

# Insights into the role of Ce and Sm in improving low-temperature NH<sub>3</sub>-SCR performance over Ce-Sm/Cu-SSZ-13 coupled catalysts

Ruixin Sun<sup>a</sup>, Yu Lyu<sup>a,b</sup>, Chonglin Song<sup>a,\*</sup>, Chenxi Wang<sup>a,c</sup>, Gang Lyu<sup>a</sup>, Xiangyu Dong<sup>a</sup>, Lei Tian<sup>a</sup>,  
Xinhui Liu<sup>a</sup>, Yibo Xu<sup>a</sup>

<sup>a</sup> State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

<sup>b</sup> China Automotive Engineering Research Institute Co., Ltd, Chongqing 401122, China

<sup>c</sup> Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK

\*Corresponding author: Chonglin Song

Postal address: State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

10 *E-mail:* songchonglin@tju.edu.cn

## Abstract

12 The increasingly stringent requirements for controlling nitrogen oxide (NOx) emissions during  
13 the cold start conditions of diesel engines serve as a powerful driving force to enhance the low-  
14 temperature NH<sub>3</sub>-SCR performance of state-of-the-art commercial Cu-SSZ-13. In this study, the  
15 coupled catalysts were synthesized to create additional active sites for NO oxidation and NH<sub>3</sub>  
16 adsorption/activation, and the synergistic effect between Cu species and CeO<sub>2</sub>/Sm<sub>2</sub>O<sub>3</sub> leads to a  
17 substantial boost in the low-temperature NH<sub>3</sub>-SCR activity of CSZ. The results suggest that 6% Ce-2%  
18 Sm/CSZ, as the optimal coupled catalyst, achieves a NOx conversion of 93.1% at 200 °C, significantly  
19 higher than that of CSZ. The coupled CeO<sub>2</sub> and Sm<sub>2</sub>O<sub>3</sub> enhance the number of both Brønsted and  
20 Lewis acid sites on CSZ, promoting the adsorption and activation of NH<sub>3</sub>. Therefore, 6% Ce-2%  
21 Sm/CSZ can form more NH<sub>4</sub><sup>+</sup> adsorbed on the Lewis acid sites, which reacts with free ionic nitrates to  
22 form NH<sub>4</sub>NO<sub>3</sub>. More importantly, the coupled Sm<sub>2</sub>O<sub>3</sub> facilitates the conversion of NH<sub>4</sub>NO<sub>3</sub> by NO to

23 easily decomposable  $\text{NH}_4\text{NO}_2$ . In addition, additional oxygen vacancies provided by  $\text{Ce}^{3+}$  can adsorb  
24  $\text{O}_2$  and promote the transport of oxygen ions, and electron donation from  $\text{Sm}^{3+}$  to  $[\text{Z}\text{Cu}^{2+}(\text{OH})]^+$   
25 enhances the low-temperature activity of the latter. Ultimately, the low-temperature  $\text{NH}_3\text{-SCR}$   
26 performance of CSZ is improved via a synergistic effect. The  $\text{NH}_3\text{-SCR}$  reaction over 6% Ce-2%  
27 Sm/CSZ co-follows the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms.

28 **Keywords:** low-temperature  $\text{NH}_3\text{-SCR}$ , Cu-SSZ-13,  $\text{CeO}_2$ ,  $\text{Sm}_2\text{O}_3$ , synergistic effect

29 **1. Introduction**

30 Nitrogen oxides (NOx) are thought of as one of the major detrimental atmospheric pollutants  
31 which are inextricably linked to a spectrum of serious problems including human health and ecological  
32 environment [1–4]. Currently, the measures to reduce NOx from mobile sources are frequently used  
33 in conjunction with optimizing combustion systems to decrease NOx formation and implementing  
34 high-efficiency exhaust after-treatment technologies to purify NOx [5–8], thereby meeting emission  
35 regulations and legislation. Among these technologies, the selective catalytic reduction of NOx by  
36  $\text{NH}_3$  ( $\text{NH}_3\text{-SCR}$ ) under conditions of excess  $\text{O}_2$  has been proved to be one of the most effective and  
37 best available methods for decreasing NOx emissions [9,10]. Nowadays, the state-of-the-art  
38 commercial Cu-SSZ-13, with chabazite (CHA) structure, has been acknowledged as one of the most  
39 prevalently employed catalysts in the  $\text{NH}_3\text{-SCR}$  reaction process, primarily attributing to its  
40 outstanding catalytic performance, excellent hydrothermal stability and high  $\text{N}_2$  selectivity [11–13].  
41 Actually, Cu-SSZ-13 catalyst still encounters some inevitable problems when applied in the field of  
42 denitration. Based on the fact that the light-off temperature of the Cu-SSZ-13 catalyst (i.e., the  
43 minimum temperature at which it starts to exert catalytic activity) is typically higher than the exhaust  
44 temperature emitted by the engine during the cold start phase, the catalytic performance of the Cu-

45 SSZ-13 catalyst at low temperatures falls short of meeting the demands of practical applications [14].  
46 Therefore, there is an eager anticipation for the improvement of the Cu-SSZ-13 catalyst, which should  
47 be capable of functioning efficiently at low temperatures and possessing a broad operational  
48 temperature range.

49 The general consensus is that  $Z_2\text{Cu}^{2+}$  located at the 6-membered rings (6MRs) and  $[\text{ZCu}^{2+}(\text{OH})]^+$   
50 located at the 8-membered rings (8MRs) (Z stands for the framework negative charge) are considered  
51 to be the main active sites of SSZ-13 in  $\text{NH}_3$ -SCR [15,16]. Meanwhile, the  $[\text{ZCu}^{2+}(\text{OH})]^+$  plays a  
52 crucial role in the low-temperature region [9,17]. At present, it has been discovered that introducing a  
53 secondary cation can facilitate the exchange of  $\text{Cu}^{2+}$  onto the sites of SSZ-13, resulting in the formation  
54 of a greater number of  $[\text{ZCu}^{2+}(\text{OH})]^+$  ions. For example, Wang et al. [18] reported that Nb-incorporated  
55 Cu-SSZ-13 possesses a larger number of  $[\text{ZCu}^{2+}(\text{OH})]^+$  which is the active center at low temperature  
56 since niobium (Nb) can promote the occupation of  $\text{Cu}^{2+}$  ions at sites located on the 8MRs of SSZ-13.  
57 Lee et al. [19] proposed that  $\text{Cu}^{2+}$  ions exist more predominantly in the form of  $[\text{ZCu}^{2+}(\text{OH})]^+$  ions  
58 compared to  $Z_2\text{Cu}^{2+}$  ions due to the fact that pre-loaded  $\text{Co}^{2+}$  ions have a tendency to preferentially  
59 occupy the sites in 6MRs. Despite the fact that introducing a secondary cation to increase the number  
60 of  $[\text{ZCu}^{2+}(\text{OH})]^+$  ions represents an effective means of enhancing the activity of Cu-SSZ-13 under low-  
61 temperature conditions, the number of exchangeable sites in SSZ-13 is finite. Researchers have been  
62 persistently exploring more efficient and practical methods with the aim of markedly enhancing the  
63 activity of catalysts in low-temperature environments.

64 In 1994, a “metal oxide + zeolite” coupled catalyst for HC-SCR reactions was successfully  
65 synthesized by Yokoyama et al [20]. They utilized a mechanical mixing technique to combine  
66 Ce/ZSM-5 with  $\text{Mn}_2\text{O}_3$  or  $\text{CeO}_2$ , achieving a significant improvement in the denitrification efficiency

67 of Ce/ZSM-5 at low temperatures. Since then, a substantial amount of composite or coupled catalysts  
68 have undergone extensive and profound investigation. Huang et al [21] demonstrated that the low-  
69 temperature NH<sub>3</sub>-SCR performance of Cu-SSZ-13 was directly affected by oxygen species derived  
70 from metal oxides, including CeO<sub>x</sub>, ZrO<sub>x</sub> and MnO<sub>x</sub>. MnO<sub>x</sub> with abundant chemisorbed oxygen  
71 promoted the formation of highly active bridging nitrate species, whereas CeO<sub>x</sub> and ZrO<sub>x</sub> with  
72 abundant lattice oxygen tended to form less reactive bidentate and monodentate nitrate species. Kim  
73 et al [22] successfully prepared a dual-functional hybrid catalyst and clearly pointed out that improved  
74 low-temperature performance was attributed to the fact that the zeolite promoted the decomposition of  
75 nitrate derived from MnO<sub>x</sub>. Xu et al. [23] reported that unstable intermediate HONO species were  
76 formed on the solid solution (CeZrO<sub>x</sub>) during NO oxidation and migrated to the active component  
77 (Cu-SSZ-13) reacting with NH<sub>3</sub> adsorbed on the Brønsted acid sites to produce NH<sub>4</sub>NO<sub>2</sub>. Kim et al  
78 [24] designed an ingenious hybrid catalyst system in which the activated NO intermediates generated  
79 over MnO<sub>x</sub> migrated to the Brønsted acid sites of the H-Y zeolite. This hybrid catalyst exhibited  
80 excellent low-temperature activity. Based on the above analysis, it was found that the highly active  
81 intermediates were formed on the metal oxides and subsequently migrated to zeolites for  
82 decomposition or reaction.

83 Typically, other metals are introduced into Cu-SSZ-13 to enhance its performance. For instance,  
84 CeO<sub>2</sub> has been subject to extensive and in-depth research in the NH<sub>3</sub>-SCR reaction since it can provide  
85 wonderful oxygen storage and release capacity to adjust the concentration of oxygen in the exhaust  
86 gas and unexceptionable redox properties connected with the valence state transition capability  
87 between Ce<sup>3+</sup> and Ce<sup>4+</sup>, thereby promoting the elimination of NOx. However, it also has some  
88 drawbacks. The catalytic activity of Ce-modified Cu-SSZ-13 may be insufficient under low-

89 temperature conditions ( $\leq 250$  °C), which further restricts its application during the cold-start phase of  
90 diesel engines [25,26]. Recently, the introduction of an appropriate amount of Sm into MnO<sub>x</sub>, CeO<sub>2</sub>-  
91 MnO<sub>x</sub> and/or MnO<sub>x</sub>-TiO<sub>2</sub> could effectively promote the formation of Mn<sup>4+</sup> and chemically adsorbed  
92 oxygen, thereby enhancing their low-temperature NH<sub>3</sub>-SCR performance [27–29]. However, there are  
93 limited research reports available on the development of coupled catalysts incorporating metal oxides  
94 (CeO<sub>2</sub> and SmO<sub>2</sub>) with Cu-SSZ-13 for enhancing low-temperature NH<sub>3</sub>-SCR performance. In addition,  
95 a definitive explanation for the detailed synergistic mechanisms between zeolites and metal oxides in  
96 coupled catalysts has not been fully established. Therefore, in this study, the combination of rare earth  
97 oxides (CeO<sub>2</sub> and/or Sm<sub>2</sub>O<sub>3</sub>) with commercial Cu-SSZ-13 aims to obtain coupled catalysts (6% CeO<sub>2</sub>-  
98 2% Sm<sub>2</sub>O<sub>3</sub>/Cu-SSZ-13, indicated as 6% Ce-2% Sm/CSZ) by the slurry method to markedly enhance  
99 the low-temperature performance of CSZ at 200 °C. More importantly, the synergy mechanism of 6%  
100 Ce-2% Sm/CSZ coupled catalyst is more thoroughly explored and unveiled by employing advanced  
101 technology.

## 102 **2. Experiment and Method**

### 103 2.1 Preparation of coupled catalysts

104 The coupled catalysts were successfully synthesized. The Cu-SSZ-13 (Zhuoran Environmental  
105 Protection Co., Ltd) with a pore size of 0.3 ~ 0.4 nm and SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio of 20 was purchased  
106 and the Cu content in Cu-SSZ-13 accounted for 4.12 wt%. A specific quantity of silica sol (Zhengzhou  
107 Xinpei Chemical products Co., Ltd) + aluminum sol (Dezhou Keying New Material Co., Ltd) as well  
108 as cellulose (Macklin,  $\geq 95.0\%$ ) was utilized as complexing agent and dispersing agent, respectively.  
109 The slurry was formulated with Cu-SSZ-13 (32 wt%), binder (3 wt%), cellulose (1 wt%) and deionized  
110 water (64 wt%). Subsequently, an appropriate amount of CeO<sub>2</sub> (Macklin,  $\geq 99.9\%$ ) or CeO<sub>2</sub> + Sm<sub>2</sub>O<sub>3</sub>

111 (Macklin,  $\geq$  99.9%) was introduced into the slurry, respectively. Among them, the Ce/Sm element  
112 contents and Cu-SSZ-13 contents in the slurry were maintained at 32 wt%. A 300 cpsi honeycomb  
113 cordierite monolith (CC, Shandong Aofu Environmental Protection Technology Co, Ltd) with 30 mm  
114 length, 20 mm diameter and 0.18 mm wall thickness was put into the slurry. The surplus slurry inside  
115 the straight track was cleared away by compressed air, effectively preventing any blockage of the  
116 channel. The prepared catalysts were dried at 120 °C for 12 h and calcined at 550 °C for 4 h to obtain  
117 the final coupled catalysts. The desired coating loading of 36 wt% was deposited onto CC. As a  
118 comparison, the slurry containing only Cu-SSZ-13 was designated as CSZ. In addition, the Ce element  
119 contents in Ce/CSZ of 5, 6, 7, 8 and 10 wt%, and second promoting metal Sm element contents in Ce-  
120 Sm/CSZ of 1, 2 and 3 wt% were employed in this study. The obtained coupled catalysts were labeled  
121 as  $x\%$  Ce- $y\%$  Sm/CSZ, where  $x$  and  $y$  represented the weight contents of the Ce and Sm elements,  
122 respectively. In addition, the actual contents of Cu, Sm, and Ce in the coupled catalysts were measured  
123 by ICP-OES, and the results are presented in Table 1.

