

Synergistic interaction between the γ -Al₂O₃ washcoat and Cu-SSZ-13 for enhancing NH₃-SCR performance

Ruixin Sun^a, Yu Lyu^{a,b}, Chonglin Song^{a,*}, Chenxi Wang^{a,c}, Gang Lyu^a, Xiangyu Dong^a, Lei Tian^a,
Xinhui Liu^a, Yibo Xu^a

^a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

^b China Automotive Engineering Research Institute Co., Ltd, Chongqing 401122, China

^c Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK

*Corresponding author: Chonglin Song

Postal address: State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

E-mail: songchonglin@tju.edu.cn

Abstract

The development of coated monolithic catalysts that combine high catalytic activity with high N₂ selectivity remains a significant challenge for NOx abatement in diesel exhaust gas. The slurry with Cu-SSZ-13 (CS), silica sol and γ -Al₂O₃ derived from alumina sol calcination was deposited on honeycomb cordierite monolith (CC) to obtain coated monolithic catalysts. This study aims to unravel the synergistic interaction between the γ -Al₂O₃ washcoat and CS as an active component to enhance the catalytic performance of CS. The CS-SiAl-4/CC displays excellent NOx purification performance in the absence of water vapor as well as outstanding hydrothermal aging resistance. The results indicate that γ -Al₂O₃ exhibits excellent adhesion and uniform dispersion on the CS surface without disrupting CS's crystalline structure. The coordination environment, redox properties and amount of Cu species are not affected by γ -Al₂O₃. Furthermore, γ -Al₂O₃ features a substantial number of both Brønsted and Lewis acid sites, which play a crucial role in storing NH₃ and providing NH₄⁺. In situ DRIFTS results demonstrate that CS-SiAl-4/CC can adsorb more NOx species (free ionic nitrates and monodentate nitrates), which react with NH₃ adsorbed on the Lewis acid sites through the Langmuir-Hinshelwood (L-H) mechanism. NH₄⁺ plays a more important role as the main active intermediates, and its reaction with gaseous NO suggests the Eley-Rideal (E-R) mechanism. More importantly, bidentate nitrates can

27 convert to monodentate nitrites, which serve as the active species for the SCR reaction. This
28 phenomenon is likely the main reason for the superior SCR performance of CS-SiAl-4/CC compared
29 to CS-Si/CC.

30 **Keywords:** Synergistic interaction, γ -Al₂O₃, Cu-SSZ-13, NH₃-SCR, Coated monolithic catalysts

31 **1. Introduction**

32 Nitrogen oxides (NOx) derived from automobiles, construction machinery, ships, agriculture,
33 electric power and other fields have been recognized as one of pollutants in the atmosphere and have
34 severely threatened the global ecological environment and human health [1–5]. Therefore, controlling
35 NOx emissions will continue to be a high profile issue in many countries in forthcoming periods.
36 Currently, selectivity catalytic reduction of NOx by ammonia (NH₃-SCR) has been proven to be one
37 of the most widely utilized and most effective exhaust gas purification methods for NOx elimination
38 in the today's world [6,7]. State-of-the-art commercial Cu-SSZ-13 catalysts, as the core component of
39 the catalytic reaction in the monolithic catalysts, have played a key role in the NH₃-SCR technology.
40 However, it has been confronted with some very tricky technical challenges (e.g. hot airflow at high
41 space velocity and complex exhaust atmospheres) in maintaining high catalytic performance in
42 industrial applications. Therefore, the development of coated monolithic catalysts with high catalytic
43 activity and N₂ selectivity has become an urgent problem to be solved.

44 Currently, monolithic catalysts consist of support, washcoat (also known as a secondary support)
45 and active component. Honeycomb cordierite monolith (2MgO·2Al₂O₃·5SiO₂), as a significant
46 inorganic non-metallic porous structure material, is generally considered to be the best denitration
47 catalyst support due to its advantages of low heat capacity and thermal expansion coefficient, thermal
48 shock resistance and low pressure drop [8,9]. Nevertheless, to facilitate the adequate loading,
49 dispersion, and stabilization of the active components on its surface, it is often necessary to apply pre-
50 deposited support components and carry out pre-treatment on the surface of the honeycomb cordierite
51 monolith with a very small specific surface area before loading the active component [10–14].
52 Although the prepared coated monolithic catalysts have met the anticipated loading capacity and
53 catalytic performance, there are certain drawbacks associated with this preparation method, including
54 numerous impregnation cycles, a cumbersome preparation process and a relatively low loading
55 capacity per cycle. In addition, the monolithic catalysts prepared by the coating method involve

56 formulating a catalyst slurry with a specific proportion of catalyst precursors, water, binders,
57 surfactants, etc., and then the slurry is deposited on the surface of honeycomb cordierite monolith to
58 form a monolithic catalyst with a catalyst precursor coating. Compared with the pretreatment and pre-
59 deposition of the support, this method for obtaining monolithic catalysts is simpler, requires less raw
60 material and achieves a higher catalyst utilization rate, and monolithic catalysts prepared by the coating
61 method have been applied in some fields. For instance, Xu et al. [15], Tang et al. [16] and Lisi et al.
62 [17] discovered that the catalysts obtained by the coating method exhibited excellent catalytic
63 performance in terms of NO_x reduction, NO catalytic oxidation and NO decomposition, respectively.

64 Currently, binders are divided into organic binder (e.g., methyl 2-hydroxyethyl cellulose,
65 polyvinyl alcohol and polyethylene glycol) and inorganic binder (e.g., colloidal silica, alumina sol and
66 titania sol) according to their chemical composition. However, the binders, as one of the most critical
67 raw materials for coated monolithic catalyst, could directly affect the catalytic performance, selectivity
68 and stability of the coated monolithic catalyst to a certain extent. Shi et al. [18] pointed out that
69 boehmite and zirconium oxynitrate as suitable binders could be effective in forming the Fe clusters
70 with an excellent NO oxidation and storage abilities in the reaction temperature range of 100–300 °C
71 and Fe³⁺ with an outstanding NO oxidation performance in the reaction temperature range of 400–
72 650 °C, respectively, thereby resulting in the coated Fe based catalysts with distinct catalytic activities.
73 Zhang et al. [19] reported that Al₂O₃ derived from alumina gel precursor could improve the redox
74 properties of Fe species more than SiO₂ originated from silica gel precursor for Fe/BEA catalysts, but
75 Fe/BEA catalyst doped with Al₂O₃ or SiO₂ exhibited very similar pore structures. Therefore, the
76 selected binders are particularly critical in terms of automobile exhaust denitrification. Nowadays,
77 catalysts supported on Al₂O₃, CeO₂, TiO₂ and SnO₂ have attracted the attention of researchers [20–23].
78 For instance, γ-Al₂O₃, also known as activated alumina, is widely used as a catalyst support due to its
79 large specific surface area, abundant pore structure, excellent adsorption properties, and favorable
80 surface acidity. Yao et al. [24] compared SiO₂, γ-Al₂O₃, ZrO₂ and TiO₂ as four commonly used catalyst
81 supports in industry, and reported that γ-Al₂O₃ can improve the catalytic performance of Ce-based
82 catalysts through the fast NH₃-SCR pathway. Zhou et al. [25] indicated that Al₂O₃ could provide
83 abundant Lewis acid sites, which could accelerate the formation of intermediate products (NO₂ or NO
84 ₃), thus enhancing the catalytic performance over a broad temperature range (>350 °C) and the N₂
85 selectivity within a higher temperature range (>450 °C). Therefore, the above research results can

86 provide a strong theoretical basis for the selection of binders that are satisfied with industrial
87 applications. Additionally, the selected binders can not only be effective in enhancing the adhesion
88 between the active component and the cordierite surface and the single-time loading capacity of active
89 components during the preparation of the coated catalysts, but also the product produced by the binders
90 during the calcination process can form a synergistic effect with the active component to improve the
91 catalytic activity of the catalyst in the NH₃-SCR catalytic reactions. However, there is comparatively
92 little research focusing on the interaction between the washcoat generated by the inorganic binder
93 during the calcination process and Cu-SSZ-13 as the active component for the coated monolithic
94 catalysts.

95 In the present work, a series of coated monolithic catalysts were prepared onto honeycomb
96 cordierite monoliths (CC) by using the slurry coating method. This study aims to unravel the
97 synergistic interaction between the γ -Al₂O₃ washcoat (produced by calcination of alumina sol) and Cu-
98 SSZ-13 as an active component for achieving efficient NO_x removal. In addition, the synergistic
99 interaction is further revealed through a comprehensive investigation of the structure and textural
100 properties, redox properties, electrostatic interactions, NO_x/NH₃ adsorption-desorption behavior and
101 catalytic reaction mechanism.

102 **2. Experiment and Method**

103 2.1 Preparation of coated monolithic catalysts

104 The catalyst slurry was prepared by physically mixing the commercial Cu-SSZ-13 (CS) with a
105 SiO₂/Al₂O₃ molar ratio of 20 and Cu content of 4.12 wt%, the deionized water, the binder (silica sol
106 with a 30 wt% SiO₂ and alumina sol with a 10 wt% AlOOH) and the dispersing agent in a mass ratio
107 of 32:64:20:1. The solid content and pH value of the catalyst slurry were maintained at 32.5 wt% and
108 4.65, respectively. The mass ratio of silica sol and alumina sol was 6:1, 5:1, 4:1 and 3:1, respectively.
109 Subsequently, the slurry was stirred on a magnetic stirrer for 48 h under 500 rpm to form a mixed
110 stable catalyst slurry.

111 The catalyst slurry was deposited in honeycomb cordierite monolith (CC) with a square channel
112 density of 300 cpsi (cells per square inch), a length of 30 mm, a diameter of 20 mm and a wall thickness
113 of 0.18 mm. The excess slurry retained in the straight channel was blown off by compressed air to
114 avoid clogging the channels. The coated monolithic catalyst was dried in an electrothermal blast drying

115 oven at 110 °C (at a heating rate of 2 °C·min⁻¹) for 24 h and calcined in a muffle oven at 550 °C (at a
 116 heating rate of 5 °C·min⁻¹) for 4 h. This coating process was repeated several times until the desired
 117 coating loading of 36 wt% was deposited onto the CC. The prepared catalysts were designated as
 118 Al/CC, CS-Si/CC and CS-SiAl-x/CC, where CS, Si, Al and x stand for CS, SiO₂, γ-Al₂O₃ and the ratio
 119 of SiO₂ to γ-Al₂O₃ mass of 6, 5, 4 and 3, respectively. In addition, the Cu content was measured by
 120 ICP-OES and listed in Table 1. The Cu content in the catalysts is approximately 3.40 wt%.

Table 1 Physicochemical properties of CS, CS-Si/CC and CS-SiAl-x/CC.

catalysts	^a Cu content (wt%)	^b Relative crystallinity (%)	^c Specific surface area (m ² ·g ⁻¹)	^d Micropore volume (m ³ ·g ⁻¹)
CS	4.12	100	582.20	0.21
CS-Si/CC	3.46	98.29	530.67	0.18
CS-SiAl-6/CC	3.46	97.58	528.28	0.17
CS-SiAl-5/CC	3.47	97.19	530.85	0.18
CS-SiAl-4/CC	3.45	98.81	531.33	0.17
CS-SiAl-3/CC	3.21	97.89	479.24	0.14

^a Analyzed by ICP-OES. ^b Analyzed by XRD ^c Analyzed by BET method. ^d Analyzed by t-plot method.

(Relative crystallinity = $\frac{\text{peak area of } (2\theta = 9.5^\circ + 12.9^\circ + 14.1^\circ + 16.0^\circ + 17.8^\circ + 20.6^\circ + 25.1^\circ + 30.6^\circ)_m}{\text{peak area of } (2\theta = 9.5^\circ + 12.9^\circ + 14.1^\circ + 16.0^\circ + 17.8^\circ + 20.6^\circ + 25.1^\circ + 30.6^\circ)_n} \times 100\%$, where m and n represented CS-Si/CC(CS-SiAl-x/CC) and CS, respectively).

121 2.2. Characterization of coated monolithic catalyst

122 The elemental contents of Si, Al and Cu in the catalyst were studied by inductively coupled
 123 plasma-optical emission spectrometry (ICP-OES).

124 The structural properties of the catalysts were carried out on a Rigaku D/MAX-2500 instrument
 125 manufactured by Rigaku Corporation, utilizing Cu-Kα as a radiation source ($\lambda = 0.154$ nm) and
 126 employing the tube voltage at 40 kV and current at 40 mA. Real-time data was recorded for 2θ values
 127 from 10 to 90° with a step size of 0.02 and a scanning speed of 5°·min⁻¹.

128 The microstructure characteristics and element distribution of the catalysts were observed by
 129 means of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).

130 The textural properties of the catalysts were determined by an ASAP 2020C instrument. The
 131 catalysts were pretreated under vacuum at 350 °C for 9 h, and then the treated catalyst was tested in a
 132 liquid nitrogen environment. The adsorption-desorption isotherms were measured at -196 °C and in a
 133 helium (He) atmosphere. The specific surface area and micropore volume were computed.

134 The elemental composition and chemical valence on the surface of the catalysts were analyzed
135 on an Axis Supra spectrometer, utilizing a monochromatic Al-K α X-ray source and using the C1s
136 orbital at a binding energy of 284.8 eV to carry out the charge correction. The coordination
137 environment of Cu species of the catalysts was verified by using UV-vis diffuse reflectance
138 spectroscopy (UV-vis DRs).

