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Abstract 79 

Background and Aims: Soil properties are key drivers of vegetation structure, yet their influence on above-80 

ground woody biomass (AGBW) in seasonally dry tropical forests (SDTFs) remains underexplored, particularly 81 

at larger scales. This gap is evident in the Caatinga, Latin America’s largest SDTF, known for its biodiversity 82 

and carbon storage potential. We investigated relationships among soil, climate, and vegetation properties to 83 

understand accumulation patterns of AGBW in SDTFs. 84 

Methods: We used standardised soil and vegetation data from 29 research plots spanning diverse geological 85 

and floristic conditions. Linear mixed models and multi-model inference were applied to analyse relationships 86 

between AGBW and environmental variables, including soil texture, fertility, plant-available soil water, mean 87 

annual precipitation (MAP), temperature, and climatic water deficit (CWD). Structural equation modelling 88 

(SEM) was utilised to assess how environmental variables influenced community-weighted maximum stem 89 

diameter, wood density, functional richness, and their combined effects on AGBW. 90 

Results: AGBW was influenced by MAP, soil fertility, maximum plant-available soil water, and CWD. SEM 91 

indicated that soil nutrient availability shaped community functional traits, reflecting trade-offs between growth 92 

and water-use strategies. In turn, species’ maximum stem diameter and, to a lesser extent, functional richness 93 

positively influenced AGBW, underscoring the role of soil-mediated functional traits in determining biomass. 94 

mailto:brunelloflorestal@gmail.com
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Conclusion: AGBW in the Caatinga is shaped by soil, climate, and their interactions, with soil properties exerting 95 

strong effects on community functional diversity. Our findings highlight patterns of functional trait variability 96 

and biomass storage, offering insights for biodiversity conservation and carbon sequestration in SDTFs under 97 

global environmental change. 98 

Keywords: Brazilian semi-arid, carbon stocks, drylands, functional traits, global change, dryland soils 99 

 100 

Introduction 101 

Above-ground woody biomass (AGBW) is a key component of the carbon cycle in forest systems, as 102 

it integrates productivity, recruitment, and mortality dynamics (Lloyd et al. 2009). Although seasonally dry 103 

tropical forests (SDTFs) typically have lower AGBW stocks than their wetter counterparts, they are important 104 

carbon reservoirs due to their widespread distribution in the tropics (Glenday 2008; Roa-Fuentes et al. 2012; 105 

Corona-Núñez et al. 2018). While this work focuses on AGBW, which typically accounts for approximately 60–106 

70% of the total biomass per unit area in SDFTs, the remaining portion is represented by below-ground biomass 107 

(BGB) (Murphy and Lugo 1986; Menezes et al. 2021), underscoring the importance of both pools for carbon 108 

storage in these ecosystems. Once estimated to comprise 42% of all subtropical and tropical forests (Murphy 109 

and Lugo 1986), SDTFs are now experiencing significant declines, with an 11.4% global loss in cover from 110 

2001 to 2020 (Ocón et al. 2021). These ecosystems have been recognised as highly diverse yet threatened (Miles 111 

et al. 2006; DRYFLOR 2016). The Caatinga region in Brazil, which hosts the largest continuous expanse of 112 

SDTF in Latin America, harbours substantial biodiversity (Queiroz et al. 2017; Fernandes et al. 2020; Londe et 113 

al. 2023) and has significant carbon storage potential (Castanho et al. 2020), highlighting its ecological 114 

importance. However, like other neotropical SDTFs, the Caatinga is under threat from various pressures and 115 

lacks conservation efforts (Oliveira et al. 2012; DRYFLOR 2016). The Caatinga SDTFs have long faced 116 

anthropogenic pressures, including firewood and charcoal extraction, cattle raising and overgrazing, and slash-117 

and-burn agriculture (Andrade 1977; Araujo et al. 2023). These activities have pushed many previously forested 118 

areas towards ecological thresholds, with only 11% of the original forest coverage remaining, while some areas 119 

are desertified or at risk of desertification (Araujo et al. 2023). Despite the overwhelming influence of human 120 

activities on AGBW distribution in the region, it remains crucial to investigate how environmental factors shape 121 



6 

 

AGBW in structurally mature stands, as these can offer insights into potential AGBW accumulation under semi-122 

natural conditions. 123 

Despite the likely influence of both climate and soils on AGBW, research has primarily focused on 124 

climatic factors, with soil properties often underrepresented. Among climatic variables, mean annual 125 

precipitation is widely recognised as a primary driver of AGBW, and many studies have associated biomass 126 

accumulation with rainfall gradients (e.g., Brown and Lugo 1982; Becknell et al. 2012; Castanho et al. 2020). 127 

However, plant water availability is also influenced by evapotranspiration, precipitation seasonality, and soil 128 

properties. While the positive correlation between mean annual precipitation and AGBW is well-reported, few 129 

studies have taken soil attributes, such as soil texture, clay mineralogy, and nutrient levels, into account, mainly 130 

due to incompatible sampling and analysis protocols or simply due to the absence of soil data (Becknell et al. 131 

2012; Santos et al. 2023). This gap in knowledge limits our understanding of how environmental drivers interact 132 

to shape AGBW in SDTFs, particularly in the spatially complex Caatinga region.  133 

In this region, distinct geological substrates have given rise to a variety of Reference Soil Groups 134 

(RSGs, the highest categorical level in the WRB–FAO soil classification), ranging from nutrient-rich shallow 135 

soils overlying carbonate rocks to fertile, fine-textured shallow soils over crystalline basements, to less fertile, 136 

deeper soils developed from sedimentary deposits (Sampaio 1995; Oliveira 2011). Earlier studies have 137 

highlighted the significant role of soil properties in shaping vegetation structure and floristic composition in 138 

Brazilian dry forests (e.g., Ratter et al. 1973; 1978; Furley and Ratter 1988). In the Caatinga, soil properties 139 

have been linked to local variations in structural and floristic diversity (e.g., Souza et al. 2019; Maia et al. 2020). 140 