Table 1 Actual contents of Cu, Ce, and Sm in the coupled catalysts

| Coupled catalysts | Cu (wt%) | Ce (wt%) | Sm (wt%) |
|-------------------|----------|----------|----------|
| CSZ               | 3.45     | —        | —        |
| 6% Ce/CSZ         | 3.24     | 6.02     | —        |
| 8% Ce/CSZ         | 3.15     | 7.93     | —        |
| 10% Ce/CSZ        | 2.96     | 10.17    | —        |
| 6% Ce-2% Sm/CSZ   | 3.12     | 5.91     | 1.97     |

124 2.2. Characterization of coupled catalysts

125 The elemental contents of Cu, Ce and Sm, crystal structure, texture properties and element

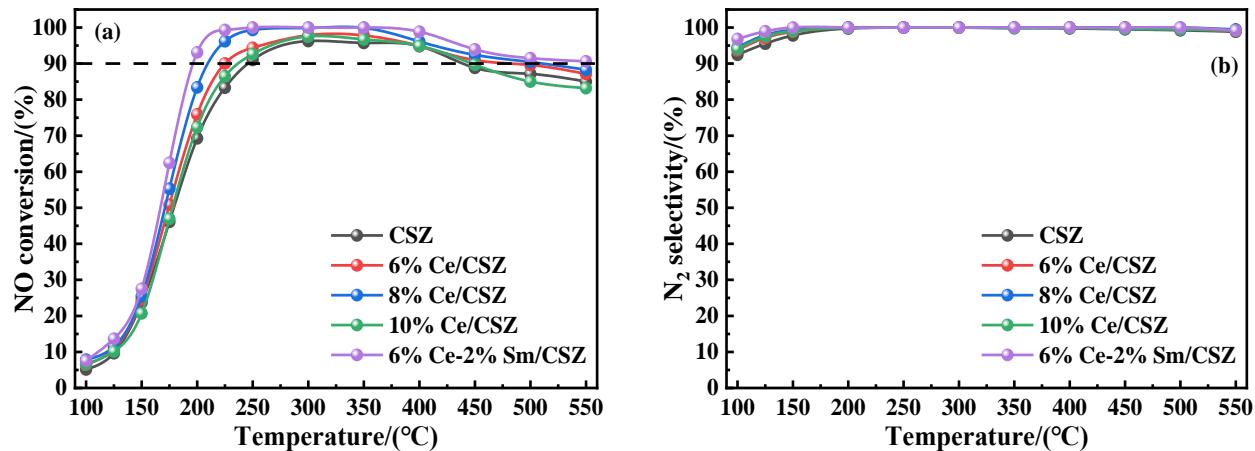
126 distribution of the coupled catalysts were investigated by means of inductively coupled plasma-optical  
127 emission spectrometry (ICP-OES), X-ray diffraction (XRD), scanning electron microscope (SEM) and  
128 energy dispersive spectrometer (EDS). For the analysis of Cu species in the coupled catalysts, the  
129 redox properties and electrostatic interactions were examined through the application of H<sub>2</sub>  
130 temperature-programmed reduction (H<sub>2</sub>-TPR) and X-ray photoelectron spectra (XPS) techniques. The  
131 adsorption and desorption behaviors of NO<sub>x</sub> and NH<sub>3</sub> on the coupled catalysts were tested by  
132 NH<sub>3</sub>/(NO+O<sub>2</sub>)-temperature-programmed desorption (NH<sub>3</sub>/(NO+O<sub>2</sub>)-TPD) and in situ diffuse  
133 reflectance infrared fourier transform spectroscopy (In situ DRIFTS). In addition, the comprehensive  
134 experimental procedures have been outlined in the Supplementary data.

135 2.3. NH<sub>3</sub>-SCR steady-state reaction experiments

136 The NH<sub>3</sub>-SCR steady-state reaction experiments were carried out in a fixed-bed continuous flow  
137 quartz reactor with an inner diameter of 20 mm at atmospheric pressure. The desired reaction  
138 temperature and flow rate were regulated and controlled by the furnace with PID control and the mass  
139 flow controller, respectively. The gas hourly space velocity (GHSV) of the reaction feed gas was  
140 70,000 h<sup>-1</sup> (total flow rate of 8.110 L min<sup>-1</sup>), with a composition comprising 1100 ppm NH<sub>3</sub>, 1000 ppm  
141 NO, 10 vol% O<sub>2</sub>, 5 vol% water vapour (only used for the water vapour tolerance research) and argon  
142 (Ar) as the balance gas. To assess the influence of thermal aging on the performance of the coupled  
143 catalysts, the coupled catalysts were subjected to a thermal treatment at 800°C for 4 h. The steady-  
144 state outlet concentrations of NO<sub>2</sub>, N<sub>2</sub>O, NH<sub>3</sub> and NO during the NH<sub>3</sub>-SCR reaction were tracked using  
145 an online mass spectrometer manufactured by V&F corporation from Austria. The essential parameters  
146 for assessing the catalytic performance of the coupled catalysts were expressed through equations (1)  
147 and (2):

$$\text{NOx conversion} = \frac{C_{\text{NO,in}} - C_{\text{NO,out}}}{C_{\text{NO,in}}} \times 100\% \quad (1)$$

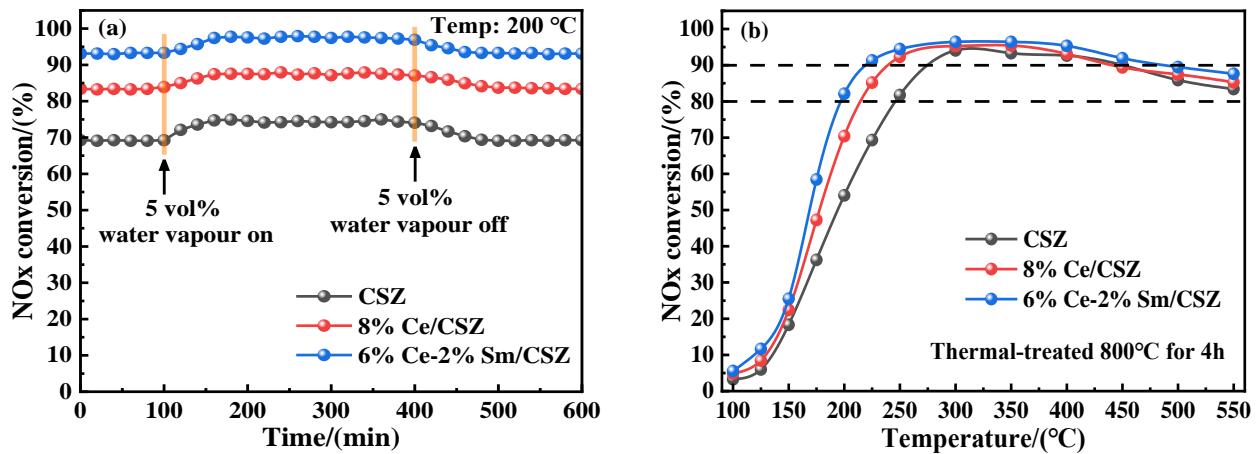
$$\text{N}_2 \text{ selectivity} = 1 - \frac{2C_{\text{N}_2\text{O,out}} + C_{\text{NO}_2\text{,out}}}{C_{\text{NO,in}} - C_{\text{NO,out}} + C_{\text{NH}_3\text{,in}} - C_{\text{NH}_3\text{,out}}} \times 100\% \quad (2)$$


148 where the  $C_{g,\text{in}}$  and  $C_{g,\text{out}}$  denote feed and effluent gases concentration of species g.

149 **3. Results and Discussion**

150 **3.1 NH<sub>3</sub>-SCR catalytic performance**

151 NH<sub>3</sub>-SCR steady-state performance of the coupled catalysts was tested, as depicted in Fig. 1 and  
 152 Fig. S1. The optimal catalytic performance of CSZ is observed between 250 and 450 °C (Fig. 1a).  
 153 However, CSZ demonstrates poor catalytic performance at 200 °C (69.2%) and 225 °C (83.3%). After  
 154 coupled CeO<sub>2</sub>, the coupled catalysts outperform CSZ in catalytic performance. 8% Ce/CSZ possesses  
 155 higher catalytic performance at 219–405 °C (NOx conversion above 95%) and achieves nearly 100%  
 156 NOx conversion at 250–350 °C. In particular, the NOx conversion on 8% Ce/CSZ (83.4%) is 14.2%  
 157 higher than that on CSZ (69.2%) at 200 °C. After coupled CeO<sub>2</sub> and Sm<sub>2</sub>O<sub>3</sub>, the NOx conversion of  
 158 x% Ce-y% Sm/CSZ shows a similar trend across the reaction temperature window (Fig. S1a), and the  
 159 6% Ce-2% Sm/CSZ demonstrates the optimal catalytic performance among x% Ce-y% Sm/CSZ.  
 160 Furthermore, the NH<sub>3</sub>-SCR performance of 6% Ce-2% Sm/CSZ surpasses that of CSZ and 8% Ce/CSZ,  
 161 particularly evident in its NOx conversion exceeding 90% within 190–550 °C. What's more, a NOx  
 162 conversion of 93.1% is achieved over 6% Ce-2% Sm/CSZ at 200 °C. These results can indicate that a  
 163 synergistic effect exists between Ce and Sm to promote low-temperature NH<sub>3</sub>-SCR. As shown in Fig.  
 164 S1b, for CSZ, 8% Ce/CSZ and 6% Ce-2% Sm/CSZ, no N<sub>2</sub>O products are detected when the reaction  
 165 temperature is less than 250 °C. However, the N<sub>2</sub>O product is detected at reaction temperatures above  
 166 250 °C. It is notable that the N<sub>2</sub>O concentration in the 6% Ce-2% Sm/CSZ remains below 10 ppm for

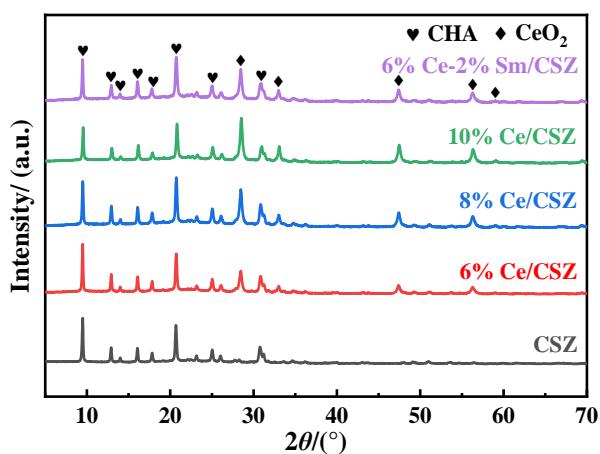

167 the duration of the reaction. In addition, all the catalysts display a N<sub>2</sub> selectivity of more than 93% (Fig.  
168 1b).



169 Fig. 1. (a) NOx conversion and (b) N<sub>2</sub> selectivity of the coupled catalysts.

170 Fig. S2a displays the NH<sub>3</sub>-SCR performance of the coupled catalysts in the presence of 5 vol%  
171 water vapour. There is a slight increase in NH<sub>3</sub>-SCR performance for coupled catalysts across the  
172 temperature range of 100–550 °C. Fig. 2a shows the NOx conversion of the coupled catalysts as a  
173 function of time at 200 °C under 5 vol% water vapor conditions. An increase in NOx conversion is  
174 observed for CSZ, 8% Ce/CSZ and 6% Ce-2% Sm/CSZ (from 100 to 400 min). For instance, the NOx  
175 conversion enhances gradually from 83.9 to 87.6% for 8% Ce/CSZ and from 93.1 to 97.7% for 6%  
176 Ce-2% Sm/CSZ (from 100 to 180 min). It has been reported that water vapour significantly reduces  
177 the reaction energy barrier between [Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> and [Cu<sup>II</sup>(NH<sub>3</sub>)<sub>2</sub>]<sup>2+</sup> [30,31]. Another viewpoint holds  
178 that NH<sub>3</sub> adsorbed on Brønsted acid sites can diffuse to Lewis acid sites because hydrogen bonds are  
179 formed by adsorbed NH<sub>3</sub> and water vapour [32,33]. Consequently, an enhancement in catalytic activity  
180 is achieved. Full recovery of NO conversion can be achieved by removing water vapour from the  
181 reaction atmosphere, which indicates that the change in catalytic performance of the coupled catalysts  
182 induced by water vapour is reversible.