139 Temperature-programmed reduction tests including H₂-temperature-programmed reduction (H₂-
140 TPR) and NH₃/NO-temperature-programmed desorption (NH₃/(NO + O₂)-TPD) were researched on a
141 ChemBET Pulsar TPR/TPD automatic temperature-programmed chemical analyzer. All catalysts were
142 processed at 400 °C in an Ar atmosphere with 50 mL·min⁻¹ for 2 h to eliminate the adsorbed impurities
143 from the catalyst surface and subsequently cooled to 50 °C. For the H₂-TPR test, 50 mg catalyst with
144 40-60 mesh was heated from 50 to 800 °C at a heating rate of 5 °C·min⁻¹ in 1% H₂/Ar with 110 mL·min⁻¹.
145 Before NH₃/NO-TPD test, it was saturation adsorption in 10% NH₃/Ar or 10% NO/Ar + 10 vol% O₂
146 with 110 mL·min⁻¹ at 50 °C for 2 h. Subsequently, it was heated again from 50 to 800 °C at a heating
147 rate of 5 °C·min⁻¹ under a pure Ar with 110 mL·min⁻¹.

148 The evolution of NO_x and/or NH₃ adsorption and desorption species and intermediate species on
149 the catalysts was investigated by in-situ diffuse reflectance infrared fourier transform spectroscopy (In
150 situ DRIFTS) online analysis, coupled with a liquid-nitrogen-cooled mercury cadmium telluride (MCT)
151 detector. The catalyst sample is diluted with KBr at a dilution ratio of 1:100. Prior to testing, a pure Ar
152 gas with 100 mL·min⁻¹ was passed from the sample at 400 °C for 2 h in order to clean trace impurities
153 from the samples and subsequently cooled to the desired reaction temperature. In the process of testing,
154 the feed reactant gas (1100 ppm NH₃ (when used), 1000 ppm NO (when used) and 10 vol% O₂ (when
155 used)) was passed through the samples, and the total flow of the feeding gas was 50 mL·min⁻¹.

156 2.3. Coated monolithic catalyst activity evaluation

157 The coated monolithic catalyst activity evaluation was carried out in a fixed-bed reactor made of
158 a quartz tube at atmospheric pressure. The target reaction temperature in the reactor and reaction gas
159 flow rate were precisely controlled by a series of K-type thermocouples as well as PID control furnaces
160 and the mass flow controllers. The coated monolithic catalyst was placed into the reactor with an inner
161 diameter of 20 mm. The catalytic reaction of NO_x by NH₃ was performed in the temperature range of
162 150–550 °C (interval 50 °C), and the feed gas contained 1100 ppm NH₃, 1000 ppm NO and 10 vol%
163 O₂ with Ar as the balance gas and maintained the gas hourly space velocity (GHSV) at 70,000 h⁻¹ (total

164 flow rate of 8.110 L·min⁻¹). To investigate the effect of hydrothermal aging on the activity of
165 monolithic catalyst, the monolithic catalyst was pretreated at 800 °C for 12 h in 10 vol% water vapor
166 (only used for the hydrothermal aging research). During the experiment, the steady-state outlet
167 concentrations (NO, NH₃, N₂O and NO₂) were measured by an online mass spectrometer manufactured
168 by V&F corporation from Austria. The key parameters for evaluating the catalytic performance of
169 monolithic catalysts were treated as equations (1) and (2) :

$$\text{NOx conversion} = \frac{C_{\text{NO,in}} - C_{\text{NO,out}}}{C_{\text{NO,in}}} \times 100\% \quad (1)$$

$$\text{N}_2 \text{ selectivity} = 1 - \frac{2C_{\text{N}_2\text{O,out}} + C_{\text{NO}_2\text{,out}}}{C_{\text{NO,in}} - C_{\text{NO,out}} + C_{\text{NH}_3\text{,in}} - C_{\text{NH}_3\text{,out}}} \times 100\% \quad (2)$$

170 where C_{g,in} and C_{g,out} denote feed and effluent gases concentration of species g.

171 3. Results and Discussion

172 3.1 NH₃-SCR catalytic performance

173 Fig. 1 depicts the changes in NOx conversion and N₂ selectivity of Al/CC and CS-Si/CC and CS-
174 SiAl-x/CC ($x = 3, 4, 5$ and 6) in the temperature range of 150 to 550 °C. The Al/CC displays virtually
175 no activity for the NH₃-SCR reaction over the tested temperature range of 150 to 550 °C, with the NO
176 conversion remaining around 7% (Fig 1(a)). In addition, the variation trends in NOx conversion and
177 N₂ selectivity for CS-Si/CC and CS-SiAl-x/CC exhibit a remarkable similarity at different
178 temperatures. It can be clearly observed from Fig. 1(a) that the CS-Si/CC achieves a NOx conversion
179 exceeding 80% within the temperature region of 260–500 °C, with the maximum NOx conversion of
180 86.83% occurring at 300 °C. Furthermore, CS-SiAl-x/CC displays an exceptionally high NOx
181 conversion than CS-Si/CC in the whole temperature window. In addition, there are significant
182 differences in catalytic performance between CS-SiAl-4/CC and CS-SiAl-3/CC. This suggests that the
183 introduction of excessive γ -Al₂O₃ may cover the active sites or block the pores of CS, thereby leading
184 to a decline in catalytic performance. However, the enhancement effects of CS-SiAl-4/CC are
185 particularly pronounced. The CS-SiAl-4/CC maintains the NOx conversion in excess of 80% at 218–
186 550 °C and 90% at 245–440 °C, reaching a maximum NOx conversion of 96.27% at 300 °C. These
187 results indicate that γ -Al₂O₃ effectively broadens the reaction temperature window for achieving over
188 80% NOx conversion and significantly enhances catalytic activity in the entire temperature range. In

189 addition, a noticeable decreasing trend in the NO_x conversion is detected for all catalysts when the
 190 reaction temperature surpasses 400 °C, this phenomenon can be explained by the non-selective
 191 oxidation of reducing agent NH₃ with O₂ [26]. As depicted in Fig. 1(b), compared with CS-Si/CC, CS-
 192 SiAl-*x*/CC demonstrates remarkably superior N₂ selectivity and maintains the N₂ selectivity of above
 193 98% at 200–550 °C in the NH₃-SCR reaction. For all catalysts, NO₂ by-product is discovered at below
 194 250 °C, whereas the formation of N₂O as a byproduct takes place at above 250 °C (Fig. S1).
 195 Furthermore, the N₂ selectivity of the CS-SiAl-*x*/CC gradually increases with the rise of γ-Al₂O₃
 196 content, which indicates that γ-Al₂O₃ can effectually improve the N₂ selectivity of the catalyst.

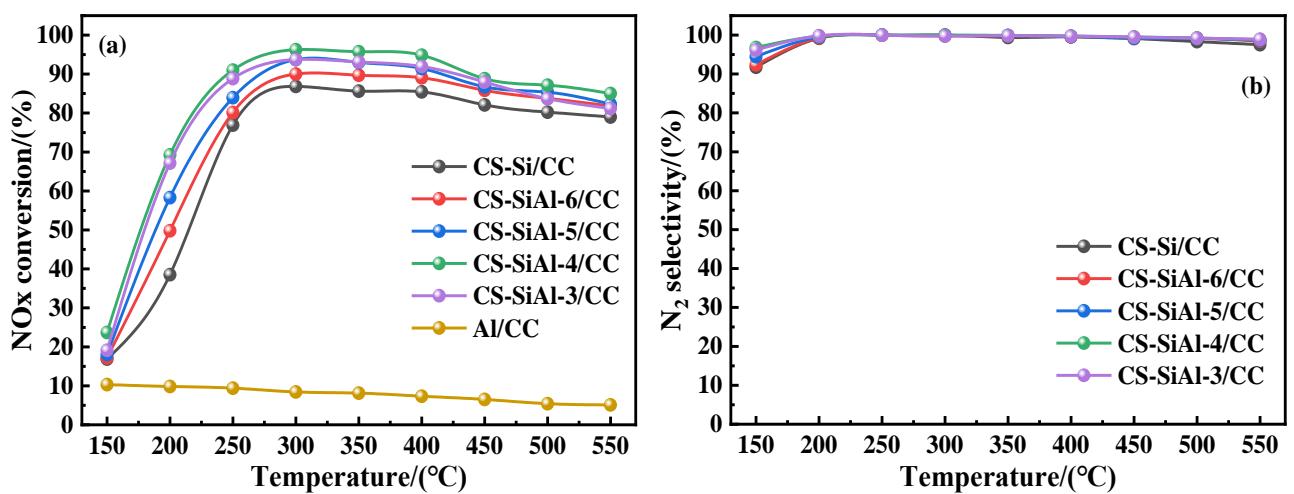


Fig. 1. (a) NO_x conversion and (b) N₂ selectivity of Al/CC, CS-Si/CC and CS-SiAl-*x*/CC.

197 It is well-known that the hydrothermal aging treatment may affect the NH₃-SCR reaction in the
 198 diesel engine exhaust [26–29]. Therefore, the influence of hydrothermal aging on the performance of
 199 the catalyst was investigated. As shown in Fig. 2, there is a decline in the performance of the CS-Si/CC
 200 and CS-SiAl-*x*/CC within the temperature region of 150 to 550 °C. CS-Si/CC exhibits a temperature
 201 window for NO_x conversion above 80% between 286–431 °C, but it does not achieve a NO_x
 202 conversion above 85% at any temperature. In contrast, CS-SiAl-4/CC displays superior catalytic
 203 performance, achieving a temperature window for NO_x conversion above 80% between 250–522 °C
 204 and above 90% between 289–415 °C.

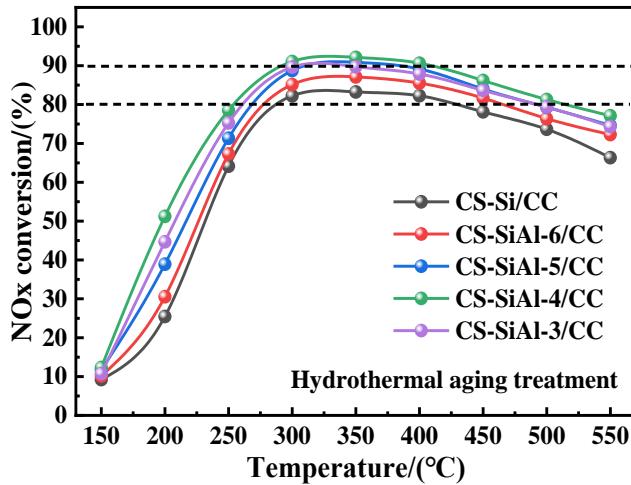


Fig. 2. NO_x conversion of CS-Si/CC and CS-SiAl-x/CC after hydrothermal aging treatment.

205 3.2 Textural properties

206 The zeolite lattice structures of the CS and CS-SiAl-x/CC were detected by XRD technique. As
 207 depicted in Fig. 3, the major characteristic diffraction peaks of CS-Si/CC and CS-SiAl-x/CC at 2θ
 208 angles of 9.5° , 12.9° , 14.1° , 16.0° , 17.8° , 20.6° , 25.1° and 30.6° are in accordance with standard SSZ-
 209 13 (PDF# 47-0762). In addition, compared to the CS, no significant changes are observed in the major
 210 characteristic diffraction peaks and signal intensity after the introduction of γ -Al₂O₃ derived from
 211 alumina sol calcination or SiO₂ formed via silica sol calcination, which reveals that the framework
 212 structure of CS is not destroyed by the introduction of silica sol and alumina sol during the preparation
 213 of the catalyst preparation. As can be seen from Fig. S2, the characteristic diffraction peak of SiO₂ at
 214 2θ angle of 21.6° is consistent with the corresponding peak of standard SiO₂ (PDF# 27-0605), while
 215 the characteristic diffraction peaks of γ -Al₂O₃ at 2θ angles of 19.4° , 32.3° , 37.1° , 39.5° , 45.9° , 60.8°
 216 and 66.9° correspond to those of standard γ -Al₂O₃ (PDF# 10-0425). The major characteristic
 217 diffraction peaks attributable to γ -Al₂O₃ and SiO₂ are exhibited during calcination when pure silica sol
 218 and pure alumina sol are mixed, demonstrating that the γ -Al₂O₃ or SiO₂ species are not affected by the
 219 preparation conditions. Furthermore, all catalysts do not display a diffraction peak attributable to SiO₂
 220 or γ -Al₂O₃ or CuO, which illustrates that the SiO₂ or γ -Al₂O₃ is uniformly dispersed on the surface of
 221 CS, and there is no release of Cu species when the silica sol and alumina sol are introduced during the
 222 preparation of the catalyst. Moreover, the relative crystallinity of the catalyst was calculated by the
 223 peak areas at $2\theta = 9.5^\circ$, 12.9° , 14.1° , 16.0° , 17.8° , 20.6° , 25.1° and 30.6° [30]. As shown in Table 1,
 224 CS-Si/CC and CS-SiAl-x/CC exhibit a similar relative crystallinity (97–98%), which is slightly lower

225 than that of CS (100%). This result indicates that SiO_2 and $\gamma\text{-Al}_2\text{O}_3$ do not affect the framework
 226 structure of SSZ-13. In addition, the study finds no significant correlation between the relative
 227 crystallinity and catalytic activity in the SCR reaction.

