

1 **Soil–climate interactions drive above-ground biomass in the Caatinga, the largest Neotropical seasonally
2 dry tropical forest**

3 Alexandre T. Brunello^{1,36*}, Domingos Cardoso^{2,3}, Peter W. Moonlight^{4,5}, Ítalo A. C. Coutinho⁶, John Cunha⁷,
4 Mário M. do Espírito Santo⁸, Magna S. B. de Moura^{9,10}, Luciano P. de Queiroz¹¹, Rubens M. dos Santos¹², Tiina
5 Särkinen⁴, Raquel C. Miatto¹, Tony C. de S. Oliveira^{34,35}, Cidney Bezerra¹³, Marcelo Mizushima¹¹, Ana Carla
6 M. M. Aquino¹⁴, Moabe F. Fernandes¹⁵, Desirée M. Ramos¹⁶, Valdemir F. da Silva¹⁷, Priscyla M. S.
7 Rodrigues¹⁸, Jhonathan de O. Silva¹⁸, Alberto J. F. Castro¹⁹, Rômulo Menezes²⁰, Francisca S. Araújo²¹, Patrícia
8 Morellato¹⁶, Laura Borma²², Emerson R. Almeida²³, Rodolfo L. B. Nóbrega^{24,25}, Rodolfo M. S. Souza²⁶, Maria
9 J. N. Rodal¹⁷, Vinícius A. Maia³³, Anne Verhoef²⁷, Elmar Veenendaal²⁸, R. Toby Pennington^{4,29}, Oliver L.
10 Phillips³⁰, Carlos A. N. Quesada³¹, Jon Lloyd³², Tomas F. Domingues^{1*}

11

12 ¹Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP),
13 Departamento de Biologia, Av. dos Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, Brazil

14 ²Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, RJ, Brazil

15 ³Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, Salvador, BA,
16 Brazil

17 ⁴Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK

18 ⁵Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland

19 ⁶Universidade Federal do Ceará, Centro de Ciências, PPGS–Programa de Pós-graduação em Sistemática, Uso
20 e Conservação da Biodiversidade, Av. da Universidade, 2853, Benfica, Fortaleza, CE, Brazil

21 ⁷Centro de Tecnologia e Recursos Naturais (CTRN), Universidade Federal de Campina Grande, Av. Aprígio
22 Veloso, 882, Bodocongó, Campina Grande, PB, Brazil

23 ⁸Departamento de Biologia Geral/CCBS, Universidade Estadual de Montes Claros, Av. Rui Braga, s/n, Vila
24 Mauricéia, Montes Claros, MG, Brazil

25 ⁹Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, BR 428, Km 152, Zona Rural, Petrolina,
26 PE, Brazil

27 ¹⁰Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita,
28 2270, Pici, Fortaleza, CE, Brazil

29 ¹¹Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n,
30 Novo Horizonte, Feira de Santana, BA, Brazil

31 ¹²Laboratório de Fitogeografia e Ecologia Evolutiva, Universidade Federal de Lavras, Campus Universitário,
32 Lavras, MG, Brazil

33 ¹³Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Av. Bom Pastor, s/n, Boa
34 Vista, Garanhuns, PE, Brazil

35 ¹⁴Laboratório de Ecologia, Manejo e Conservação de Fauna, Departamento de Ciências Florestais,
36 ESALQ/USP, Av. Pádua Dias, 11, Agronomia, Piracicaba, SP, Brazil

37 ¹⁵Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK

38 ¹⁶São Paulo State University (UNESP), Center for Research on Biodiversity Dynamics and Climate Change,
39 Phenology Lab and Department of Biodiversity, Institute of Bioscience, Av. 24-A, 1515, Bela Vista, Rio Claro,
40 SP, Brazil

41 ¹⁷Departamento de Fitotecnia e Ciências Ambientais, Universidade Federal da Paraíba (UFPB), Areia, PB,
42 Brazil

43 ¹⁸Colegiado de Ecologia, Campus Senhor Do Bonfim-BA, Universidade Federal Do Vale Do São Francisco
44 (UNIVASF), Rua Tomaz Guimarães, s/n, Santos Dumont, Senhor do Bonfim, BA, Brazil

45 ¹⁹Universidade Federal do Piauí, Programa de Biodiversidade do Trópico Ecotonal do Nordeste (BIOTEN),
46 Departamento de Biologia, Centro de Ciências da Natureza, Campus da Ininga, Av. Universitária, s/n, Ininga,
47 Teresina, PI, Brazil

48 ²⁰Department of Nuclear Energy, Federal University of Pernambuco, Av. Prof. Luís Freire, 1000, Recife, PE,
49 Brazil

50 ²¹Department of Biology, Building 906, Federal University of Ceará, Av. Humberto Monte, s/n, Pici, Fortaleza,
51 CE, Brazil

52 ²²Divisão de Impacto, Adaptação e Vulnerabilidade - DIAV/INPE, Av. dos Astronautas, 1758, Jardim da
53 Granja, São José dos Campos, SP, Brazil

54 ²³Instituto de Geografia, Geociências e Saúde Coletiva (IGESC), LMG 746, Km1, Monte Carmelo, MG, Brazil,
55 LMG

56 ²⁴University of Bristol, School of Geographical Sciences, Bristol, UK

57 ²⁵University of Bristol, Cabot Institute for the Environment, University Road, Bristol BS8 1SS, UK

58 ²⁶Environmental Modeling, Texas A&M Transportation Institute, 1111 RELLIS Parkway, Bryan, TX, USA

59 ²⁷Department of Geography and Environmental Science, The University of Reading, Whiteknights, PO Box
60 217, Reading RG6 6AH, UK

61 ²⁸Plant Ecology and Nature Conservation, Wageningen University and Research, Droevedaalsesteeg 3a,
62 Wageningen, The Netherlands

63 ²⁹Geography, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK

64 ³⁰University of Leeds, School of Geography, Woodhouse Lane, Leeds LS2 9JT, U.K

65 ³¹Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida André Araújo, 2936 - Petrópolis, Manaus,
66 AM, Brazil

67 ³²School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth,
68 WA, Australia

69 ³³Departamento de Ciências Florestais, Universidade Federal de Lavras, Campus Universitário, P.O. Box 3037,
70 Lavras, MG, Brazil

71 ³⁴Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52428 Jülich,
72 Germany

73 ³⁵Faculty of Communication and Environment, Rhine-Waal University of Applied Sciences, 47475 Kamp-
74 Lintfort, Germany

75 ³⁶Laboratory of Isotope Ecology, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo,
76 Piracicaba, SP, Brazil

77 Corresponding authors: A. T. Brunello (brunelloflorestal@gmail.com) and T. F. Domingues (tomas@ffclrp.br)

78

79 **Abstract**

80 *Background and Aims:* Soil properties are key drivers of vegetation structure, yet their influence on above-
81 ground woody biomass (AGB_W) in seasonally dry tropical forests (SDTFs) remains underexplored, particularly
82 at larger scales. This gap is evident in the Caatinga, Latin America's largest SDTF, known for its biodiversity
83 and carbon storage potential. We investigated relationships among soil, climate, and vegetation properties to
84 understand accumulation patterns of AGB_W in SDTFs.

85 *Methods:* We used standardised soil and vegetation data from 29 research plots spanning diverse geological
86 and floristic conditions. Linear mixed models and multi-model inference were applied to analyse relationships
87 between AGB_W and environmental variables, including soil texture, fertility, plant-available soil water, mean
88 annual precipitation (MAP), temperature, and climatic water deficit (CWD). Structural equation modelling
89 (SEM) was utilised to assess how environmental variables influenced community-weighted maximum stem
90 diameter, wood density, functional richness, and their combined effects on AGB_W.

91 *Results:* AGB_W was influenced by MAP, soil fertility, maximum plant-available soil water, and CWD. SEM
92 indicated that soil nutrient availability shaped community functional traits, reflecting trade-offs between growth
93 and water-use strategies. In turn, species' maximum stem diameter and, to a lesser extent, functional richness
94 positively influenced AGB_W, underscoring the role of soil-mediated functional traits in determining biomass.

95 *Conclusion:* AGB_w in the Caatinga is shaped by soil, climate, and their interactions, with soil properties exerting
96 strong effects on community functional diversity. Our findings highlight patterns of functional trait variability
97 and biomass storage, offering insights for biodiversity conservation and carbon sequestration in SDTFs under
98 global environmental change.

99 **Keywords:** Brazilian semi-arid, carbon stocks, drylands, functional traits, global change, dryland soils

100

101 **Introduction**

102 Above-ground woody biomass (AGB_w) is a key component of the carbon cycle in forest systems, as
103 it integrates productivity, recruitment, and mortality dynamics (Lloyd et al. 2009). Although seasonally dry
104 tropical forests (SDTFs) typically have lower AGB_w stocks than their wetter counterparts, they are important
105 carbon reservoirs due to their widespread distribution in the tropics (Glenday 2008; Roa-Fuentes et al. 2012;
106 Corona-Núñez et al. 2018). While this work focuses on AGB_w, which typically accounts for approximately 60–
107 70% of the total biomass per unit area in SDTFs, the remaining portion is represented by below-ground biomass
108 (BGB) (Murphy and Lugo 1986; Menezes et al. 2021), underscoring the importance of both pools for carbon
109 storage in these ecosystems. Once estimated to comprise 42% of all subtropical and tropical forests (Murphy
110 and Lugo 1986), SDTFs are now experiencing significant declines, with an 11.4% global loss in cover from
111 2001 to 2020 (Ocón et al. 2021). These ecosystems have been recognised as highly diverse yet threatened (Miles
112 et al. 2006; DRYFLOR 2016). The Caatinga region in Brazil, which hosts the largest continuous expanse of
113 SDTF in Latin America, harbours substantial biodiversity (Queiroz et al. 2017; Fernandes et al. 2020; Londe et
114 al. 2023) and has significant carbon storage potential (Castanho et al. 2020), highlighting its ecological
115 importance. However, like other neotropical SDTFs, the Caatinga is under threat from various pressures and
116 lacks conservation efforts (Oliveira et al. 2012; DRYFLOR 2016). The Caatinga SDTFs have long faced
117 anthropogenic pressures, including firewood and charcoal extraction, cattle raising and overgrazing, and slash-
118 and-burn agriculture (Andrade 1977; Araujo et al. 2023). These activities have pushed many previously forested
119 areas towards ecological thresholds, with only 11% of the original forest coverage remaining, while some areas
120 are desertified or at risk of desertification (Araujo et al. 2023). Despite the overwhelming influence of human
121 activities on AGB_w distribution in the region, it remains crucial to investigate how environmental factors shape

122 AGB_w in structurally mature stands, as these can offer insights into potential AGB_w accumulation under semi-
123 natural conditions.

124 Despite the likely influence of both climate and soils on AGB_w, research has primarily focused on
125 climatic factors, with soil properties often underrepresented. Among climatic variables, mean annual
126 precipitation is widely recognised as a primary driver of AGB_w, and many studies have associated biomass
127 accumulation with rainfall gradients (e.g., Brown and Lugo 1982; Becknell et al. 2012; Castanho et al. 2020).
128 However, plant water availability is also influenced by evapotranspiration, precipitation seasonality, and soil
129 properties. While the positive correlation between mean annual precipitation and AGB_w is well-reported, few
130 studies have taken soil attributes, such as soil texture, clay mineralogy, and nutrient levels, into account, mainly
131 due to incompatible sampling and analysis protocols or simply due to the absence of soil data (Becknell et al.
132 2012; Santos et al. 2023). This gap in knowledge limits our understanding of how environmental drivers interact
133 to shape AGB_w in SDTFs, particularly in the spatially complex Caatinga region.

134 In this region, distinct geological substrates have given rise to a variety of Reference Soil Groups
135 (RSGs, the highest categorical level in the WRB–FAO soil classification), ranging from nutrient-rich shallow
136 soils overlying carbonate rocks to fertile, fine-textured shallow soils over crystalline basements, to less fertile,
137 deeper soils developed from sedimentary deposits (Sampaio 1995; Oliveira 2011). Earlier studies have
138 highlighted the significant role of soil properties in shaping vegetation structure and floristic composition in
139 Brazilian dry forests (e.g., Ratter et al. 1973; 1978; Furley and Ratter 1988). In the Caatinga, soil properties
140 have been linked to local variations in structural and floristic diversity (e.g., Souza et al. 2019; Maia et al. 2020).
141 At the regional scale, the combination of soil properties and climate attributes has been shown to more
142 effectively predict differences in vegetation physiognomies than either soil or climate separately (Oliveira et al.
143 2019).

144 The relationship between vegetation and environmental conditions can also be explored through the
145 lens of functional attributes, and associated community functional properties, such as community-weighted
146 mean maximum stem diameter (CWM_{DMAX}), wood density (CWM_{WD}), and their derived functional richness
147 (F_{RIC}), i.e., the range and diversity of single or combined traits within each community. These traits have been
148 shown to influence stand-level biomass and productivity in dry ecosystems (Prado-Junior et al. 2016). In their

149 study, Prado-Junior et al. (2016) tested contrasting ecological hypotheses to explain biomass accumulation
150 patterns in SDTFs, including the ‘biomass ratio hypothesis’ (Grime 1998), which suggests that the dominant
151 traits in a community exert the greatest influence on stand-level ecosystem properties; the ‘niche
152 complementarity hypothesis’ (Tilman et al., 1999), which proposes that species can coexist by using resources
153 differently, thereby reducing competition; and the ‘soil fertility hypothesis’ (Pastor et al. 1984),
154 comprehensively tested in this study.

155 Here, we use a *Space-for-Time* approach (Pickett, 1989), which involves examining spatial variation
156 across environmental gradients as a proxy for temporal ecological changes. This approach is particularly useful
157 in the Caatinga, where long-term monitoring studies are limited, but pronounced environmental heterogeneity
158 may reflect ecosystem development over time or responses to long-term drivers. By comparing plots distributed
159 across climatic and edaphic gradients, we aim to infer how these factors shape current patterns of biomass
160 accumulation and functional diversity.

161 Specifically, we address the following research questions: (1) How do soil, climate, and their potential
162 interactions modulate patterns of biomass accumulation in the Caatinga region? (2) How does soil influence
163 stand-level functional properties, such as wood density, maximum stem diameter, and the associated functional
164 richness? (3) How do these functional properties affect stand-level above-ground woody biomass? By
165 integrating standardised soil and vegetation data from 29 research plots across the Brazilian Caatinga, this study
166 seeks to deepen our understanding of the environmental and functional drivers of biomass in SDTFs, offering
167 valuable insights for the conservation and management of these ecosystems in the context of global change.