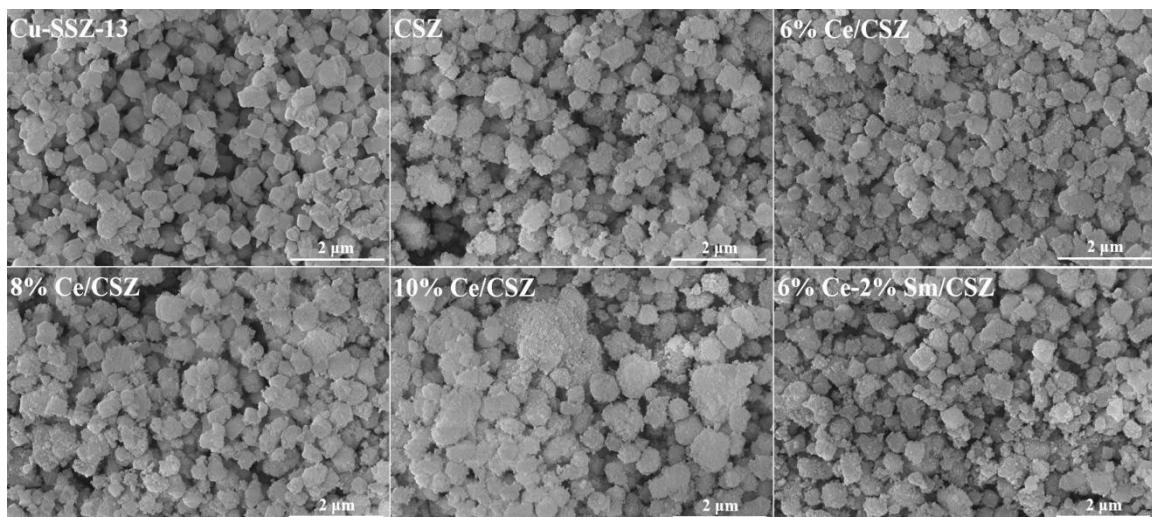
183 NO<sub>x</sub> conversion reduces to different extents in coupled catalysts after thermal aging treatment at  
 184 800 °C for 4 h, but the use of coupled CeO<sub>2</sub> and/or Sm<sub>2</sub>O<sub>3</sub> can effectively alleviate the loss of NO<sub>x</sub>  
 185 conversion in CSZ (Fig. 2b), particularly at reaction temperatures ranging from 175 to 300 °C.  
 186 Consistent NO<sub>x</sub> conversion above 80% is maintained on CSZ in the temperature range of 247 to 550 °C,  
 187 while more than 80% NO<sub>x</sub> conversion on 6% Ce-2% Sm/CSZ and 8% Ce/CSZ is achieved at 193–  
 188 550 °C and 223–550 °C, respectively. These results indicate that coupled Ce and/or Sm can broaden  
 189 the reaction window of low-temperature NH<sub>3</sub>-SCR. As shown in Fig. S2, the N<sub>2</sub> selectivity of the  
 190 coupled catalysts after thermal aging slightly decreases compared to that of the fresh coupled catalysts.  
 191 After thermal aging, it is noteworthy that the N<sub>2</sub> selectivity of 6% Ce-2% Sm/CSZ is superior to that  
 192 of CSZ and 8% Ce/CSZ. For instance, the N<sub>2</sub> selectivity of CSZ and 8% Ce/CSZ exceeds 98% in the  
 193 temperature ranges of 197–372 °C and 188–471 °C, respectively. In contrast, the N<sub>2</sub> selectivity of 6%  
 194 Ce-2% Sm/CSZ remains above 98% over a significantly wider temperature range of 125–550 °C.




195 Fig. 2. NO<sub>x</sub> conversion of CSZ, 8% Ce/CSZ and 6% Ce-2% Sm/CSZ (a) in the presence of 5 vol% water vapour at  
 196 200 °C and (b) after thermal aging treatment at 800 °C for 4 h.

197 3.2 Textural properties

198 XRD was employed to detect the crystal structure and phase composition of the coupled catalysts,  
 199 and the results are displayed in Fig. 3. The major characteristic diffraction peaks located at  $2\theta = 9.5^\circ$ ,


200 12.9°, 14.1°, 16.0°, 17.8°, 20.6°, 25.1° and 30.6° are accurately associated with the internal crystal  
201 structure of SSZ-13 (PDF# 47–0762), which demonstrates that all the coupled catalysts continue to  
202 retain the typical CHA structure after coupled CeO<sub>2</sub> and CeO<sub>2</sub>-Sm<sub>2</sub>O<sub>3</sub>. There are not any characteristic  
203 diffraction peaks identified as associated with Cu species or Sm<sub>2</sub>O<sub>3</sub>, indicating that the Cu species are  
204 very well incorporated onto the active sites within the SSZ-13 framework and the Sm<sub>2</sub>O<sub>3</sub> species are  
205 extremely uniformly distributed on the surface of SSZ-13 or the introduced Sm<sub>2</sub>O<sub>3</sub> species are in the  
206 nanoscale size. After coupled CeO<sub>2</sub>, a more noteworthy phenomenon is that the characteristic  
207 diffraction peaks attributed to CeO<sub>2</sub> are detected at 2θ angles of 28.5°(1,1,1), 33.0°(2,0,0), 47.3°(2,2,0),  
208 56.3°(3,1,1) and 59.0°(2,2,2), which correspond to CeO<sub>2</sub> with a cubic crystal structure (PDF# 43-1002).



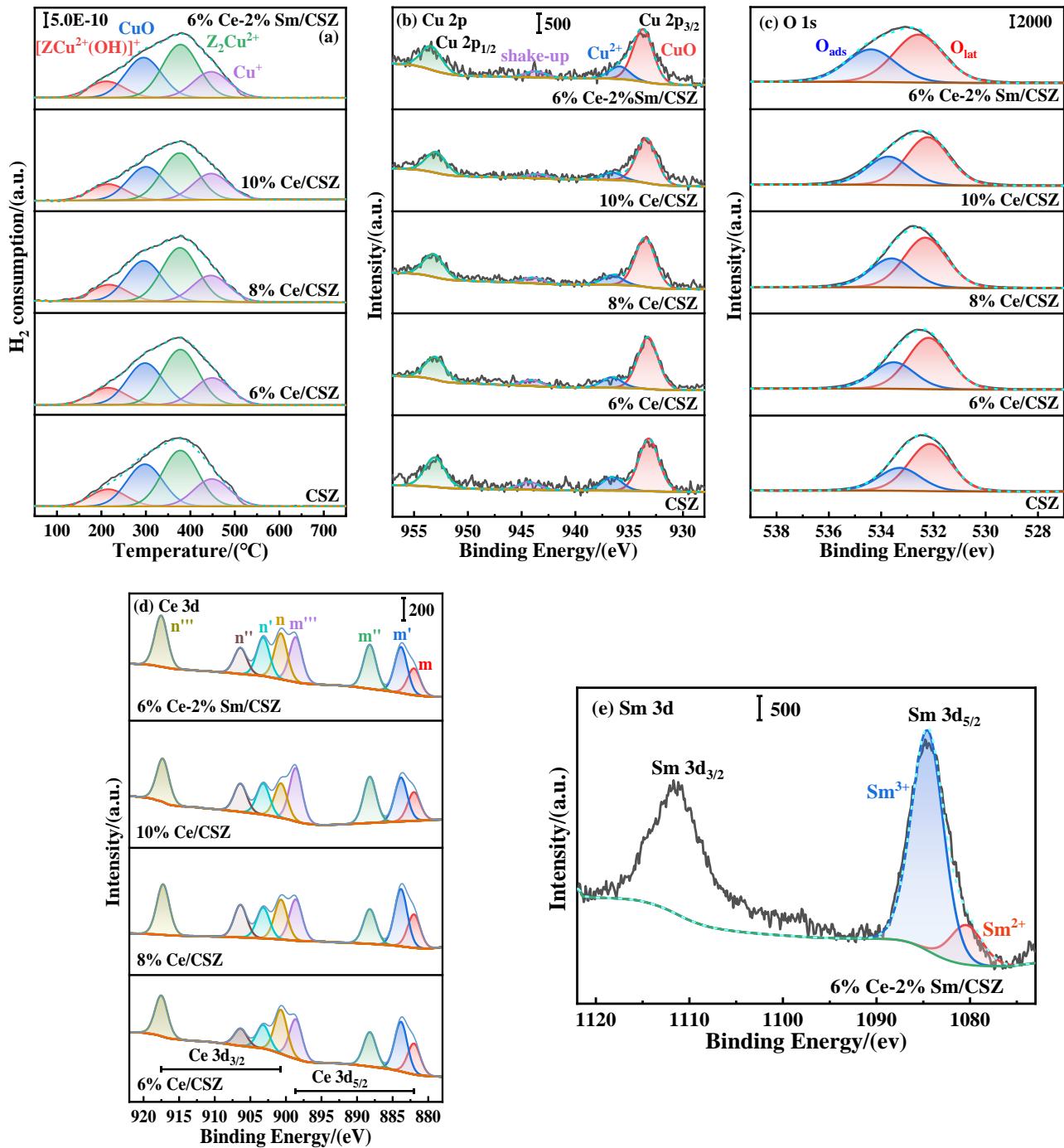
209 Fig. 3. XRD patterns of CSZ and the coupled catalysts.

210 For the purpose of conducting a more in-depth observation and analysis of the morphological  
211 changes and elemental distribution in the coupled catalysts, SEM and EDS imaging were performed  
212 on Cu-SSZ-13,  $x\%$  Ce/CSZ ( $x = 6, 8$  and  $10$ ) and  $6\%$  Ce-2% Sm/CSZ, as demonstrated in Fig. 4 and  
213 Fig. S3. Cu-SSZ-13 displays cubic crystals with sizes ranging from  $0.25$  to  $0.30$   $\mu\text{m}$  (Fig. 4) and  
214 exhibits a uniform distribution of Cu, Si, Al and O elements (Fig. S3). The morphologies of CSZ,  $x\%$   
215 Ce/CSZ ( $x = 6$  and  $8$ ) and  $6\%$  Ce-2% Sm/CSZ show similarities to those of Cu-SSZ-13, and the CeO<sub>2</sub>  
216 and/or Sm<sub>2</sub>O<sub>3</sub> species exhibit a uniform distribution on the surface of CSZ with cubic crystals, as

217 verified by the SEM and EDS data in Fig. 4 and Fig. S3. Severe agglomeration is observed in the 10%  
218 Ce/CSZ. Additionally, the XRD analysis reveals that the intensities of the characteristic diffraction  
219 peaks at  $2\theta = 9.5^\circ$  and  $20.6^\circ$  are slightly lower than those of CSZ and the ICP-OES results indicate  
220 that the actual Cu content (2.96 wt%) is slightly lower than the nominal Cu content (3.11 wt%).  
221 According to the changes in the intensities of the characteristic diffraction peaks and the actual Cu  
222 content, it can be inferred that excess  $\text{CeO}_2$  covers part of the SSZ-13 framework structure. This result  
223 could be one of the factors contributing to the reduced catalytic activity of 10% Ce/CSZ coupled  
224 catalyst.



225 Fig. 4. SEM images of Cu-SSZ-13 and the coupled catalysts.


226 3.3 Active species

227 To explore the effects of  $\text{CeO}_2$  and/or  $\text{Sm}_2\text{O}_3$  on the catalytic activity of the coupled catalysts, the  
228 reduction properties of Cu species in the coupled catalysts were studied by using H<sub>2</sub>-TPR. As  
229 illustrated in Fig. 5a, the reduction peaks are detected at approximately 220, 297, 380 and 445 °C,  
230 corresponding to the reduction of  $[\text{ZCu}^{2+}(\text{OH})]^+$  to  $\text{Cu}^+$ ,  $\text{CuO}$  to  $\text{Cu}^0$ ,  $\text{Z}_2\text{Cu}^{2+}$  to  $\text{Cu}^+$  and  $\text{Cu}^+$  to  $\text{Cu}^0$ ,  
231 respectively [23,34–36]. The reduction peak temperature of the  $x\%$  Ce/CSZ does not change

232 significantly compared to CSZ. It demonstrates that the reduction properties of Cu species remain  
233 unaffected by the presence of CeO<sub>2</sub>. In addition, [ZCu<sup>2+</sup>(OH)]<sup>+</sup> and Z<sub>2</sub>Cu<sup>2+</sup>, as the most important  
234 catalytically active sites, exhibit significantly different effects on catalytic performance during the  
235 NH<sub>3</sub>-SCR reaction [18,34]. Nevertheless, [ZCu<sup>2+</sup>(OH)]<sup>+</sup> serves as the catalytically active sites at low  
236 temperatures [9,17]. Compared with CSZ and 8% Ce/CSZ, the reduction peak temperature of  
237 [ZCu<sup>2+</sup>(OH)]<sup>+</sup> in 6% Ce-2% Sm/CSZ shifts toward lower temperatures by 10 and 9 °C, respectively,  
238 which suggests that Sm species can enhance the reduction property of [ZCu<sup>2+</sup>(OH)]<sup>+</sup>. Tong et al. [37]  
239 pointed out that Sm species can modulate the reduction property of active components. Therefore, 6%  
240 Ce-2% Sm/CSZ displays the best catalytic performance. In addition, the concentration of  
241 [ZCu<sup>2+</sup>(OH)]<sup>+</sup> in the coupled catalysts reduced by H<sub>2</sub> was calculated and summarized in Table 2. The  
242 H<sub>2</sub> consumption of 85.01 μmol g<sup>-1</sup> is observed for [ZCu<sup>2+</sup>(OH)]<sup>+</sup> on CSZ. After coupled CeO<sub>2</sub> and/or  
243 Sm<sub>2</sub>O<sub>3</sub>, the gradual decrease in H<sub>2</sub> consumption of [ZCu<sup>2+</sup>(OH)]<sup>+</sup> on the coupled catalysts is attributed  
244 to the reduced proportion of CSZ in the coupled catalysts. The H<sub>2</sub> consumption of [ZCu<sup>2+</sup>(OH)]<sup>+</sup> in 8%  
245 Ce/CSZ and 6% Ce-2% Sm/CSZ is remarkably similar, at approximately 77.58 μmol g<sup>-1</sup>, indicating  
246 that the concentration of [ZCu<sup>2+</sup>(OH)]<sup>+</sup> is not influenced by CeO<sub>2</sub> and CeO<sub>2</sub>-Sm<sub>2</sub>O<sub>3</sub>. Unexpectedly,  
247 the opposite experimental phenomenon was discovered. Xu et al. [23] pointed out that CeZrO<sub>x</sub>  
248 enhanced the concentration of [ZCu<sup>2+</sup>(OH)]<sup>+</sup> in CeZrO<sub>x</sub>-Cu/SSZ-13. Actually, the concentration of  
249 [ZCu<sup>2+</sup>(OH)]<sup>+</sup> may be influenced by preparation conditions, such as the pH and particle size of the  
250 slurry, the selection and dosage of binders, the Si/Al molar ratio and Cu content in SSZ-13 and other  
251 factors. In addition, the catalytic performance of 8% Ce/CSZ and 6% Ce-2% Sm/CSZ at low  
252 temperatures is superior to that of CSZ, which further demonstrates the synergistic effect between rare  
253 earth oxides (CeO<sub>2</sub> and/or Sm<sub>2</sub>O<sub>3</sub> species) and [ZCu<sup>2+</sup>(OH)]<sup>+</sup> ions. Interestingly, the improvement of

254 catalytic activity in CSZ achieved by combining CeO<sub>2</sub> and Sm<sub>2</sub>O<sub>3</sub> is greater than that achieved by  
255 CeO<sub>2</sub> alone, indicating the differing contributions of CeO<sub>2</sub> and Sm<sub>2</sub>O<sub>3</sub> to the NH<sub>3</sub>-SCR reaction.