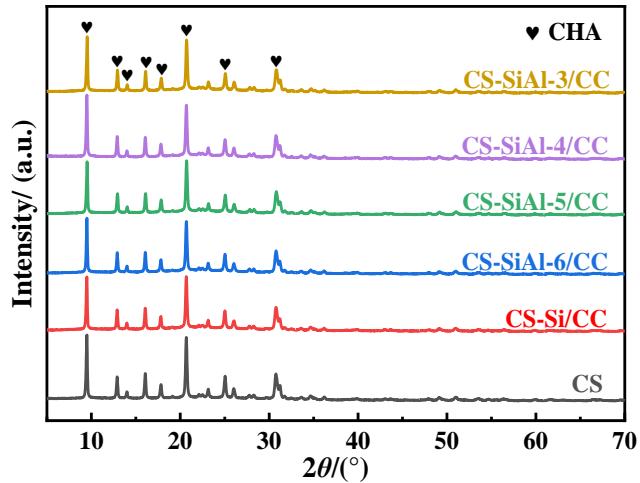


Fig. 3. XRD patterns of CS, CS-Si/CC and CS-SiAl-x/CC.

228 The microstructure and element distribution of the CS, CS-Si/CC and CS-SiAl-x/CC ($x = 3$ and
 229 4) were investigated by SEM and EDS in Fig. 4 and Fig. S3. It is observed from the SEM of Fig. 4 that
 230 CS consists of particles exhibiting nearly cubic morphology with sizes of 0.25–0.30 μm . The
 231 introduction of SiO_2 and $\gamma\text{-Al}_2\text{O}_3$ does not change the approximately cubic morphology of CS-Si/CC
 232 and CS-SiAl-4/CC, demonstrating that the SiO_2 and $\gamma\text{-Al}_2\text{O}_3$ do not destroy the structural integrity of
 233 the CS framework. In addition, small particles are observed on the cubic surfaces of CS-Si/CC and
 234 CS-SiAl-4/CC. Small particles exhibit excellent adhesion and uniform dispersion on the cubic surfaces
 235 of the CS, as evidenced by SEM imaging (Fig. 4). To confirm the elemental composition of CS-Si/CC
 236 and CS-SiAl-4/CC, the EDX measurement was carried out. As depicted in Fig. S3, the elements of
 237 CS-Si/CC and CS-SiAl-4/CC are composed of O, Si, Al and Cu. Elemental mapping clearly
 238 demonstrates that O, Si, Al and Cu are uniformly distributed in the CS-Si/CC and CS-SiAl-4/CC.
 239 Furthermore, the Cu contents in CS-Si/CC and CS-SiAl-4/CC measured by EDX are 3.77 and 3.71 wt%
 240 (Fig. S3), respectively, which suggests that the elements are uniformly distributed. However,
 241 agglomeration is observed in the CS-SiAl-3/CC (Fig. 4). According to the characterization by XRD,
 242 the signal intensity of the characteristic peaks in CS-SiAl-3/CC is essentially comparable to that in CS.
 243 These findings indicate that excessive $\gamma\text{-Al}_2\text{O}_3$ can lead to the agglomeration of CS.

244 The structure of the catalysts was examined by He-physisorption. The results in Table 1 display

245 that CS-Si/CC features a micropore volume of $0.18 \text{ m}^3 \cdot \text{g}^{-1}$ and a specific surface area of $530.67 \text{ m}^2 \cdot \text{g}^{-1}$
 246 1 . After the introduction of $\gamma\text{-Al}_2\text{O}_3$, CS-SiAl- x /CC ($x = 4, 5$ and 6) exhibits no change in micropore
 247 volume and specific surface area compared to CS-Si/CC. However, compared to CS-SiAl-4/CC, CS-
 248 SiAl-3/CC possesses a micropore volume of $0.14 \text{ m}^3 \cdot \text{g}^{-1}$ and a specific surface area of $479.24 \text{ m}^2 \cdot \text{g}^{-1}$,
 249 reducing by 9.80% and 17.65%, respectively. Combined with SEM characterization results, the
 250 deterioration in the structure of CS-SiAl-3/CC is attributed to the agglomeration of CS, which
 251 consequently decreases its performance.

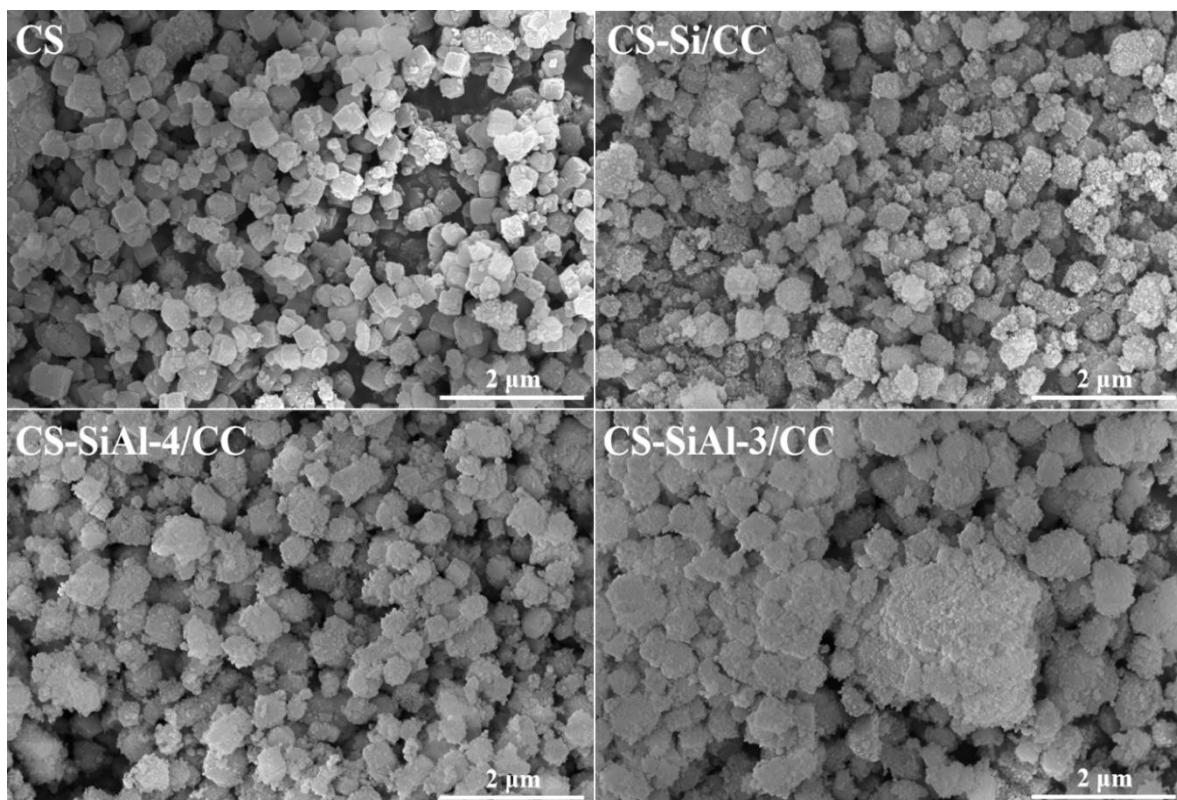


Fig. 4. SEM images of CS, CS-Si/CC, CS-SiAl-4/CC and CS-SiAl-3/CC.

252 3.3 Active Cu species

253 The Cu^{2+} is always recognized by researchers as the active center of the adsorption and oxidation
 254 of NH_3 or NO in the $\text{NH}_3\text{-SCR}$ reaction, involving $[\text{ZCu}^{2+}(\text{OH})]^+$ located at eight-member rings (8MRs)
 255 and Z_2Cu^{2+} located at six-member rings (6MRs) (Z stands for a molecular sieve framework negative
 256 charge) [31,32]. Therefore, the redox properties of the Cu^{2+} in the CS-Si/CC, CS-SiAl- x /CC and CS
 257 were characterized by $\text{H}_2\text{-TPR}$, and the results are depicted in Fig. 5(a) and Fig. S4(a). For CS-Si/CC,
 258 CS-SiAl- x /CC and CS, four deconvoluted peaks of H_2 consumption from 100–500 °C can be found at
 259 around 220, 297, 380 and 445 °C, which are designated as the reduction of $[\text{ZCu}^{2+}(\text{OH})]^+$ located at

260 the 8MRs to Cu⁺ [15,28], the reduction of CuO to Cu⁰ [28,33], the reduction of Z₂Cu²⁺ located at the
261 6MRs to Cu⁺ [33,34] and the reduction of Cu⁺ to Cu⁰ [35,36], respectively. CS-Si/CC and CS-SiAl-
262 x/CC ($x = 4, 5$ and 6) are almost identical in terms of H₂ consumption amount on [ZCu²⁺(OH)]⁺ sites
263 (at approximately 85.21 $\mu\text{mol}\cdot\text{g}^{-1}$), Z₂Cu²⁺ sites (at approximately 192.03 $\mu\text{mol}\cdot\text{g}^{-1}$) and total H₂
264 consumption amount (at approximately 277.24 $\mu\text{mol}\cdot\text{g}^{-1}$) in Table 2 and H₂ reduction temperature (at
265 around 220, 297, 380 and 445 °C, respectively) in Fig. 5(a) and Fig. S4(a), which declares that the
266 redox properties of Cu²⁺ are not affected by the presence of SiO₂ and γ -Al₂O₃. This finding exhibits an
267 inverse trend compared to catalysts synthesized through mechanical blending [15] or ion-exchange
268 methods [30], indicating that the differences in catalyst preparation methods directly influence the H₂
269 reduction temperature and H₂ consumption amount of Cu active sites. However, the presence of excess
270 γ -Al₂O₃ leads to partial coverage of Cu active sites in CS, thereby inducing the decrease of H₂
271 consumption amount. In addition, excessive γ -Al₂O₃ does not affect the reduction temperature of Cu
272 species.

273 The element chemical states and chemical composition of the catalysts were characterized by
274 XPS analysis and the surface atomic concentrations of the catalyst were summarized in Table S1. The
275 results indicate that Si, Al and O are the main elements on the catalyst surface, whereas the content of
276 Cu element is very low. Furthermore, the Cu contents in CS-Si/CC and CS-SiAl-x/CC ($x = 4, 5$ and 6)
277 are similar, indicating that the difference in catalyst performance is attributed to γ -Al₂O₃. In contrast,
278 the Cu contents in CS-SiAl-3/CC are lower than those in other catalysts.

279 The XPS was further carried out to confirm the effect of SiO₂ and γ -Al₂O₃ on Cu species in the
280 catalysts. The Cu 2p XPS spectra of CS-Si/CC, CS-SiAl-x/CC in Fig. 5(b) and CS in Fig. S4(b) were
281 displayed. Cu 2p_{3/2} and Cu 2p_{1/2} peaks can be detected in the range of 930.3-938.9 and 950.4-956.3
282 eV, respectively [37-39]. Additionally, there is a peak at around 944.3 eV, which is attributed to the
283 shake-up satellites [40,41], illustrating that the valence state of the Cu species in the CS-Si/CC and
284 CS-SiAl-x/CC is predominantly + 2. The Cu 2p_{3/2} peaks can be divided into two contributions
285 appearing at around 936.4 and 933.5 eV, which are designated as Cu²⁺ associated with oxygen atom
286 sites in the framework structure of the molecular sieve (Cu-O-Si-O) and CuO species, respectively
287 [29,35,42,43]. It can be clearly found from Table 2 that the Cu²⁺ surface concentration on CS-Si/CC
288 and CS-SiAl-x/CC ($x = 4, 5$ and 6) remains nearly constant at approximately 0.16 at%, which suggests
289 that there is no change in the Cu species with the introduction of SiO₂ and γ -Al₂O₃. Furthermore,

290 surface Cu²⁺ concentration on the CS-SiAl-3/CC decreases when excess γ -Al₂O₃ is introduced. This
291 result is in line with the H₂-TPR.