168

169 **Material and Methods**

170 **Study sites**

171 Data used in this study were compiled from 29 study plots established by the *Nordeste Project* (see
172 Acknowledgements and Funding for further details). These plots are distributed across the Brazilian Caatinga
173 region (Table 1, Fig. 1), encompassing seven reference soil groups (RSGs), three geological substrate types,
174 and distinct mineral assemblages. These mineral assemblages are represented by high-activity clay soils (HAC),
175 low-activity clay soils (LAC), and highly sandy soils (Arenic), as described below. The sampled soils vary from

176 shallow, slightly weathered soils mostly developed from crystalline rocks (S_{CRY}) to much deeper, highly
177 weathered soils overlying sedimentary substrates (S_{SED}), including two study plots located in the Quaternary
178 dunes of the middle *São Francisco River*. Additionally, the sampling included three vegetation stands on soils
179 derived from carbonate rocks (S_{CAR}), characterised by distinctive properties such as elevated calcium (Ca) and
180 phosphorus (P) levels, and neutral to basic soil pH. Examples of sampled soil and vegetation are displayed in
181 Fig. 1 and Figs. 1, 2, and 3 of Online Resource 1. The average mean annual precipitation (MAP) for the study
182 plots was 802 mm yr⁻¹, ranging from 510 mm yr⁻¹ to 1363 mm yr⁻¹, whereas the average mean annual
183 temperature (MAT) was 23.8 °C, ranging from 20.5 °C to 26.8 °C. The study plots had an average elevation of
184 535 m asl, varying from 99 to 944 m asl (Table 1). Vegetation structure ranged from open canopies 4–7 m in
185 height to closed canopies 25–30 m tall. Study sites consist of well-conserved structurally mature stands, though
186 sporadic grazing and occasional timber logging cannot be fully disregarded in a few study plots. Most plots
187 were established on flat terrain, with some on slightly sloping reliefs. A more detailed version of Table 1 with
188 environmental and vegetation data is available in Table 1 of Online Resource 1. Vegetation inventory and soil
189 sampling were conducted during three fieldwork campaigns in 2017, 2018, and 2019, as part of the inventory
190 carried out by the *Nordeste Project fieldwork team*. In all years, sampling was consistently carried out during
191 the late wet season to capture vegetation at its maximum vegetation development stage (Moonlight et al. 2021).

Table 1: Study plots, selected environmental and vegetation data: plot code; latitude; longitude; APS = average plot slope; F = flat; SS = slightly sloping; geology; SED = sedimentary; CRY = crystalline; CAR = carbonate; RSG = reference soil group; MAP = mean annual precipitation; MAT = mean annual temperature; elevation; AGB_W = above-ground woody biomass; clay (fraction); [N]_T = soil total nitrogen; [P]_T = soil total phosphorus; pH_{H2O} = water-measured soil pH; [Ca]_{ex} = soil exchangeable calcium. Study plots are ordered according to increasing MAP. Soil data refers to the upper 0.3 m from the soil surface. Original vegetation and soil data are integrated into the *ForestPlots Network* (www.ForestPlots.net).

Plot Code	Latitude	Longitude	APS	Geology	RSG	MAP (mm)	MAT (C°)	Elevation (m)	AGB _W (Mg ha ⁻¹)	Clay (fraction)	[N] _T (mg g ⁻¹)	[P] _T (mg kg ⁻¹)	pH _{H2O}	[Ca] _{ex} (mmol _c kg ⁻¹)
CND-01	-9.97	-39.01	F	SED	Arenosol	512	22.7	535	20.9	0.04	2.5	69	4.66	1.5
GBR-02	-11.02	-41.41	F	CAR	Leptosol	515	22.9	637	47.3	0.15	16.8	1194	7.48	55.8
GBR-01	-11.01	-41.44	F	CAR	Cambisol	519	23.3	564	74.8	0.22	12	469	7.77	55.7
LGE-01	-9.05	-40.32	F	CRY	Luvisol	591	25.1	390	10.2	0.12	11.9	148	5.47	17.4
MOR-02	-11.50	-41.35	SS	SED	Leptosol	591	20.8	907	15.8	0.16	19	223	4.17	3.4
CGR-01	-7.28	-35.98	F	CRY	Luvisol	599	22.8	487	14.1	0.18	8.8	162	4.71	8.6
MOR-01	-11.49	-41.33	F	SED	Arenosol	602	20.5	944	18.8	0.06	16.8	51	4.49	7.7
IBD-02	-10.79	-42.78	F	SED	Arenosol	684	25.6	411	19.7	0.02	3.3	92	5.68	3.3
IBD-01	-10.79	-42.82	SS	SED	Arenosol	696	25.5	421	18.5	0.01	6.1	61	5.74	5.9
BVT-01	-12.73	-40.71	SS	CRY	Acrisol	724	22.2	495	22.5	0.24	12.1	52	4.32	4.6
SET-01	-7.97	-38.38	F	CRY	Luvisol	752	23.7	472	27.8	0.08	6.3	144	6.13	30.8
SCP-02	-8.86	-42.68	F	SED	Acrisol	768	25.6	487	20.6	0.15	20.5	89	4.3	0.9
MCS-02	-13.06	-42.52	F	CRY	Arenosol	782	24.4	545	33.9	0.06	5.1	43	5.67	12.3
SCP-01	-8.86	-42.70	F	SED	Cambisol	786	25.4	529	11.7	0.21	7.1	302	4.27	2.5
MCS-01	-13.00	-42.71	SS	CRY	Leptosol	789	23.1	770	46.9	0.12	13.4	103	4.54	2.9
PAT-01	-7.01	-37.40	F	CRY	Luvisol	792	26.2	282	18.3	0.18	10.1	204	5.86	25.9
SJO-01	-8.81	-36.41	F	CRY	Arenosol	792	21.4	670	12.7	0.06	6.6	164	5.15	5.3
PAT-02	-7.02	-37.40	F	CRY	Luvisol	808	26.2	283	21.2	0.15	5.9	163	6.27	25.1
SDA-03	-5.12	-40.87	F	CRY	Luvisol	815	25.5	309	55.6	0.11	9.5	163	5.97	30
CJU-01	-14.97	-43.92	F	SED	Arenosol	825	24.2	470	4.9	0.07	6.7	15	4.77	2.5
PFF-01	-5.04	-37.52	F	CAR	Calcisol	864	26.8	99	33.6	0.42	20	360	7.89	65.6
JUV-01	-14.43	-44.16	SS	SED	Luvisol	900	24.2	518	85.7	0.28	11.4	176	6.14	27.4
CTI-01	-14.22	-42.53	SS	CRY	Regosol	939	20.9	938	60.9	0.15	10.7	28	4.38	3.6
SDA-02	-5.14	-40.91	F	SED	Leptosol	969	23.3	640	48.7	0.22	13.2	181	4.21	0.4

SDA-01	-5.15	-40.93	F	SED	Arenosol	973	23	682	22.2	0.07	12.1	129	4.51	0.8
ARI-04	-7.36	-39.48	F	SED	Acrisol	1011	21.4	899	10.6	0.29	15	101	4.47	1.8
ARI-03	-7.27	-39.45	SS	SED	Alisol	1081	22	796	83.2	0.12	9.5	80	4.22	4.3
BTI-01	-3.36	-41.74	SS	SED	Leptosol	1222	26.6	102	46	0.17	28.9	282	4.65	17.2
PSC-02	-4.13	-41.68	F	SED	Regosol	1363	26	238	37	0.09	7.8	156	4.58	0.9

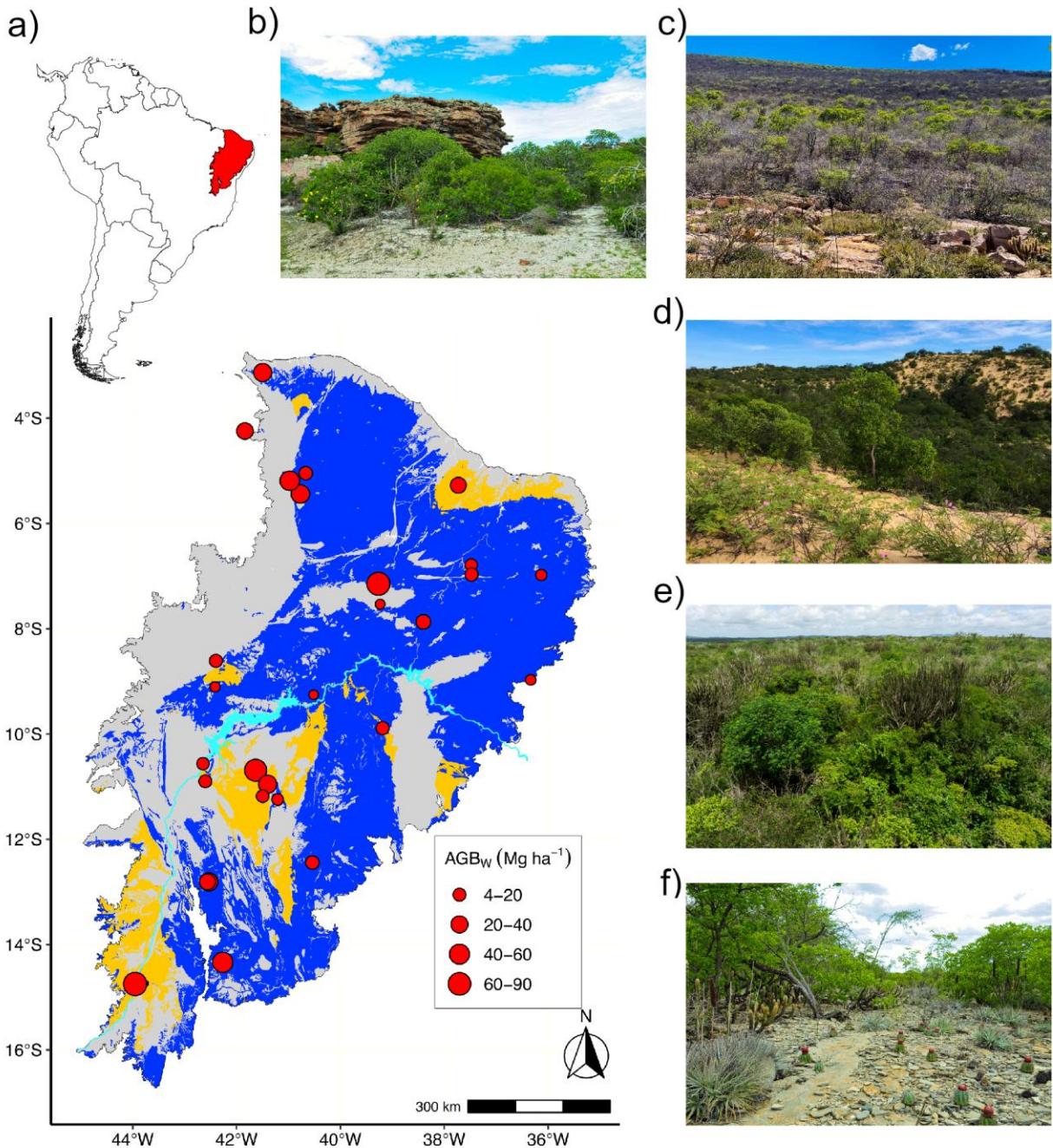


Fig. 1: Study plots and sampled vegetation. a) Geographic location of the Brazilian Caatinga region in South America and the distribution of dry above-ground woody biomass (AGBw) across the *Nordeste Project* study plots. b) Caatinga *sensu stricto* interspersed with exposed sand in the sedimentary Morro do Chapéu Formation (MOR-01); c) Caatinga *sensu stricto* interspersed with arenites outcrops in the sedimentary Morro do Chapéu Formation (MOR-02); d) Caatinga *sensu stricto* in the Quaternary dunes of the middle São Francisco River (IBD-01); e) Caatinga *sensu stricto* in the crystalline São Caetano Formation (CGR-01); f) Caatinga *sensu stricto* overlying carbonate rock outcrops in Gruta dos Brejões (GBR-02). Blue, grey, and yellow areas indicate crystalline, sedimentary, and carbonate substrates, respectively. The light blue course depicts the São Francisco River. The outline of the Caatinga region follows the Brazilian Institute of Geography and Statistics (IBGE, 2019), crystalline and sedimentary substrates according to the geoscience system of the Geological Survey of Brazil (CPRM), and areas with carbonate substrates according to Queiroz et al. (2017). Overlapping study plots have been displaced to allow their visualisation. Datum: SIRGAS2000. Photos by Domingos Cardoso (b, c, d, and f) and Peter Moonlight (e).

167 Vegetation structure

168 Standardised floristic and structural inventories were carried out following '*The DryFlor Field Manual*
169 *for Plot Establishment and Remeasurement*' (Moonlight et al. 2021a; 2021b). In brief, a 100 × 50 m (0.5 ha)
170 plot was established and sub-partitioned into 50 subplots (10 × 10 m or 0.01 ha). All trees with stems with ≥ 5
171 cm in diameter were inventoried, measured at both breast height (DBH, 1.3 m from the ground) and 30 cm from
172 the ground level (DGL), as recommended by the DRYFLOR protocol to ensure comparability across dry forest
173 networks. This criterion represents a compromise that balances practical field constraints with the need to
174 capture most of the forest's structure and dynamics. Multi-stemmed individuals were carefully measured stem
175 by stem. Trees were identified in the field, herbarium, and by taxonomic specialists, to species where possible,
176 and voucher specimens were deposited into the Herbarium of Feira de Santana State University (HUEFS; Feira
177 de Santana, Bahia, Brazil). Tree-by-tree data from each '*Nordeste Project*' study plot contribute to the
178 *ForestPlots network* (ForestPlots.net, 2021) and are curated at www.ForestPlots.net. High-resolution images of
179 the voucher specimens are also publicly accessible through the *speciesLink* network of biodiversity collections
180 (<http://www.splink.org.br/>).