256 The information about surface component and oxidation states in the coupled catalysts needs to  
257 be investigated. Therefore, XPS characterization was performed. The coupled catalysts' Cu 2p, O 1s,  
258 Ce 3d and Sm 3d spectra are illustrated in Fig. 5b-e, and the surface Cu<sup>2+</sup>/(Cu<sup>2+</sup> + CuO) concentration  
259 and peak area proportion (O<sub>ads</sub> and Ce<sup>3+</sup>) are presented in Table 2. Fig. 5b illustrates that the spin-orbit  
260 splitting results in two distinct Cu 2p peaks located at approximately 932.6 eV (Cu 2p<sub>3/2</sub>) and 953.1  
261 eV (Cu 2p<sub>1/2</sub>), respectively [25,38,39]. Additionally, the shake-up satellite of Cu is detected at around  
262 944.1 eV, which suggests that the Cu species in the coupled catalysts mainly exist in the form of + 2  
263 [40,41]. The Cu 2p<sub>3/2</sub> peak can be split into two peaks presenting at approximately 933.2 eV (CuO  
264 species) and 936.6 eV (Cu<sup>2+</sup>) [36,42]. After coupled CeO<sub>2</sub>, the binding energy (at approximately 936.6  
265 eV) of Cu<sup>2+</sup> and the surface Cu<sup>2+</sup>/(Cu<sup>2+</sup> + CuO) concentration (at approximately 15 at%) in CSZ and  
266 x% Ce/CSZ (x = 6 and 8) remain almost unchanged (Fig. 5b and Table 2), indicating that CeO<sub>2</sub> does  
267 not affect the characteristics of Cu<sup>2+</sup> species. However, compared with CSZ and 8% Ce/CSZ, the  
268 binding energy of Cu<sup>2+</sup> in 6% Ce-2% Sm/CSZ shifts toward lower binding energy by 0.7 and 0.6 eV,  
269 respectively. This result further confirms electron transfer between Sm<sup>3+</sup> and [ZCu<sup>2+</sup>(OH)]<sup>+</sup>. In  
270 addition, [ZCu<sup>2+</sup>(OH)]<sup>+</sup> serves as the active sites under low-temperature conditions. Chen et al. [9]  
271 pointed out that the activity of [ZCu<sup>2+</sup>(OH)]<sup>+</sup> is enhanced because Sm<sup>3+</sup> can transfer electrons to  
272 [ZCu<sup>2+</sup>(OH)]<sup>+</sup>, which leads to better performance in the low-temperature NH<sub>3</sub>-SCR reaction.



273

Fig. 5. (a) H<sub>2</sub>-TPR, (b) Cu 2p, (c) O 1s, (d) Ce 3d and (e) Sm 3d spectra of the coupled catalysts.

274

The coupled catalysts' O 1s spectra illustrated in Fig. 5c can be divided into lattice oxygen (O<sub>lat</sub>)

275

at 532.1–532.6 eV and chemisorption oxygen (O<sub>ads</sub>) at 533.2–534.4 eV [9,18]. Compared with CSZ,

276

the O 1s peaks for  $x\%$  Ce/CSZ remain virtually unchanged, which suggests that the oxygen species

277

derived from Ce species demonstrate negligible interaction with Cu<sup>2+</sup> ([ZCu<sup>2+</sup>(OH)]<sup>+</sup> or Z<sub>2</sub>Cu<sup>2+</sup>). It

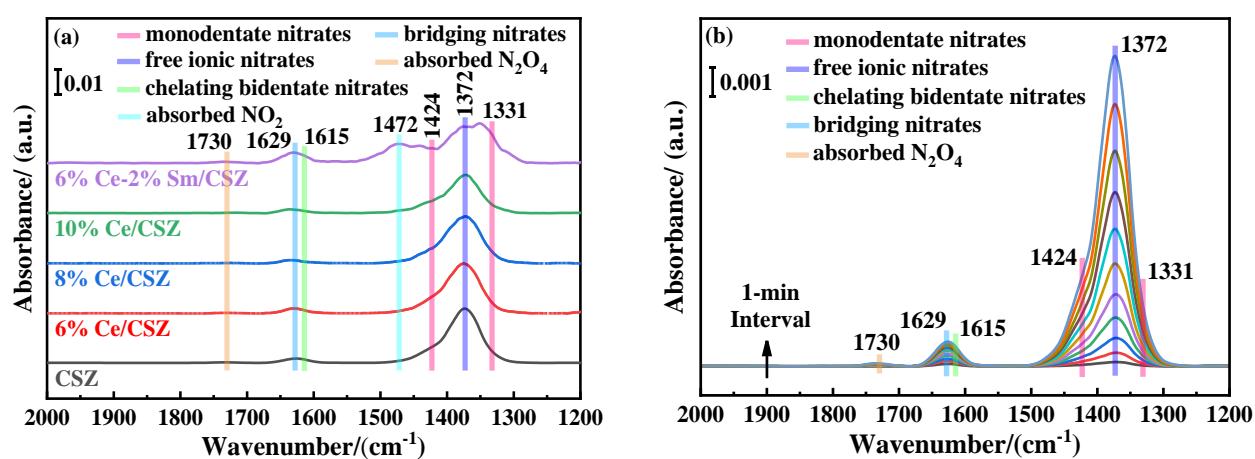
278 can be clearly observed from Table 2 that the corresponding peak area proportion of  $O_{ads}/(O_{lat} + O_{ads})$   
279 in 6% Ce/CSZ (35.08%), 8% Ce/CSZ (41.61%), 10% Ce/CSZ (33.17%) and 6% Ce-2% Sm/CSZ  
280 (43.79%) is higher than that in CSZ (30.67%). It should be pointed out that  $O_{ads}$ , as the most active  
281 oxygen species, can directly affect redox reactions [43]. After coupled  $Sm_2O_3$ , the binding energy of  
282  $O_{lat}$  and  $O_{ads}$  in 6% Ce-2% Sm/CSZ shifts to higher binding energy, indicating that there exist strong  
283 interactions between oxygen species originated from Sm species and  $Cu^{2+}$  [9,44]. In addition, the  
284 corresponding peak area proportion of  $O_{ads}/(O_{lat} + O_{ads})$  in 6% Ce-2% Sm/CSZ is significantly higher  
285 than that in CSZ and 8% Ce/CSZ. Therefore, it can be inferred that  $O_{ads}$  consists of chemisorption  
286 oxygen and hydroxyl group. The additional Brønsted acid sites provided by the hydroxyl group can  
287 serve as active centers for  $NH_3$  adsorption and activation [45]. Thus, 6% Ce-2% Sm/CSZ exhibits the  
288 best low-temperature activity.

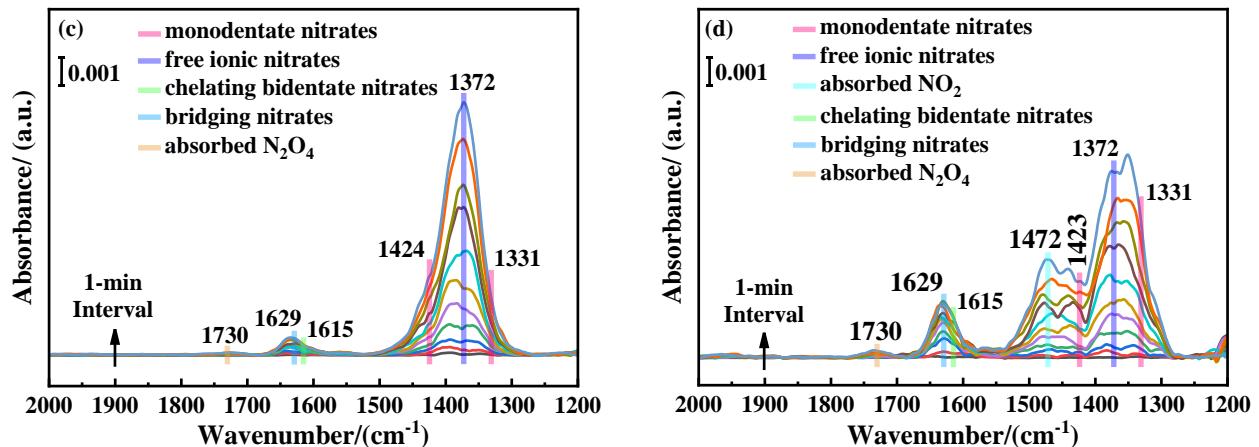
289 The coupled catalysts' Ce 3d and Sm 3d spectra are illustrated in Fig. 5d and e. It can be seen  
290 from Fig. 5d that the peaks denoted as m ( $\sim 882.0$  eV), m' ( $\sim 883.8$  eV), m'' ( $\sim 888.2$  eV) and m''' ( $\sim$   
291 898.6 eV) are deemed to be Ce  $3d_{5/2}$ , and the peaks marked as n ( $\sim 900.7$  eV), n' ( $\sim 903.2$  eV), n'' ( $\sim$   
292 906.4 eV) and n''' ( $\sim 917.3$  eV) are considered to be Ce  $3d_{3/2}$ , respectively [46,47]. In addition, m' and  
293 n' peaks are designated as  $Ce^{3+}$ , and the other peaks are assigned as  $Ce^{4+}$ . The corresponding peak area  
294 proportion of  $Ce^{3+}/(Ce^{3+} + Ce^{4+})$  in 6% Ce/CSZ and 6% Ce-2% Sm/CSZ is 24.13 and 24.63% (Table  
295 2), respectively. It enhances slightly after coupled  $Sm_2O_3$ , so it can be inferred that Sm species can  
296 improve the formation of  $Ce^{3+}$  to a certain extent. It has been reported that the additional oxygen  
297 vacancies provided by  $Ce^{3+}$  can effectively adsorb  $O_2$  in the gas phase and promote the transport of  
298 oxygen ions in the coupled catalysts [48,49]. In brief, it can improve catalytic activity at low  
299 temperatures. This result indicates that a synergistic interaction exists among Ce, Sm and Cu species.

300 According to Fig. 5e, the peaks at around 1111.3 and 1084.4 eV of the Sm 3d are ascribed to Sm 3d<sub>3/2</sub>  
 301 and Sm 3d<sub>5/2</sub>, respectively. The Sm 3d<sub>5/2</sub> peaks can be split into two peaks, i.e., one peak at around  
 302 1080.4 eV corresponds to Sm<sup>2+</sup>, and the other peak at around 1084.5 eV corresponds to Sm<sup>3+</sup> [50,51],  
 303 which suggests that Sm exists primarily in the form of + 3 in 6% Ce-2% Sm/CSZ.

Table 2 Changes in the content of Cu species and in the relative area proportion of O<sub>ads</sub> and Ce<sup>3+</sup> over the coupled catalysts.

| Coupled catalysts | <sup>a</sup> H <sub>2</sub> consumption (μmol g <sup>-1</sup> ) |                                 |        | <sup>b</sup> Cu <sup>2+</sup> /(Cu <sup>2+</sup> +CuO)<br>concentration (at%) | <sup>b</sup> O <sub>ads</sub> /(O <sub>ads</sub> +O <sub>lat</sub> ) (%) | <sup>b</sup> Ce <sup>3+</sup> /(Ce <sup>3+</sup> +Ce <sup>4+</sup> ) (%) |
|-------------------|-----------------------------------------------------------------|---------------------------------|--------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                   | [ZCu <sup>2+</sup> (OH)] <sup>+</sup>                           | Z <sub>2</sub> Cu <sup>2+</sup> | Total  |                                                                               |                                                                          |                                                                          |
| CSZ               | 85.01                                                           | 191.40                          | 276.41 | 16.47                                                                         | 30.67                                                                    | —                                                                        |
| 6% Ce/CSZ         | 79.18                                                           | 178.28                          | 257.46 | 14.23                                                                         | 35.08                                                                    | 24.13                                                                    |
| 8% Ce/CSZ         | 77.69                                                           | 174.93                          | 252.62 | 15.45                                                                         | 41.61                                                                    | 27.81                                                                    |
| 10% Ce/CSZ        | 65.35                                                           | 147.11                          | 212.46 | 9.39                                                                          | 33.17                                                                    | 21.25                                                                    |
| 6% Ce-2% Sm/CSZ   | 77.47                                                           | 174.38                          | 251.85 | 16.13                                                                         | 43.79                                                                    | 24.63                                                                    |


<sup>a</sup> Analyzed by H<sub>2</sub>-TPR. <sup>b</sup> Analyzed by XPS.