At the regional scale, the combination of soil properties and climate attributes has been shown to more 141 

effectively predict differences in vegetation physiognomies than either soil or climate separately (Oliveira et al. 142 

2019). 143 

The relationship between vegetation and environmental conditions can also be explored through the 144 

lens of functional attributes, and associated community functional properties, such as community-weighted 145 

mean maximum stem diameter (CWMDMAX), wood density (CWMWD), and their derived functional richness 146 

(FRIC), i.e., the range and diversity of single or combined traits within each community. These traits have been 147 

shown to influence stand-level biomass and productivity in dry ecosystems (Prado-Junior et al. 2016). In their 148 
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study, Prado-Junior et al. (2016) tested contrasting ecological hypotheses to explain biomass accumulation 149 

patterns in SDTFs, including the ‘biomass ratio hypothesis’ (Grime 1998), which suggests that the dominant 150 

traits in a community exert the greatest influence on stand-level ecosystem properties; the ‘niche 151 

complementarity hypothesis’ (Tilman et al., 1999), which proposes that species can coexist by using resources 152 

differently, thereby reducing competition; and the ‘soil fertility hypothesis’ (Pastor et al. 1984), 153 

comprehensively tested in this study.  154 

Here, we use a Space-for-Time approach (Pickett, 1989), which involves examining spatial variation 155 

across environmental gradients as a proxy for temporal ecological changes. This approach is particularly useful 156 

in the Caatinga, where long-term monitoring studies are limited, but pronounced environmental heterogeneity 157 

may reflect ecosystem development over time or responses to long-term drivers. By comparing plots distributed 158 

across climatic and edaphic gradients, we aim to infer how these factors shape current patterns of biomass 159 

accumulation and functional diversity.  160 

Specifically, we address the following research questions: (1) How do soil, climate, and their potential 161 

interactions modulate patterns of biomass accumulation in the Caatinga region? (2) How does soil influence 162 

stand-level functional properties, such as wood density, maximum stem diameter, and the associated functional 163 

richness? (3) How do these functional properties affect stand-level above-ground woody biomass? By 164 

integrating standardised soil and vegetation data from 29 research plots across the Brazilian Caatinga, this study 165 

seeks to deepen our understanding of the environmental and functional drivers of biomass in SDTFs, offering 166 

valuable insights for the conservation and management of these ecosystems in the context of global change. 167 

 168 

Material and Methods 169 

Study sites 170 

Data used in this study were compiled from 29 study plots established by the Nordeste Project (see 171 

Acknowledgements and Funding for further details). These plots are distributed across the Brazilian Caatinga 172 

region (Table 1, Fig. 1), encompassing seven reference soil groups (RSGs), three geological substrate types, 173 

and distinct mineral assemblages. These mineral assemblages are represented by high-activity clay soils (HAC), 174 

low-activity clay soils (LAC), and highly sandy soils (Arenic), as described below. The sampled soils vary from 175 
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shallow, slightly weathered soils mostly developed from crystalline rocks (SCRY) to much deeper, highly 176 

weathered soils overlying sedimentary substrates (SSED), including two study plots located in the Quaternary 177 

dunes of the middle São Francisco River. Additionally, the sampling included three vegetation stands on soils 178 

derived from carbonate rocks (SCAR), characterised by distinctive properties such as elevated calcium (Ca) and 179 

phosphorus (P) levels, and neutral to basic soil pH. Examples of sampled soil and vegetation are displayed in 180 

Fig. 1 and Figs. 1, 2, and 3 of Online Resource 1. The average mean annual precipitation (MAP) for the study 181 

plots was 802 mm yr-1, ranging from 510 mm yr-1 to 1363 mm yr-1, whereas the average mean annual 182 

temperature (MAT) was 23.8 °C, ranging from 20.5 °C to 26.8 °C. The study plots had an average elevation of 183 

535 m asl, varying from 99 to 944 m asl (Table 1). Vegetation structure ranged from open canopies 4–7 m in 184 

height to closed canopies 25–30 m tall. Study sites consist of well-conserved structurally mature stands, though 185 

sporadic grazing and occasional timber logging cannot be fully disregarded in a few study plots. Most plots 186 

were established on flat terrain, with some on slightly sloping reliefs. A more detailed version of Table 1 with 187 

environmental and vegetation data is available in Table 1 of Online Resource 1. Vegetation inventory and soil 188 

sampling were conducted during three fieldwork campaigns in 2017, 2018, and 2019, as part of the inventory 189 

carried out by the Nordeste Project fieldwork team. In all years, sampling was consistently carried out during 190 

the late wet season to capture vegetation at its maximum vegetation development stage (Moonlight et al. 2021).191 
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Table 1: Study plots, selected environmental and vegetation data: plot code; latitude; longitude; APS = average plot slope; F = flat; SS = slightly sloping; geology; SED 

= sedimentary; CRY = crystalline; CAR = carbonate; RSG = reference soil group; MAP = mean annual precipitation; MAT = mean annual temperature; elevation; AGBW 

= above-ground woody biomass; clay (fraction); [N]T = soil total nitrogen; [P]T = soil total phosphorus; pHH2O = water-measured soil pH; [Ca]ex = soil exchangeable 

calcium. Study plots are ordered according to increasing MAP. Soil data refers to the upper 0.3 m from the soil surface.  Original vegetation and soil data are integrated 

into the ForestPlots Network (www.ForestPlots.net). 

