachimski et al., 2022; Kump, 2018; Wu et al., 2021),
and dramatic temperature shifts (Grasby et al., 2020). Some intervals
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likely reached temperatures towards the limits of mesophilic life, espe-
cially in tropical regions (Sun et al., 2012). Such climatic perturbations
could have changed algal metabolism via photosynthesis or photo-
protection. Enhanced UV radiation has also been reported based on
abnormal pollens at the end of the Permian (Liu et al., 2023), and this
could also suppress some algae given variant photoprotection regulation
(Goss and Jakob, 2010), although it is unknown whether such condi-
tions extended into the Early Triassic. Toxic metal stress has been sug-
gested based on abnormal pollen (Chu et al., 2021), and this could also
impact eukaryotic algae (Nowicka, 2022). Moreover, the feedbacks of
pCOy-induced warming, such as an expansion of ocean anoxia (Grasby
et al., 2013; Slater et al., 2019), could have impacted algal ecology (and
the sedimentary sterane record). For example, non-green algae such as
Chrysophyta (preferentially producing Cyg sterol) and Rhodophyta
(preferentially producing Cy; sterol) (Volkman and Maxwell, 1986),
have a relatively lower O, demand compared to green algal species
(Badger et al., 2000). These non-green algae could have been competi-
tive in the poorly oxygenated environments associated with the EPME
and Early Triassic, further suppressing green algae in the post-crisis
oceans. Furthermore, the perturbations in the marine N-cycle and in-
tervals of nitrate-depleted oceans could have favoured specific primary
producers, for example, cyanobacterial diazotrophs (Falkowski, 1997;
Villareal et al., 1993). We propose that the combination of the EPME and
the subsequent prolonged interval of global warmth and environmental
instability allowed new algal groups to expand and then become
dominant in the post-Palaeozoic world.

6. Conclusions

The end-Permian mass extinction was a pivotal event that along with
the subsequent climate perturbations of the Early Triassic brought about
a fundamental shift in Earth’s ecosystems. We provide new biomarker
evidence (steranes and hopanes) for these shifts in the marine sections of
the Sverdrup Basin, Arctic Canada and at Xiakou in South China that are
integrated with other global records. Algal production, indicated by S/
(S+H) ratios, had geographically diverse responses across the Permo-
Triassic transition. Some sites, including the Sverdrup Basin, exhibited
no immediate response to the EPME. The similarity of S/(S+H) ratios in
the late Permian and the earliest Griesbachian indicates a rapid recovery
of algal production following the EPME. The supposed post-EPME
“collapse” in phytoplankton (e.g., Knoll et al., 2007a; Payne and van
de Schootbrugge, 2007; Tappan, 1970; Twitchett, 2001) was likely
temporally and spatially complex, reflecting the interplay of the biotic
crisis with Early Triassic deoxygenation, nutrient limitation and high
temperatures. Nonetheless, the EPME and Early Triassic appear to have
been critical in the evolution of marine algal assemblages, as suggested
by the increase in Cg/Cyg ratios across the EPME at Meishan and by high
values throughout most of the Griesbachian-Spathian interval in both
the Sverdrup Basin and Chaohu sections. In particular, the correspon-
dence between carbon cycle perturbations (CIEs in 613C0[g) and algal
turnover inferred from Cyg/Cag-ratios suggests a link between the Early
Triassic carbon cycle and the eukaryotic algal revolution.
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