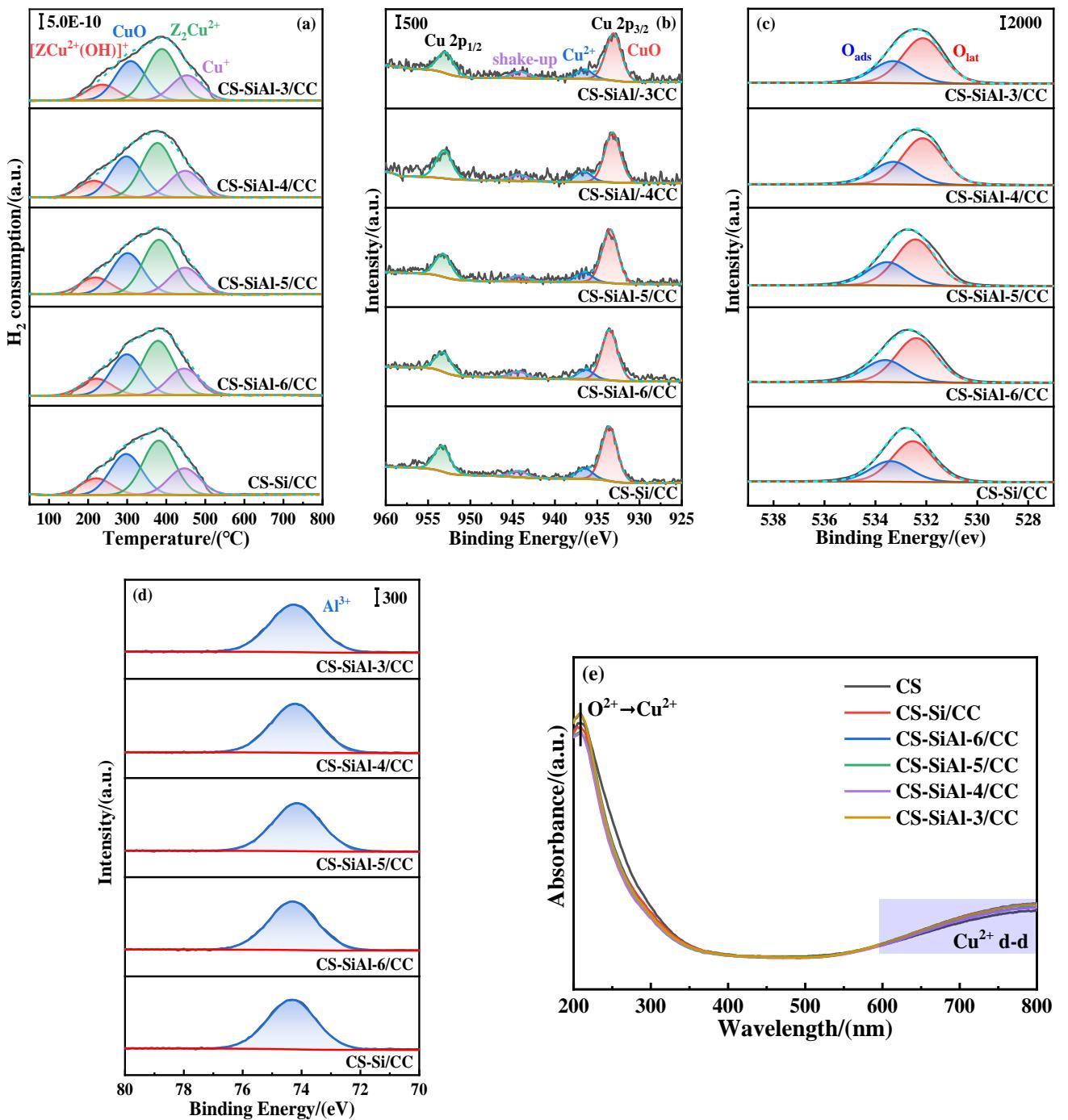


Fig. 5. (a) H₂-TPR, (b) Cu 2p XPS, (c) O 1s XPS, (d) Al 2p XPS and (e) UV-vis DRS spectra of CS-Si/CC and CS-SiAl- x /CC.

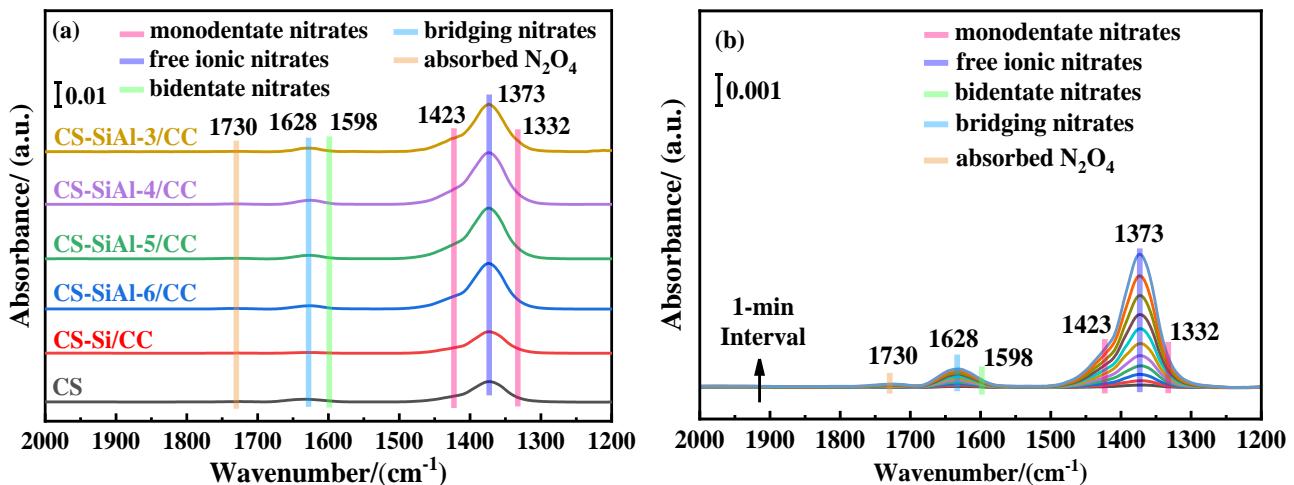
292 The catalysts' O 1s spectra illustrated in Fig. 5(c) and Fig. S4(c) can be divided into lattice oxygen
293 (O_{lat}) at 532.1-532.6 eV and chemisorption oxygen (O_{ads}) at 533.2-534.6 eV [30,44]. In addition, the
294 O_{ads} exhibits greater activity than O_{lat} due to its high mobility, thus facilitating the NH₃-SCR reaction

295 [45]. Therefore, the proportion of $O_{ads}/(O_{lat} + O_{ads})$ of the catalysts was calculated from the
 296 corresponding peak areas and listed in Table 2. The proportion of $O_{ads}/(O_{lat} + O_{ads})$ in the catalyst
 297 remains at approximately 33%, suggesting that the addition of SiO_2 and $\gamma-Al_2O_3$ cannot influence the
 298 O_{ads} of the catalysts. Hence, the difference in activity between CS-Si/CC and CS-SiAl-x/CC is not
 299 caused by O_{ads} . In Fig. 5d, a peak at around 74.3 eV corresponds to Al^{3+} , which indicates that Al exists
 300 primarily in the form of + 3 in the catalyst [46,47].

Table 2 Changes in concentration of Cu and O species on CS, CS-Si/CC and CS-SiAl-x/CC.

catalysts	^a H_2 consumption ($\mu mol \cdot g^{-1}$)			^b Surface Cu^{2+} concentration (at%)	^b $O_{ads}/(O_{ads} + O_{lat})$ (%)
	$[ZCu^{2+}(OH)]^+$	Z_2Cu^{2+}	Total		
CS	100.89	243.04	343.93	0.20	33.54
CS-Si/CC	85.24	192.07	277.31	0.16	33.59
CS-SiAl-6/CC	85.20	192.02	277.22	0.15	33.23
CS-SiAl-5/CC	85.39	192.63	278.02	0.15	33.43
CS-SiAl-4/CC	85.01	191.40	276.41	0.17	32.67
CS-SiAl-3/CC	80.12	173.79	252.91	0.12	32.70

^a Analyzed by H_2 -TPR. ^b Analyzed by XPS.


301 The UV-vis DRS spectra were used to further clarify the coordination environment of Cu species
 302 in the CS, CS-Si/CC and CS-SiAl-x/CC. As shown in Fig. 5e, an extremely significant absorption peak
 303 centered at around 205 nm and another weak and broad absorption peak in the range of 600-800 nm
 304 are observed for all the catalysts, which can be considered as the charge transferring by oxygen in
 305 molecular sieve framework structure to Cu^{2+} ($O^{2-} \rightarrow Cu^{2+}$) and the electron d-d transition of Cu^{2+} in
 306 dispersed CuO species with octahedral coordination, respectively [41,48-51]. Compared to CS, CS-
 307 Si/CC and CS-SiAl-x/CC exhibit almost no change in the strength and position of the adsorption peaks,
 308 indicating that the coordination environment of Cu species remains unaltered upon the introduction of
 309 SiO_2 and $\gamma-Al_2O_3$. This result is consistent with the XPS and H_2 -TPR.

310 3.4 Adsorption/Desorption and activation of $NO + O_2$

311 3.4.1. $NO + O_2$ adsorption

312 As one of the major reactants, NO_x on the catalyst is critical for adsorption, oxidation and
 313 desorption properties in the NH_3 -SCR of NO_x performance. The catalysts were pretreated in an Ar

314 atmosphere for 1 h at 400 °C, followed by purging with Ar for 1 h at 50 °C. Subsequently, a gas mixture
 315 of 1000 ppm NO + 10% O₂ was introduced and the adsorption of NO + O₂ on CS, CS-Si/CC and CS-
 316 SiAl-x/CC was recorded using in situ DRIFTS at 50 °C. As exhibited in Fig. 6, the five distinct types
 317 of adsorbed NO_x species are identified in all catalysts. The peaks at 1332 and 1423 cm⁻¹ are assigned
 318 to monodentate nitrates adsorbed on Cu sites [35,52–54]. The peak at 1373 cm⁻¹ is commonly derived
 319 from free ionic nitrates adsorbed on Cu sites [55,56], while those at 1589, 1628 and 1730 cm⁻¹ are
 320 assigned to bidentate nitrates, bridging nitrates and absorbed N₂O₄, respectively [56–58]. Under the
 321 conditions of 50 °C and 10 min, the adsorbed NO_x species on CS-Si/CC and CS-SiAl-x/CC remain
 322 unchanged compared with those on CS (Fig. 6a), indicating that the introduction of SiO₂ and/or γ -
 323 Al₂O₃ has no significant effect on the NO_x adsorbed species on CS. The temporal evolution of
 324 adsorbed NO_x species on CS, CS-Si/CC, and CS-SiAl-4/CC was investigated using in situ DRIFTS
 325 for real-time monitoring, as shown in Fig. 6b-d. The peak intensity of adsorbed NO_x species exhibits
 326 a positive correlation with the exposure time to NO + O₂. Notably, the peak intensities corresponding
 327 to adsorbed NO_x species on CS-SiAl-4/CC are markedly higher than those observed on CS and CS-
 328 Si/CC at the same time point. It can be inferred that the introduction of γ -Al₂O₃ drives a bifunctional
 329 mechanism that promotes NO_x adsorption capacity and NO_x adsorption rate. It is reported that
 330 monodentate nitrates, serving as key intermediates, can participate in the NH₃-SCR reaction [35,59,60],
 331 and thus more monodentate nitrates are formed over CS-SiAl-4/CC promoting the catalytic activity.

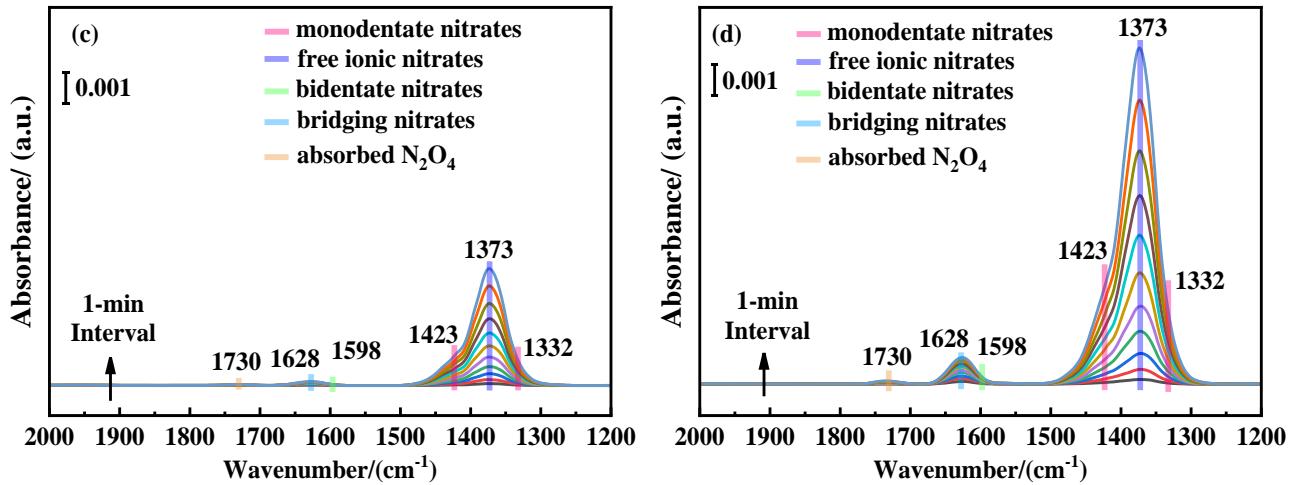


Fig. 6. In situ DRIFTS of $\text{NO} + \text{O}_2$ adsorption on: (a) CS, CS-Si/CC and CS-SiAl- x /CC at 50 °C at 10 min; (b)–(d) Time-dependent profiles for (b) CS, (c) CS-Si/CC and (d) CS-SiAl-4/CC with exposure durations spanning 1–10 min (at 1 min intervals) at 50 °C.