Plot Code Latitude Longitude APS Geology RSG 
MAP 

(mm) 

MAT 

(C°) 

Elevation 

(m) 

AGBW 

(Mg ha-1)  

Clay 

(fraction) 

[N]T 

(mg g-1) 

[P]T  

(mg kg-1) 
pHH2O 

[Ca]ex 

(mmolc kg-1) 

CND-01 -9.97 -39.01 F SED Arenosol 512 22.7 535 20.9 0.04 2.5 69 4.66 1.5 

GBR-02 -11.02 -41.41 F CAR Leptosol 515 22.9 637 47.3 0.15 16.8 1194 7.48 55.8 

GBR-01 -11.01 -41.44 F CAR Cambisol 519 23.3 564 74.8 0.22 12 469 7.77 55.7 

LGE-01 -9.05 -40.32 F CRY Luvisol 591 25.1 390 10.2 0.12 11.9 148 5.47 17.4 

MOR-02 -11.50 -41.35 SS SED Leptosol 591 20.8 907 15.8 0.16 19 223 4.17 3.4 

CGR-01 -7.28 -35.98 F CRY Luvisol 599 22.8 487 14.1 0.18 8.8 162 4.71 8.6 

MOR-01 -11.49 -41.33 F SED Arenosol 602 20.5 944 18.8 0.06 16.8 51 4.49 7.7 

IBD-02 -10.79 -42.78 F SED Arenosol 684 25.6 411 19.7 0.02 3.3 92 5.68 3.3 

IBD-01 -10.79 -42.82 SS SED Arenosol 696 25.5 421 18.5 0.01 6.1 61 5.74 5.9 

BVT-01 -12.73 -40.71 SS CRY Acrisol 724 22.2 495 22.5 0.24 12.1 52 4.32 4.6 

SET-01 -7.97 -38.38 F CRY Luvisol 752 23.7 472 27.8 0.08 6.3 144 6.13 30.8 

SCP-02 -8.86 -42.68 F SED Acrisol 768 25.6 487 20.6 0.15 20.5 89 4.3 0.9 

MCS-02 -13.06 -42.52 F CRY Arenosol 782 24.4 545 33.9 0.06 5.1 43 5.67 12.3 

SCP-01 -8.86 -42.70 F SED Cambisol 786 25.4 529 11.7 0.21 7.1 302 4.27 2.5 

MCS-01 -13.00 -42.71 SS CRY Leptosol 789 23.1 770 46.9 0.12 13.4 103 4.54 2.9 

PAT-01 -7.01 -37.40 F CRY Luvisol 792 26.2 282 18.3 0.18 10.1 204 5.86 25.9 

SJO-01 -8.81 -36.41 F CRY Arenosol 792 21.4 670 12.7 0.06 6.6 164 5.15 5.3 

PAT-02 -7.02 -37.40 F CRY Luvisol 808 26.2 283 21.2 0.15 5.9 163 6.27 25.1 

SDA-03 -5.12 -40.87 F CRY Luvisol 815 25.5 309 55.6 0.11 9.5 163 5.97 30 

CJU-01 -14.97 -43.92 F SED Arenosol 825 24.2 470 4.9 0.07 6.7 15 4.77 2.5 

PFF-01 -5.04 -37.52 F CAR Calcisol 864 26.8 99 33.6 0.42 20 360 7.89 65.6 

JUV-01 -14.43 -44.16 SS SED Luvisol 900 24.2 518 85.7 0.28 11.4 176 6.14 27.4 

CTI-01 -14.22 -42.53 SS CRY Regosol 939 20.9 938 60.9 0.15 10.7 28 4.38 3.6 

SDA-02 -5.14 -40.91 F SED Leptosol 969 23.3 640 48.7 0.22 13.2 181 4.21 0.4 

http://www.forestplots.net/
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SDA-01 -5.15 -40.93 F SED Arenosol 973 23 682 22.2 0.07 12.1 129 4.51 0.8 

ARI-04 -7.36 -39.48 F SED Acrisol 1011 21.4 899 10.6 0.29 15 101 4.47 1.8 

ARI-03 -7.27 -39.45 SS SED Alisol 1081 22 796 83.2 0.12 9.5 80 4.22 4.3 

BTI-01 -3.36 -41.74 SS SED Leptosol 1222 26.6 102 46 0.17 28.9 282 4.65 17.2 

PSC-02 -4.13 -41.68 F SED Regosol 1363 26 238 37 0.09 7.8 156 4.58 0.9 
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Fig.  1: Study plots and sampled vegetation. a) Geographic location of the Brazilian Caatinga region in South America and 

the distribution of dry above-ground woody biomass (AGBW) across the Nordeste Project study plots. b) Caatinga sensu 

stricto interspersed with exposed sand in the sedimentary Morro do Chapéu Formation (MOR-01); c) Caatinga sensu stricto 

interspersed with arenites outcrops in the sedimentary Morro do Chapéu Formation (MOR-02); d) Caatinga sensu stricto in 

the Quaternary dunes of the middle São Francisco River (IBD-01); e) Caatinga sensu stricto in the crystalline São Caetano 

Formation (CGR-01); f) Caatinga sensu stricto overlying carbonate rock outcrops in Gruta dos Brejões (GBR-02). Blue, grey, 

and yellow areas indicate crystalline, sedimentary, and carbonate substrates, respectively. The light blue course depicts the 

São Francisco River. The outline of the Caatinga region follows the Brazilian Institute of Geography and Statistics (IBGE, 

2019), crystalline and sedimentary substrates according to the geoscience system of the Geological Survey of Brazil (CPRM), 

and areas with carbonate substrates according to Queiroz et al. (2017). Overlapping study plots have been displaced to allow 

their visualisation. Datum: SIRGAS2000. Photos by Domingos Cardoso (b, c, d, and f) and Peter Moonlight (e). 
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Vegetation structure 167 

Standardised floristic and structural inventories were carried out following ‘The DryFlor Field Manual 168 

for Plot Establishment and Remeasurement’ (Moonlight et al. 2021a; 2021b). In brief, a 100 × 50 m (0.5 ha) 169 

plot was established and sub-partitioned into 50 subplots (10 × 10 m or 0.01 ha). All trees with stems with ≥ 5 170 

cm in diameter were inventoried, measured at both breast height (DBH, 1.3 m from the ground) and 30 cm from 171 

the ground level (DGL), as recommended by the DRYFLOR protocol to ensure comparability across dry forest 172 

networks. This criterion represents a compromise that balances practical field constraints with the need to 173 

capture most of the forest’s structure and dynamics. Multi-stemmed individuals were carefully measured stem 174 

by stem. Trees were identified in the field, herbarium, and by taxonomic specialists, to species where possible, 175 

and voucher specimens were deposited into the Herbarium of Feira de Santana State University (HUEFS; Feira 176 

de Santana, Bahia, Brazil). Tree-by-tree data from each ‘Nordeste Project’ study plot contribute to the 177 