181

182 Soil sampling

183 We used a standard protocol ([https://rainfor.org/wp-
184 content/uploads/sites/129/2022/07/soilandfoliarsampling.pdf](https://rainfor.org/wp-content/uploads/sites/129/2022/07/soilandfoliarsampling.pdf)) with some adjustments to accommodate specific
185 characteristics of Caatinga soils, such as restricted depth range, and a marked presence of stones and rocks in
186 some cases. This protocol has been widely used in past research conducted in tropical regions, such as the
187 RAINFOR and TROBIT networks (e.g., Quesada et al., 2010; Lloyd et al., 2015). Specifically, four auger cores
188 were taken as baseline samples in each plot, with one to three additional cores collected in cases of pronounced
189 spatial variability within the plot (e.g., irregular topography, rock outcrops, vegetation changes, or markedly
190 shallow soils). Samples were obtained at standard depth intervals (0–5, 5–10, 10–20, 20–30, 30–50, 50–100,
191 100–150, and 150–200) or according to the maximum depth achievable at each location. In addition, a soil pit
192 was excavated just beside each plot to describe soil profiles, also serving as an additional sampling point for
193 chemical and physical analyses. Subsequently, all samples were air-dried and sent to the Soil and Plant

194 Thematic Laboratory at the National Institute for Research in the Amazon (LTSP, INPA, Manaus, Amazonas,
195 Brazil).

196 Laboratory analysis

197 In the LTSP, samples were loosened, sieved with a no. 10-mesh sieve (particle size of 2 mm), and any
198 non-fine earth residues removed (e.g., gravels and vegetation or faunal debris). We determined water-measured
199 soil pH ($\text{pH}_{\text{H}_2\text{O}}$) using a 1: 2.5 soil-to-deionised water ratio with a glass electrode. Soil exchangeable cations
200 were determined by the Silver-Tioureia (AgTU) method (Pleysier and Juo 1980). The concentration of each
201 cation extracted was determined using an Atomic Absorption Spectrophotometer (AAS, Model 100b, Perkin
202 Elmer, Norwalk, CT, USA). Soil sum of bases (Σ_B) and effective cation exchange capacity (I_E) were calculated
203 according to Eqn. (1) and (2), respectively:

$$204 \Sigma_B = [\text{Ca}]_{\text{ex}} + [\text{Mg}]_{\text{ex}} + [\text{K}]_{\text{ex}} + [\text{Na}]_{\text{ex}} \quad \text{Eqn. (1)}$$

$$205 I_E = \Sigma_B + [\text{Al}]_{\text{ex}} \quad \text{Eqn. (2)}$$

206 Where Ca, Mg, K, Na and Al refer to calcium, magnesium, potassium, sodium and aluminium, respectively,
207 while “ex” refers to exchangeable contents.

208 Soil total carbon (C) and nitrogen (N) were determined using dry combustion with an automated
209 analyser (Vario Max CN, Elementar, Germany). Soil samples were combusted at high temperatures, and the
210 resulting gases were measured to quantify C and N concentrations. Soil total phosphorus concentrations, $[\text{P}]_T$,
211 were obtained using composite samples from the 0–5, 5–10, 10–20, and 20–30 cm soil depths. Samples were
212 digested with concentrated sulfuric acid, followed by the addition of hydrogen peroxide (Tiessen and Moir
213 1993). Afterwards, $[\text{P}]_T$ were determined by colourimetry using the molybdenum blue colour development
214 method (Olsen and Sommers 1982), using a spectrophotometer (Model 1240, Shimadzu, Kyoto, Japan). Soil
215 texture was determined using the sieve-pipette method (Gee and Bauder 1986). Soil dry bulk density (BD) was
216 determined using the volumetric ring method (Eijkelkamp Agrisearch Equipment BV, Giesbeek, Netherlands).
217 Calibration procedures and standard samples were routinely used to ensure the accuracy of the results.

218

219 Soil classification, clay mineralogy, and geological surveying
220 The soils were classified according to the World Reference Base for Soil Resources (IUSS Working
221 Group WRB, 2014/2015), with the aid of the WRB Tool 1.1.2.0 (Downloaded in March 2021; OrlovDO, 2017;
222 <https://apps.microsoft.com/store/detail/wrb-tool/>). This tool streamlines the soil classification process by
223 guiding users systematically through the key steps, potentially reducing classification errors through its step-
224 by-step interface. Complete soil classifications are provided in Table 2 of Online Resource 1. Following
225 Quesada et al. (2020), we categorised the sampled soils as HAC, LAC, and 'Arenic'. HAC soils are those with
226 CEC clay⁻¹ > 24 mmol_c kg⁻¹ (typically less weathered soil classes such as Luvisols in this study), while LAC
227 soils are those with CEC clay⁻¹ < 24 mmol_c kg⁻¹ (typically more weathered soils such as Acrisols, Alisols, and
228 Regosols in this study) (IUSS Working Group WRB, 2014/2015). The third category ('Arenic') was used for
229 considerably sandy soils, i.e., those soils with loamy sand texture or coarser (Arenosols in this study).
230 Additionally, we used the geoscience system (GeoSGB; <https://geosgb.sgb.gov.br/geosgb/>) of the Geological
231 Survey of Brazil (CPRM), and the delineation of areas with carbonate rocks as in Queiroz et al. (2017) to
232 characterise the geology of each study plot.

233

234 Maximum plant-available soil water (θ_p)

235 The maximum plant-available soil water (θ_p) is defined as the difference in volumetric soil water
236 content (θ_v) values between field capacity (θ_v at a matric potential of -10 kPa: $\theta_{v,FC}$) and the permanent wilting
237 point (θ_v at a matric potential of -1500 kPa: $\theta_{v,WP}$): $\theta_{v,FC} - \theta_{v,WP}$. These θ_v values can be obtained from the water
238 retention curve (WRC), which for our study was described with the widely used van Genuchten (VG) equation
239 (van Genuchten, 1980). The VG parameters required for the calculation of the WRC were obtained from Table
240 6 in Hodnett and Tomasella (2002). These parameters had been obtained using a (soil) class pedotransfer
241 function approach for tropical soils of the IGBP soils dataset. For each *Nordeste* plot, and each soil layer, the
242 soil textural class, based on measured sand/silt/clay contents, was determined using the USDA soil texture
243 triangle, after which the look-up table provided by Hodnett and Tomasella (2002) was used to obtain the VG
244 parameters. After estimating $\theta_{v,FC}$ and $\theta_{v,WP}$ from the constructed WRCs, their difference was integrated over
245 the maximum measured soil depth (mm), thus providing θ_p in mm³ mm⁻², or simply mm.

246 Climatic data

247 Climatic data were extracted from the WorldClim database version 2.1. The BioClim variables
248 represent the historical averages for the 1970 – 2000 period with 30 arc-seconds ($\sim 1 \text{ km}^2$) resolution (Fick and
249 Hijmans 2017). We selected a few key variables based on *a priori* hypotheses, i.e., mean annual precipitation
250 (BIO12 in the WorldClim system, MAP in this study), mean annual temperature (BIO1 in the WorldClim
251 system, MAT in this study), the maximum temperature of the warmest month (BIO5 in the WorldClim system,
252 T_{MAX} in this study), and precipitation seasonality (BIO15 in the WorldClim system, Ψ in this study). T_{MAX}
253 reflects high-temperature events throughout the year and can be used to examine whether vegetation properties
254 are affected by extreme temperature events, while BIO15 is a measure of variation in monthly precipitation
255 totals over the year (O'Donnell and Ignizio 2012). Potential evapotranspiration (PET) was obtained from the
256 CGIAR Consortium for Spatial Information – CGIAR-CSI (Zomer et al., 2022). Estimates of climatic water
257 deficit (CWD) for each study plot were obtained from raster layers (currently available at
258 <https://zenodo.org/records/14932971>) with 2.5 arc-minute resolution. The CWD variable was found to be
259 important in determining allometric relationships (Chave et al. 2014) and represents the net balance between
260 precipitation and potential evapotranspiration (PET) in the dry months (i.e., months where PET exceeds rainfall,
261 given in mm per year). Note that although CWD values are originally negative, we present them as positive to
262 indicate ‘millimetres of deficit’.

263

264 Above-ground woody biomass (AGB_w) calculations

265 Estimates of AGB_w for individual tree stems were calculated using an allometric equation specifically
266 developed for Caatinga trees (Sampaio and Silva 2005):

$$267 \quad \text{AGB}_T = 0.0644 \times \text{DGL}^{2.3948} \quad \text{Eqn. (3)}$$

268 Where AGB_T is the dry tree above-ground biomass (kg) and DGL is the diameter at the ground level.
269 Biomass of individual cacti (1,098 stems) was estimated using a separate specific equation for cacti from
270 Sampaio and Silva (2005), and palm tree biomass (35 stems) was calculated using a formula from Saldarriaga
271 et al. (1988). At the plot level, total AGB_w was the sum of the above-ground dry biomass of all stems measured,

272 with individual biomass for multi-stemmed individuals calculated and then summed. It is worth noting that the
273 equation determines the total biomass of trees (including leaves), with “w” referring to woody species.

274

275 Community functional composition

276 Following Prado-Junior et al. (2016), we calculated two community-weighted trait means of strong
277 ecological significance: community-weighted maximum stem diameter ($CWM_{D\text{MAX}}$) and community-weighted
278 mean wood density (CWM_{WD}). Both traits represent fundamental life history strategies and are closely linked
279 to resource storage, structural resistance, hydraulic safety, and the ability to adapt to environmental stressors
280 (Larjavaara and Muller-Landau 2010; Reich 2014). Species maximum stem diameter reflects adult sizes and
281 was calculated as the upper 0.95 percentile of those trees with a stem diameter $\geq 0.1 \times$ the diameter (cm) of the
282 thickest tree observed in each population. We adopted this approach since it was considered the least sensitive
283 to varying sample sizes while providing robust estimates for both larger and smaller species (King et al. 2006;
284 Prado-Junior et al. 2016). Species’ wood density values were extracted from the global wood density database
285 (Chave et al. 2009; Zanne et al. 2009). When unavailable at the species level, we used wood density values at
286 the genus or family levels. Botanical names were checked and adjusted according to the *Flora do Brasil* 2020
287 with the *flora* package version 0.3.5 (Carvalho 2020). Each trait was weighted according to the basal area of
288 individual species, as this is expected to reflect plant performance better than abundance (Prado-Junior et al.
289 2016). The distribution of a given trait across a niche space can be summarised along orthogonal axes, from
290 which functional diversity indices can be calculated (Mason et al. 2005). Specifically, we derived the functional
291 richness index (F_{RIC}) from community-weighted maximum stem diameter and wood density, measuring the
292 amount of functional trait space occupied by a community. The functional richness index reflects the diversity
293 of ecological strategies present and is calculated as the convex hull volume in a multidimensional trait space.
294 Community-weighted mean traits and F_{RIC} were computed using the FD package in R (Laliberté et al. 2014).

295

296 Data analysis

297 Initially, AGB_w values were plotted against three categorical predictors: geological substrates, clay
298 activity, and RSGs. To assess whether these categories explained variations in AGB_w , a robust non-parametric

299 Kruskal-Wallis test (χ^2) was performed. Comparisons were limited to categories with at least 5 observations,
300 including Arenosols, Leptosols, and Luvisols for RSGs; HAC, LAC and Arenic for clay activity; and crystalline
301 (SCRY) *versus* sedimentary (SED) for geological substrates.

302 To test the hypothesis that AGB_w is influenced by multiple environmental factors and their
303 interactions, a linear mixed-effects model was employed, combined with multi-model/model averaging
304 inferences. For this purpose, two 0.25 ha subplots were considered within each 0.5 ha plot (29 total), resulting
305 in 58 observations. This procedure was adopted to increase the number of observations and to provide greater
306 flexibility for including multiple predictors in the same models, while reducing the risk of overfitting (Harrison
307 et al. 2018). The global model included mean annual precipitation and climatic water deficit to represent water
308 input and water balance, and maximum temperature of the warmest month as a key thermal variable.
309 Correlations between climatological variables are provided in Table 3 of Online Resource 1.

310 Since soil predictors were strongly correlated (Table 4, Online Resource 1), they were carefully
311 selected by systematically replacing them one at a time in the global model (Eqn. 4). We evaluated relative
312 importance values (RIV), variance inflation factors (VIF), marginal r^2 (fixed effects), and Akaike Information
313 Criterion corrected (AICc). The VIF values of all predictors in Eqn. (4) were checked to prevent overfitting.
314 Given the high correlation between potential evapotranspiration and temperature variables ($\rho = 0.84, p < 0.001$
315 for MAT; and $\rho = 0.83, p < 0.001$ for T_{MAX} , Table 3 of Online Resource 1), and considering that PET was
316 incorporated into CWD, we did not include it in the global model of Eqn (4). In all analyses, we used the upper
317 0-30 cm soil layer, commonly used in vegetation ecology studies (e.g., Quesada et al. 2012; Lloyd et al. 2015).
318 To facilitate interpretation, all predictors were standardised (subtracting the mean and dividing by the standard
319 deviation) with the aid of the *caret* package in R (Max et al. 2020), providing comparative effect sizes among
320 predictors. Since the analysis involved non-independent observations, sites were treated as random structures
321 within the model (Harrison et al. 2018). The final global model is expressed by Eqn. (4):

$$322 \log(\text{AGB}_w) = \beta_0 + \beta_1 \theta_p + \beta_2 \text{MAP} + \beta_3 [\text{Ca}]_{\text{ex}} + \beta_4 \text{CWD} + \beta_5 \theta_p \times \text{CWD} + \beta_6 [\text{Ca}]_{\text{ex}} \times \text{CWD} + \beta_7 T_{MAX} \\ 323 + \beta_8 \log[\text{N}]_T + \beta_9 \log[\text{P}]_T + (1|site) + \varepsilon \quad \text{Eqn. (4)}$$

324 Where AGB_w is above-ground woody biomass; θ_p is maximum plant-available soil water; MAP is
325 mean annual precipitation; $[\text{Ca}]_{\text{ex}}$ is soil exchangeable calcium; CWD is climatic water deficit; T_{MAX} is the

326 maximum temperature of the warmest month; $[N]_T$ is soil total nitrogen; $[P]_T$ is soil total phosphorus; $(1|site)$
327 represents the random intercept for site; and ϵ is the residual error. We evaluated the distribution of residuals
328 both statistically and graphically. The response variable was log-transformed to meet the normality assumption
329 and reduce heteroscedasticity. The potential presence of spatial structures was checked using the methods
330 outlined by Bauman et al. (2018a; 2018b). Specifically, the *listw.candidates* function from the *adespatial*
331 package in R (Dray et al. 2021) was used to test a few distance and graph-based spatial weighting matrices.
332 Spatial autocorrelations were assessed through Moran's *I* coefficient with a significance level of $p \leq 0.05$.

333 We tested all possible predictor combinations using the *MuMin* package in R (Bartón 2020).
334 Collinearity issues were further controlled by preventing predictors with Pearson's correlation $|r| \geq 0.6$ in the
335 same models. This process generated 137 unique models, with the maximum number of predictors in each
336 model being constrained to 6, thus ensuring nearly 10 observations per model term. Model selection followed
337 an information-theoretic (I-T) approach, retaining models with $\Delta AICc < 4$ (Burnham et al. 2011; Harrison et
338 al. 2018). From the 19 retained models ($\Delta AICc < 4$), coefficients were averaged using the *model.avg* function
339 of the *MuMin* R package. Full averaging was used for model predictions, providing more reliable β estimates
340 when multiple models have support (Mazerolle 2023). The 'full' averaging approach dictates that each variable
341 is included in every model (setting the coefficients to zero in the models where the term is absent), whereas the
342 'conditional' average approach considers only those models where the parameter appears (Bartón 2020). In
343 both cases, average coefficients were weighed according to Akaike weights. Model marginal r^2 (r^2m) was
344 reported to represent fixed effects. Additionally, we performed a series of 95th-percentile linear mixed-effects
345 model relationships to explore the predictive ability of individual soil and climate predictors on AGBw.