332 3.4.2. $\text{NO} + \text{O}_2$ desorption

333 The desorption behavior of NO_x at active sites of the catalyst was further investigated by
 334 ($\text{NO} + \text{O}_2$)-TPD, and the experimental results were displayed in Fig. 7 and Fig. S5. For the CS-Si/CC
 335 and CS-SiAl- x /CC, there are two peaks of NO_x desorption in the temperature range of 50–200 and
 336 225–445 °C. It is interesting to note that $\gamma\text{-Al}_2\text{O}_3$ can be an effective NO_x adsorbent. In contrast, SiO_2
 337 has almost no effect on NO_x adsorption (Fig. S5b). It can be observed from Table 3 that the amount
 338 of NO_x desorption on CS-SiAl- x /CC ($x = 4, 5$ and 6) gradually increases from 71.69 to 238.61 $\mu\text{mol}\cdot\text{g}^{-1}$
 339 with the increase of the $\gamma\text{-Al}_2\text{O}_3$ content, indicating that abundant NO_x species are adsorbed on CS-
 340 SiAl- x /CC ($x = 4, 5$ and 6). This result is consistent with the In situ DRIFTS observations of $\text{NO} + \text{O}_2$
 341 adsorption. Therefore, the plentiful NO_x species formed on the CS-SiAl-4/CC are one of the main
 342 factors affecting the NO_x -SCR performance.

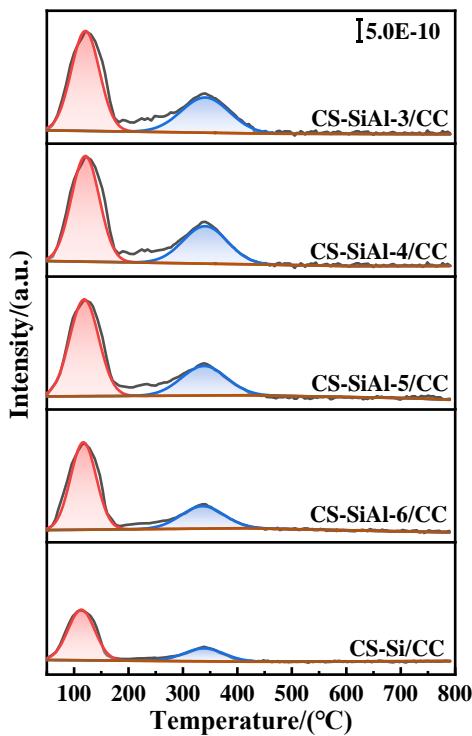
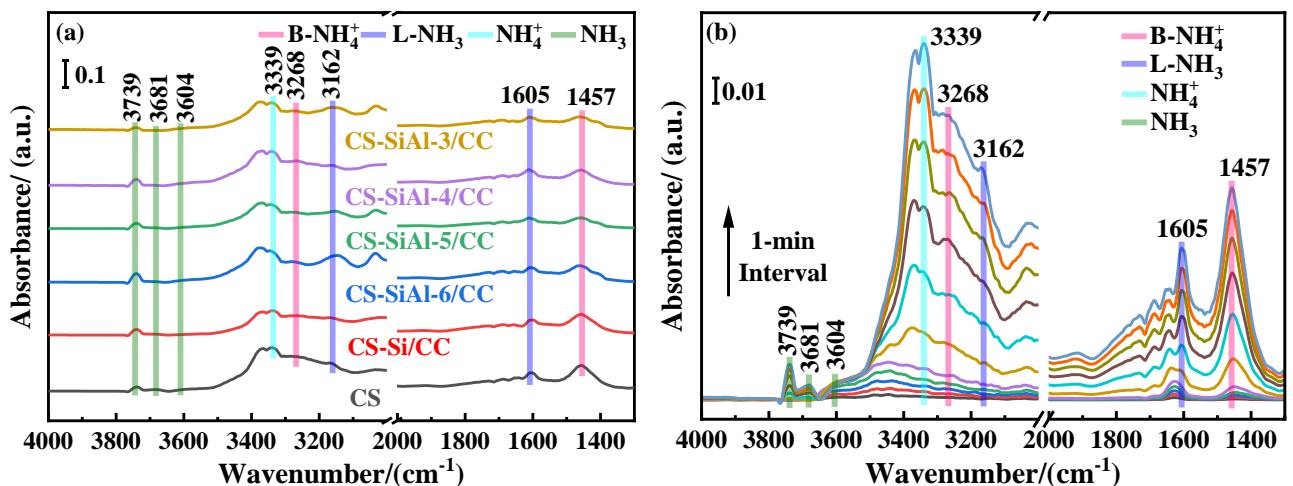


Fig. 7. (NO+O₂)-TPD patterns of CS-Si/CC and CS-SiAl-x/CC.

343

Table 3 Changes in NO_x storage capacity and acid capacity on CS, CS-Si/CC and CS-SiAl-x/CC.

catalysts	^a (NO+O ₂)-TPD (μmol•g ⁻¹)			^b NH ₃ -TPD (mmol•g ⁻¹)			
	50–200 °C	225–445 °C	Total	Weak acid sites (WACs)	Moderate acid sites (MACs)	Strong acid sites (SACs)	Total
CS	72.20	31.25	103.45	1.69	0.43	0.13	2.25
CS-Si/CC	51.63	20.06	71.69	1.13	0.31	0.11	1.55
CS-SiAl-6/CC	117.10	53.18	170.28	1.24	0.33	0.09	1.66
CS-SiAl-5/CC	136.79	67.78	204.57	1.31	0.35	0.10	1.76
CS-SiAl-4/CC	150.35	88.26	238.61	1.40	0.37	0.10	1.87
CS-SiAl-3/CC	141.27	72.86	214.13	1.23	0.29	0.06	1.58


^a Analyzed by (NO+O₂)-TPD. ^b Analyzed by NH₃-TPD.

344 3.5 Acid sites

345 3.5.1 NH₃ adsorption

346 The acid centers of molecular sieves play a crucial role in activating and reserving NH₃, which is
 347 one of the most critical steps in the NH₃-SCR of NO_x reaction. The catalysts were pretreated in an Ar
 348 atmosphere for 1 h at 400 °C, followed by purging with Ar for 1 h at 50 °C. Subsequently, 1000 ppm
 349 NH₃ was introduced and its adsorption on CS, CS-Si/CC and CS-SiAl-x/CC was collected using in situ

350 DRIFTS at 50 °C. As exhibited in Fig. 8, the peaks at around 1457 and 3268 cm⁻¹ are attributed to the
 351 NH₄⁺ ions adsorbed on the Brønsted acid sites [61], while the peaks at around 1605 and 3162 cm⁻¹
 352 correspond to the coordinated NH₃ bonded to the Lewis acid sites provided by Cu sites and NH₃
 353 adsorbed on the Lewis acid sites, respectively [62,63]. The peak at around 3339 cm⁻¹ is assigned to NH
 354⁺ ions adsorbed on Si-OH sites [30,63]. Furthermore, the peaks at around 3604, 3681 and 3739 cm⁻¹
 355 are ascribed to the NH₃ adsorbed on the Cu-OH, Al-OH and Si-OH sites, respectively [30,61,64]. No
 356 change is observed in the NH₃ adsorption species on the SiO₂ and/or γ -Al₂O₃-modified catalysts (Fig.
 357 8a). This result demonstrates that the incorporation of SiO₂ and/or γ -Al₂O₃ does not alter the NH₃
 358 adsorbed species on CS. To investigate the dynamic evolution of adsorbed NH₃ species on CS, CS-
 359 Si/CC and CS-SiAl-4/CC, in situ DRIFTS was systematically employed for monitoring, as shown in
 360 Fig. 8b-d. For CS, CS-Si/CC and CS-SiAl-4/CC, the peak intensities associated with NH₃ adsorbed
 361 species exhibit a gradual enhancement with increasing adsorption time (Fig. 8b-d). Compared with CS,
 362 the introduction of SiO₂ leads to an enhancement in peak intensities at around 1456, 1603 and 3739
 363 cm⁻¹ accompanied by a reduction in peak intensities at around 3200, 3266 and 3337 cm⁻¹, indicating
 364 that SiO₂ may alter the surface acid properties of CS and modulate NH₃ adsorption sites. However, the
 365 adsorption strength of NH₄⁺ ions on Brønsted acid sites (1454 cm⁻¹) for the CS-SiAl-4/CC is
 366 significantly lower than that of the CS and CS-Si/CC. Gao et al [65] proposed that a reduction in
 367 Brønsted acid sites leads to significant improvement in catalyst performance. Therefore, it can be
 368 inferred that the appropriate γ -Al₂O₃ doping optimizes the surface acidity of CS-SiAl-4/CC, thereby
 369 enhancing its catalytic performance.

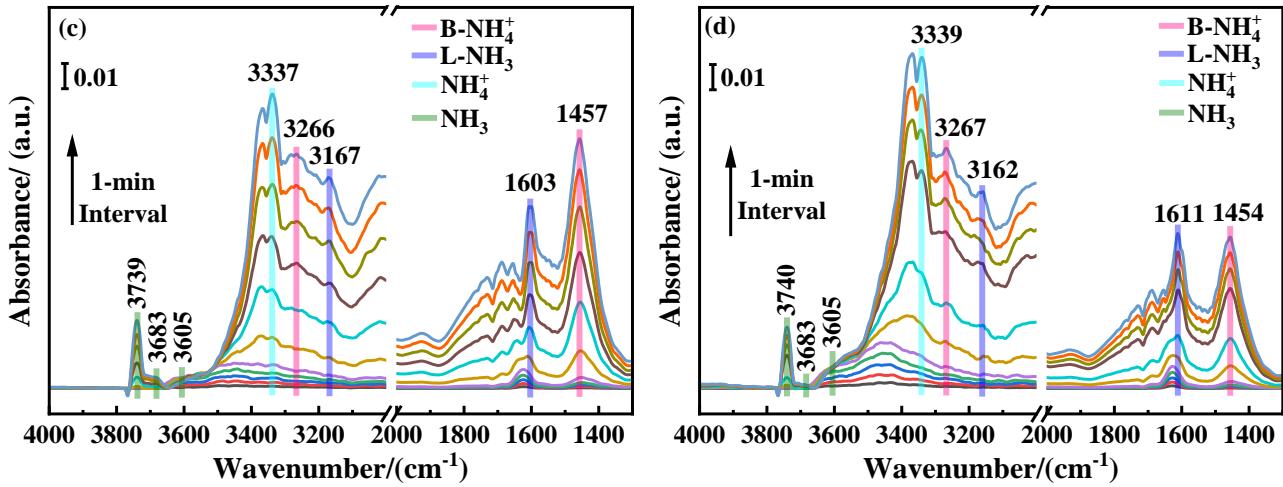


Fig. 8. In situ DRIFTS of NH_3 adsorption on: (a) CS, CS-Si/CC and CS-SiAl- x /CC at 50 °C at 10 min; (b)–(d) Time-dependent profiles for (b) CS, (c) CS-Si/CC and (d) CS-SiAl-4/CC with exposure durations spanning 1–10 min (at 1 min intervals) at 50 °C.

370 3.5.2. NH_3 desorption

371 The desorption behavior of NH_3 on the catalyst's acid centers was further investigated by NH_3 -
 372 TPD, and the experimental results are displayed in Fig. 9 and Fig. S6. It can be clearly observed from
 373 Fig. 9 that three distinct desorption peaks are observed at around 179, 329 and 436 °C for CS-Si/CC
 374 and CS-SiAl- x /CC, which are attributed to weak acid sites (WACs), medium acid sites (MACs) and
 375 strong acid sites (SACs), respectively [41,43,66]. A very interesting phenomenon found in Fig. S6 is
 376 that SACs are only dedicated by CS, while WACs and MACs can be contributed to $\gamma\text{-Al}_2\text{O}_3$, SiO_2 and
 377 CS. In addition, the intensity of the NH_3 desorption peak on $\gamma\text{-Al}_2\text{O}_3$ is significantly stronger than that
 378 on SiO_2 (Fig. S6), indicating that the contribution of $\gamma\text{-Al}_2\text{O}_3$ to WACs and MACs is much higher than
 379 that of SiO_2 . The acid sites (WACs and MACs) on $\gamma\text{-Al}_2\text{O}_3$ comprise both Brønsted acid sites (from
 380 surface hydroxyl groups) and Lewis acid sites (from uncoordinated Al^{3+}). Besides, these acid sites play
 381 a very important role in storing NH_3 and providing NH_4^+ [30]. More importantly, NH_3 and NH_4^+ can
 382 participate in reactions with NOx species [15,67]. Therefore, the performance of the catalyst is
 383 improved to some extent. By performing curve-fitting analysis on the NH_3 -TPD spectra, the NH_3
 384 desorption capacities associated with different types of acid sites were quantified and compiled in
 385 Table 3. The amount of acid centers on CS-SiAl- x /CC ($x = 4, 5$ and 6) gradually enhances from 1.55
 386 to 1.87 $\text{mmol}\cdot\text{g}^{-1}$ with the increase of $\gamma\text{-Al}_2\text{O}_3$ content. In particular, the amount of the WACs and
 387 MACs on CS-SiAl- x /CC ($x = 4, 5$ and 6) is always higher than that on the CS-Si/CC. The higher NOx
 388 conversion on CS-SiAl- x /CC declares that the amount of the WACs and MACs is one of the main

389 factors that can directly affect the NH₃-SCR performance of the catalyst. This finding is consistent
390 with the NH₃-TPD results reported by Wang et al. [30], Liu et al. [35] and Xu et al. [68]. However, the
391 inferior NH₃ adsorption capacity of CS-SiAl-3/CC relative to CS-SiAl-4/CC arises from excessive γ -
392 Al₂O₃ coverage partially obstructing the Cu species. The observed decrease in the catalytic activity of
393 CS-SiAl-3/CC is linked to this phenomenon, as demonstrated by the corresponding NH₃-SCR
394 performance deterioration.