ForestPlots network (ForestPlots.net, 2021) and are curated at www.ForestPlots.net. High-resolution images of 178 

the voucher specimens are also publicly accessible through the speciesLink network of biodiversity collections 179 

(http://www.splink.org.br/). 180 

 181 

Soil sampling 182 

We used a standard protocol (https://rainfor.org/wp-183 

content/uploads/sites/129/2022/07/soilandfoliarsampling.pdf) with some adjustments to accommodate specific 184 

characteristics of Caatinga soils, such as restricted depth range, and a marked presence of stones and rocks in 185 

some cases. This protocol has been widely used in past research conducted in tropical regions, such as the 186 

RAINFOR and TROBIT networks (e.g., Quesada et al., 2010; Lloyd et al., 2015). Specifically, four auger cores 187 

were taken as baseline samples in each plot, with one to three additional cores collected in cases of pronounced 188 

spatial variability within the plot (e.g., irregular topography, rock outcrops, vegetation changes, or markedly 189 

shallow soils). Samples were obtained at standard depth intervals (0–5, 5–10, 10–20, 20–30, 30–50, 50–100, 190 

100–150, and 150–200) or according to the maximum depth achievable at each location. In addition, a soil pit 191 

was excavated just beside each plot to describe soil profiles, also serving as an additional sampling point for 192 

chemical and physical analyses. Subsequently, all samples were air-dried and sent to the Soil and Plant 193 

http://www.forestplots.net/
http://www.splink.org.br/
https://rainfor.org/wp-content/uploads/sites/129/2022/07/soilandfoliarsampling.pdf
https://rainfor.org/wp-content/uploads/sites/129/2022/07/soilandfoliarsampling.pdf
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Thematic Laboratory at the National Institute for Research in the Amazon (LTSP, INPA, Manaus, Amazonas, 194 

Brazil). 195 

Laboratory analysis 196 

In the LTSP, samples were loosened, sieved with a no. 10-mesh sieve (particle size of 2 mm), and any 197 

non-fine earth residues removed (e.g., gravels and vegetation or faunal debris). We determined water-measured 198 

soil pH (pHH2O) using a 1: 2.5 soil-to-deionised water ratio with a glass electrode. Soil exchangeable cations 199 

were determined by the Silver-Tioureia (AgTU) method (Pleysier and Juo 1980). The concentration of each 200 

cation extracted was determined using an Atomic Absorption Spectrophotometer (AAS, Model 100b, Perkin 201 

Elmer, Norwalk, CT, USA). Soil sum of bases (∑B) and effective cation exchange capacity (IE) were calculated 202 

according to Eqn. (1) and (2), respectively:    203 

∑B = [Ca]ex + [Mg]ex + [K]ex + [Na]ex                                                                                                   Eqn. (1)                                                                  204 

 IE = ∑B + [Al]ex                                                                                                                               Eqn. (2)  205 

Where Ca, Mg, K, Na and Al refer to calcium, magnesium, potassium, sodium and aluminium, respectively, 206 

while “ex” refers to exchangeable contents.  207 

Soil total carbon (C) and nitrogen (N) were determined using dry combustion with an automated 208 

analyser (Vario Max CN, Elementar, Germany). Soil samples were combusted at high temperatures, and the 209 

resulting gases were measured to quantify C and N concentrations. Soil total phosphorus concentrations, [P]T, 210 

were obtained using composite samples from the 0–5, 5–10, 10–20, and 20–30 cm soil depths. Samples were 211 

digested with concentrated sulfuric acid, followed by the addition of hydrogen peroxide (Tiessen and Moir 212 

1993). Afterwards, [P]T were determined by colourimetry using the molybdenum blue colour development 213 

method (Olsen and Sommers 1982), using a spectrophotometer (Model 1240, Shimadzu, Kyoto, Japan). Soil 214 

texture was determined using the sieve-pipette method (Gee and Bauder 1986). Soil dry bulk density (BD) was 215 

determined using the volumetric ring method (Eijkelkamp Agrisearch Equipment BV, Giesbeek, Netherlands). 216 

Calibration procedures and standard samples were routinely used to ensure the accuracy of the results. 217 

 218 
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Soil classification, clay mineralogy, and geological surveying 219 

The soils were classified according to the World Reference Base for Soil Resources (IUSS Working 220 

Group WRB, 2014/2015), with the aid of the WRB Tool 1.1.2.0 (Downloaded in March 2021; OrlovDO, 2017; 221 

https://apps.microsoft.com/store/detail/wrb-tool/). This tool streamlines the soil classification process by 222 

guiding users systematically through the key steps, potentially reducing classification errors through its step-223 

by-step interface. Complete soil classifications are provided in Table 2 of Online Resource 1. Following 224 

Quesada et al. (2020), we categorised the sampled soils as HAC, LAC, and ‘Arenic’. HAC soils are those with 225 

CEC clay-1 > 24 mmolc kg-1 (typically less weathered soil classes such as Luvisols in this study), while LAC 226 

soils are those with CEC clay-1 < 24 mmolc kg-1 (typically more weathered soils such as Acrisols, Alisols, and 227 

Regosols in this study) (IUSS Working Group WRB, 2014/2015). The third category (‘Arenic’) was used for 228 

considerably sandy soils, i.e., those soils with loamy sand texture or coarser (Arenosols in this study). 229 

Additionally, we used the geoscience system (GeoSGB; https://geosgb.sgb.gov.br/geosgb/) of the Geological 230 