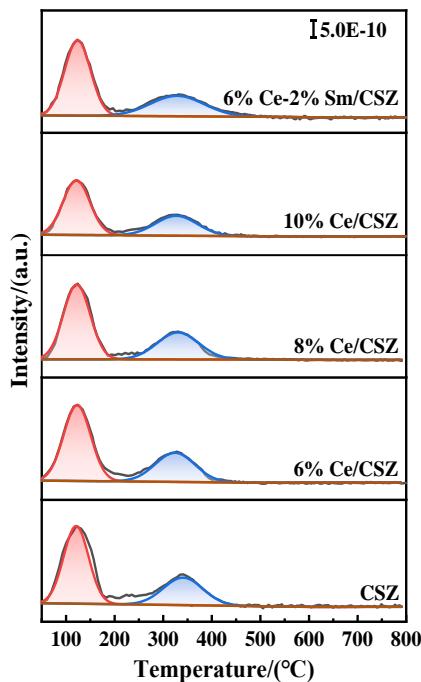

304 3.4 Adsorption/Desorption and activation of NO+O<sub>2</sub>

305 3.4.1. NO+O<sub>2</sub> adsorption

306 NOx adsorption plays a particularly critical role in the coupled catalysts, given that NOx is one  
 307 of the principal reactants in the NH<sub>3</sub>-SCR reaction. Therefore, in situ DRIFTS was used to study the  
 308 adsorbed NOx species on the coupled catalyst during the NOx absorption process at 50 °C, and the  
 309 results are presented in Fig. 6. Symmetric vibrations of monodentate nitrates (1331 cm<sup>-1</sup>), free ionic  
 310 nitrates (1372 cm<sup>-1</sup>), asymmetric vibrations of monodentate nitrates (1424 cm<sup>-1</sup>), chelating bidentate  
 311 nitrates (1615 cm<sup>-1</sup>), bridging nitrates (1429 cm<sup>-1</sup>) and absorbed N<sub>2</sub>O<sub>4</sub> (1730 cm<sup>-1</sup>) are observed on

312 CSZ [52–55], and the peak intensity of adsorbed NO<sub>x</sub> species gradually enhances with adsorption time  
 313 from 1 to 10 min. After coupled CeO<sub>2</sub>, the peak intensity of adsorbed NO<sub>x</sub> species on both 6% Ce/CSZ  
 314 and 8% Ce/CSZ is consistently lower than that on CSZ at any given time point (Fig. 6a, b and c) due  
 315 to the fact that the proportion of CSZ in the coupled catalysts decreases, which suggests that the  
 316 adsorption sites for NO<sub>x</sub> are exclusively located on Cu species. Furthermore, this is consistent with  
 317 the adsorbed NO<sub>x</sub> species on  $x\%$  Ce/CSZ ( $x = 6$  and  $8$ ) and CSZ, indicating that Ce species do not  
 318 alter the adsorbed NO<sub>x</sub> species on the coupled catalysts. After coupled Sm<sub>2</sub>O<sub>3</sub>, an increase in peak  
 319 intensity of NO<sub>x</sub> is detected at 1331, 1615 and 1629 cm<sup>-1</sup>, while a reduction in peak intensity of NO<sub>x</sub>  
 320 is observed at 1372 cm<sup>-1</sup> compared to CSZ and 8% Ce/CSZ at any given time point. However, an  
 321 interesting phenomenon is that a new peak at 1472 cm<sup>-1</sup> is noted for 6% Ce-2% Sm/CSZ (Fig. 6d),  
 322 which is assigned to absorbed NO<sub>2</sub> [56]. This result demonstrates that the Sm species are able to form  
 323 a rich diversity of adsorbed NO<sub>x</sub> species, especially the formation of NO<sub>2</sub> on 6% Ce-2% Sm/CSZ. It  
 324 is widely known that NO<sub>2</sub> can participate in the reaction between NO and NH<sub>3</sub>, that is, the “Fast SCR”  
 325 reaction. As a consequence, 6% Ce-2% Sm/CSZ exhibits excellent low temperature NH<sub>3</sub>-SCR  
 326 performance.





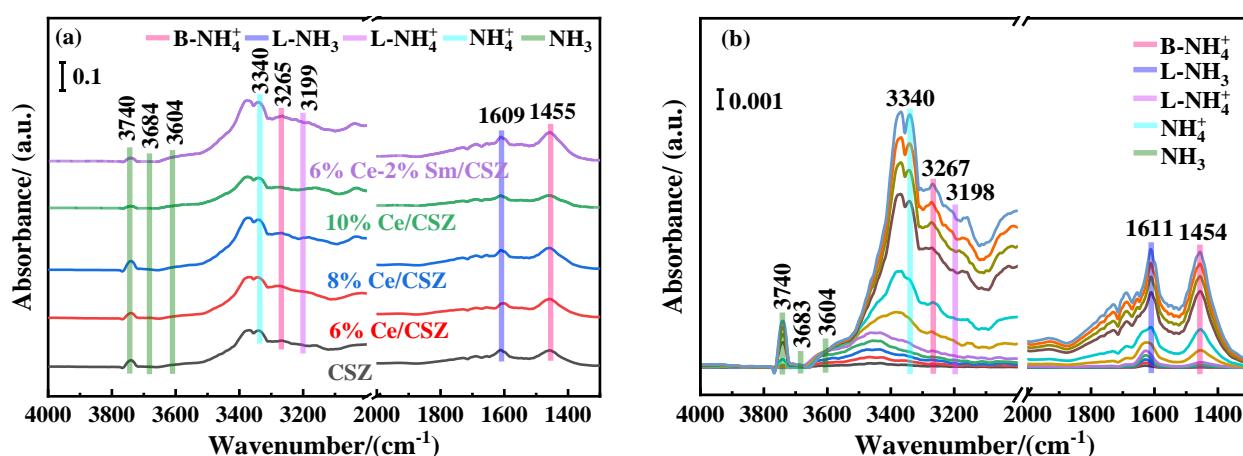

327 Fig. 6. In situ DRIFTS of  $\text{NO} + \text{O}_2$  adsorption on: (a) CSZ,  $x\%$  Ce/CSZ and 6% Ce-2% Sm/CSZ at 50 °C at 10 min;  
 328 (b)–(d) Time-dependent profiles for (b) CSZ, (c) 8% Ce/CSZ and (d) 6% Ce-2% Sm/CSZ with exposure durations  
 329 spanning 1–10 min (at 1 min intervals) at 50 °C.

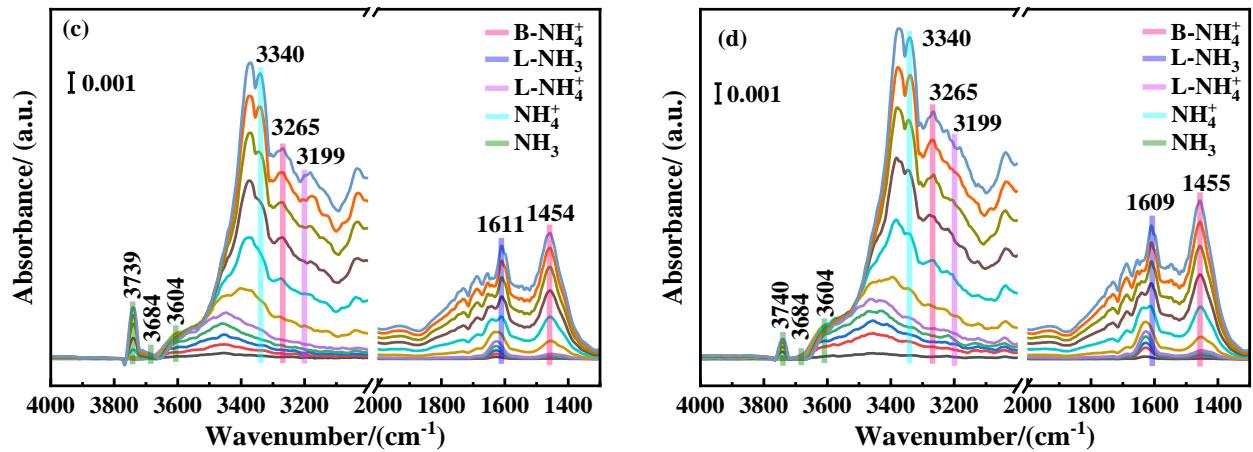
330 3.4.2.  $\text{NO} + \text{O}_2$  desorption

331 NO species desorption from the coupled catalysts is displayed in Fig. 7. A shoulder NO desorption  
 332 peak in the temperature range of 50 to 190 °C, centered at approximately 122 °C, can be classified as  
 333 the decomposition of monodentate nitrates and free ionic nitrates, while another broad and low NO  
 334 desorption peak in the temperature range of 220 to 450 °C, centered at around 327 °C, can be ascribed  
 335 to the decomposition of bridging nitrates and chelating bidentate nitrates, respectively [27,36,38,57].  
 336 After coupled  $\text{CeO}_2$  and/or  $\text{Sm}_2\text{O}_3$ , the NO desorption peaks in  $x\%$  Ce/CSZ and 6% Ce-2% Sm/CSZ  
 337 show almost no change compared to those in CSZ, which suggests that the NO desorption is not  
 338 affected by Ce and/or Sm species. In addition, it can be seen from Table 3 that the desorption capacities  
 339 of  $\text{NO}_x$  species on CSZ and 6% Ce/CSZ, 8% Ce/CSZ are 238.61, 214.26 and 188.51  $\mu\text{mol} \cdot \text{g}^{-1}$ ,  
 340 respectively. However, the desorption capacity of  $\text{NO}_x$  species on 6% Ce-2% Sm/CSZ closely  
 341 resembles that on 8% Ce/CSZ. This result reveals that the coupled catalysts exhibit a lower NO  
 342 desorption capacity compared to CSZ. However, the performance of the coupled catalysts is superior  
 343 to that of CSZ, which further confirms that there is no significant direct correlation between the

344 desorption capacity of NO species and the catalytic activity.




345 Fig. 7. (NO<sub>x</sub>+O<sub>2</sub>)-TPD patterns of the coupled catalysts.

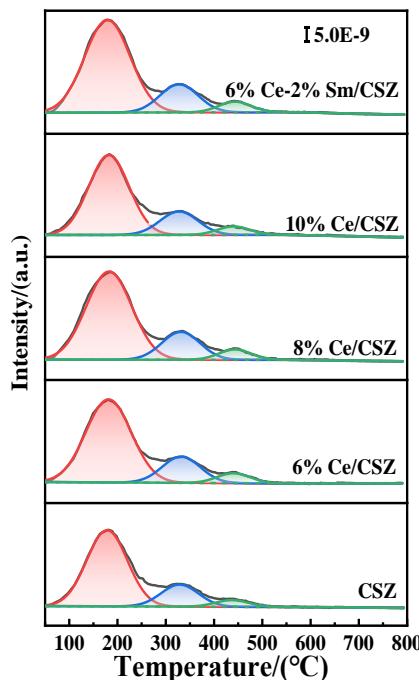

346 3.5 Acid sites

347 3.5.1 NH<sub>3</sub> adsorption

348 The catalytic performance of the coupled catalysts during the NH<sub>3</sub>-SCR reaction process is largely  
349 governed by the adsorption and activation of NH<sub>3</sub> on adsorption sites (e.g., Brønsted and Lewis acid  
350 sites and hydroxyl groups), as displayed in Fig. 8. The peaks located at around 3340, 3267/1454 and  
351 3198 cm<sup>-1</sup> can be divided into NH<sub>4</sub><sup>+</sup> species adsorbed on Si-OH groups, Lewis acid sites (L-NH<sub>4</sub><sup>+</sup>) and  
352 Brønsted acid sites (B-NH<sub>4</sub><sup>+</sup>), while the peaks centered at approximately 3740/3683/3604 and 1611 cm<sup>-1</sup>  
353 can be classified as NH<sub>3</sub> species adsorbed on Si-OH groups/Al-OH groups/Cu-OH groups and Lewis  
354 acid sites (L-NH<sub>3</sub>), respectively [18,58–61]. The adsorption sites for NH<sub>3</sub> species on the coupled  
355 catalysts do not alter, while the peak intensity for NH<sub>3</sub> species on the coupled catalysts changes relative  
356 to CSZ (Fig. 8a), which suggests that the NH<sub>4</sub><sup>+</sup> formation and NH<sub>3</sub> adsorption can be directly affected

357 by the coupled  $\text{CeO}_2$  and/or  $\text{Sm}_2\text{O}_3$ . Therefore, the coupled catalysts exhibit different catalytic  
 358 activities. Additionally, the temporal evolution of adsorbed  $\text{NH}_3$  species over CSZ, 8% Ce/CSZ and  
 359 6% Ce-2% Sm/CSZ is monitored via in situ DRIFTS at 50 °C (Fig. 8b, c and d). An increase in  
 360 adsorption time from 1 to 10 min results in a gradual increase in the peak intensity of  $\text{NH}_3$  on the  
 361 catalysts. There are obvious differences in the peak intensity of  $\text{NH}_3$  on the catalysts at all times.  
 362 However, the peak intensity of L- $\text{NH}_4^+$  ( $3199\text{ cm}^{-1}$ ) and L- $\text{NH}_3$  ( $1609\text{ cm}^{-1}$ ) on 6% Ce-2% Sm/CSZ is  
 363 higher than that on CSZ and 8% Ce/CSZ. The  $\text{NH}_3$  and  $\text{NH}_4^+$  provided by the Lewis acid sites can act  
 364 as reactive intermediate species, thereby significantly impacting the low-temperature  $\text{NH}_3$ -SCR  
 365 activity of the coupled catalysts [18,62]. Additionally, the formation of B- $\text{NH}_4^+$  on 6% Ce-2% Sm/CSZ  
 366 is significantly higher than that on CSZ and 8% Ce/CSZ.  $\text{NH}_4^+$  provided by the Brønsted acid sites can  
 367 act as a mobile intermediate in the low-temperature  $\text{NH}_3$ -SCR reaction [63]. Therefore, the formation  
 368 of more  $\text{NH}_3$  and  $\text{NH}_4^+$  on the adsorption sites is more favorable for the low-temperature  $\text{NH}_3$ -SCR  
 369 reaction. This is also one of the factors contributing to the optimal catalytic activity of 6% Ce-2%  
 370 Sm/CSZ.






371 Fig. 8. In situ DRIFTS of  $\text{NH}_3$  adsorption on: (a) CSZ,  $x\%$  Ce/CSZ and 6% Ce-2% Sm/CSZ at 50 °C at 10 min;  
 372 (b)–(d) Time-dependent profiles for (b) CSZ, (c) 8% Ce/CSZ and (d) 6% Ce-2% Sm/CSZ with exposure durations  
 373 spanning 1–10 min (at 1 min intervals) at 50 °C.