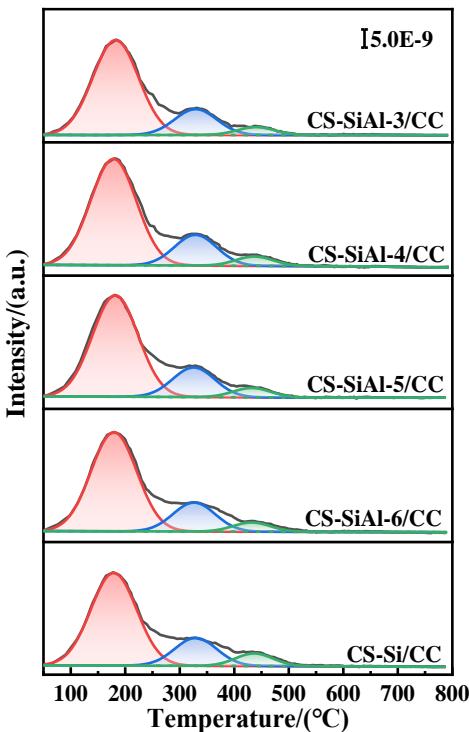


Fig. 9. NH₃-TPD patterns of CS-Si/CC and CS-SiAl-x/CC.

395 3.6 Reaction mechanism study

396 3.6.1 Reactions between pre-adsorbed NO + 10% O₂ and NH₃ + 10% O₂

397 Fig. 10 illustrates the dynamic evolution of the reaction between NH₃ + 10% O₂ and pre-adsorbed
398 NO + 10% O₂ at 200 °C over time, revealing the NH₃-SCR reaction mechanisms of the CS-Si/CC and
399 CS-SiAl-4/CC. After switching to NH₃ + O₂, the monodentate nitrates (1332 and 1423 cm⁻¹) and free
400 ionic nitrates (1373 cm⁻¹) adsorbed on Cu sites can be rapidly consumed in the SCR reaction. It
401 indicates that both monodentate nitrates and free ionic nitrates play a more critical role as the main
402 active intermediates. Meanwhile, the NH₃ adsorbed on the Lewis acid sites (3162 cm⁻¹) is observed on
403 CS-Si/CC and CS-SiAl-4/CC at 1 min, and its adsorption intensity increases with prolonged reaction
404 time. More importantly, the consumption rates of both monodentate nitrate and free ionic nitrate on

405 CS-SiAl-4/CC are significantly faster than those on CS-Si/CC, and the adsorption strength of NH₃ on
 406 the Lewis acid sites on CS-SiAl-4/CC is dramatically higher than that on CS-Si/CC at some point.
 407 Moreover, Lyu et al [55] and Xiong et al [69] proposed that NH₃ adsorbed on the Lewis acid sites can
 408 react with free ionic nitrates/monodentate nitrates to form N₂ and H₂O. It can be inferred that γ -Al₂O₃
 409 can provide sufficient NH₃ adsorbed on the Lewis acid sites to participate in SCR reaction between
 410 NH₃ adsorbed on the Lewis acid sites and free ionic nitrate/monodentate nitrate. As a result, the
 411 consumption rates of monodentate nitrate and free ionic nitrate are faster on CS-SiAl-4/CC than on
 412 CS-Si/CC during reaction with NH₃ + O₂. In short, the NH₃ adsorbed on the Lewis acid sites reacts
 413 with the adsorbed NO_x species (monodentate nitrates and free ionic nitrates) through the Langmuir-
 414 Hinshelwood (L-H) mechanism to participate in the SCR reaction.

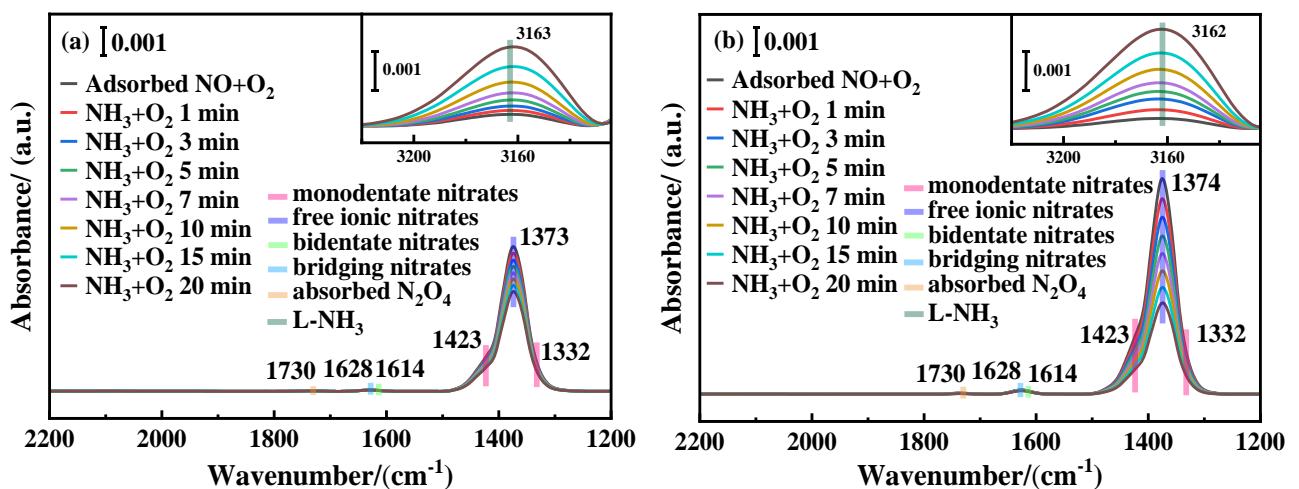


Fig. 10. In situ DRIFTS of pre-adsorbed NO + O₂ followed by reaction with NH₃ + O₂ on (a) CS-Si/CC and (b) CS-SiAl-4/CC at 200 °C.

415 3.6.2 Reactions between pre-adsorbed NH₃ + 10% O₂ and NO + 10% O₂

416 Fig. 11 illustrates the dynamic evolution of the reaction between NO + 10% O₂ and pre-adsorbed
 417 NH₃ + 10% O₂ at 200 °C over time, revealing the NH₃-SCR reaction mechanisms of the CS-Si/CC and
 418 CS-SiAl-4/CC. After switching to NO + O₂, NH₄⁺ adsorbed on Brønsted acid sites (1482 and 3266 cm⁻¹)
 419 and Si-OH sites (3337 cm⁻¹) is gradually consumed in the SCR reaction, which means that the NH₄⁺
 420 plays a more important role as the main active intermediates, and its reaction with gaseous NO
 421 indicates the Eley-Rideal (E-R) mechanism. With prolonged exposure of pre-adsorbed NH₃ species to
 422 NO + O₂, bidentate nitrates are observed on CS-Si/CC (at 7 min) and CS-SiAl-4/CC (at 5 min). This
 423 result indicates that γ -Al₂O₃ can effectively promote the formation of bidentate nitrates. However,

424 bidentate nitrates can convert to monodentate nitrates to participate in the SCR reaction [35,70], which
 425 serve as the active species for the SCR reaction. This might be interpreted as the CS-SiAl-4/CC has
 426 superior activity compared to CS-Si/CC. Meanwhile, the NH₃ adsorbed on the Lewis acid sites (3180
 427 cm⁻¹) is consumed rapidly on CS-Si/CC and CS-SiAl-4/CC. It reveals that NH₃ adsorbed on the Lewis
 428 acid sites reacts with monodentate nitrates in the SCR reaction through the Langmuir-Hinshelwood (L-
 429 H) mechanism.

430 In the end, based on the above analysis, Fig. 12 depicts the possible synergistic pathways of NH₃-
 431 SCR reaction on CS-SiAl-4/CC. γ -Al₂O₃ features a substantial number of both Brønsted and Lewis
 432 acid sites, which play a crucial role in storing NH₃ and providing NH₄⁺. Furthermore, NH₃ and NH₄⁺
 433 serve as the main active intermediates. The reaction consists of NH₃ adsorbed on the Lewis acid sites
 434 reacting with free ionic nitrates/monodentate nitrates adsorbed on the Cu sites and gaseous NO reacting
 435 with NH₄⁺. Therefore, NH₃-SCR reaction on CS-SiAl-4/CC follows L-H and E-R mechanisms.

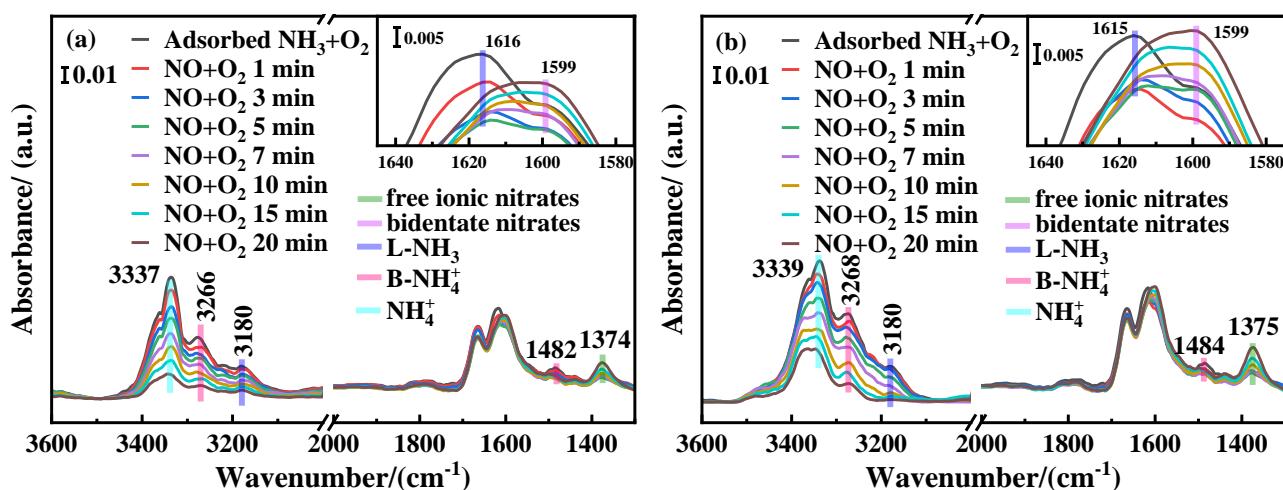


Fig. 11. In situ DRIFTS of pre-adsorbed NH₃ + O₂ followed by reaction with NO + O₂ on (a) CS-Si/CC and (b) CS-SiAl-4/CC at 200 °C.

436

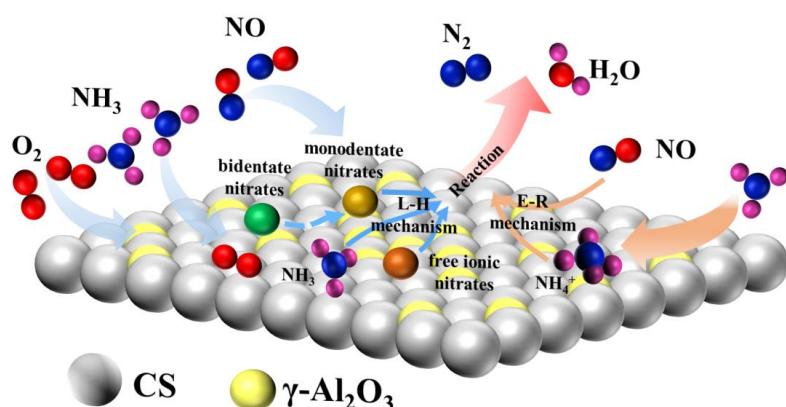


Fig. 12. The possible synergistic pathways of NH₃-SCR reaction on CS-SiAl-4/CC.

437 4. Conclusion

438 A series of CS-SiAl- x /CC ($x = 3, 4, 5$ and 6) were prepared and evaluated for NH₃-SCR activity.
439 CS-SiAl-4/CC, selected as the optimal catalyst, exhibits remarkable NO_x conversion, achieving
440 greater than 80% across a broad temperature range of 218–550 °C and over 90% in the narrower
441 window of 245–440 °C and displays outstanding N₂ selectivity. Furthermore, this catalyst displays
442 excellent NO_x purification performance in the absence of water vapor as well as outstanding
443 hydrothermal aging resistance. γ -Al₂O₃ enhances NO_x adsorption capacity and rate, thereby promoting
444 the formation of nitrate intermediate species. Concurrently, γ -Al₂O₃ modulates the relative abundance
445 of NH₄⁺ and NH₃, while enhancing the NH₃ adsorption rate on the catalyst. For CS-SiAl-4/CC, the
446 SCR reaction follows both E-R and L-H mechanisms. The reaction consists of gaseous NO reacting
447 with NH₄⁺ and NH₃ adsorbed on the Lewis acid sites reacting with free ionic nitrates/monodentate
448 nitrites adsorbed on the Cu sites. More importantly, bidentate nitrates can convert to monodentate
449 nitrites, which serve as the active species for the SCR reaction. This might be interpreted as the CS-
450 SiAl-4/CC having superior activity compared to CS-Si/CC.