Survey of Brazil (CPRM), and the delineation of areas with carbonate rocks as in Queiroz et al. (2017) to 231 

characterise the geology of each study plot. 232 

 233 

Maximum plant-available soil water (θP) 234 

The maximum plant-available soil water (θP) is defined as the difference in volumetric soil water 235 

content (θv) values between field capacity (θv at a matric potential of -10 kPa: θv,FC) and the permanent wilting 236 

point (θv at a matric potential of -1500 kPa: θv,WP): θv,FC - θv,WP. These θv values can be obtained from the water 237 

retention curve (WRC), which for our study was described with the widely used van Genuchten (VG) equation 238 

(van Genuchten, 1980). The VG parameters required for the calculation of the WRC were obtained from Table 239 

6 in Hodnett and Tomasella (2002). These parameters had been obtained using a (soil) class pedotransfer 240 

function approach for tropical soils of the IGBP soils dataset. For each Nordeste plot, and each soil layer, the 241 

soil textural class, based on measured sand/silt/clay contents, was determined using the USDA soil texture 242 

triangle, after which the look-up table provided by Hodnett and Tomasella (2002) was used to obtain the VG 243 

parameters. After estimating θv,FC and  θv,WP from the constructed WRCs,  their difference was integrated over 244 

the maximum measured soil depth (mm), thus providing θP in mm³ mm⁻², or simply mm. 245 

https://apps.microsoft.com/store/detail/wrb-tool/
https://geosgb.sgb.gov.br/geosgb/
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Climatic data 246 

Climatic data were extracted from the WorldClim database version 2.1. The BioClim variables 247 

represent the historical averages for the 1970 – 2000 period with 30 arc-seconds (~1 km²) resolution (Fick and 248 

Hijmans 2017). We selected a few key variables based on a priori hypotheses, i.e., mean annual precipitation 249 

(BIO12 in the WorldClim system, MAP in this study), mean annual temperature (BIO1 in the WorldClim 250 

system, MAT in this study), the maximum temperature of the warmest month (BIO5 in the WorldClim system, 251 

TMAX in this study), and precipitation seasonality (BIO15 in the WorldClim system, Ψ in this study). TMAX 252 

reflects high-temperature events throughout the year and can be used to examine whether vegetation properties 253 

are affected by extreme temperature events, while BIO15 is a measure of variation in monthly precipitation 254 

totals over the year (O’Donnell and Ignizio 2012). Potential evapotranspiration (PET) was obtained from the 255 

CGIAR Consortium for Spatial Information ─ CGIAR-CSI (Zomer et al., 2022). Estimates of climatic water 256 

deficit (CWD) for each study plot were obtained from raster layers (currently available at 257 

https://zenodo.org/records/14932971) with 2.5 arc-minute resolution. The CWD variable was found to be 258 

important in determining allometric relationships (Chave et al. 2014) and represents the net balance between 259 

precipitation and potential evapotranspiration (PET) in the dry months (i.e., months where PET exceeds rainfall, 260 

given in mm per year). Note that although CWD values are originally negative, we present them as positive to 261 

indicate ‘millimetres of deficit’. 262 

 263 

Above-ground woody biomass (AGBW) calculations 264 

Estimates of AGBW for individual tree stems were calculated using an allometric equation specifically 265 

developed for Caatinga trees (Sampaio and Silva 2005): 266 

AGBT = 0.0644 × DGL2.3948                                                                                            Eqn. (3)                            267 

Where AGBT is the dry tree above-ground biomass (kg) and DGL is the diameter at the ground level. 268 

Biomass of individual cacti (1,098 stems) was estimated using a separate specific equation for cacti from 269 

Sampaio and Silva (2005), and palm tree biomass (35 stems) was calculated using a formula from Saldarriaga 270 

et al. (1988). At the plot level, total AGBW was the sum of the above-ground dry biomass of all stems measured, 271 

https://zenodo.org/records/14932971
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with individual biomass for multi-stemmed individuals calculated and then summed. It is worth noting that the 272 

equation determines the total biomass of trees (including leaves), with “w” referring to woody species. 273 

 274 

Community functional composition 275 

Following Prado-Junior et al. (2016), we calculated two community-weighted trait means of strong 276 

ecological significance: community-weighted maximum stem diameter (CWMDMAX) and community-weighted 277 

mean wood density (CWMWD). Both traits represent fundamental life history strategies and are closely linked 278 

to resource storage, structural resistance, hydraulic safety, and the ability to adapt to environmental stressors 279 

(Larjavaara and Muller-Landau 2010; Reich 2014). Species maximum stem diameter reflects adult sizes and 280 

was calculated as the upper 0.95 percentile of those trees with a stem diameter ≥ 0.1 × the diameter (cm) of the 281 

thickest tree observed in each population. We adopted this approach since it was considered the least sensitive 282 

to varying sample sizes while providing robust estimates for both larger and smaller species (King et al. 2006; 283 

Prado-Junior et al. 2016). Species’ wood density values were extracted from the global wood density database 284 

(Chave et al. 2009; Zanne et al. 2009). When unavailable at the species level, we used wood density values at 285 

the genus or family levels. Botanical names were checked and adjusted according to the Flora do Brasil 2020 286 

with the flora package version 0.3.5 (Carvalho 2020). Each trait was weighted according to the basal area of 287 

individual species, as this is expected to reflect plant performance better than abundance (Prado-Junior et al. 288 

2016). The distribution of a given trait across a niche space can be summarised along orthogonal axes, from 289 

which functional diversity indices can be calculated (Mason et al. 2005). Specifically, we derived the functional 290 

richness index (FRIC) from community-weighted maximum stem diameter and wood density, measuring the 291 

amount of functional trait space occupied by a community. The functional richness index reflects the diversity 292 

of ecological strategies present and is calculated as the convex hull volume in a multidimensional trait space. 293 

Community-weighted mean traits and FRIC were computed using the FD package in R (Laliberté et al. 2014). 294 