346 A Spearman's rank correlation matrix (ρ) was computed to explore relationships between soil
347 properties and community functional properties, with significant relationships graphically represented (Fig. 7
348 of Online Resource 1). Subsequently, the most supported variables identified through the multi-model inference
349 approach were used to investigate the relationships between environmental factors, vegetation properties, and
350 their combined effects on AGBw. For this task, we employed a Structural Equation Modelling (SEM)
351 framework using the *lavaan* R package (Rosseel 2012). The model assessed direct and indirect effects of
352 edaphic and climatic variables, i.e., mean annual precipitation, climatic water deficit, soil exchangeable

353 calcium, and maximum plant-available soil water on community-weighted maximum stem diameter, wood
354 density, and associated functional richness, as well as their potential effects on above-ground biomass (AGB_w).

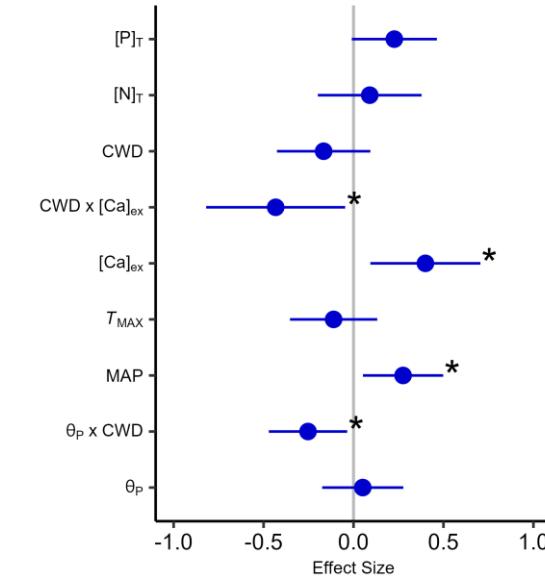
355 To overcome the non-normality of some variables included in the SEM, we utilised the Maximum
356 Likelihood Estimator with Robust Standard Errors (MLR), which adjusts for non-normal distributions and
357 potential heteroscedasticity. Robustness was further enhanced with the *Yuan-Bentler* scaling correction, which
358 is appropriate for handling non-normality and small sample sizes. The SEM was evaluated using multiple fit
359 indices, including the Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of
360 Approximation (RMSEA), and Standardised Root Mean Square Residual (SRMR), with robust versions
361 addressing non-normality. Overall model performance was assessed using the chi-square test statistic (χ^2) and
362 its associated *p*-values to determine significance.

363 Finally, we used the *alphahull* R package (Pateiro-López and Rodríguez-Casal 2019) to make the
364 heatmaps presented in Figs. 3 and 4. We used heatmaps to represent interaction terms, as they provide an
365 intuitive visualisation of how AGB_w responds across the gradients of two predictors simultaneously. Heatmap
366 simulations were constrained to the actual environmental conditions found in the dataset. All graphs were
367 created using the *ggplot2* R package (Wickham et al. 2016), and all analyses were conducted in the R
368 environment, Version 4.1.1 (R Core Team 2021).

369

370 **Results**

371 Stand structure and categorical predictors


372 Altogether, 18,201 individual stems with a diameter at the ground level ≥ 5 cm were recorded across
373 the 29 study plots, including 1,098 cacti and 35 palm trees. These individuals encompass 331 unique species,
374 176 genera, and 50 identified tree families. The mean \pm standard deviation of AGB_w was 32.55 ± 22.35 Mg ha⁻¹
375 (min = 4.87 Mg ha⁻¹; max of 85.65 Mg ha⁻¹), mean stem density (stems ha⁻¹) was 1255 ± 489 (min = 492; max
376 = 2,534), and mean basal area (B_A) was 12.89 ± 7.10 m² ha⁻¹ (min = 2.44; max = 28.79 m² ha⁻¹). Above-ground
377 woody biomass did not differ among geological substrates ($\chi^2 = 0.08$; $p = 0.775$; Fig. 4-a of Online Resource
378 1), types of clay activity ($\chi^2 = 3.70$; $p = 0.157$; Fig. 4-b of Online Resource 1), and RSGs ($\chi^2 = 3.39$; $p = 0.183$;
379 Fig. 4-c of Online Resource 1).

380 Above-ground woody biomass modelling

381 Above-ground woody biomass was influenced by both edaphic and climatic factors, and their
382 interactions, as indicated by the multi-model Inference and Information-Theoretic approaches. Of the 19 models
383 selected within the $\Delta\text{AICc} < 4$ range, six included climate, soil chemistry, and soil physics terms; 10 included
384 only climate and soil chemistry; and three included only soil chemistry (Table 5 of Online Resource 1). The
385 most strongly supported terms in the conditional average model were the interaction between exchangeable
386 calcium and climatic water deficit ($\beta = -0.43$), exchangeable calcium ($\beta = 0.40$), mean annual precipitation (β
387 = 0.28), and the interaction between maximum plant-available soil water \times climatic water deficit ($\beta = -0.25$)
388 (Fig. 2-A). Relative importance values for these terms were: exchangeable calcium (0.95), mean annual
389 precipitation (0.92), climatic water deficit (0.53), the interaction between exchangeable calcium and climatic
390 water deficit (0.40), maximum plant-available soil water (0.33), max temperature of the warmest month (0.18),
391 the interaction between maximum plant-available soil water \times climatic water deficit (0.18), total nitrogen (0.15),
392 and total phosphorus (0.02) (Fig. 2-b).

393 Replacing collinear soil predictors in the global model (Eqn. 4) showed that r^2m decreased in the
394 following order: exchangeable calcium (0.49) > sum of bases (0.48) > effective cation exchange capacity (0.46)
395 > $\text{pH}_{\text{H}_2\text{O}}$ (0.45) > exchangeable magnesium (0.41) > exchangeable aluminium (0.40) > exchangeable sodium
396 (0.39) > exchangeable potassium (0.35). Correspondingly, AICc values increased, with exchangeable calcium
397 showing the lowest (92.95) and exchangeable potassium the highest (100.78). RIV decreased in the order:
398 effective cation exchange capacity (0.96) > exchangeable calcium (0.95) > sum of bases (0.87) > $\text{pH}_{\text{H}_2\text{O}}$ (0.64)
399 > exchangeable magnesium (0.46) > exchangeable sodium (0.39) > exchangeable potassium (0.31) >
400 exchangeable aluminium (0.15). Based on these metrics, and noting the dominance of exchangeable calcium in
401 the soil cation exchange complex across most sites (Fig. 5 of Online Resource 1), exchangeable calcium was
402 selected over its alternatives. Model-simulated responses suggest that exchangeable calcium levels have a
403 marked influence on AGB_w . This effect, however, was also influenced by the intensity of the climatic water
404 deficit (Fig. 3-a).

a)

b)

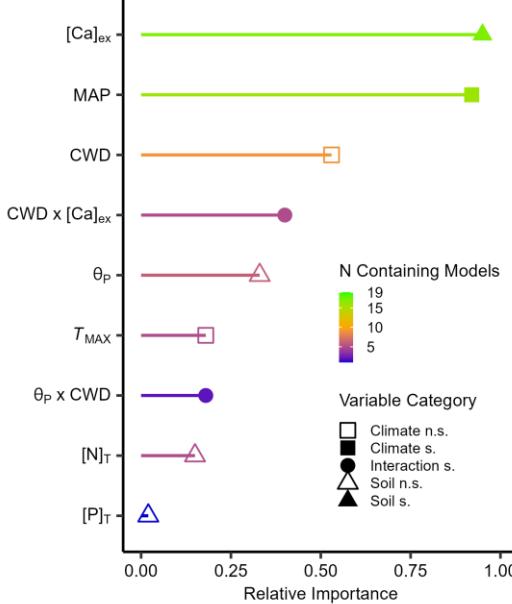


Fig. 2: Multi-model inference statistics. a) edaphic and climatic effects on above-ground woody biomass (AGB_w) of 29 Caatinga's SDTFs study plots. Points represent conditional average model coefficients. Coefficients were standardised, thus representing changes in log(AGB_w) for a one standard deviation change in the predictor variable (effect size). [Ca]_{ex} = exchangeable calcium; MAP = mean annual precipitation; CWD = climatic water deficit; θ_P = maximum plant-available soil water; T_{MAX} = temperature of the warmest month; [N]_T = soil total nitrogen; [P]_T = soil total phosphorus. Error bars show 95% confidence intervals. Asterisks denote statistically significant coefficients. b) Relative importance values (RIV) of each variable included in the final model. Variable category and the frequency of each term across the 19 models selected via AICc ("N Containing Models") are shown. Filled symbols represent significant relationships, while empty symbols represent non-significant relationships.

405 Using coefficients from the best AICc-ranked model (Model 1; Table 5 of Online Resource 1),
 406 predicted above-ground woody biomass (\hat{AGB}_w) was virtually constant across climatic water deficit when
 407 exchangeable calcium was low ($\sim 5 \text{ mmol}_c \text{ kg}^{-1}$). However, at high exchangeable calcium ($\sim 40.37 \text{ mmol}_c \text{ kg}^{-1}$),
 408 \hat{AGB}_w ranged from 19.19 to 86.12 Mg ha⁻¹ as climatic water deficit varied from 1238 to 909 mm. Similarly,
 409 model predictions showed that \hat{AGB}_w increases with higher maximum plant-available soil water and lower

410 climatic water deficit (Fig. 3-b). For instance, at a maximum plant-available soil water = 200 mm, \hat{AGB}_w was
411 62.15 Mg ha⁻¹ when climatic water deficit was low (620 mm), but dropped to 14.30 Mg ha⁻¹ at high climatic
412 water deficit (1290 mm). The second-best model (Model 2; Table 5 of Online Resource 1) highlighted the
413 influence of mean annual precipitation and exchangeable calcium on \hat{AGB}_w . For example, at a mean annual
414 precipitation of ~800 mm, \hat{AGB}_w varied from 20.14 to 60.81 Mg ha⁻¹ as exchangeable calcium increased from
415 1.37 to 62.87 mmol_c kg⁻¹ (Fig. 3-c).

416 Finally, \hat{AGB}_w predictions across the mean annual precipitation gradient in the dataset were simulated
417 under varying soil conditions (Fig. 4): A) optimal – exchangeable calcium = 50.67 mmol_c kg⁻¹, and maximum
418 plant-available soil water = 270 mm; B) moderately high – exchangeable calcium = 32.65 mmol_c kg⁻¹, and
419 maximum plant-available soil water = 210 mm; C) intermediate – exchangeable calcium = 14.62 mmol_c kg⁻¹,
420 and maximum plant-available soil water = 150 mm; and D) poor conditions – exchangeable calcium = 1 mmol_c
421 kg⁻¹, and maximum plant-available soil water = 80 mm. While \hat{AGB}_w increased with mean annual precipitation
422 in all cases, this effect was strongest under favourable soil conditions, i.e., increased nutrient content and higher
423 water storage capability.

424

425

426

427

428

429

430

431

432

433

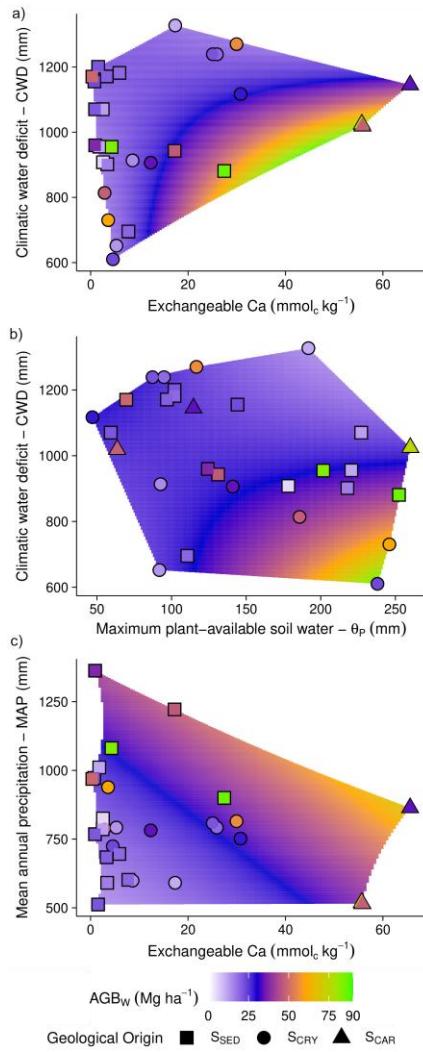
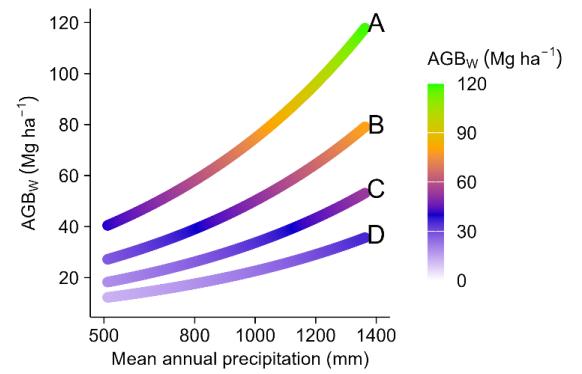



Fig. 3: Modelled responses of above-ground woody biomass (\hat{AGB}_W) based on the two best AICc-ranked models. a) \hat{AGB}_W as a function of the interaction between exchangeable calcium ($[Ca]_{ex}$) and climatic water deficit (CWD). b) \hat{AGB}_W as a function of the interaction between CWD and maximum plant-available soil water (θ_p). c) \hat{AGB}_W as an additive function of $[Ca]_{ex}$ and mean annual precipitation (MAP). Study plots are shown within their respective environmental domains and geological categories. Note: CWD, originally expressed as negative values, is presented here as positive values representing “millimetres of deficit.” Geological categories: SED = sedimentary, CRY = crystalline, CAR = carbonate.