451 CRediT authorship contribution statement

452 **Ruixin Sun:** Writing – original draft, Methodology, Investigation, Data curation,
453 Conceptualization. **Yu Lyu:** Investigation, Methodology. **Chonglin Song:** Writing - review & editing,
454 Project administration, Funding acquisition. **Chenxi Wang:** Investigation, Data curation. **Gang Lyu:**
455 Resources, Formal analysis, Conceptualization. **Xiangyu Dong:** Methodology, Investigation, Data
456 curation. **Lei Tian:** Investigation, Data curation. **Xinhui Liu:** Investigation. **Yibo Xu:** Data curation.

457 Declare of interest statement

458 The authors declare that they have no known competing financial interests or personal
459 relationships that could have appeared to influence the work reported in this paper.

460 Acknowledgement

461 This study was supported by the National Natural Science Foundation of China (Grant number:
462 51921004, 52176123).

463 Appendix A. Supplementary data

464 Supplementary data to this article can be found online at XXX.

465 **Reference**

466 [1] J. J. Corbett, J. J. Winebrake, E. H. Green, P. Kasibhatla, V. Eyring, A. Lauer, Mortality from ship
467 emissions: A global assessment, *Environ. Sci. Technol.* 41 (2007) 8512–8518,
468 <https://doi.org/10.1021/es071686z>.

469 [2] P. C. Guillaume, M. Robert, A. Akshay, C. D. Irene, D. E. Sebastian, L. S. Raymond, R. H. B.
470 Steven, Public health impacts of excess NO_x emissions from volkswagen diesel passenger vehicles in
471 Germany, *Environ. Res. Lett.* 12 (2017) 034014, <https://doi.org/10.1088/1748-9326/aa5987>.

472 [3] S. Maciej, J. Nicole, B. Rob, S. Oliver, V. Ilonca, K. Derek, V. D. B. Carolien, L. B. Michiel, D.
473 Martin, B. Bert, H. Gerard, Long-term exposure to particulate matter, NO₂ and the oxidative potential
474 of particulates and diabetes prevalence in a large national health survey, *Environ. Int.* 108 (2017) 228–
475 236, <https://doi.org/10.1016/j.envint.2017.08.017>.

476 [4] Q. Lu, Z. Ali, H. Tang, T. Iqbal, Z. Arain, M. Cui, D. Liu, W. Li, Y. Yang, Regeneration of
477 commercial SCR catalyst deactivated by arsenic poisoning in coal-fired power plants, *Korean J. Chem.
478 Eng.* 36 (2019) 377–384, <https://doi.org/10.1007/s11814-018-0227-9>.

479 [5] K. Boriboonsomsin, T. Durbin, G. Scora, K. Johnson, D. Sandez, A. Vu, Y. Jiang, A. Burnette, S.
480 Yoon, J. Collins, Z. Dai, C. Fulper, S. Kishan, M. Sabisch, D. Jackson, Real-world exhaust temperature
481 profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction, *Sci. Total
482 Environ.* 634 (2018) 909–921, <https://doi.org/10.1016/j.scitotenv.2018.03.362>.

483 [6] Z. Gholami, G. Luo, F. Gholami, F. Yang, Recent advances in selective catalytic reduction of NO_x
484 by carbon monoxide for flue gas cleaning process: a review, *Catal. Rev. Sci. Eng.* 63 (2021) 68–119,
485 <https://doi.org/10.1080/01614940.2020.1753972>.

486 [7] J. Li, H. Chang, L. Ma, J. Hao, R. T. Yang, Low-temperature selective catalytic reduction of NO_x
487 with NH₃ over metal oxide and zeolite catalysts—A review, *Catal. Today* 175 (2011) 147–156,
488 <https://doi.org/10.1016/j.cattod.2011.03.034>.

489 [8] Y. Huang, Z. Yu, M. Guo, H. Liu, X. Liu, J. Han, S. Cui, B. Liu, Y. Zhao, J. Wei, B. Liu, S. Chen,
490 Coated monolithic catalysts for better selective catalytic reduction: Concerns about structural integrity,
491 catalytic activity and anti-poisoning performance, *Catal. Commun.* 178 (2023) 106667,
492 <https://doi.org/10.1016/j.catcom.2023.106667>.

493 [9] T. Zhou, L. Li, J. Cheng, Z. Hao, Preparation of binary washcoat deposited on cordierite substrate
494 for catalytic applications, *Ceram. Int.* 36 (2010) 529–534,
495 <https://doi.org/10.1016/j.ceramint.2009.09.027>.

496 [10] L. Tang, Z. Zhao, K. Li, X. Yu, Y. Wei, J. Liu, Y. Peng, Y. Li, Y. Chen, Highly active monolith
497 catalysts of LaKCoO_3 perovskite-type complex oxide on alumina-washcoated diesel particulate filter
498 and the catalytic performances for the combustion of soot, *Catal. Today* 339 (2020) 159–173,
499 <https://doi.org/10.1016/j.cattod.2019.07.039>.

500 [11] L. Tang, Z. Zhao, Y. Wei, J. Liu, Y. Peng, K. Li, Study on the coating of nano-particle and 3DOM
501 LaCoO_3 perovskite-type complex oxide on cordierite monolith and the catalytic performances for soot
502 oxidation: The effect of washcoat materials of alumina, silica and titania, *Catal. Today* 297 (2017)
503 131–142, <http://dx.doi.org/10.1016/j.cattod.2017.06.016>.

504 [12] P. Kyriienko, N. Popovych, S. Soloviev, S. Orlyk, S. Dzwigaj, Remarkable activity of
505 $\text{Ag}/\text{Al}_2\text{O}_3$ /cordierite catalysts in SCR of NO with ethanol and butanol, *Appl. Catal. B: Environ.* 140–
506 141 (2013) 691–699, <https://doi.org/10.1016/j.apcatb.2013.04.067>.

507 [13] C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO_2 - CeO_2 -
508 Al_2O_3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction
509 of NO_x with NH_3 at 50–150°C, *Chem. Eng. J.* 346 (2018) 182–192,
510 <https://doi.org/10.1016/j.cej.2018.04.033>.

511 [14] Y. Qiu, B. Liu, J. Du, Q. Tang, Z. Liu, R. Liu, C. Tao, The monolithic cordierite supported V_2O_5 –
512 $\text{MoO}_3/\text{TiO}_2$ catalyst for NH_3 -SCR, *Chem. Eng. J.* 294 (2016) 264–272,
513 <https://doi.org/10.1016/j.cej.2016.02.094>.

514 [15] S. Xu, J. Li, Q. Lin, H. Xu, J. Wang, Y. Chen, Engineering CeZrOx-Cu/SSZ-13 coupled catalysts
515 to synergistically enhance the low-temperature NH_3 -SCR activity, *Chem. Eng. J.* 476 (2023) 146767,
516 <https://doi.org/10.1016/j.cej.2023.146767>.

517 [16] X. Tang, C. Wang, F. Gao, W. Han, H. Yi, S. Zhao, Y. Zhou, Y. Liu, Mn-Fe-Ce multiple oxides
518 with Al_2O_3 coating supported onto honeycomb cordierite monoliths for NO catalytic oxidation,
519 *Colloids Surf. A Physicochem. Eng. Asp.* 611 (2021) 125790,
520 <https://doi.org/10.1016/j.colsurfa.2020.125790>.

521 [17] L. Lisi, R. Pirone, G. Russo, V. Stanzione, Cu-ZSM5 based monolith reactors for NO
522 decomposition, *Chem. Eng. J.* 154 (2009) 341–347, <https://doi.org/10.1016/j.cej.2009.04.025>.

523 [18] J. Shi, Z. Zhang, M. Chen, Z. Zhang, W. Shangguan, S. Gu, H. Shin-ichi, Effect of alumina and
524 zirconia as binders on the activity of Fe-BEA for NH₃-SCR of NO, *Front. Environ. Sci. Eng.* 12 (2018)
525 15, <https://doi.org/10.1007/s11783-018-1012-4>.

526 [19] R. Zhang, K. Hedjazi, B. Chen, Y. Li, Z. Lei, N. Liu, M(Fe, Co)-BEA washcoated honeycomb
527 cordierite for N₂O direct decomposition, *Catal. Today* 273 (2016) 273–285,
528 <https://doi.org/10.1016/j.cattod.2016.03.021>.

529 [20] F. Wang, J. Ma, S. Xin, Q. Wang, J. Xu, C. Zhang, H. He, X. Zeng, Resolving the puzzle of
530 single-atom silver dispersion on nanosized γ -Al₂O₃ surface for high catalytic performance, *Nat.*
531 *Commun.* 11 (2020) 529, <https://doi.org/10.1038/s41467-019-13937-1>.

532 [21] L. Sheng, Z. Ma, S. Chen, J. Lou, C. Li, S. Li, Z. Zhang, Y. Wang, H. Yang, Mechanistic insight
533 into N₂O formation during NO reduction by NH₃ over Pd/CeO₂ catalyst in the absence of O₂, *Chin. J.*
534 *Catal.* 40 (2019) 1070–1077, [https://doi.org/10.1016/S1872-2067\(19\)63328-0](https://doi.org/10.1016/S1872-2067(19)63328-0).

535 [22] T. Liu, S. Su, L. Liu, Q. Yu, K. Xu, L. Jiang, J. Xu, Y. Wang, S. Hu, J. Xiang, Mechanistic
536 investigation of the suppressed N₂O formation during the low-temperature NH₃-SCR over the Sb-
537 modified Mn/Ti catalyst, *Chem. Eng. J.* 499 (2024) 156301, <https://doi.org/10.1016/j.cej.2024.156301>.

538 [23] Y. Zhu, W. Shan, Z. Lian, J. Liu, Y. Zhang, H. He, Effects of impregnation sequence on the NH₃-
539 SCR activity and hydrothermal stability of a Ce-Nb/SnO₂ catalyst, *J. Environ. Sci.* 138 (2024) 450–
540 457, <https://doi.org/10.1016/j.jes.2023.04.032>.

541 [24] X. Yao, L. Chen, T. Kong, S. Ding, Q. Luo, F. Yang, Support effect of the supported ceria-based
542 catalysts during NH₃-SCR reaction, *Chin. J. Catal.* 38 (2017) 1423–1430,
543 [https://doi.org/10.1016/S1872-2067\(17\)62868-7](https://doi.org/10.1016/S1872-2067(17)62868-7).

544 [25] H. Zhou, M. Ge, S. Wu, B. Ye, Y. Su, Iron based monolithic catalysts supported on Al₂O₃, SiO₂,
545 and TiO₂: A comparison for NO reduction with propane, *Fuel*, 220 (2018) 330–338,
546 <https://doi.org/10.1016/j.fuel.2018.01.077>.

547 [26] F. Bin, C. Song, G. Lv, J. Song, S. Wu, X. Li, Selective catalytic reduction of nitric oxide with
548 ammonia over zirconium-doped copper/ZSM-5 catalysts, *Appl. Catal. B: Environ.* 150–151 (2014)
549 532–543, <http://dx.doi.org/10.1016/j.apcatb.2013.12.052>.

550 [27] L. Xie, F. Liu, L. Ren, X. Shi, F. Xiao, H. He, Excellent performance of one-pot synthesized Cu-
551 SSZ-13 catalyst for the selective catalytic reduction of NO_x with NH₃, *Environ. Sci. Technol.* 48 (2014)
552 566–572, <https://doi.org/10.1021/es4032002>.

553 [28] Y. Shan, W. Shan, X. Shi, J. Du, Y. Yu, H. He, A comparative study of the activity and
554 hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13, *Appl. Catal. B: Environ.* 264 (2020)
555 118511, <https://doi.org/10.1016/j.apcatb.2019.118511>.

556 [29] X. Wang, Y. Xu, M. Qin, Z. Zhao, X. Fan, Q. Li, Insight into the effects of Cu²⁺ ions and CuO
557 species in Cu-SSZ-13 catalysts for selective catalytic reduction of NO by NH₃, *J. Colloid Interface Sci.*
558 622 (2022) 1–10, <https://doi.org/10.1016/j.jcis.2022.04.110>.

559 [30] J. Wang, J. Liu, X. Tang, C. Xing, T. Jin, The promotion effect of niobium on the low-temperature
560 activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO_x with NH₃, *Chem. Eng. J.* 418
561 (2021) 129433, <https://doi.org/10.1016/j.cej.2021.129433>.

562 [31] Q. Lin, S. Xu, H. Zhao, S. Liu, H. Xu, Y. Dan, Y. Chen, Highlights on key roles of Y on the
563 hydrothermal stability at 900 °C of Cu/SSZ-39 for NH₃-SCR, *ACS Catal.* 12 (2022) 14026–14039,
564 <https://doi.org/10.1021/acscatal.2c03757>.

565 [32] S. Mohan, P. Dinesha, S. Kumar, NO_x reduction behaviour in copper zeolite catalysts for
566 ammonia SCR systems: A review, *Chem. Eng. J.* 384 (2020), 123253,
567 <https://doi.org/10.1016/j.cej.2019.123253>.