 295 

Data analysis 296 

 Initially, AGBW values were plotted against three categorical predictors: geological substrates, clay 297 

activity, and RSGs. To assess whether these categories explained variations in AGBW, a robust non-parametric 298 
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Kruskal-Wallis test (χ²) was performed. Comparisons were limited to categories with at least 5 observations, 299 

including Arenosols, Leptosols, and Luvisols for RSGs; HAC, LAC and Arenic for clay activity; and crystalline 300 

(SCRY) versus sedimentary (SSED) for geological substrates. 301 

To test the hypothesis that AGBW is influenced by multiple environmental factors and their 302 

interactions, a linear mixed-effects model was employed, combined with multi-model/model averaging 303 

inferences. For this purpose, two 0.25 ha subplots were considered within each 0.5 ha plot (29 total), resulting 304 

in 58 observations. This procedure was adopted to increase the number of observations and to provide greater 305 

flexibility for including multiple predictors in the same models, while reducing the risk of overfitting (Harrison 306 

et al. 2018).  The global model included mean annual precipitation and climatic water deficit to represent water 307 

input and water balance, and maximum temperature of the warmest month as a key thermal variable. 308 

Correlations between climatological variables are provided in Table 3 of Online Resource 1. 309 

Since soil predictors were strongly correlated (Table 4, Online Resource 1), they were carefully 310 

selected by systematically replacing them one at a time in the global model (Eqn. 4). We evaluated relative 311 

importance values (RIV), variance inflation factors (VIF), marginal r² (fixed effects), and Akaike Information 312 

Criterion corrected (AICc). The VIF values of all predictors in Eqn. (4) were checked to prevent overfitting. 313 

Given the high correlation between potential evapotranspiration and temperature variables (ρ = 0.84, p < 0.001 314 

for MAT; and ρ = 0.83, p < 0.001 for TMAX, Table 3 of Online Resource 1), and considering that PET was 315 

incorporated into CWD, we did not include it in the global model of Eqn (4). In all analyses, we used the upper 316 

0-30 cm soil layer, commonly used in vegetation ecology studies (e.g., Quesada et al. 2012; Lloyd et al. 2015). 317 

To facilitate interpretation, all predictors were standardised (subtracting the mean and dividing by the standard 318 

deviation) with the aid of the caret package in R (Max et al. 2020), providing comparative effect sizes among 319 

predictors. Since the analysis involved non-independent observations, sites were treated as random structures 320 

within the model (Harrison et al. 2018). The final global model is expressed by Eqn. (4): 321 

log(AGBw) = 𝛽0 + 𝛽1𝜃P + 𝛽2MAP + 𝛽3[Ca]ex + 𝛽4CWD + 𝛽5𝜃P × CWD + 𝛽6[Ca]ex × CWD + 𝛽7𝑇MAX 322 

+ 𝛽8log[N]T + 𝛽9log[P]T + (1|site) + ε                                                                                                     Eqn. (4) 323 

Where AGBw is above-ground woody biomass; θP is maximum plant-available soil water; MAP is 324 

mean annual precipitation; [Ca]ex is soil exchangeable calcium; CWD is climatic water deficit; TMAX is the 325 
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maximum temperature of the warmest month; [N]T is soil total nitrogen; [P]T is soil total phosphorus; (1|site) 326 

represents the random intercept for site; and ε is the residual error. We evaluated the distribution of residuals 327 

both statistically and graphically. The response variable was log-transformed to meet the normality assumption 328 

and reduce heteroscedasticity. The potential presence of spatial structures was checked using the methods 329 

outlined by Bauman et al. (2018a; 2018b). Specifically, the listw.candidates function from the adespatial 330 

package in R (Dray et al. 2021) was used to test a few distance and graph-based spatial weighting matrices. 331 

Spatial autocorrelations were assessed through Moran’s I coefficient with a significance level of p ≤ 0.05. 332 

We tested all possible predictor combinations using the MuMIn package in R (Bartón 2020). 333 

Collinearity issues were further controlled by preventing predictors with Pearson’s correlation |r| ≥ 0.6 in the 334 

same models. This process generated 137 unique models, with the maximum number of predictors in each 335 

model being constrained to 6, thus ensuring nearly 10 observations per model term. Model selection followed 336 

an information-theoretic (I-T) approach, retaining models with ΔAICc < 4 (Burnham et al. 2011; Harrison et 337 

al. 2018). From the 19 retained models (ΔAICc < 4), coefficients were averaged using the model.avg function 338 

of the MuMin R package. Full averaging was used for model predictions, providing more reliable β estimates 339 

when multiple models have support (Mazerolle 2023). The ‘full’ averaging approach dictates that each variable 340 

is included in every model (setting the coefficients to zero in the models where the term is absent), whereas the 341 

‘conditional’ average approach considers only those models where the parameter appears (Bartón 2020). In 342 

both cases, average coefficients were weighed according to Akaike weights. Model marginal r² (r²m) was 343 

reported to represent fixed effects. Additionally, we performed a series of 95th-percentile linear mixed-effects 344 

model relationships to explore the predictive ability of individual soil and climate predictors on AGBW. 345 

A Spearman’s rank correlation matrix (ρ) was computed to explore relationships between soil 346 

properties and community functional properties, with significant relationships graphically represented (Fig. 7 347 

of Online Resource 1). Subsequently, the most supported variables identified through the multi-model inference 348 

approach were used to investigate the relationships between environmental factors, vegetation properties, and 349 

their combined effects on AGBW.  For this task, we employed a Structural Equation Modelling (SEM) 350 

framework using the lavaan R package (Rosseel 2012). The model assessed direct and indirect effects of 351 

edaphic and climatic variables, i.e., mean annual precipitation, climatic water deficit, soil exchangeable 352 
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calcium, and maximum plant-available soil water on community-weighted maximum stem diameter, wood 353 

density, and associated functional richness, as well as their potential effects on above-ground biomass (AGBW). 354 

To overcome the non-normality of some variables included in the SEM, we utilised the Maximum 355 