Fig. 4: Modelled responses of above-ground woody biomass as (\hat{AGB}_W) a function mean annual precipitation under four edaphic scenarios: A) optimal – maximum plant-available soil water (θ_p) and exchangeable calcium ($[Ca]_{ex}$) (+2 SD above the mean); B) moderately high – θ_p and $[Ca]_{ex}$ (+1 SD above the mean); C) intermediate – θ_p and $[Ca]_{ex}$ (at their means); and D) poor conditions – θ_p and $[Ca]_{ex}$ (-1 SD below their means).

436 Regarding bivariate relationships, we found significant associations between AGB_w and soil variables,
437 including exchangeable calcium, sum of bases, effective cation exchange capacity, sand, and silt, across the full
438 dataset, while climatic variables showed no significant linear relationships with AGB_w (Table 6 of Online
439 Resource 1 and Fig. 6 of Online Resource 1).

440

441 Associations between soil properties and community functional composition

442 A Spearman's correlation matrix showed that community-weighted wood density was inversely
443 correlated with several soil properties, including exchangeable calcium, sum of bases, effective cation exchange
444 capacity, and silt content, and positively correlated with soil sand. Conversely, community-weighted maximum
445 stem diameter was positively associated with exchangeable calcium and soil sum of bases. The functional
446 richness index was positively correlated with multiple soil properties, including exchangeable Ca, Mg, K, sum
447 of bases, and effective cation exchange capacity. Significant Spearman's coefficients are shown in Fig. 7 of
448 Online Resource 1, and all tested relationships are summarised in Table 7 of Online Resource 1. No significant
449 correlations were found between climatic variables and functional properties. Finally, forests in crystalline
450 environments had higher functional richness values than those in sedimentary substrates ($\chi^2 = 7.71$; $p = 0.005$;
451 Fig. 8-c of Online Resource 1), while community-weighted mean wood density and maximum stem diameter
452 did not differ significantly among these categories, though forests in the carbonate category showed a tendency
453 for lower community-weighted wood density and higher stem diameters values.

454

455 Structural Equation Modelling (SEM)

456 Among the metrics utilised to evaluate our SEM (Fig. 5), the Robust Comparative Fit Index (CFI) was
457 0.992 (standard) and 0.989 (robust), suggesting an excellent fit. The Tucker-Lewis Index (TLI) values were
458 0.917 (standard) and 0.884 (robust), indicating a good overall model fit. The Root Mean Square Error of
459 Approximation (RMSEA) was 0.076 (standard) and 0.092 (robust), both within acceptable thresholds for good
460 fit (Browne and Cudeck 1992). The Standardised Root Mean Square Residual (SRMR) was 0.063, indicating a
461 good fit for the data. Although this statistic can be sensitive to sample size, the *Chi-square* was 2.339 (standard)
462 and 2.552 (scaled), with a *p-value* of 0.282, indicating an acceptable model fit. Noting that, except for AGB_w,

463 all variables were standardised, significant relationships included the negative effect of exchangeable soil
 464 calcium on community-weighted mean wood density ($\beta = -0.59, p < 0.001$), its positive impact on community-
 465 weighted mean maximum stem diameter ($\beta = 0.42, p = 0.031$), and its marginal effect on functional richness (β
 466 = 0.24, $p = 0.093$). Above-ground biomass (AGBw) was significantly influenced by community-weighted mean
 467 maximum stem diameter ($\beta = 10.17, p < 0.001$), mean annual precipitation ($\beta = 7.89, p = 0.001$), and soil
 468 available calcium ($\beta = 9.27, p = 0.012$) (Fig. 5).



Fig. 5: Structural equation model (SEM) showing the relationships between environmental variables [climatic water deficit (CWD), soil nutrient availability (exchangeable Ca), mean annual precipitation (MAP), and maximum plant-available soil water content (AWC)] and vegetation attributes [community-weighted maximum diameter (CWM_{DMAX}), community-weighted mean wood density (CWM_{WD}), and functional richness (FRIC)] with above-ground biomass (AGBw). Soil nutrient availability was significantly related to CWM_{DMAX}, CWM_{WD}, and AGBw, and marginally to FRIC. MAP and CWM_{DMAX} also significantly influenced AGBw, while soil AWC and FRIC showed marginal effects (dashed lines). Numbers (path coefficients, β) represent standardised regression weights. Black solid arrows indicate positive relationships, and the red arrow indicates a negative relationship. Except for AGBw, all variables were standardised; therefore, model estimates are shown only for significant paths towards AGBw to avoid misinterpretation.

469 Moreover, functional richness and maximum plant-available soil water showed marginally significant
 470 effects on AGBw ($\beta = 4.27, p = 0.082$ for functional richness; and $\beta = 5.69, p = 0.066$ for maximum plant-
 471 available soil water). In the SEM framework, climatic water deficit did not affect vegetation traits or AGBw (β
 472 = -0.33, $p = 0.915$). Finally, a significant negative covariance between community-weighted mean wood
 473 and maximum stem diameter (estimate = -0.21; $p = 0.037$) was detected in the model, indicating that higher
 474 wood density is associated with smaller diameters. Significant variances in community-weighted mean wood
 475 density and maximum stem diameter, functional richness, and AGBw point to considerable variability in the
 476 data.

477 **Discussion**

478 We aimed to identify the key environmental factors influencing above-ground woody biomass in the
479 seasonally dry vegetation of the Caatinga region, addressing gaps in the literature by adopting standardised
480 sampling and analysis protocols. Our research covers a large spatial scale, encompassing the largest and most
481 continuous SDTF area in Latin America. We confirm our main hypothesis that, alongside climate, soils affect
482 biomass directly and indirectly by mediating structural traits such as wood density and maximum stem diameter.
483 This study highlights the critical role of soils in shaping vegetation properties in the dry tropics, providing new
484 insights into the ecology of these understudied ecosystems.

485

486 Region-wide AGB_w is driven by complex soil–climate interactions

487 The AGB_w range in this study (4.87–85.65 Mg ha⁻¹) aligns with Santos et al. (2023), who reported
488 similar values (2.85–80.88 Mg ha⁻¹) in seasonally dry vegetation of Bahia State, Brazil. Such variation reflects
489 the spatial heterogeneity of the region, notably diverse edaphic conditions and distinct vegetation
490 physiognomies. We highlighted that, while we cannot assert to what extent some of our study sites have
491 undergone more drastic changes in the past, SDTFs are known for faster recovery after disturbances than
492 moister forests due to their simpler structure (Josse and Balslev 1994; Pennington et al. 2006; Becknell et al.
493 2012).

494 Above-ground woody biomass in the Caatinga was shaped by both soil and climate, as well as their
495 interactions (Fig. 2). Notably, MAP significantly influenced AGB_w only in a multivariate context, suggesting
496 its effect is conditioned by other factors. This contrasts with the notion that, given the water-limited ecology of
497 SDTFs, a coarse index like MAP is an adequate proxy for biomass content in these environments (Becknell et
498 al. 2012). The MAP range in our study was on the drier end for global SDTFs, with 17 of 29 plots having MAP
499 $\leq 800 \text{ mm yr}^{-1}$. Menezes et al. (2021) noted that Caatinga is even drier than Mexican ‘very dry deciduous
500 forests’ studied by Lebrija-Trejos et al. (2008), where MAP lies around 900 mm yr⁻¹. While Becknell et al.
501 (2012) noted a clear tendency of higher and lower above-ground biomass values above and below a MAP of
502 900 mm, respectively, our study did not confirm these differences, possibly due to the underrepresentation of
503 high-MAP sites. The DryFlor Network (2016) sets an upper limit of 1800 mm MAP for SDTFs, but areas near
504 this limit resemble semi-deciduous Atlantic forests. Cardoso et al. (2021) defined the ‘core Caatinga’ boundary

505 at 1300 mm MAP, above which distinct functional and floristic traits emerge. We reiterate that, while such
506 studies relate biomass to MAP, integrated metrics that incorporate potential evapotranspiration and soil water
507 availability may provide more informative insights in the Caatinga, where water availability is among the lowest
508 in the tropics.

509 We found no significant effect of temperature variables or elevation on AGB_w, in contrast to the
510 findings of Santos et al. (2023), who reported that MAP, MAT, and elevation together explained 46% of AGB_w
511 variation across sharp climatic and topographic gradients in Bahia's Chapada Diamantina. At the broader scale
512 of our study, other environmental drivers likely become more influential. In particular, soils with higher
513 maximum plant-available water may buffer the intense seasonal drought typical of the Caatinga. Although
514 shallow impermeable layers can retain moisture beyond the rainy season (Lloyd et al. 2015), rapid
515 evapotranspiration generally depletes these reserves in the Caatinga's shallow soils (Sampaio 2010). The
516 importance of water availability metrics observed in this study aligns with Terra et al. (2018), who demonstrated
517 that water availability is an important determinant of vegetation structure, function, and diversity across
518 Caatinga–Atlantic rainforest–Cerrado transitions.

519 Our results indicate that soil secondary macronutrients play an important role in shaping stand-level
520 AGB_w. Although required in smaller quantities than primary macronutrients (N, P, and K), secondary
521 macronutrients (Ca, Mg, and S) are essential to plant growth, metabolism, and structure (Marschner 2012).
522 Specifically, soil calcium was strongly supported in our modelling. Beyond its structural role in cell walls,
523 calcium enhances antioxidant activities during heat stress (Jiang and Huang 2001) and provides osmoprotection
524 under water deficit conditions (Jaleel et al. 2007). It also regulates a complex signalling network that helps
525 plants respond to various stresses (Tong et al. 2021), with its cytosolic concentration being linked to soil calcium
526 levels (Song et al. 2008; Sharma and Kumar 2021). Calcium is vital for root exocytosis and growth, enabling
527 roots to exploit soil resources (Wilkins et al. 2016), which may support the survival of Caatinga trees.
528 Furthermore, calcium plays a crucial role in multiple photosynthetic pathways by stomatal movement and
529 photosynthetic proteins (Wang et al., 2019). In contrast, our results indicate no significant role for magnesium
530 or potassium in determining AGB_w in Caatinga dry forests. Despite magnesium potentially alleviating
531 aluminium toxicity (Chen et al. 2018), this effect is unlikely to apply here due to the predominantly moderate
532 acid to alkaline soils found in our dataset. While potassium, in combination with plant-available soil water, has

533 been shown to positively influence tropical woody vegetation (CWAK hypothesis—Lloyd et al. 2015; Ametsitsi
534 et al. 2020), these studies were conducted in forest-savanna ecotones with markedly different climate conditions
535 and vegetation characteristics. Soil exchangeable sodium concentrations were minimal, with salinity not being
536 an issue in most Caatinga soils (Pessoa et al. 2022).

537 Variations in total soil P and N concentrations appeared to have a limited impact on biomass stocks
538 in our study plots, showing lower relative importance values in our analyses. Although total soil P does not
539 represent readily available forms, it can reflect overall P availability and serve as a proxy in forest ecosystems
540 (Quesada et al. 2010). Moreover, while only a small fraction of total soil P is directly available to plants, it may
541 still indicate long-term P availability across stages of pedogenesis (Cross and Schlesinger 1995). Mechanisms
542 such as ‘P buffering capacity,’ in which less bioavailable P pools are accessed during periods of scarcity
543 (Kitayama et al. 2000; Quesada et al. 2010), remain unexplored in the Caatinga, despite its generally P-deficient
544 soils (Sampaio 2010).

545 Regarding N, while many Caatinga legumes have the potential for biological nitrogen fixation (BNF),
546 only a small fraction effectively fix nitrogen (Freitas et al. 2010; Silva et al. 2017), at least in part because BNF
547 is an energy-intensive process (Gutschick 1981). Many legumes, particularly those in the Detarioideae and
548 Caesalpinoideae subfamilies, cannot even nodulate (Sprent 2009), and no correlation between Fabaceae
549 biomass and soil $\delta^{15}\text{N}$ (a potential indicator of the BNF degree) was observed by Brunello et al. (2024) for the
550 same plots evaluated in this study. Studies on ‘nutrient use efficiency’ mechanisms (Vitousek 1982; 1984)
551 could deepen our understanding of nutrient resorption from senescing leaves (Aerts 1996) in seasonal SDTFs.
552 The soil N: P ratios found in this study suggest potential nutrient limitations. As an indicative metric, soil N: P
553 ratios below 10 generally point to N limitation, whereas ratios above 20 suggest phosphorus limitation
554 (Güsewell 2004). In our dataset, most sites were consistent with N limitation, although five values exceeded
555 20 (Table 1 of Online Resource 1), suggesting possible P limitation in some areas. Leaf nitrogen and
556 phosphorus concentrations strongly influence photosynthetic traits, such as maximum carboxylation rate
557 (V_{cmax}) (Walker et al., 2014), which in turn affects canopy growth. Therefore, variations in these nutrient levels
558 may have influenced AGB_w depending on the plant species composition at each site, even though these patterns
559 were not explored in detail in our analysis.

560 Finally, while differences in AGB_w were not statistically significant among geological substrates, a
561 trend toward higher values in vegetation stands growing on carbonate-derived soils (S_{CAR}) was noticeable
562 ('Karst' in Fig. 4-a of Online Resource 1). The lack of statistical significance might be due to the low number
563 of observations in this category (n = 3). Recently, Muñoz et al. (2023) found that tropical dry forests growing
564 on limestone-derived soils exhibit higher structural complexity and diversity (i.e., higher basal area, stand-level
565 above-ground biomass, tree density, and species richness) compared to forests growing in phyllite-derived soils
566 in southern Mexico.

567 Interestingly, AGB_w in GBR-01 was 58% higher than in GBR-02, despite both study plots sharing
568 similar climatic and soil nutrient conditions. This difference may be related to the markedly shallower soil
569 observed at GBR-02 (average depth = 28 cm), which could limit root anchorage and water storage. In contrast,
570 the deeper soil at GBR-01 (average depth = 127 cm) likely offers greater physical support and functions as a
571 larger reservoir for soil water. Within the S_{CAR} plots, PFF-01 exhibited the lowest AGB_w, even though it
572 receives approximately 300 mm more annual precipitation than the other S_{CAR} sites. This discrepancy could be
573 attributed to shallow or rocky soils, species composition effects, or potential unaccounted human disturbance,
574 as the plot is located near small farms.