374 3.5.2.  $\text{NH}_3$  desorption

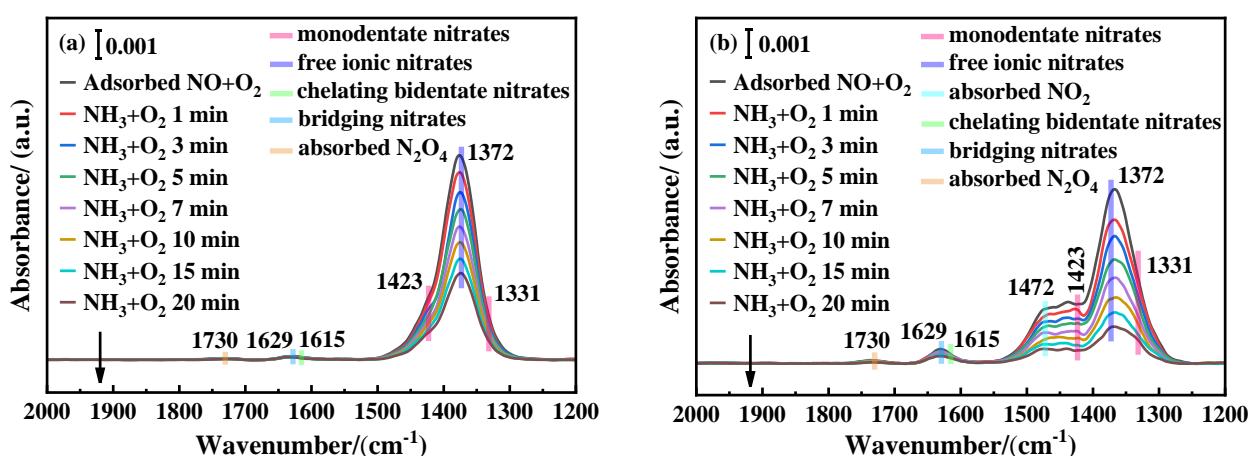
375 The desorption behavior of  $\text{NH}_3$  species and acid content on the coupled catalysts were measured  
 376 using  $\text{NH}_3$ -TPD, and the results are displayed in Fig. 9. The desorption peaks of  $\text{NH}_3$  species at 178–  
 377 182 °C, 326–332 °C and 438–443 °C can be classified as  $\text{NH}_3$  species adsorbed on the weak Lewis  
 378 acid sites (WLACs), moderate strong Lewis acid sites (MLACs) and Brønsted acid sites (representing  
 379 the strong acid sites, BACs), respectively [41,64,65]. For all the catalysts, there is no significant  
 380 difference in the desorption peak temperature of  $\text{NH}_3$  species, which suggests that the coupled Ce  
 381 and/or Sm has no effect on the desorption behavior of  $\text{NH}_3$  species at the adsorption sites. The acid  
 382 content in the coupled catalysts was calculated and summarized in Table 3. The acid content of  
 383 WLACs, MLACs and BACs on CSZ is only 1.40, 0.37 and 0.10  $\text{mmol}\cdot\text{g}^{-1}$ , respectively, while the acid  
 384 content of WLACs, MLACs and BACs on 6% Ce-2% Sm/CSZ is 1.99, 0.59 and 0.21  $\text{mmol}\cdot\text{g}^{-1}$ ,  
 385 respectively. This result demonstrates that the coupled Ce and/or Sm primarily enhances the acid  
 386 amount of WLACs and MLACs. In addition, the additional Lewis acid sites provided by Ce and/or Sm  
 387 can adsorb more  $\text{NH}_3$  species, thereby promoting the low-temperature  $\text{NH}_3$ -SCR reaction [18,62].

388 Therefore, the presence of plentiful WLACs and MLACs in 6% Ce-2% Sm/CSZ results in its  
 389 exceptional low-temperature NH<sub>3</sub>-SCR activity.



390 Fig. 9. NH<sub>3</sub>-TPD patterns of the coupled catalysts.

Table 3 Changes in the desorption capacity of NO<sub>x</sub> species and acid content from the coupled catalysts.


| Coupled catalysts | <sup>a</sup> (NO+O <sub>2</sub> )-TPD (μmol·g <sup>-1</sup> ) |       |        | <sup>b</sup> NH <sub>3</sub> -TPD (mmol·g <sup>-1</sup> ) |                                   |                            |       |
|-------------------|---------------------------------------------------------------|-------|--------|-----------------------------------------------------------|-----------------------------------|----------------------------|-------|
|                   | 50–190 °C    220–440 °C    Total                              |       |        | Weak Lewis acid sites (WLACs)                             | Moderate Lewis acid sites (MLACs) | Brønsted acid sites (BACs) | Total |
|                   |                                                               |       |        |                                                           |                                   |                            |       |
| CSZ               | 150.35                                                        | 88.26 | 238.61 | 1.40                                                      | 0.37                              | 0.10                       | 1.87  |
| 6% Ce/CSZ         | 135.59                                                        | 78.66 | 214.25 | 1.78                                                      | 0.47                              | 0.15                       | 2.40  |
| 8% Ce/CSZ         | 126.13                                                        | 62.38 | 188.51 | 1.92                                                      | 0.53                              | 0.16                       | 2.61  |
| 10% Ce/CSZ        | 69.35                                                         | 42.12 | 111.47 | 1.53                                                      | 0.45                              | 0.13                       | 2.11  |
| 6% Ce-2% Sm/CSZ   | 121.25                                                        | 59.61 | 180.86 | 1.99                                                      | 0.59                              | 0.21                       | 2.79  |

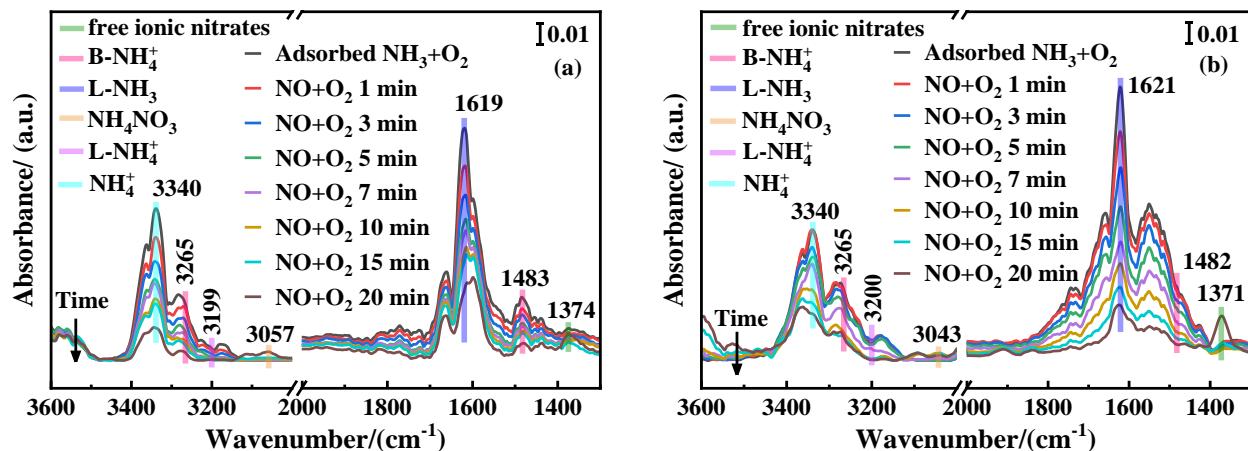
<sup>a</sup> Analyzed by (NO+O<sub>2</sub>)-TPD. <sup>b</sup> Analyzed by NH<sub>3</sub>-TPD.

391 3.6 Reaction route study

392 3.6.1 Reactions between pre-adsorbed NO + 10% O<sub>2</sub> and NH<sub>3</sub> + 10% O<sub>2</sub>

393 The low-temperature NH<sub>3</sub>-SCR reaction route between pre-adsorbed NO<sub>x</sub> species and NH<sub>3</sub> on 8%  
 394 Ce/CSZ and 6% Ce-2% Sm/CSZ was investigated using in situ DRIFTS, and the results are displayed  
 395 in Fig. 10. After exposure to the atmosphere of NH<sub>3</sub> and O<sub>2</sub>, throughout the 20-minute monitoring  
 396 period, no peak related to adsorbed NH<sub>3</sub> species for 8% Ce/CSZ and 6% Ce-2% Sm/CSZ is observed.  
 397 This finding suggests that pre-adsorbed NO<sub>x</sub> species can be capable of reacting with gaseous NH<sub>3</sub>. For  
 398 8% Ce/CSZ and 6% Ce-2% Sm/CSZ, the free ionic nitrates (1372 cm<sup>-1</sup>) and monodentate nitrates  
 399 (1423 and 1331 cm<sup>-1</sup>), as a very important type of reactive intermediates, can participate in low-  
 400 temperature NH<sub>3</sub>-SCR reaction with gaseous NH<sub>3</sub>. For 6% Ce-2% Sm/CSZ, an interesting  
 401 phenomenon is that pre-adsorbed NO<sub>2</sub> (1472 cm<sup>-1</sup>) can react with gaseous NH<sub>3</sub>. It can be inferred that  
 402 the “Fast SCR” reaction takes place. Consequently, the 6% Ce-2% Sm/CSZ demonstrates improved  
 403 performance for NH<sub>3</sub>-SCR under low-temperature conditions. In brief, pre-adsorbed NO<sub>x</sub> species on  
 404 8% Ce/CSZ and 6% Ce-2% Sm/CSZ react with gaseous NH<sub>3</sub> in the low-temperature NH<sub>3</sub>-SCR  
 405 reaction via the Eley-Rideal (E-R) route.




406 Fig. 10. In situ DRIFTS of pre-adsorbed NO + O<sub>2</sub> followed by reaction with NH<sub>3</sub> + O<sub>2</sub> on (a) 8% Ce/CSZ and (b)  
 407 6% Ce-2% Sm/CSZ at 200 °C.

### 408 3.6.2 Reactions between pre-adsorbed NH<sub>3</sub> + 10% O<sub>2</sub> and NO + 10% O<sub>2</sub>

409 The low-temperature NH<sub>3</sub>-SCR reaction route between pre-adsorbed NH<sub>3</sub> species and NO on 8%

410 Ce/CSZ and 6% Ce-2% Sm/CSZ was investigated using in situ DRIFTS, and the results are displayed  
411 in Fig. 11. After exposure to the atmosphere of NO and O<sub>2</sub>, there exists a significant reduction trend  
412 of B-NH<sub>4</sub><sup>+</sup> (1483/1482 and 3265 cm<sup>-1</sup>), L-NH<sub>3</sub> (1619/1621 cm<sup>-1</sup>), L-NH<sub>4</sub><sup>+</sup> (3199/3200 cm<sup>-1</sup>) and NH<sub>4</sub><sup>+</sup>  
413 (3340 cm<sup>-1</sup>) on 8% Ce/CSZ and 6% Ce-2% Sm/CSZ at 200 °C. Lewis acid sites (L-NH<sub>3</sub> and L-NH<sub>4</sub><sup>+</sup>)  
414 react more rapidly with NO<sub>x</sub> than Brønsted acid sites (B-NH<sub>4</sub><sup>+</sup>). It is well-known that Lewis acid sites  
415 are the primary sites for adsorbing and activating NH<sub>3</sub> in low-temperature NH<sub>3</sub>-SCR, forming the  
416 essential foundation for initiating efficient low-temperature reaction pathways. More importantly, the  
417 free ionic nitrates are observed after 15 min on 8% Ce/CSZ and 6% Ce-2% Sm/CSZ. Meanwhile,  
418 NH<sub>4</sub>NO<sub>3</sub> located at 3057 or 3043 cm<sup>-1</sup> [36] is detected on 8% Ce/CSZ at 20 min and on 6% Ce-2%  
419 Sm/CSZ at 15 min. The formation of NH<sub>4</sub>NO<sub>3</sub> may involve the reaction between free ionic nitrates  
420 and NH<sub>4</sub><sup>+</sup> originating from Lewis acid sites via the Langmuir-Hinshelwood (L-H) route. Moreover, the  
421 NH<sub>4</sub><sup>+</sup> located at the Brønsted acidic sites can migrate to the Lewis acidic sites [63], thus also promoting  
422 the formation of NH<sub>4</sub>NO<sub>3</sub>. Additionally, NH<sub>4</sub>NO<sub>3</sub> has been identified as a key intermediate species in  
423 the low-temperature NH<sub>3</sub>-SCR reaction pathway, while NH<sub>4</sub>NO<sub>3</sub> decomposition has been confirmed  
424 as a critical step in the mechanism of low-temperature NH<sub>3</sub>-SCR. In addition, NH<sub>4</sub>NO<sub>3</sub> decomposes  
425 via the following pathway: NH<sub>4</sub>NO<sub>3</sub> + NO → NH<sub>4</sub>NO<sub>2</sub>, and then NH<sub>4</sub>NO<sub>2</sub> → N<sub>2</sub> + H<sub>2</sub>O. However,  
426 the reaction of NH<sub>4</sub>NO<sub>3</sub> with NO proceeds much more slowly [36], and the formation of NH<sub>4</sub>NO<sub>3</sub>  
427 from the reaction between free ionic nitrates (NO<sub>3</sub><sup>-</sup>) and NH<sub>4</sub><sup>+</sup> (NO<sub>3</sub><sup>-</sup> + NH<sub>4</sub><sup>+</sup> → NH<sub>4</sub>NO<sub>3</sub>) is very fast  
428 [36]. When the decomposition of NH<sub>4</sub>NO<sub>3</sub> is slower than its formation, NH<sub>4</sub>NO<sub>3</sub> may accumulate at  
429 the active sites or on the coupled catalyst surface, thereby hindering the progress of the reaction and  
430 leading to a decrease in catalytic performance [54,63]. However, the peak intensity of NH<sub>4</sub>NO<sub>3</sub> on 6%  
431 Ce-2% Sm/CSZ is lower than that on 8% Ce/CSZ, indicating that the coupled Sm<sub>2</sub>O<sub>3</sub> can facilitate the

432 conversion of  $\text{NH}_4\text{NO}_3$  by  $\text{NO}$  to  $\text{NH}_4\text{NO}_2$  [23]. Ultimately,  $\text{NH}_4\text{NO}_2$ , as an extremely unstable  
 433 intermediate species, easily decomposes into  $\text{N}_2$  and  $\text{H}_2\text{O}$  [36,66]. Therefore, 6% Ce-2% Sm/CSZ  
 434 exhibits excellent low-temperature  $\text{NH}_3$ -SCR performance.