Likelihood Estimator with Robust Standard Errors (MLR), which adjusts for non-normal distributions and 356 

potential heteroscedasticity. Robustness was further enhanced with the Yuan-Bentler scaling correction, which 357 

is appropriate for handling non-normality and small sample sizes.  The SEM was evaluated using multiple fit 358 

indices, including the Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of 359 

Approximation (RMSEA), and Standardised Root Mean Square Residual (SRMR), with robust versions 360 

addressing non-normality. Overall model performance was assessed using the chi-square test statistic (χ²) and 361 

its associated p-values to determine significance. 362 

Finally, we used the alphahull R package (Pateiro-Lópes and Rodríguez-Casal 2019) to make the 363 

heatmaps presented in Figs. 3 and 4. We used heatmaps to represent interaction terms, as they provide an 364 

intuitive visualisation of how AGBW responds across the gradients of two predictors simultaneously. Heatmap 365 

simulations were constrained to the actual environmental conditions found in the dataset. All graphs were 366 

created using the ggplot2 R package (Wickham et al. 2016), and all analyses were conducted in the R 367 

environment, Version 4.1.1 (R Core Team 2021). 368 

 369 

Results 370 

Stand structure and categorical predictors  371 

Altogether, 18,201 individual stems with a diameter at the ground level ≥ 5 cm were recorded across 372 

the 29 study plots, including 1,098 cacti and 35 palm trees. These individuals encompass 331 unique species, 373 

176 genera, and 50 identified tree families. The mean ± standard deviation of AGBW was 32.55 ± 22.35 Mg ha-374 

1 (min = 4.87 Mg ha-1; max of 85.65 Mg ha-1), mean stem density (stems ha-1) was 1255 ± 489 (min = 492; max 375 

= 2,534), and mean basal area (BA) was 12.89 ± 7.10 m² ha-1 (min = 2.44; max = 28.79 m² ha-1). Above-ground 376 

woody biomass did not differ among geological substrates (χ² = 0.08; p = 0.775; Fig. 4-a of Online Resource 377 

1), types of clay activity (χ² = 3.70; p = 0.157; Fig.  4-b of Online Resource 1), and RSGs (χ² = 3.39; p = 0.183; 378 

Fig.  4-c of Online Resource 1).  379 
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Above-ground woody biomass modelling 380 

Above-ground woody biomass was influenced by both edaphic and climatic factors, and their 381 

interactions, as indicated by the multi-model Inference and Information-Theoretic approaches. Of the 19 models 382 

selected within the ΔAICc < 4 range, six included climate, soil chemistry, and soil physics terms; 10 included 383 

only climate and soil chemistry; and three included only soil chemistry (Table 5 of Online Resource 1). The 384 

most strongly supported terms in the conditional average model were the interaction between exchangeable 385 

calcium and climatic water deficit (β = -0.43), exchangeable calcium (β = 0.40), mean annual precipitation (β 386 

= 0.28), and the interaction between maximum plant-available soil water × climatic water deficit (β = -0.25) 387 

(Fig.  2-A). Relative importance values for these terms were: exchangeable calcium (0.95), mean annual 388 

precipitation (0.92), climatic water deficit (0.53), the interaction between exchangeable calcium and climatic 389 

water deficit (0.40), maximum plant-available soil water (0.33), max temperature of the warmest month (0.18), 390 

the interaction between maximum plant-available soil water × climatic water deficit (0.18), total nitrogen (0.15), 391 

and total phosphorus (0.02) (Fig.  2-b). 392 

Replacing collinear soil predictors in the global model (Eqn. 4) showed that r²m decreased in the 393 

following order: exchangeable calcium (0.49) > sum of bases (0.48) > effective cation exchange capacity (0.46) 394 

> pHH2O (0.45) > exchangeable magnesium (0.41) > exchangeable aluminium (0.40) > exchangeable sodium 395 

(0.39) > exchangeable potassium (0.35). Correspondingly, AICc values increased, with exchangeable calcium 396 

showing the lowest (92.95) and exchangeable potassium the highest (100.78). RIV decreased in the order: 397 

effective cation exchange capacity (0.96) > exchangeable calcium (0.95) > sum of bases (0.87) > pHH2O (0.64) 398 

> exchangeable magnesium (0.46) > exchangeable sodium (0.39) > exchangeable potassium (0.31) > 399 

exchangeable aluminium (0.15). Based on these metrics, and noting the dominance of exchangeable calcium in 400 

the soil cation exchange complex across most sites (Fig.  5 of Online Resource 1), exchangeable calcium was 401 

selected over its alternatives. Model-simulated responses suggest that exchangeable calcium levels have a 402 

marked influence on AGBW. This effect, however, was also influenced by the intensity of the climatic water 403 

deficit (Fig.  3-a). 404 
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Using coefficients from the best AICc-ranked model (Model 1; Table 5 of Online Resource 1), 405 

predicted above-ground woody biomass (AĜBW) was virtually constant across climatic water deficit when 406 

exchangeable calcium was low (~5 mmolc kg⁻¹). However, at high exchangeable calcium (~40.37 mmolc kg⁻¹), 407 

AĜBW ranged from 19.19 to 86.12 Mg ha⁻¹ as climatic water deficit varied from 1238 to 909 mm. Similarly, 408 

model predictions showed that AĜBW increases with higher maximum plant-available soil water and lower 409 

Fig.  2: Multi-model inference statistics. a) edaphic and 

climatic effects on above-ground woody biomass 

(AGBW) of 29 Caatinga’s SDTFs study plots. Points 

represent conditional average model coefficients. 

Coefficients were standardised, thus representing 

changes in log(AGBW) for a one standard deviation 

change in the predictor variable (effect size). [Ca]ex = 

exchangeable calcium; MAP = mean annual 

precipitation; CWD = climatic water deficit; θP = 

maximum plant-available soil water; TMAX = 

temperature of the warmest month; [N]T = soil total 

nitrogen; [P]T = soil total phosphorus. Error bars show 

95% confidence intervals. Asterisks denote statistically 

significant coefficients. b) Relative importance values 

(RIV) of each variable included in the final model. 