575

576 Relationships between soil properties and community functional composition

577 In this study, we found negative correlations between community-weighted wood density and several
578 soil properties, notably exchangeable calcium, magnesium, potassium, zinc, and the silt fraction, while wood
579 density was positively correlated with sand content (Fig. 7 of Online Resource 1). These correlations are likely
580 to reflect hydraulic safety and water-use efficiency patterns. Specifically, low-wood-density species may have
581 greater sapwood water capacitance, as wood density is generally correlated with xylem density. Low-density
582 trees may store more water in their parenchymatic tissues, which are responsible for the storage of water,
583 nutrients, and carbohydrates (Sarmiento et al. 2011; Lira-Martins et al. 2019). Osmotically active cations, such
584 as potassium, improve water-use efficiency by enhancing plant cell capacitance (Quesada et al. 2012), which
585 can be particularly important under water-limited conditions. An inverse relationship between wood density
586 and these cations may indicate an evolutionary strategy in low-wood-density species, as a response to

587 anatomical constraints that increase embolism susceptibility, such as larger vessels (Lira-Martins et al. 2019).
588 It is important to note that deciduousness is closely linked to embolism avoidance. However, evidence is not
589 entirely consistent: Lima et al. (2018) demonstrated that lignin composition, rather than wood density alone,
590 was the main factor explaining differences in xylem embolism resistance and leaf lifespan, with some high-
591 wood-density species shedding their leaves earlier than expected. By contrast, other studies have suggested that
592 high-wood-density species typically retain their leaves longer during dry periods and are generally considered
593 the last to avoid embolism by shedding leaves, with their narrow vessels playing a crucial role in this process
594 (Markesteijn et al. 2011; Lima et al., 2021). Noteworthily, leaf flushing is strongly dependent on soil water
595 availability in the Caatinga (Paloschi et al. 2021). Lima et al. (2012) also identified distinct functional groups
596 in the Caatinga, i.e., evergreen, low-wood-density, and high-wood-density species, and showed that
597 phenological events (leaf flush and flowering) are driven by water availability in high-wood-density species
598 and by photoperiod in low-wood-density species.

599 Regarding the inverse relationship between soil zinc and wood density, zinc has been shown to
600 enhance the activity of osmoregulation substances during drought stress (Wu et al. 2015). This suggests that
601 zinc likely participates in structural and biochemical trade-offs within cells, potentially improving drought
602 resilience. Soil texture also influenced wood density, with sand content showing a positive association and silt
603 content a negative association. This relationship may be difficult to interpret due to the strong correlation
604 between soil texture and cation availability (Table 4 of Online Resource 1), which complicates the separation
605 of their individual effects. However, soil texture is known to influence plant and soil hydraulic properties, as
606 well as tree mechanical stability, factors that can affect wood density (Quesada et al. 2012). Moreover, the
607 observed positive association between sand content and community wood density (Fig. 7 of Online Resource
608 1) may reflect an adaptive strategy whereby trees tolerate and cope with, rather than avoid, water scarcity. In
609 coarse-textured soils, water drains more rapidly, and nutrient retention may be lower. Thus, species with denser
610 wood may be favoured due to their ability to withstand drought stress under such conditions.

611 Maximum stem diameters were positively associated with stand functional richness, suggesting that
612 stands with larger trunks also occupy more niche space. Soil properties, specifically exchangeable calcium and
613 the sum of bases, are significantly related to maximum stem diameter, highlighting the importance of soil bases
614 for secondary growth, as already observed in other Brazilian dry forests (Angélico et al. 2021).

615 The relationships between functional richness and all measured soil cations (excluding exchangeable
616 aluminium) suggest that variations in soil properties may drive differences in plant physiology and anatomy,
617 yielding optimal trade-offs between secondary growth and water-use efficiency strategies. Our results suggest
618 that increased soil nutrient availability across different geological formations in the Caatinga enables a broader
619 range of conservative and acquisitive strategies, as reflected in the community functional properties studied
620 here, thereby maximising functional diversity at the regional scale.

621

622 Soil-mediated effects of functional assemblage on above-ground woody biomass

623 Our Structural Equation Model (SEM; Fig. 5) highlights how soil properties, specifically nutrient
624 availability, indirectly shape biomass by mediating community functional composition. The SEM shows that
625 soil nutrient availability, tree diameter, and mean annual precipitation are crucial for stand-level biomass
626 accumulation in the Caatinga region. Specifically, soil calcium not only directly impacts above-ground biomass
627 through mechanisms already discussed in the previous sections, but also influences wood density, maximum
628 stem diameter, and functional richness, aligning with previous studies on the role of soil nutrients in vegetation
629 structure and community assembly in the Caatinga region (Souza et al. 2019; Oliveira et al. 2019; Maia et al.
630 2020).

631 Considering its effect size, the community-weighted maximum stem diameter was the strongest
632 predictor of biomass, consistent with the ‘biomass ratio’ hypothesis (Grime 1998), in which predominant traits
633 are crucial for determining vegetation stand-level attributes in a given community. This suggests that the
634 abundance of typically larger species reflects biomass patterns at the stand level. Rather than serving solely as
635 a biomass predictor, community-weighted maximum stem diameter captures ecological filtering, reflecting the
636 ability of certain species to establish and dominate in the community. In the SEM, mean annual precipitation
637 influenced biomass positively alongside other variables, underscoring the importance of rainfall totals for
638 biomass accumulation, as comprehensively discussed in this paper. However, variables related to water
639 availability, such as climatic water deficit and maximum plant-available soil water, showed weaker or no
640 significant effects on biomass in the SEM. The multi-model inference framework tested a broader set of
641 environmental variables, including interaction terms, while the SEM provides a more integrative picture of the

642 relationships among environmental and vegetation variables. These approaches were conceived as
643 complementary rather than directly comparable.

644 The inverse relationship found between wood density and maximum stem diameter indicates that
645 thicker trees tend to have lower wood densities, which may reflect different plant life-history strategies. Wood
646 density is linked to plant hydraulic safety and construction costs, with thicker trunks often resulting in higher
647 respiration costs, which may not be optimal for Caatinga trees (Bosc et al. 2003; Larjavaara and Muller-Landau
648 2010). Additionally, wood density has been strongly associated with mortality rates in tropical forests, with
649 higher survival rates generally associated with denser wood (Kraft et al., 2010). Alongside these findings, it is
650 worth noting that although our study plots are considered structurally mature, older, thicker trees are relatively
651 rare in many areas of the Caatinga due to chronic wood extraction by local communities.

652 The functional richness index exhibited only a weak, marginally positive association with AGB_w,
653 providing little support for the niche complementarity hypothesis (Tilman 1999). Despite this marginal effect,
654 our result contrasts with the findings of Prado-Junior et al. (2016), who observed a positive effect of functional
655 divergence and evenness on biomass, rather than functional richness. Their study suggested that communities
656 with functionally distinct, yet evenly abundant individuals, are more likely to exhibit higher biomass over time.
657 Prado-Junior et al. (2016) included specific leaf area (SLA) in their functional diversity index, although this
658 trait was less significant in explaining biomass in their work.

659

660 Caveats and future directions

661 Our *Space-for-Time* approach (Pickett 1989) supports existing ecological hypotheses while contrasting
662 others. For example, we found no significant impact of the maximum temperature of the warmest month on
663 AGB_w in the Caatinga. High temperatures can induce tree mortality via hydraulic failure and carbon starvation
664 (McDowell et al. 2018), but the Caatinga flora is adapted to endure extreme heat and drought. High temperatures
665 also affect photosynthesis via stomatal closing, which depends on the optimal/maximum values for each
666 species. Adaptive mechanisms include deciduousness, leaf trait modifications, osmoprotectant accumulation
667 (Medina 1983; Mathur et al. 2014; Jajoo and Allakhverdiev 2017), deeper root systems, and arbuscular

668 mycorrhizal associations (Hodge 2009; Smith and Smith 2011). However, the lack of temporal data limits our
669 conclusions. Long-term monitoring is crucial for accurately assessing the impact of temperature and other
670 environmental variables on vegetation structure and functioning in SDTFs.

671 While AGB_W values were not significantly influenced by the RSGs, clay mineral types, or geological
672 substrates evaluated here, we do not generalise these findings to the entire region. A broader sampling
673 incorporating more observations, a wider range of clay mineral proportions, additional RSGs (e.g., Ferralsols),
674 and geological substrates would be necessary to more comprehensively test this hypothesis.

675 Another limitation of the current approach is that the estimation of maximum plant-available soil
676 water does not account for stoniness. The presence of stones and rock fragments was recorded only semi-
677 quantitatively during field sampling, making it unsuitable for volume correction without introducing
678 considerable uncertainty. Additionally, the pedotransfer function employed was not calibrated to accommodate
679 significant coarse fragment content. While the work of Saxton and Rawls (2006) incorporates rock fragment
680 corrections, it is not considered appropriate for the edaphoclimatic conditions of the semi-arid Caatinga. It is
681 also important to note that most of our study sites are located in sedimentary terrains, where stoniness is
682 generally negligible or absent. In crystalline landscapes, although rock fragments may be more frequent, the
683 depth of soil is likely the primary constraint on plant-available water storage. Future work could benefit from
684 more detailed assessments of coarse fragment contents and their implications for water retention, particularly
685 in rocky landscapes.

686 Although our SEM demonstrated reasonably good fit indices, it is important to acknowledge the
687 exploratory nature of the model and its relatively small sample size, which can reduce statistical power and
688 increase the risk of Type II errors, where true relationships may go undetected. A larger sample size would
689 strengthen the robustness of the estimates and enhance the generalisability of the findings. Furthermore, while
690 the model tested various explanatory pathways, incorporating additional environmental variables or alternative
691 pathways could reveal relationships not captured in the current analysis. Therefore, future studies with larger
692 datasets are needed to disentangle other intricate relationships among environmental factors, ecosystem
693 structure, and functioning. Furthermore, future studies should explore the role of clay mineralogy on soil
694 hydraulic properties (water retention curve and hydraulic conductivity) and related effects on root zone storage

695 and root water uptake, as well as on root viability, which could enhance plant resilience under water-limited
696 conditions. Finally, given the significant environmental heterogeneity of the Caatinga region and its long
697 history of human alterations, caution is needed to avoid overgeneralising our results.

698

699 **Conclusions**

700 Our study unravels the complex interplay between climate, soil properties, and vegetation properties
701 in SDTFs of the Caatinga region. The multi-model inference approach employed proved effective in capturing
702 these relationships, while the structural equation model provided a comprehensive picture of how environmental
703 factors and functional attributes collectively influence above-ground woody biomass.

704 Soil nutrient availability, mean annual precipitation, and the interaction between climatic and edaphic
705 factors emerged as key drivers of above-ground woody biomass in the Caatinga. Beyond their direct influence
706 on stand-level biomass, soil cations played a significant role in shaping community-weighted traits and
707 functional richness. In synthesis, more favourable soil conditions (i.e., higher nutrient availability and greater
708 water storage capacity) and higher mean annual precipitation, altogether, positively influenced above-ground
709 woody biomass.

710 While our study provides valuable insights into the ecology of SDTFs, limitations such as a relatively
711 small sample size and the absence of temporal data restrict the generalisability of our findings. Nevertheless,
712 our research advances understanding of the role of functional attributes in AGBw accumulation patterns within
713 SDTFs, supporting the forecasting of potential tipping points and ecosystem state shifts, as highlighted by
714 Muñoz et al. (2023). These findings carry important implications for biodiversity conservation and carbon
715 sequestration initiatives in dry tropical regions, offering guidance for policymaking in the face of global
716 environmental change.

717

718

719

720 **Acknowledgements**

721 We thank Associação Caatinga for permitting data collection at RPPN Serra das Almas, Fundação
722 Biodiversitas for supporting fieldwork in Boa Vista do Tupim and Canudos (Bahia), and the State Forestry
723 Institute (IEF) of Minas Gerais for assistance at Lagoa do Cajueiro State Park. We are grateful to the following
724 individuals: Jonas O. Moraes Filho, Erison Gomes, Raimundo Nonato de Araújo Filho, Laura Oliveira, José
725 Edivaldo Chaves, Euvaldo Júnior, Rodrigo Miranda, Antônio Belo, Luiz Dez (Gruta dos Brejões), Eudes
726 Velozo (Fazenda Esperança), Glaucia Drummond, Pierre Landolt (Fazenda Tamanduá), Bruno Menezes, and
727 Joabe Santos de Almeida. Finally, we thank Professor Everardo V. S. B. Sampaio for kindly reviewing a
728 previous version of this manuscript.

729

730 **References**

731 Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? *J Ecol*
732 84:597. <https://doi.org/10.2307/2261481>

733 Ametsitsi GKD, Van Langevelde F, Logah V, et al (2020) Fixed or mixed? Variation in tree functional types
734 and vegetation structure in a forest-savanna ecotone in West Africa. *J Trop Ecol*.
735 <https://doi.org/10.1017/S0266467420000085>

736 Andrade GO de (1977) Alguns aspectos do quadro natural do Nordeste. Série B: Brasil. SUDENE, Estudos
737 Regionais 2, pp 1–39.