435 Fig. 11. In situ DRIFTS of pre-adsorbed  $\text{NH}_3 + \text{O}_2$  followed by reaction with  $\text{NO} + \text{O}_2$  on (a) 8% Ce/CSZ and (b)  
 436 6% Ce-2% Sm/CSZ at 200 °C.

#### 437 4. Conclusion

438 An effective strategy involving the coupling of rare earth oxides ( $\text{CeO}_2$  and  $\text{Sm}_2\text{O}_3$ ) was employed  
 439 to enhance the low-temperature  $\text{NH}_3$ -SCR performance of CSZ. Meanwhile, the coupled  $\text{CeO}_2$  and  
 440  $\text{Sm}_2\text{O}_3$  were conducted an in-depth analysis of the synergistic mechanism in the coupled catalysts. 6%  
 441 Ce-2% Sm/CSZ, as the optimal coupled catalyst, achieves a  $\text{NO}_x$  conversion of 93.1% at 200 °C and  
 442 demonstrates excellent  $\text{N}_2$  selectivity in a broad temperature range (100–550 °C). Additionally, this  
 443 coupled catalyst also maintains outstanding performance even after exposure to 5 vol% water vapour  
 444 and thermal aging treatment at 800 °C for 4 h. Physicochemical characterization was performed on the  
 445 coupled catalysts. The results indicate that crystalline  $\text{CeO}_2$  is present on the surface of SSZ-13, while  
 446 the coupled  $\text{Sm}_2\text{O}_3$  is extremely uniformly distributed on the surface of SSZ-13 or the introduced  
 447  $\text{Sm}_2\text{O}_3$  is in the nanoscale size. Additional chemisorption oxygen ( $\text{O}_{\text{ads}}$ ) provided by coupled  $\text{CeO}_2$  is  
 448 critical for enhancing redox activity. In addition,  $[\text{ZCu}^{2+}(\text{OH})]^+$  serves as the active sites under low-

449 temperature conditions, and  $\text{Sm}^{3+}$  can transfer electrons to  $[\text{ZCu}^{2+}(\text{OH})]^+$  to enhance its activity. The  
450 coupled  $\text{Sm}_2\text{O}_3$  can improve the formation of  $\text{Ce}^{3+}$  to a certain extent. Additional oxygen vacancies  
451 provided by  $\text{Ce}^{3+}$  can effectively adsorb  $\text{O}_2$  in the gas phase and promote the transport of oxygen ions  
452 in the coupled catalysts. After coupled  $\text{CeO}_2$  and  $\text{Sm}_2\text{O}_3$ , the monodentate nitrates and free ionic  
453 nitrates react with gaseous  $\text{NH}_3$  via the Eley-Rideal (E-R) route. More importantly, the coupled  $\text{Sm}_2\text{O}_3$   
454 can generate abundant adsorbed  $\text{NO}_2$ , which reacts with gaseous  $\text{NH}_3$  to participate in the “Fast SCR”  
455 reaction. Additionally, the coupled  $\text{CeO}_2$  and  $\text{Sm}_2\text{O}_3$  contain considerable content of both Brønsted  
456 and Lewis acid sites on the coupled catalysts, which promote the  $\text{NH}_3$  adsorption and facilitate  $\text{NH}_3$   
457 activation into  $\text{NH}_4^+$ .  $\text{NH}_4^+$  located at the Brønsted acidic sites can migrate to the Lewis acidic sites.  
458  $\text{NH}_4^+$  originating from Lewis acid sites reacts with free ionic nitrates to form  $\text{NH}_4\text{NO}_3$  via the  
459 Langmuir-Hinshelwood (L-H) route. Additionally, the coupled  $\text{Sm}_2\text{O}_3$  can promote the oxidation of  
460  $\text{NH}_4\text{NO}_3$  by  $\text{NO}$  and further form easily decomposable  $\text{NH}_4\text{NO}_2$ . Ultimately, the synergistic effect  
461 between Cu species and  $\text{CeO}_2/\text{Sm}_2\text{O}_3$  leads to a substantial boost in low-temperature  $\text{NH}_3$ -SCR activity  
462 of CSZ.

#### 463 **CRediT authorship contribution statement**

464 **Ruixin Sun:** Writing – original draft, Methodology, Investigation, Data curation,  
465 Conceptualization. **Yu Lyu:** Investigation, Methodology. **Chonglin Song:** Writing - review & editing,  
466 Project administration, Funding acquisition. **Chenxi Wang:** Investigation, Data curation. **Gang Lyu:**  
467 Resources, Formal analysis, Conceptualization. **Xiangyu Dong:** Methodology, Investigation, Data  
468 curation. **Lei Tian:** Investigation, Data curation. **Xinhui Liu:** Investigation. **Yibo Xu:** Data curation.

#### 469 **Declare of interest statement**

470 The authors declare that they have no known competing financial interests or personal relationships

471 that could have appeared to influence the work reported in this paper.

472 **Acknowledgement**

473 This study was supported by the National Natural Science Foundation of China (Grant number:  
474 51921004, 52176123).

475 **Appendix A. Supplementary data**

476 Supplementary data to this article can be found online at XXX.

477 **Reference**

478 [1] Yao L, Liu Q, Mossin S, Nielsen D, Kong M, Jiang L, et al. Promotional effects of nitrogen doping  
479 on catalytic performance over manganese-containing semi-coke catalysts for the NH<sub>3</sub>-SCR at low  
480 temperatures. *J Hazard Mater* 2020;387:121704. <https://doi.org/10.1016/j.jhazmat.2019.121704>.

481 [2] Yang J, Ren S, Zhou Y, Su Z, Yao L, Cao J, et al. In situ IR comparative study on N<sub>2</sub>O formation  
482 pathways over different valence states manganese oxides catalysts during NH<sub>3</sub>-SCR of NO. *Chem  
483 Eng J* 2020;397:125446. <https://doi.org/10.1016/j.cej.2020.125446>.

484 [3] Tang L, Qu J, Mi Z, Bo X, Chang X, Anadon LD, et al. Substantial emission reductions from  
485 Chinese power plants after the introduction of ultra-low emissions standards. *Nat Energy* 2019;4:929–  
486 938. <https://doi.org/10.1038/s41560-019-0468-1>.

487 [4] Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J, et al. Selective catalytic reduction of NO<sub>x</sub>  
488 with NH<sub>3</sub> by using novel catalysts: State of the art and future prospects. *Chem Rev* 2019;119:10916–  
489 10976. <https://doi.org/10.1021/acs.chemrev.9b00202>.

490 [5] Feroskhan M, Thangavel V, Subramanian B, Sankaralingam RK, Ismail S, Chaudhary A. Effects  
491 of operating parameters on the performance, emission and combustion indices of a biogas fuelled  
492 HCCI engine. *Fuel* 2021;98:120799. <https://doi.org/10.1016/j.fuel.2021.120799>.

493 [6] Chen H, Wang X, Pan Z. Effect of operating conditions on the chemical composition, morphology,  
494 and nano-structure of particulate emissions in a light hydrocarbon premixed charge compression  
495 ignition (PCCI) engine. Sci Total Environ 2021;750:141716.  
496 <https://doi.org/10.1016/j.scitotenv.2020.141716>.

497 [7] Hariharan D, Krishnan SR, Srinivasan KK, Sohail A. Multiple injection strategies for reducing HC  
498 and CO emissions in diesel-methane dual-fuel low temperature combustion. Fuel 2021;305:121372.  
499 <https://doi.org/10.1016/j.fuel.2021.121372>.

500 [8] Gao N, Geng Z, Zhao W, Geng L, Dong F, Huang D. Review on the combustion and emission  
501 characteristics of hydrogen engine. Int J Hydrogen Energy 2025; 143:121–146.  
502 <https://doi.org/10.1016/j.ijhydene.2025.05.321>.

503 [9] Chen M, Li J, Xue W, Wang S, Han J, Wei Y, et al. Unveiling secondary-ion-promoted catalytic  
504 properties of Cu/SSZ-13 zeolites for selective catalytic reduction of NOx. J Am Chem Soc  
505 2022;144:12816–12824. <https://doi.org/10.1021/jacs.2c03877>.

506 [10] Han J, Li J, Zhao W, Li L, Chen M, Ge X, et al. Cu-OFF/ERI zeolite: Intergrowth structure  
507 synergistically boosting selective catalytic reduction of NOx with NH<sub>3</sub>. J Am Chem Soc 2024;146:  
508 7605–7615. <https://doi.org/10.1021/jacs.3c13855>.

509 [11] Kim YJ, Kim PS, Kim CH. Deactivation mechanism of Cu/Zeolite SCR catalyst under high-  
510 temperature rich operation condition. Appl Catal A Gen 2019;569:175–180.  
511 <https://doi.org/10.1016/j.apcata.2018.10.032>.

512 [12] Shan Y, Du J, Zhang Y, Shan W, Shi X, Yu Y, et al. Selective catalytic reduction of NOx with  
513 NH<sub>3</sub>: Opportunities and challenges of Cu-based small-pore zeolites. Natl Sci Rev 2021;8:139–158.  
514 <https://doi.org/10.1093/nsr/nwab010>.

515 [13] Andana T, Rappé KG, Gao F, Szanyi J, Pereira-Hernandez X, Wang Y. Recent advances in hybrid  
516 metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NO<sub>x</sub> by ammonia.  
517 Appl Catal B Environ 2021;291:120054. <https://doi.org/10.1016/j.apcatb.2021.120054>.

518 [14] Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J. Recent advances in automotive  
519 catalysis for NO<sub>x</sub> emission control by small-pore microporous materials. Chem Soc Rev  
520 2015;44:7371–7405. <https://doi.org/10.1039/C5CS00108K>.

521 [15] Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, et al. Dynamic multinuclear sites formed  
522 by mobilized copper ions in NO<sub>x</sub> selective catalytic reduction. Science 2017;357:898–903.  
523 <https://doi.org/10.1126/science.aan5630>.

524 [16] Paolucci C, Parekh AA, Khurana I, Iorio JRD, Li H, Caballero JDA, et al. Catalysis in a cage:  
525 Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J Am  
526 Chem Soc 2016;138: 6028–6048. <https://doi.org/10.1021/jacs.6b02651>.

527 [17] Wang D, Zhang L, Li J, Kamasamudram K, Epling WS. NH<sub>3</sub>-SCR over Cu/SAPO-34-zeolite  
528 acidity and Cu structure changes as a function of Cu loading. Catal Today 2014;231:64–74.  
529 <https://doi.org/10.1016/j.cattod.2013.11.040>.

530 [18] Wang J, Liu J, Tang X, Xing C, Jin T. The promotion effect of niobium on the low-temperature  
531 activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>. Chem Eng J  
532 2021;418:129433. <https://doi.org/10.1016/j.cej.2021.129433>.

533 [19] Lee H, Song I, Jeon SW, Kim DH. Control of the Cu ion species in Cu-SSZ-13 via the introduction  
534 of Co<sup>2+</sup> co-cations to improve the NH<sub>3</sub>-SCR activity. Catal Sci Technol 2021;11:4838–4848.  
535 <https://doi.org/10.1039/D1CY00623A>.

536 [20] Yokoyama C, Misono M. Catalytic reduction of NO by propene in the presence of oxygen over

537 mechanically mixed metal oxides and Ce-ZSM-5. *Catal Lett* 1994;29:1–6.

538 [21] Huang Y, Zhao H, Wu X, Huang Z, Shen H, Jing G. Enhanced low-temperature SCR performance  
539 of metal oxide/Cu-SSZ-13 composite catalysts: The role of oxygen species in metal oxide. *Chem Eng*  
540 *J* 2023;475:146407. <https://doi.org/10.1016/j.cej.2023.146407>.

541 [22] Kim HS, Lee H, Park H, Song I, Kim DH. Revealing the two distinctive roles of HY zeolite in  
542 enhancing the activity and durability of manganese oxide-zeolite hybrid catalysts for low-temperature  
543 NH<sub>3</sub>-SCR. *Appl Catal B Environ* 2024;355:124199. <https://doi.org/10.1016/j.apcatb.2024.124199>.

544 [23] Xu S, Li J, Lin Q, Xu H, Wang J, Chen Y. Engineering CeZrOx-Cu/SSZ-13 coupled catalysts to  
545 synergistically enhance the low-temperature NH<sub>3</sub>-SCR activity. *Chem Eng J* 2023;476:146767.  
546 <https://doi.org/10.1016/j.cej.2023.146767>.

547 [24] Kim HS, Lee H, Park H, Song I, Kim DH. Understanding the roles of Brønsted/Lewis acid sites  
548 on manganese oxide-zeolite hybrid catalysts for low-temperature NH<sub>3</sub>-SCR. *Chin J Catal* 2024;65:79–  
549 88. [https://doi.org/10.1016/S1872-2067\(24\)60112-9](https://doi.org/10.1016/S1872-2067(24)60112-9).

550 [25] Deng D, Deng S, He D, Wang Z, Chen Z, Ji Y, et al. A comparative study of hydrothermal aging  
551 effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH<sub>3</sub>-SCR. *J Rare Earths* 2021;39:969–  
552 978. <https://doi.org/10.1016/j.jre.2020.08.016>.

553 [26] Lyu Y, Lyu G, Sun R, Song C. Insights into copper-ZSM-5 supported cerium, zirconium catalysts  
554 to promote NH<sub>3</sub>-SCR activity and anti-thermal aging performance. *Fuel* 2024;367:131456.  
555 <https://doi.org/10.1016/j.fuel.2024.131456>.

556 [27] Liu L, Xu K, Su S, He L, Qing M, Chi H, et al. Efficient Sm modified Mn/TiO<sub>2</sub> catalysts for  
557 selective catalytic reduction of NO with NH<sub>3</sub> at low temperature. *Appl Catal A Gen* 2020;592:117413.  
558 <https://doi.org/10.1016/j.apcata.2020.117413>.

559 [28] Zhao S, Song K, Jiang R, Ma D, Long H, Shi J. Sm-modified Mn-Ce oxides supported on  
560 cordierite as monolithic catalyst for the low-temperature reduction of nitrogen oxides. *Catal Today*  
561 2023;423:113966. <https://doi.org/10.1016/j.cattod.2022.11.027>.