568 [33] M. Chen, Y. Wei, J. Han, W. Yan, J. Yu, Enhancing catalytic performance of Cu-SSZ-13 for the
569 NH₃-SCR reaction via in situ introduction of Fe³⁺ with diatomite, *Mater. Chem. Front.* 5 (2021), 7787–
570 7795, <https://doi.org/10.1039/D1QM01101D>.

571 [34] A. Wang, K. Xie, D. Bernin, A. Kumar, K. Kamasamudram, L. Olsson, Deactivation mechanism
572 of Cu active sites in Cu/SSZ-13 — Phosphorus poisoning and the effect of hydrothermal aging, *Appl.*
573 *Catal. B: Environ.* 269 (2020), 118781, <https://doi.org/10.1016/j.apcatb.2020.118781>.

574 [35] Q. Liu, Z. Fu, L. Ma, H. Niu, C. Liu, J. Li, Z. Zhang, MnO_x-CeO₂ supported on Cu-SSZ-13: A
575 novel SCR catalyst in a wide temperature range, *Appl. Catal. A Gen.* 547 (2017) 146–154,
576 <https://doi.org/10.1016/j.apcata.2017.08.024>.

577 [36] Y. Ma, Z. Li, N. Zhao, Y. Teng, One-pot synthesis of Cu–Ce co-doped SAPO-5/34 hybrid crystal
578 structure catalysts for NH₃-SCR reaction with SO₂ resistance, *J. Rare Earths* 39 (2021), 1217–1223,
579 <https://doi.org/10.1016/j.jre.2020.07.028>.

580 [37] M. Xie, X. Xiao, J. Wang, J. Chen, H. Kang, N. Wang, W. Chu, L. Li, Mechanistic insights into
581 the cobalt promotion on low-temperature NH₃-SCR reactivity of Cu/SSZ-13, *Sep. Purif. Technol.* 315
582 (2023) 123617, <https://doi.org/10.1016/j.seppur.2023.123617>.

583 [38] M. Chen, W. Zhao, Y. Wei, J. Han, J. Li, C. Sun, D. Mei, J. Yu, La ions-enhanced NH₃-SCR
584 performance over Cu-SSZ-13 catalysts, *Nano Res.* 16 (2023) 12126–12133,
585 <https://doi.org/10.1007/s12274-023-5500-x>.

586 [39] D. Deng, S. Deng, D. He, Z. Wang, Z. Chen, Y. Ji, G. Yan, G. Hou, L. Liu, H. He, A comparative
587 study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH₃-SCR,
588 *J. Rare Earths* 39 (2021) 969–978, <https://doi.org/10.1016/j.jre.2020.08.016>.

589 [40] J. Song, Y. Wang, E. D. Walter, N. M. Washton, D. Mei, L. Kovarik, M. H. Engelhard, S.
590 Prodinger, Y. Wang, C. H. F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic
591 reduction catalysts: Implications from atomic-level understanding of hydrothermal stability, *ACS
592 Catal.* 7 (2017) 8214–8227, <https://doi.org/10.1021/acscatal.7b03020>.

593 [41] C. Fan, Z. Chen, L. Pang, S. Ming, C. Dong, K. Brou Albert, P. Liu, J. Wang, D. Zhu, H. Chen,
594 T. Li, Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NO_x in
595 diesel exhaust, *Chem. Eng. J.* 334 (2018) 344–354, <https://doi.org/10.1016/j.cej.2017.09.181>.

596 [42] J. Liu, X. Tang, C. Xing, T. Jin, Y. Yin, J. Wang, Niobium modification for improving the high-
597 temperature performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH₃, *J. Solid State
598 Chem.* 296 (2021) 122028.

599 [43] R. Xu, Z. Wang, N. Liu, C. Dai, J. Zhang, B. Chen, Understanding Zn functions on hydrothermal
600 stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH₃ selective catalytic reduction, *ACS
601 Catal.* 10 (2020) 6197–6212.

602 [44] M. Chen, J. Li, W. Xue, S. Wang, J. Han, Y. Wei, D. Mei, Y. Li, J. Yu, Unveiling secondary-ion-
603 promoted catalytic properties of Cu/SSZ-13 zeolites for selective catalytic reduction of NO_x. *J. Am.
604 Chem. Soc.* 144 (2022) 12816–12824. <https://doi.org/10.1021/jacs.2c03877>.

605 [45] C. Niu, X. Shi, F. Liu, K. Liu, L. Xie, Y. You, H. He, High hydrothermal stability of Cu–SAPO-
606 34 catalysts for the NH₃-SCR of NO_x, *Chem. Eng. J.* 294 (2016) 254–263,
607 <https://doi.org/10.1016/j.cej.2016.02.086>.

608 [46] N. Reddy, P. Bera, V. Reddy, N. Sridhara, A. Dey, C. Anandan, A. Sharma, XPS study of
609 sputtered alumina thin films, *Ceram. Int.* 40 (2014) 11099–11107,
610 <https://doi.org/10.1016/j.ceramint.2014.03.133>.

611 [47] Y. He, L. Zhang, X. An, G. Wan, W. Zhu, Y. Luo, Enhanced fluoride removal from water by rare
612 earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism,

613 Sci. Total Environ. 688 (2019) 184–198, <https://doi.org/10.1016/j.scitotenv.2019.06.175>.

614 [48] H. Wang, R. Xu, Y. Jin, R. Zhang, Zeolite structure effects on Cu active center, SCR performance
615 and stability of Cu-zeolite catalysts, Catal. Today 327 (2019) 295–307,
616 <https://doi.org/10.1016/j.cattod.2018.04.035>

617 [49] A. K. S. Clemens, A. Shishkin, P. A. Carlsson, M. Skoglundh, F. J. Martínez-Casado, Z. Matěj, O. Balmes, H. Harelind, Reaction-driven ion exchange of copper into zeolite SSZ-13, ACS Catal. 5 (2015) 6209–6218, <https://doi.org/10.1021/acscatal.5b01200>.

620 [50] Z. Zhao, R. Yu, R. Zhao, C. Shi, H. Gies, F. Xiao, D. D. Vos, T. Yokoi, X. Bao, U. Kolb, M. Feyen, R. McGuire, S. Maurer, A. Moini, U. Müller, W. Zhang, Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH₃-SCR catalyst: Effects of Na⁺ ions on the activity and hydrothermal stability, Appl. Catal. B: Environ. 217 (2017) 421–428, <https://doi.org/10.1016/j.apcatb.2017.06.013>.

625 [51] K. Leistner, A. Kumar, K. Kamasamudram, L. Olsson, Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR, Catal. Today 307 (2018) 55–64. <https://doi.org/10.1016/j.cattod.2017.04.015>.

628 [52] D. L. Wu, V. Tschamber, L. Limousy, J. Klein, A. Westermann, B. Azambre, I. Fechete, F. Garin, Simultaneous effect of carbon and water on NO_x adsorption on a stabilized Pt-Ba/Al₂O₃ catalyst, C. R. Chim. 17 (2014) 687–700.

631 [53] J. J. Yu, Z. Jiang, L. Zhu, Z. P. Hao, Z. P. Xu, Adsorption/Desorption studies of NO_x on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds, J. Phys. Chem. B 110 (2006) 4291–4300, <https://doi.org/10.1021/jp056473f>.

634 [54] W. Su, H. Chang, Y. Peng, C. Zhang, J. Li, Reaction pathway investigation on the selective catalytic reduction of NO with NH₃ over Cu/SSZ-13 at low temperatures, Environ. Sci. Technol. 49 (2015) 467–473, <https://doi.org/10.1021/es503430w>.

637 [55] Y. Lyu, G. Lyu, R. Sun, C. Song, Insights into copper-ZSM-5 supported cerium, zirconium catalysts to promote NH₃-SCR activity and anti-thermal aging performance, Fuel 367 (2024) 131456, <https://doi.org/10.1016/j.fuel.2024.131456>.

640 [56] B. Li, C. Song, G. Lv, K. Chen, X. Cao, Impact of soot on NO_x adsorption over Cu-modified hydrotalcite-derived lean NO_x trap catalyst, Langmuir 33 (2017) 2939–2948, <https://doi.org/10.1021/acs.langmuir.6b03877>.

643 [57] H. Kubota, C. Liu, T. Toyao, Z. Maeno, M. Ogura, N. Nakazawa, S. Inagaki, Y. Kubota, K.
644 Shimizu, Formation and reactions of NH₄NO₃ during transient and steady-state NH₃-SCR of NO_x over
645 H-AFX zeolites: Spectroscopic and theoretical studies, *ACS Catal.* 10 (2020) 2334–2344,
646 <https://doi.org/10.1021/acscatal.9b05151>.

647 [58] Y. Wang, G. Li, S. Zhang, X. Zhang, X. Zhang, Z. Hao, Promoting effect of Ce and Mn addition
648 on Cu-SSZ-39 zeolites for NH₃-SCR reaction: Activity, hydrothermal stability, and mechanism study,
649 *Chem. Eng. J.* 393 (2020) 124782, <https://doi.org/10.1016/j.cej.2020.124782>.

650 [59] X. Wang, T. Li, C. Wang, Q. Cui, T. Wang, X. Bao, Y. Yue, Improving catalytic performance of
651 Cu-SSZ-13 for NO_x abatement via in-situ introduction of La and Ce from spent catalyst, *Sep. Purif.
652 Technol.* 331 (2024) 125638, <https://doi.org/10.1016/j.seppur.2023.125638>.

653 [60] H. Jiang, B. Guan, X. Peng, R. Zhan, H. Lin, Z. Huang, Influence of synthesis method on catalytic
654 properties and hydrothermal stability of Cu/SSZ-13 for NH₃-SCR reaction, *Chem. Eng. J.* 379 (2020)
655 122358, <https://doi.org/10.1016/j.cej.2019.122358>.

656 [61] F. Gao, N. M. Washton, Y. Wang, M. Kollár, J. Szanyi, C. H. F. Peden, Effects of Si/Al ratio on
657 Cu/SSZ-13 NH₃-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity,
658 *J. Catal.* 331 (2015) 25–38, <https://doi.org/10.1016/j.jcat.2015.08.004>.

659 [62] S. Han, J. Cheng, C. Zheng, Q. Ye, S. Cheng, T. Kang, H. Dai, Effect of Si/Al ratio on catalytic
660 performance of hydrothermally aged Cu-SSZ-13 for the NH₃-SCR of NO in simulated diesel exhaust,
661 *Appl. Surf. Sci.* 419 (2017) 382–392, <https://doi.org/10.1016/j.apsusc.2017.04.198>.

662 [63] J. Luo, D. Wang, A. Kumar, J. Li, K. Kamasamudram, N. Currier, A. Yezerets, Identification of
663 two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur
664 poisoning, *Catal. Today* 267 (2016) 3–9, <https://doi.org/10.1016/j.cattod.2015.12.002>.

665 [64] D. Wang, Y. Jangjou, Y. Liu, M. K. Sharma, J. Luo, J. Li, K. Kamasamudram, W. S. Epling, A
666 comparison of hydrothermal aging effects on NH₃-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34
667 catalysts, *Appl. Catal. B: Environ.* 165 (2015) 438–445, <https://doi.org/10.1016/j.apcatb.2014.10.020>.

668 [65] F. Gao, Y. Wang, N. M. Washton, M. Kollár, J. Szanyi, C. H. F. Peden, Effects of alkali and
669 alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH₃-SCR catalysts,
670 *ACS Catal.* 5 (2015) 6780–6791, <https://doi.org/10.1021/acscatal.5b01621>.

671 [66] Z. Chen, C. Bian, C. Fan, T. Li, The role of Si coordination structures in the catalytic properties
672 and durability of Cu-SAPO-34 as NH₃-SCR catalyst for NO_x reduction, *Chin. Chem. Lett.* 33 (2022)

673 893–897, <https://doi.org/10.1016/j.cclet.2021.06.071>.

674 [67] J. Liang, Y. Mi, G. Song, H. Peng, Y. Li, R. Yan, W. Liu, Z. Wang, P. Wu, F. Liu, Environmental
675 benign synthesis of nano-SSZ-13 via FAU transcrystallization: Enhanced NH₃-SCR performance on
676 Cu-SSZ-13 with nano-size effect, *J. Hazard. Mater.* 398 (2020) 122986,
677 <https://doi.org/10.1016/j.jhazmat.2020.122986>.

678 [68] M. Xu, J. Wang, T. Yu, J. Wang, M. Shen, New insight into Cu/SAPO-34 preparation procedure:
679 Impact of NH₄-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH₃-SCR catalysts,
680 *Appl. Catal. B: Environ.* 220 (2018) 161–170, <https://doi.org/10.1016/j.apcatb.2017.08.031>.

681 [69] S. Xiong, Y. Liao, X. Xiao, H. Dang, S. Yang, the mechanism of the effect of H₂O on the low
682 temperature selective catalytic reduction of NO with NH₃ over Mn-Fe spinel, *Catal. Sci. Technol.* 5
683 (2015) 2132–2140, <https://doi.org/10.1039/C4CY01599A>.

684 [70] S. Zhan, M. Qiu, S. Yang, D. Zhu, H. Yu, Y. Li, Facile preparation of MnO₂ doped Fe₂O₃ hollow
685 nanofibers for low temperature SCR of NO with NH₃, *J. Mater. Chem. A* 2 (2014) 20486–20493,
686 <https://doi.org/10.1039/C4TA04807E>.