738 Angélico TS, Marcati CR, Rossi S, da Silva MR, Sonsin-Oliveira J (2021) Soil effects on stem growth and
739 wood anatomy of tamboril are mediated by tree age. *Forests* 12:1058. <https://doi.org/10.3390/f12081058>

740 Araujo HFP, Canassa NF, Machado CCC, Tabarelli M (2023) Human disturbance is the major driver of
741 vegetation changes in the Caatinga dry forest region. *Sci Rep* 13:1–11. <https://doi.org/10.1038/s41598-023-45571-9>

743 Bartón K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. <https://cran.r-project.org/package=MuMIn>

745 Bauman D, Drouet T, Dray S, Vleminckx J (2018a) Disentangling good from bad practices in the selection of
746 spatial or phylogenetic eigenvectors. *Ecography* 41:1638–1649. <https://doi.org/10.1111/ecog.03380>

747 Bauman D, Drouet T, Fortin MJ, Dray S (2018b) Optimizing the choice of a spatial weighting matrix in
748 eigenvector-based methods. *Ecology* 99:2159–2166. <https://doi.org/10.1002/ecy.2469>

749 Becknell JM, Kucek LK, Powers JS (2012) Aboveground biomass in mature and secondary seasonally dry
750 tropical forests: A literature review and global synthesis. *For Ecol Manag* 276:88–95.
751 <https://doi.org/10.1016/j.foreco.2012.03.033>

752 Bosc A, De Grandcourt A, Loustau D (2003) Variability of stem and branch maintenance respiration in a *Pinus*
753 *pinaster* tree. *Tree Physiol* 23:227–236. <https://doi.org/10.1093/treephys/23.4.227>

754

755 Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the
756 global carbon cycle. *Biotropica* 14:161. <https://doi.org/10.2307/2388024>

757 Browne MW, Cudeck R (1992) Alternative ways of assessing model fit. *Sociol Methods Res* 21:136–160.

758 Brunello AT, Nardoto GB, Santos FLS, Sena-Souza JP, Quesada CAN, Lloyd JJ, Domingues TF (2024) Soil
759 $\delta^{15}\text{N}$ spatial distribution is primarily shaped by climatic patterns in the semiarid Caatinga, Northeast
760 Brazil. *Sci Total Environ* 908:168405. <https://doi.org/10.1016/j.scitotenv.2023.168405>

761 Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral
762 ecology: Some background, observations, and comparisons. *Behav Ecol Sociobiol* 65(1):23–35.
763 <https://doi.org/10.1007/s00265-010-1029-6>

764 Cardoso D, Moonlight PW, Ramos G, et al (2021) Defining Biologically Meaningful Biomes Through Floristic,
765 Functional, and Phylogenetic Data. *Front Ecol Evol* 9:1–16. <https://doi.org/10.3389/fevo.2021.723558>

766 Carvalho G (2020) flora: Tools for interacting with the Brazilian Flora 2020. R package version 0.3.4.
767 <https://CRAN.R-project.org/package=flora>

768 Castanho ADA, Coe MT, Brando P, Macedo M, Baccini A, Walker W, Andrade EM (2020) Potential shifts in
769 the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate.
770 *Environ Res Lett* 15:034053. <https://doi.org/10.1088/1748-9326/ab7394>

771 Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood
772 economics spectrum. *Ecol Lett* 12(4):351–366. <https://doi.org/10.1111/j.1461-0248.2009.01285.x>

773 Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside
774 PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M,
775 Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, ... Vieilledent G (2014) Improved
776 allometric models to estimate the aboveground biomass of tropical trees. *Glob Change Biol* 20(10):3177–
777 3190. <https://doi.org/10.1111/gcb.12629>

778 Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants.
779 *Semin Cell Dev Biol* 74:142–152. <https://doi.org/10.1016/j.semcdb.2017.08.005>

780 Corona-Núñez RO, Campo J, Williams M (2018) Aboveground carbon storage in tropical dry forest plots in
781 Oaxaca, Mexico. *For Ecol Manage* 409(18):202–214. <https://doi.org/10.1016/j.foreco.2017.11.014>

782 Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications
783 to the biogeochemical cycle of soil phosphorus in natural ecosystems. *Geoderma* 64:197–214.
784 [https://doi.org/10.1016/0016-7061\(94\)00023-4](https://doi.org/10.1016/0016-7061(94)00023-4)

785 Dray AS, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi
786 N, Wagner HH (2021) Package ‘adespatial.’ <https://doi.org/10.1890/11-1183.1>

787 DRYFLOR (Banda-R K, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Oliveira-Filho A, Prado D,
788 Pullan M, Quintana C, Riina R, Rodríguez MG, Weintritt J, Acevedo-Rodríguez P, Adarve J, Álvarez E,
789 Aranguren B A, Arteaga JC, Aymard G, Castaño A, Ceballos-Mago N, ... Pennington RT) (2016) Plant
790 diversity patterns in neotropical dry forests and their conservation implications. *Science* 353(6306):1383–
791 1387. <https://doi.org/10.1126/science.aaf5080>

792 Fernandes MF, Cardoso D, de Queiroz LP (2020) An updated plant checklist of the Brazilian Caatinga
793 seasonally dry forests and woodlands reveals high species richness and endemism. *J Arid Environ*
794 174:104079. <https://doi.org/10.1016/j.jaridenv.2019.104079>

795 Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas.
796 *Int J Climatol* 37(12):4302–4315. <https://doi.org/10.1002/joc.5086>

797 Freitas ADS, Sampaio EVSB, Santos CER, Fernandes AR (2010) Biological nitrogen fixation in tree legumes
798 of the Brazilian semi-arid caatinga. *J Arid Environ* 74(3):344–349.
799 <https://doi.org/10.1016/j.jaridenv.2009.09.018>

800 Furley PA, Ratter JA (1988) Soil resources and plant communities of the Central Brazilian Cerrado and their
801 development. *J Biogeogr* 15(1):97. <https://doi.org/10.2307/2845050>

802 Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) *Methods of Soil Analysis, Part 1: Physical*
803 and *Mineralogical Methods*. 2nd ed. American Society of Agronomy, Madison, WI, pp 383–411

804 Glenday J (2008) Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke
805 Forest, Kenya. *Environ Monit Assess* 142(1–3):85–95. <https://doi.org/10.1007/s10661-007-9910-0>

806 Grime JP (1998) Benefits of plant diversity to ecosystems: Immediate, filter, and founder effects. *J Ecol*
807 86(6):902–910. <https://doi.org/10.1046/j.1365-2745.1998.00306.x>

808 Güsewell S (2004) N:P ratios in terrestrial plants: Variation and functional significance. *New Phytologist*
809 164:243–266

810 Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. *Am Nat* 118(5):607–637.
811 <https://doi.org/10.1086/283858>

812 Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ,
813 Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology.
814 PeerJ 6:e4794. <https://doi.org/10.7717/peerj.4794>

815 Hodnett MG, Tomasella J (2002) Marked differences between van Genuchten soil water-retention parameters.
816 *Geoderma* 108:155–180

817 Hodge A (2009) Root decisions. *Plant Cell Environ* 32(6):628–640. <https://doi.org/10.1111/j.1365-3040.2008.01891.x>

819 IBGE (2019) *Biomas e Sistema Costeiro-Marinho do Brasil: compatível com a escala 1:250.000*. Brazilian
820 Institute of Geography and Statistics, Rio de Janeiro

821 Jajoo A, Allakhverdiev SI (2017) High-temperature stress in plants: Consequences and strategies for protecting
822 photosynthetic machinery. In: Shabala S (ed) *Plant Stress Physiology*, 2nd ed. CABI, pp 138–154.
823 <https://doi.org/10.1079/9781780647296.0279>

824 Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007)
825 Water deficit stress mitigation by calcium chloride in *Catharanthus roseus*: Effects on oxidative stress,
826 proline metabolism, and indole alkaloid accumulation. *Colloids Surf B Biointerfaces* 60(1):110–116.
827 <https://doi.org/10.1016/j.colsurfb.2007.06.006>

828 Jiang Y, Huang B (2001) Effects of calcium on antioxidant activities and water relations associated with heat
829 tolerance in two cool-season grasses. *J Exp Bot* 52(355):341–349. <https://doi.org/10.1093/jxb/52.355.341>

830 Josse C, Balslev H (1994) The composition and structure of a dry, semideciduous forest in western Ecuador.
831 *Nordic J Bot* 14(4):425–434. <https://doi.org/10.1111/j.1756-1051.1994.tb00628.x>

832 King DA, Davies SJ, Noor NSM (2006) Growth and mortality are related to adult tree size in a Malaysian mixed
833 dipterocarp forest. *Forest Ecol Manag* 223(1–3):152–158. <https://doi.org/10.1016/j.foreco.2005.10.066>

834 Kitayama K, Majalap-Lee N, Aiba S (2000) Soil phosphorus fractionation and phosphorus-use efficiencies of
835 tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. *Oecologia* 123(3):342–349.
836 <https://doi.org/10.1007/s004420051020>

837 Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a
838 global tropical forest data set. *New Phytologist* 188:1124–1136. <https://doi.org/10.1111/j.1469-8137.2010.03444.x>

840 Laliberté AE, Legendre P, Shipley B (2014) FD: Measuring Functional Diversity from Multiple Traits, and
841 Other Tools for Functional Ecology. R package version 1.0-12.1. Available at <https://cran.r-project.org/web/packages/FD/index.html>

842

843 Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. *Funct Ecol* 24(4):701–
844 705. <https://doi.org/10.1111/j.1365-2435.2010.01698.x>

845 Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and resilience of a very
846 dry tropical deciduous forest following shifting agriculture. *Biotropica* 40(4):422–431.
847 <https://doi.org/10.1111/j.1744-7429.2008.00398.x>

848 Lehmann, P, Leshchinsky, B, Gupta, S, Mirus, BB, Bickel, S, Lu, N, Or, D. (2021) Clays are not created equal:
849 How clay mineral type affects soil parameterization. *Geophysical Research Letters*, 48(20),
850 e2021GL095311. <https://doi.org/10.1029/2021GL095311>

851 Lima ALA de, de Sá Barreto Sampaio EV, de Castro CC, et al (2012) Do the phenology and functional stem
852 attributes of woody species allow for the identification of functional groups in the semiarid region of
853 Brazil? *Trees - Structure and Function* 26:1605–1616. <https://doi.org/10.1007/s00468-012-0735-2>

854 Lima TRA, Carvalho ECD, Martins FR, et al (2018) Lignin composition is related to xylem embolism resistance
855 and leaf life span in trees in a tropical semiarid climate. *New Phytologist* 219:1252–1262.
856 <https://doi.org/10.1111/nph.15211>

857 Lima ALA de, Rodal MJN, Castro CC, et al (2021) Phenology of high- and low-density wood deciduous species
858 responds differently to water supply in tropical semiarid regions. *J Arid Environ* 193:.
859 <https://doi.org/10.1016/j.jaridenv.2021.104594>

860 Lira-Martins D, Humphreys-Williams E, Strekopytov S, Ishida FY, Quesada CA, Lloyd J (2019) Tropical tree
861 branch-leaf nutrient scaling relationships vary with sampling location. *Front Plant Sci* 10:877.
862 <https://doi.org/10.3389/fpls.2019.00877>

863 Lloyd J, Domingues TF, Schrot F, Ishida FY, Feldpausch TR, Saiz G, Quesada CA, Schwarz M, Torello-
864 Raventos M, Gilpin M, Marimon BS, Marimon-Junior BH, Ratter JA, Grace J, Nardoto GB, Veenendaal
865 E, Arroyo L, Villarroel D, Killeen TJ, et al. (2015) Edaphic, structural and physiological contrasts across
866 Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody
867 vegetation structure and function. *Biogeosciences* 12(22):6529–6571. [https://doi.org/10.5194/bg-12-6529-2015](https://doi.org/10.5194/bg-12-
868 6529-2015)

869 Lloyd J, Goulden ML, Ometto JP, Patiño S, Fyllas NM, Quesada CA (2009) Ecophysiology of forest and
870 savanna vegetation. In: Keller M, Bustamante M, Gash J, Dias PS (eds) *Amazonia and Global Change*,
871 pp 463–484. American Geophysical Union. <https://doi.org/10.1029/2008GM000740>

872 Londe V, Gomes PWP, Martins FR (2023) The role of edaphic differentiation on life zones, vegetation types,
873 β-diversity, and indicator species in tropical dry forests. *Plant Soil* 493(1–2):573–588.
874 <https://doi.org/10.1007/s11104-023-06249-3>

875 Maia VA, de Souza CR, de Aguiar-Campos N, Fagundes NCA, Santos ABM, de Paula GGP, Santos PF, Silva
876 WB, de Oliveira Menino GC, dos Santos RM (2020) Interactions between climate and soil shape tree
877 community assembly and above-ground woody biomass of tropical dry forests. *Forest Ecol Manag*
878 474:118348. <https://doi.org/10.1016/j.foreco.2020.118348>

879 Marschner P (2012) *Marschner's Mineral Nutrition of Higher Plants*, 3rd edn. Academic Press, London

880 Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation
881 resistance is associated with stem and leaf structural traits. *Plant Cell Environ* 34(1):137–148.
882 <https://doi.org/10.1111/j.1365-3040.2010.02231.x>

883 Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional
884 divergence: The primary components of functional diversity. *Oikos* 111(1):112–118.
885 <https://doi.org/10.1111/j.0030-1299.2005.13886.x>

886 Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: Response to high-temperature stress. *J Photochem
887 Photobiol B: Biol* 137:116–126. <https://doi.org/10.1016/j.jphotobiol.2014.01.010>

888

889 Max A, Wing J, Weston S, et al. (2020) caret: Classification and regression training. R package version 6.0-94.
890 <https://cran.r-project.org/web/packages/caret/caret.pdf>

891 Mazerolle MJ (2023) Model selection and multimodel inference using the AICcmodavg package. In:
892 AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1.
893 <https://cran.r-project.org/web/packages/AICcmodavg/vignettes/AICcmodavg.pdf>

894 McDowell N, Allen CD, Anderson-Teixeira K, et al. (2018) Drivers and mechanisms of tree mortality in moist
895 tropical forests. *New Phytol* 219(3):851–869. <https://doi.org/10.1111/nph.15027>

896 Medina E (1983) Adaptations of tropical trees to moisture stress. In: *Ecosystems of the World: Tropical Rain
897 Forest Ecosystems*, pp 225–237.

898 Menezes RSC, Sales AT, Primo DC, et al. (2021) Soil and vegetation carbon stocks after land-use changes in
899 a seasonally dry tropical forest. *Geoderma* 390:114943. <https://doi.org/10.1016/j.geoderma.2021.114943>

900 Miles L, Newton AC, DeFries RS, et al. (2006) A global overview of the conservation status of tropical dry
901 forests. *J Biogeogr* 33(3):491–505. <https://doi.org/10.1111/j.1365-2699.2005.01424.x>

902 Moonlight P, Banda-R K, Phillips OL, et al. (2021) Supplementary Material: The DryFlor field manual for plot
903 establishment and remeasurement. *Plants People Planet* 3:295–300.
904 http://www.dryflor.info/files/ppp310112-sup-0001-supinfo_english.pdf

905 Moonlight PW, Banda-R K, Phillips OL, et al. (2021) Expanding tropical forest monitoring into Dry Forests:
906 The DRYFLOR protocol for permanent plots. *Plants People Planet* 3(3):295–300.
907 <https://doi.org/10.1002/ppp3.10112>

908 Muñoz R, Enríquez M, Bongers F, et al (2023) Lithological substrates influence tropical dry forest structure,
909 diversity, and composition, but not its dynamics. *Frontiers in Forests and Global Change* 6:.
910 <https://doi.org/10.3389/ffgc.2023.1082207>

911 Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. *Annu Rev Ecol Syst* 17(1):67–88.
912 <https://doi.org/10.1146/annurev.es.17.110186.000435>

913 Ocón JP, Ibanez T, Franklin J, et al. (2021) Global tropical dry forest extent and cover: A comparative study of
914 bioclimatic definitions using two climatic data sets. *PLoS ONE* 16(5):e0252063.
915 <https://doi.org/10.1371/journal.pone.0252063>

916 O'Donnell MS, Ignizio DA (2012) Bioclimatic Predictors for Supporting Ecological Applications in the
917 Conterminous United States. U.S Geological Survey Data Series 691. <https://doi.org/10.3133/ds691>

918 Oliveira OF de (2011) Caatinga of Northeastern Brazil: Vegetation and floristic aspects. In: Riet-Correa F,
919 Pfister J, Schild AL, Wierenga T (eds) *Poisoning by Plants, Mycotoxins, and Related Toxins*. CAB
920 International, pp 2–24.