562 [29] He X, Zhu F, Dong L, Guo H, Liu X, Ren G, et al. Sm-MnO<sub>x</sub>/TiO<sub>2</sub>-{001} with preferentially  
563 exposed anatase {001} facet for selective catalytic reduction of NO with NH<sub>3</sub>. *Appl Catal A Gen*  
564 2023;644:119353. <https://doi.org/10.1016/j.apcata.2023.119353>.

565 [30] Wan Y, Yang G, Xiang J, Shen X, Yang D, Chen Y, et al. Promoting effects of water on the NH<sub>3</sub>-  
566 SCR reaction over Cu-SAPO-34 catalysts: Transient and permanent influences on Cu species. *Dalton*  
567 *Trans* 2020;49:764–773. <https://doi.org/10.1039/C9DT03848E>.

568 [31] Gao F, Mei D, Wang Y, Szanyi J, Peden CHF. Selective catalytic reduction over Cu/SSZ-13:  
569 Linking homo- and heterogeneous catalysis. *J Am Chem Soc* 2017;139:4935–4942.  
570 <https://doi.org/10.1021/jacs.7b01128>.

571 [32] Wang D, Zhang L, Kamasamudram K, Epling WS. In Situ-DRIFTS study of selective catalytic  
572 reduction of NO<sub>x</sub> by NH<sub>3</sub> over Cu-exchanged SAPO-34. *ACS Catal* 2013;3:871–881.  
573 <https://doi.org/10.1021/cs300843k>.

574 [33] Yu T, Wang J, Shen M, Wang J, Li W. The influence of CO<sub>2</sub> and H<sub>2</sub>O on selective catalytic  
575 reduction of NO by NH<sub>3</sub> over Cu/SAPO-34 catalyst. *Chem Eng J* 2015;264:845–855.  
576 <https://doi.org/10.1016/j.cej.2014.12.017>.

577 [34] Shan Y, Shan W, Shi X, Du J, Yu Y, He H. A comparative study of the activity and hydrothermal  
578 stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. *Appl Catal B Environ* 2020;264:118511.  
579 <https://doi.org/10.1016/j.apcatb.2019.118511>.

580 [35] Chen M, Wei Y, Han J, Yan W, Yu J. Enhancing catalytic performance of Cu-SSZ-13 for the

581 NH<sub>3</sub>-SCR reaction via in situ introduction of Fe<sup>3+</sup> with diatomite. Mater Chem Front 2021;5:7787–

582 7795. <https://doi.org/10.1039/D1QM01101D>.

583 [36] Liu Q, Fu Z, Ma L, Niu H, Liu C, Li J, et al. MnOx-CeO<sub>2</sub> supported on Cu-SSZ-13: A novel SCR

584 catalyst in a wide temperature range. Appl Catal A Gen 2017;547:146–154.

585 <https://doi.org/10.1016/j.apcata.2017.08.024>.

586 [37] Tong Y, Li Y, Li Z, Wang P, Zhang Z, Zhao X, et al. Influence of Sm on the low temperature

587 NH<sub>3</sub>-SCR of NO activity and H<sub>2</sub>O/SO<sub>2</sub> resistance over the Sm<sub>a</sub>MnNi<sub>2</sub>Ti<sub>7</sub>O<sub>x</sub> (a = 0.1, 0.2, 0.3, 0.4)

588 catalysts. Appl Catal A Gen 2020;590:117333. <https://doi.org/10.1016/j.apcata.2019.117333>.

589 [38] Xie M, Xiao X, Wang J, Chen J, Kang H, Wang N, et al. Mechanistic insights into the cobalt

590 promotion on low-temperature NH<sub>3</sub>-SCR reactivity of Cu/SSZ-13. Sep Purif Technol

591 2023;315:123617. <https://doi.org/10.1016/j.seppur.2023.123617>.

592 [39] Chen M, Zhao W, Wei Y, Han J, Li J, Sun C, et al. La ions-enhanced NH<sub>3</sub>-SCR performance over

593 Cu-SSZ-13 catalysts. Nano Res 2023;16:12126–12133. <https://doi.org/10.1007/s12274-023-5500-x>.

594 [40] Song J, Wang Y, Walter ED, Washton NM, Mei D, Kovarik L, et al. Toward rational design of

595 Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of

596 hydrothermal stability. ACS Catal 2017;7:8214–8227. <https://doi.org/10.1021/acscatal.7b03020>.

597 [41] Fan C, Chen Z, Pang L, Ming S, Dong C, Albert KB, et al. Steam and alkali resistant Cu-SSZ-13

598 catalyst for the selective catalytic reduction of NO<sub>x</sub> in diesel exhaust. Chem Eng J 2018;334:344–354.

599 <https://doi.org/10.1016/j.cej.2017.09.181>.

600 [42] Wang X, Xu Y, Qin M, Zhao Z, Fan X, Li Q. Insight into the effects of Cu<sup>2+</sup> ions and CuO species

601 in Cu-SSZ-13 catalysts for selective catalytic reduction of NO by NH<sub>3</sub>. J Colloid Interface Sci

602 2022;622:1–10. <https://doi.org/10.1016/j.jcis.2022.04.110>.

603 [43] Niu C, Shi X, Liu F, Liu K, Xie L, You Y, et al. High hydrothermal stability of Cu-SAPO-34  
604 catalysts for the NH<sub>3</sub>-SCR of NO<sub>x</sub>. *Chem Eng J* 2016;294:254–263.  
605 <https://doi.org/10.1016/j.cej.2016.02.086>.

606 [44] Liu J, Du Y, Liu J, Zhao Z, Cheng K, Chen Y, et al. Design of MoFe/Beta@CeO<sub>2</sub> catalysts with  
607 a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with  
608 NH<sub>3</sub>. *Appl Catal B Environ* 2017;203:704–714. <https://doi.org/10.1016/j.apcatb.2016.10.039>.

609 [45] Chang H, Chen X, Li J, Ma L, Wang C, Liu C, et al. Improvement of activity and SO<sub>2</sub> tolerance  
610 of Sn-modified MnO<sub>x</sub>-CeO<sub>2</sub> catalysts for NH<sub>3</sub>-SCR at low temperatures. *Environ Sci Technol*  
611 2013;47:5294–5301. <https://doi.org/10.1021/es304732h>.

612 [46] Shi Y, Pu J, Gao L, Shan S. Selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> and CH<sub>4</sub> over zeolite  
613 supported indium-cerium bimetallic catalysts for lean-burn natural gas engines. *Chem Eng J*  
614 2021;403:126394. <https://doi.org/10.1016/j.cej.2020.126394>.

615 [47] Chen L, Wang X, Cong Q, Ma H, Li S, Li W. Design of a hierarchical Fe-ZSM-5@CeO<sub>2</sub> catalyst  
616 and the enhanced performances for the selective catalytic reduction of NO with NH<sub>3</sub>. *Chem Eng J*  
617 2019; 369:957–967. <https://doi.org/10.1016/j.cej.2019.03.055>.

618 [48] Chen J, Fu P, Lv D, Chen Y, Fan M, Wu J, et al. Unusual positive effect of SO<sub>2</sub> on Mn-Ce mixed-  
619 oxide catalyst for the SCR reaction of NO<sub>x</sub> with NH<sub>3</sub>. *Chem Eng J* 2021;407:127071.  
620 <https://doi.org/10.1016/j.cej.2020.127071>.

621 [49] Liu C, Chen L, Li J, Ma L, Arandiyan H, Du Y, et al. Enhancement of activity and sulfur resistance  
622 of CeO<sub>2</sub> supported on TiO<sub>2</sub>-SiO<sub>2</sub> for the selective catalytic reduction of NO by NH<sub>3</sub>. *Environ Sci  
623 Technol* 2012;46:6182–6189. <https://doi.org/10.1021/es3001773>.

624 [50] Liu H, Fan Z, Sun C, Yu S, Feng S, Chen W, et al. Improved activity and significant SO<sub>2</sub> tolerance

625 of samarium modified CeO<sub>2</sub>-TiO<sub>2</sub> catalyst for NO selective catalytic reduction with NH<sub>3</sub>. *Appl Catal*  
626 *B Environ* 2019;244:671–683. <https://doi.org/10.1016/j.apcatb.2018.12.001>.

627 [51] Sun C, Liu H, Chen W, Chen D, Yu S, Liu A, et al. Insights into the Sm/Zr co-doping effects on  
628 N<sub>2</sub> selectivity and SO<sub>2</sub> resistance of a MnO<sub>x</sub>-TiO<sub>2</sub> catalyst for the NH<sub>3</sub>-SCR reaction. *Chem Eng J*  
629 2018;347:27–40. <https://doi.org/10.1016/j.cej.2018.04.029>.

630 [52] Yu JJ, Jiang Z, Zhu L, Hao ZP, Xu ZP. Adsorption/Desorption studies of NO<sub>x</sub> on well-mixed  
631 oxides derived from Co-Mg/Al hydrotalcite-like compounds. *J Phys Chem B* 2006;110:4291–4300.  
632 <https://doi.org/10.1021/jp056473f>.

633 [53] Li B, Song C, Lv G, Chen K, Cao X. Impact of soot on NO<sub>x</sub> adsorption over Cu-modified  
634 hydrotalcite-derived lean NO<sub>x</sub> trap catalyst. *Langmuir* 2017;33:2939–2948.  
635 <https://doi.org/10.1021/acs.langmuir.6b03877>.

636 [54] Kubota H, Liu C, Toyao T, Maeno Z, Ogura M, Nakazawa N, et al. Formation and reactions of  
637 NH<sub>4</sub>NO<sub>3</sub> during transient and steady-state NH<sub>3</sub>-SCR of NO<sub>x</sub> over H-AFX zeolites: Spectroscopic and  
638 theoretical studies. *ACS Catal* 2020;10:2334–2344. <https://doi.org/10.1021/acscatal.9b05151>.

639 [55] Wang Y, Li G, Zhang S, Zhang X, Zhang X, Hao Z. Promoting effect of Ce and Mn addition on  
640 Cu-SSZ-39 zeolites for NH<sub>3</sub>-SCR reaction: Activity, hydrothermal stability, and mechanism study.  
641 *Chem Eng J* 2020;393:124782. <https://doi.org/10.1016/j.cej.2020.124782>.

642 [56] Wang X, Li T, Wang C, Cui Q, Wang T, Bao X, et al. Improving catalytic performance of Cu-  
643 SSZ-13 for NO<sub>x</sub> abatement via in-situ introduction of La and Ce from spent catalyst. *Sep Purif Technol*  
644 2024;331:125638. <https://doi.org/10.1016/j.seppur.2023.125638>.

645 [57] Xu Q, Fang Z, Chen Y, Guo Y, Guo Y, Wang L, et al. Titania-samarium-manganese composite  
646 oxide for the low-temperature selective catalytic reduction of NO with NH<sub>3</sub>. *Environ Sci Technol*

647 2020;54:2530–2538. <https://dx.doi.org/10.1021/acs.est.9b06701>.

648 [58] Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF. Effects of Si/Al ratio on Cu/SSZ-  
649 13 NH<sub>3</sub>-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity. *J Catal*  
650 2015;331:25–38. <https://doi.org/10.1016/j.jcat.2015.08.004>.

651 [59] Han S, Cheng J, Zheng C, Ye Q, Cheng S, Kang T, et al. Effect of Si/Al ratio on catalytic  
652 performance of hydrothermally aged Cu-SSZ-13 for the NH<sub>3</sub>-SCR of NO in simulated diesel exhaust.  
653 *Appl Surf Sci* 2017;419:382–392. <https://doi.org/10.1016/j.apsusc.2017.04.198>.

654 [60] Luo J, Wang D, Kumar A, Li J, Kamasamudram K, Currier N, et al. Identification of two types  
655 of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. *Catal*  
656 *Today* 2016;267:3–9. <https://doi.org/10.1016/j.cattod.2015.12.002>.

657 [61] Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, et al. A comparison of hydrothermal aging  
658 effects on NH<sub>3</sub>-SCR of NO<sub>x</sub> over Cu-SSZ-13 and Cu-SAPO-34 catalysts. *Appl Catal B Environ*  
659 2015;165:438–445. <https://doi.org/10.1016/j.apcatb.2014.10.020>.

660 [62] Wang B, Feng X, Xu Y, Shi J. Role of Ce in promoting low-temperature performance and  
661 hydrothermal stability of Ce/Cu-SSZ-13 in the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>. *Sep  
662 Purif Technol* 2023;315:123679. <https://doi.org/10.1016/j.seppur.2023.123679>.

663 [63] Xu M, Wang J, Yu T, Wang J, Shen M. New insight into Cu/SAPO-34 preparation procedure:  
664 Impact of NH<sub>4</sub>-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH<sub>3</sub>-SCR catalysts.  
665 *Appl Catal B Environ* 2018;220:161–170. <https://doi.org/10.1016/j.apcatb.2017.08.031>.

666 [64] Zhao Z, Yu R, Shi C, Gies H, Xiao F, Vos DD, et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite  
667 from organotemplate-free synthesis with enhanced hydrothermal stability in NH<sub>3</sub>-SCR of NO<sub>x</sub>. *Catal  
668 Sci Technol* 2019;9:241–251. <https://doi.org/10.1039/C8CY02033G>.

669 [65] Wang Y, Shi X, Shan Y, Du J, Liu K, He H. Hydrothermal stability enhancement of Al-rich Cu-  
670 SSZ-13 for NH<sub>3</sub> selective catalytic reduction reaction by ion exchange with cerium and samarium. Ind  
671 Eng Chem Res 2020;59:6416–6423. <https://doi.org/10.1021/acs.iecr.0c00285>.

672 [66] Su W, Chang H, Peng Y, Zhang C, Li J. Reaction pathway investigation on the selective catalytic  
673 reduction of NO with NH<sub>3</sub> over Cu/SSZ-13 at low temperatures. Environ Sci Technol 2015;49:467–  
674 473. <https://doi.org/10.1021/es503430w>.