921 Oliveira G de, Araújo MB, Rangel TF, et al. (2012) Conserving the Brazilian semiarid (Caatinga) biome under
922 climate change. *Biodivers Conserv* 21(11):2913–2926. <https://doi.org/10.1007/s10531-012-0346-7>

923 Oliveira GC, Francelino MR, Arruda DM, et al. (2019) Climate and soils at the Brazilian semiarid and the
924 forest-Caatinga problem: New insights and implications for conservation. *Environ Res Lett*
925 14(10):104007. <https://doi.org/10.1088/1748-9326/ab3d7b>

926 Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) *Methods of Soil Analysis*, 2nd ed. American
927 Society of Agronomy/Soil Science Society of America, Madison, pp 403–427.

928 Paloschi RA, Ramos DM, Ventura DJ, Souza R, Souza E, Morellato LPC, Nóbrega RLB, Coutinho IAC,
929 Verhoef A, Körting TS, Borma LDS (2021) Environmental drivers of water use for caatinga woody plant
930 species: Combining remote sensing phenology and sap flow measurements. *Remote Sens* 13(1):75.
931 <https://doi.org/10.3390/rs13010075>

932

933 Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Above-ground production and N and P cycling along
934 a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. *Ecology* 65:256–268.

935 Pateiro-Lopez B, Rodriguez-Casal A (2019) alphahull: Generalization of the convex hull of a sample of points
936 in the plane. R package version 2.2. <https://CRAN.R-project.org/package=alphahull>

937 Pennington RT, Ratter JA, Lewis GP (2006) An overview of the plant diversity, biogeography and conservation
938 of neotropical savannas and seasonally dry forests. In: Pennington RT, Lewis GP, Ratter JA (eds)
939 Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. CRC
940 Press, Florida, pp 1–29.

941 Pessoa LGM, Freire MBG dos S, Green CHM, et al (2022) Assessment of soil salinity status under different
942 land-use conditions in the semiarid region of Northeastern Brazil. *Ecol Indic* 141:.
943 <https://doi.org/10.1016/j.ecolind.2022.109139>

944 Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Long-Term Studies
945 in Ecology, pp 110–135. https://doi.org/10.1007/978-1-4615-7358-6_5

946 Pleysier JL, Juo ASR (1980) A single-extraction method using silver-thiourea for measuring exchangeable
947 cations and effective CEC in soils with variable charges. *Soil Sci* 129:205–211.

948 Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016)
949 Conservative species drive biomass productivity in tropical dry forests. *J Ecol* 104(3):817–827.
950 <https://doi.org/10.1111/1365-2745.12543>

951 Queiroz LP de, Cardoso D, Fernandes MF, Moro MF (2017) Diversity and evolution of flowering plants of the
952 Caatinga domain. In: Silva JMC da, Leal IR, Tabarelli M (eds) Caatinga: The Largest Tropical Dry Forest
953 Region in South America. Springer. <https://doi.org/10.1007/978-3-319-68339-3>

954 Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB,
955 Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I,
956 Kuhlmann I, ... Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in
957 relation to their genesis. *Biogeosciences* 7(5):1515–1541. <https://doi.org/10.5194/bg-7-1515-2010>

958 Quesada CA, Phillips OL, Schwarz M, et al (2012) Basin-wide variations in Amazon forest structure and
959 function are mediated by both soils and climate. *Biogeosciences* 9:2203–2246.
960 <https://doi.org/10.5194/bg-9-2203-2012>

961 Quesada CA, Paz C, Oblitas Mendoza E, Phillips OL, Saiz G, Lloyd J (2020) Variations in soil chemical and
962 physical properties explain basin-wide Amazon forest soil carbon concentrations. *SOIL* 6(1):53–88.
963 <https://doi.org/10.5194/soil-6-53-2020>

964 R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical
965 Computing. Retrieved from <https://www.r-project.org/>

966 Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of northeastern Mato
967 Grosso: I. The woody vegetation types of the Xavantina-Cachimbo Expedition Area. *Philos Trans R Soc
968 Lond B Biol Sci* 266(880):449–492. <https://doi.org/10.1098/rstb.1973.0053>

969 Ratter JA, Askew GP, Montgomery RF, Gifford DR (1978) Observations on forests of some mesotrophic soils
970 in Central Brazil. *Rev Bras Bot* 1:47–58.

971 Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: A traits manifesto. *J Ecol* 102(2):275–
972 301. <https://doi.org/10.1111/1365-2745.12211>

973 Righi D, Meunier A (1995) Origin and Mineralogy of Clays. In: Velde B (ed) Origin and Mineralogy of Clays.
974 Springer, Berlin Heidelberg. <https://doi.org/10.1007/978-3-662-12648-6>

975 Roa-Fuentes LL, Campo J, Parra-Tabla V (2012) Plant biomass allocation across a precipitation gradient: An
976 approach to seasonally dry tropical forest at Yucatán, Mexico. *Ecosystems* 15(8):1234–1244.
977 <https://doi.org/10.1007/s10021-012-9578-3>

978 Rosseel Y (2012) lavaan: An R package for structural equation modeling. *J Stat Softw* 48:1–36.
 979 <https://doi.org/10.18637/jss.v048.i02>

980 Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the
 981 Upper Rio Negro of Colombia and Venezuela. *J Ecol* 76(4):938. <https://doi.org/10.2307/2260625>

982 Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Mooney HA, Bullock SH, Medina E (eds)
 983 Seasonally Dry Tropical Forests. Cambridge University Press, pp 35–63.
 984 <https://doi.org/10.1017/CBO9780511753398.003>

985 Sampaio EVSB, Silva GC (2005) Equações para estimar a biomassa de plantas da caatinga do semi-árido
 986 brasileiro. *Acta Bot Bras* 19(4):935–943. <https://doi.org/10.1590/S0102-33062005000400028>

987 Sampaio Everardo Valadares Sá Barreto (2010) Caracterização do bioma caatinga: características e
 988 potencialidades. In: Gariglio MA, de S. B. S. L. A. Cestaro, Kageyama PY (eds) Uso sustentável e
 989 conservação dos recursos florestais da caatinga. MMA, pp 29–48.

990 Santos HKV, Borges de Lima R, Figueiredo de Souza RL, Cardoso D, Moonlight PW, Teixeira Silva T, Pereira
 991 de Oliveira C, Alves Júnior FT, Veenendaal E, de Queiroz LP, Rodrigues PMS, Dos Santos RM, Sarkinen
 992 T, de Paula A, Barreto-Garcia PAB, Pennington T, Phillips OL (2023) Spatial distribution of aboveground
 993 biomass stock in tropical dry forest in Brazil. *IForest* 16(2):116–126. <https://doi.org/10.3832/ifor4104-016>

995 Sarmiento C, Patiño S, Timothy Paine CE, Beauchêne J, Thibaut A, Baraloto C (2011) Within-individual
 996 variation of trunk and branch xylem density in tropical trees. *Am J Bot* 98(1):140–149.
 997 <https://doi.org/10.3732/ajb.1000034>

998 Saxton KE, Rawls WJ (2006) Soil Water Characteristic Estimates by Texture and Organic Matter for
 999 Hydrologic Solutions. *Soil Science Society of America Journal* 70:1569–1578.
 1000 <https://doi.org/10.2136/sssaj2005.0117>

1001 Sharma D, Kumar A (2021) Calcium signaling network in abiotic stress tolerance in plants. In:
 1002 AUTHORS/Editors of Book Calcium Transport Elements in Plants, Vol. 2. Elsevier Inc.
 1003 <https://doi.org/10.1016/b978-0-12-821792-4.00003-5>

1004 Silva AF da, Freitas AD S de, Costa TL, Fernandes-Júnior PI, Martins LM V, Santos CE de R e S, Menezes
 1005 KA S, Sampaio EV de S B (2017) Biological nitrogen fixation in tropical dry forests with different legume
 1006 diversity and abundance. *Nutr Cycl Agroecosyst* 107(3):321–334. <https://doi.org/10.1007/s10705-017-9834-1>

1008 Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms
 1009 from cellular to ecosystem scales. *Annu Rev Plant Biol* 62:227–250. <https://doi.org/10.1146/annurev-arplant-042110-103846>

1011 Song WY, Zhang Z Bin, Shao HB, Guo XL, Cao HX, Zhao H Bin, Fu ZY, Hu XJ (2008) Relationship between
 1012 calcium decoding elements and plant abiotic-stress resistance. *Int J Biol Sci* 4(2):116–125.
 1013 <https://doi.org/10.7150/ijbs.4.116>

1014 Souza CR de, Morel JD, Santos AB M, da Silva WB, Maia VA, Coelho PA, Rezende VL, dos Santos RM
 1015 (2019) Small-scale edaphic heterogeneity as a floristic-structural complexity driver in Seasonally Dry
 1016 Tropical Forests tree communities. *J For Res* 31(6):2347–2357. <https://doi.org/10.1007/s11676-019-01013-9>

1018 Sprent JI (2009) Legume Nodulation: A Global Perspective. John Wiley & Sons, Ltd.
 1019 <https://doi.org/10.1002/9781444316384>

1020 Terra M de C N S, Santos RM dos, Júnior JA do P, Mello JM de, Scolforo JR S, Fontes MA L, Schiavini I,
 1021 Reis AA dos, Bueno IT, Magnago LF S, Steege H ter (2018) Water availability drives gradients of tree
 1022 diversity, structure and functional traits in the Atlantic-Cerrado-Caatinga transition, Brazil. *J Plant Ecol*
 1023 11(6):803–814. <https://doi.org/10.1093/jpe/fty017>

1024 Tilman D (1999) The ecological consequences of changes in biodiversity: A search for general principles.
1025 Ecology 80(5):1455–1474. [https://doi.org/10.1890/0012-9658\(1999\)080\[1455:tecoci\]2.0.co;2](https://doi.org/10.1890/0012-9658(1999)080[1455:tecoci]2.0.co;2)

1026 Tiessen H, Moir JO (1993) Total and organic carbon. In: Carter MR (ed) Soil sampling and methods of analysis.
1027 Lewis Publishers, Boca Raton, FL, pp 187–199.

1028 Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen Z H (2021) Molecular evolution of calcium
1029 signaling and transport in plant adaptation to abiotic stress. Int J Mol Sci 22(22):12308.
1030 <https://doi.org/10.3390/ijms222212308>

1031 Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572.
1032 <https://doi.org/10.1086/283931>

1033 Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298.
1034 <https://doi.org/10.2307/1939481>

1035 Walker, AP, Beckerman, AP, Gu, LH, Kattge, J, Cernusak, LA, Domingues, TF, Scales, JC, Wohlfahrt, G,
1036 Wullschläger, SD, Woodward, FL (2015). The relationship of leaf photosynthetic traits – V_{cmax} and J_{max}
1037 – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol Evol
1038 4, 3218–3235. <https://doi.org/10.1002/ece3.1173>

1039 Wang Q, Yang S, Wan S, Li X (2019) The significance of calcium in photosynthesis. Int J Mol Sci 20:1353.
1040 <https://doi.org/10.3390/ijms20061353>

1041 Weil RR, Brady NC (2017) The nature and properties of soils. 15th Edition. Pearson, New York

1042 Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, New York, USA

1043 Wilkins KA, Matthus E, Swarbreck SM, Davies JM (2016) Calcium-mediated abiotic stress signaling in roots.
1044 Front Plant Sci 7:1296. <https://doi.org/10.3389/fpls.2016.01296>

1045 Wu S, Hu C, Tan Q, Li L, Shi K, Zheng Y, Sun X (2015) Drought stress tolerance mediated by zinc-induced
1046 antioxidative defense and osmotic adjustment in cotton (*Gossypium hirsutum*). Acta Physiol Plant 37:167.
1047 <https://doi.org/10.1007/s11738-015-1919-3>

1048 Zanne AE et al. (2009) Towards a worldwide wood economics spectrum. Dryad Digital Repository.
1049 <https://doi.org/10.5061/dryad.234>

1050 Zomer, RJ, Xu, J, Trabucco, A (2022) Version 3 of the global aridity index and potential evapotranspiration
1051 database. Sci. Data 9, 1–15. <https://doi.org/10.1038/s41597-022-01493-1>.

1052

1053 **Statements and declarations**

1054 **Funding**

1055 This research is part of the ‘Nordeste Project: New Science for a Neglected Biome’, funded by the São
1056 Paulo Research Foundation (FAPESP, grant 2015/50488-5), and the Natural Environment Research Council
1057 (Newton Fund/NERC, grants NE/N012488/1, NE/N012550/1, NE/N012526/1). ATB was supported by a
1058 doctoral fellowship from the Coordination for the Improvement of Higher Education Personnel (CAPES,
1059 Finance Code 001), and is currently a postdoctoral fellow at the Brazilian National Council for Scientific and
1060 Technological Development (CNPq, process no. 153713/2024-0). MMES is supported by CNPq (grant
1061 308623/2021-5) and the Minas Gerais Research Foundation (FAPEMIG, grant APQ-03020-22). DC is

1062 supported by the CNPq (Research Productivity Fellowship, grant 314187/2021-9) and the Rio de Janeiro
1063 Research Foundation (FAPERJ, Programa Jovem Cientista do Nossa Estado – 2022, grant 200.153/2023).
1064 LPCM is supported by CNPq (Research Productivity Fellowship, grant 306563/2022-8) and FAPESP (grant
1065 2021/10639-5). TFD is supported by CNPq (Research Productivity Fellowship, grant 312589/2022-0).

1066 **Competing Interests**

1067 The authors declare that they have no known competing financial interests or personal relationships
1068 that could have appeared to influence the work reported in this paper.

1069 **Author contributions**

1070 All authors contributed to the study writing, review and editing. Conceptualisation: A. T. B. and J. L.;
1071 Methodology: A. T. B., J. L., C. A. Q., O. L. P., P. W. M., and V. A. M.; Fieldwork: A. T. B., D. C., P. W. M.,
1072 I. A. C. C., M. M. E. S., M. S. B. M., R. M. S., T. S., R. C. M., T. C. S. O., C. B., M. M., A. C. M. M. A., M.
1073 F. F., D. M. R., V. F. S., P. M. S. R., J. O. S., E. V., R. T. P., O. L. P., J. L., and T. F. D.; Formal analysis: A.
1074 T. B.; Writing – original draft: A. T. B; Visualisation: A. T. B., and D. C.; Supervision: J. L., and T. F. D.;
1075 Funding acquisition: J. L., and T. F. D.

1076 **Data availability**

1077 Original vegetation and soil data are integrated into the *ForestPlots Network* (www.ForestPlots.net).
1078 High-resolution images of the voucher specimens are also publicly accessible through the *speciesLink* network
1079 of biodiversity collections (<http://www.splink.org.br/>).