Variable category and the frequency of each term across 

the 19 models selected via AICc (“N Containing 

Models”) are shown. Filled symbols represent 

significant relationships, while empty symbols represent 

non-significant relationships. 
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climatic water deficit (Fig.  3-b). For instance, at a maximum plant-available soil water = 200 mm, AĜBW was 410 

62.15 Mg ha⁻¹ when climatic water deficit was low (620 mm), but dropped to 14.30 Mg ha⁻¹ at high climatic 411 

water deficit (1290 mm). The second-best model (Model 2; Table 5 of Online Resource 1) highlighted the 412 

influence of mean annual precipitation and exchangeable calcium on AĜBW. For example, at a mean annual 413 

precipitation of ~800 mm, AĜBW varied from 20.14 to 60.81 Mg ha⁻¹ as exchangeable calcium increased from 414 

1.37 to 62.87 mmolc kg⁻¹ (Fig.  3-c). 415 

Finally, AĜBW predictions across the mean annual precipitation gradient in the dataset were simulated 416 

under varying soil conditions (Fig.  4): A) optimal − exchangeable calcium = 50.67 mmolc kg⁻¹, and maximum 417 

plant-available soil water = 270 mm; B) moderately high − exchangeable calcium = 32.65 mmolc kg⁻, and 418 

maximum plant-available soil water = 210 mm; C) intermediate − exchangeable calcium = 14.62 mmolc kg⁻¹, 419 

and maximum plant-available soil water = 150 mm; and D) poor conditions − exchangeable calcium = 1 mmolc 420 

kg⁻¹, and maximum plant-available soil water = 80 mm. While AĜBW increased with mean annual precipitation 421 

in all cases, this effect was strongest under favourable soil conditions, i.e., increased nutrient content and higher 422 

water storage capability.  423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 
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Fig.  3: Modelled responses of above-ground woody 

biomass (AĜBW) based on the two best AICc-ranked 

models. a) AGBW as a function of the interaction 

between exchangeable calcium ([Ca]ex) and climatic 

water deficit (CWD). b) AGBW as a function of the 

interaction between CWD and maximum plant-

available soil water (θP). c) AGBW as an additive 

function of [Ca]ex and mean annual precipitation 

(MAP). Study plots are shown within their respective 

environmental domains and geological categories. 

Note: CWD, originally expressed as negative values, 

is presented here as positive values representing 

“millimetres of deficit.” Geological categories: SED 

= sedimentary, CRY = crystalline, CAR = carbonate. 

Fig.  4: Modelled responses of above-ground woody biomass as 

(AĜBW) a function mean annual precipitation under four edaphic 

scenarios: A) optimal – maximum plant-available soil water (θP) 

and exchangeable calcium ([Ca]ex) (+2 SD above the mean); B) 

moderately high − θP and [Ca]ex (+1 SD above the mean); C) 

intermediate − θP and [Ca]ex (at their means); and D) poor 

conditions − θP and [Ca]ex (–1 SD below their means). 
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Regarding bivariate relationships, we found significant associations between AGBW and soil variables, 436 

including exchangeable calcium, sum of bases, effective cation exchange capacity, sand, and silt, across the full 437 

dataset, while climatic variables showed no significant linear relationships with AGBW (Table 6 of Online 438 

Resource 1 and Fig. 6 of Online Resource 1).  439 

 440 

Associations between soil properties and community functional composition 441 

A Spearman’s correlation matrix showed that community-weighted wood density was inversely 442 

correlated with several soil properties, including exchangeable calcium, sum of bases, effective cation exchange 443 

capacity, and silt content, and positively correlated with soil sand. Conversely, community-weighted maximum 444 

stem diameter was positively associated with exchangeable calcium and soil sum of bases. The functional 445 

richness index was positively correlated with multiple soil properties, including exchangeable Ca, Mg, K, sum 446 

of bases, and effective cation exchange capacity. Significant Spearman’s coefficients are shown in Fig. 7 of 447 

Online Resource 1, and all tested relationships are summarised in Table 7 of Online Resource 1. No significant 448 

correlations were found between climatic variables and functional properties. Finally, forests in crystalline 449 

environments had higher functional richness values than those in sedimentary substrates (χ² = 7.71; p = 0.005; 450 

Fig.  8-c of Online Resource 1), while community-weighted mean wood density and maximum stem diameter 451 

did not differ significantly among these categories, though forests in the carbonate category showed a tendency 452 

for lower community-weighted wood density and higher stem diameters values.  453 

 454 

Structural Equation Modelling (SEM) 455 

Among the metrics utilised to evaluate our SEM (Fig. 5), the Robust Comparative Fit Index (CFI) was 456 

0.992 (standard) and 0.989 (robust), suggesting an excellent fit. The Tucker-Lewis Index (TLI) values were 457 

0.917 (standard) and 0.884 (robust), indicating a good overall model fit. The Root Mean Square Error of 458 

Approximation (RMSEA) was 0.076 (standard) and 0.092 (robust), both within acceptable thresholds for good 459 

fit (Browne and Cudeck 1992). The Standardised Root Mean Square Residual (SRMR) was 0.063, indicating a 460 

good fit for the data. Although this statistic can be sensitive to sample size, the Chi-square was 2.339 (standard) 461 

and 2.552 (scaled), with a p-value of 0.282, indicating an acceptable model fit. Noting that, except for AGBW, 462 
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all variables were standardised, significant relationships included the negative effect of exchangeable soil 463 

calcium on community-weighted mean wood density (β = -0.59, p < 0.001), its positive impact on community-464 

weighted mean maximum stem diameter (β = 0.42, p = 0.031), and its marginal effect on functional richness (β 465 

= 0.24, p = 0.093). Above-ground biomass (AGBW) was significantly influenced by community-weighted mean 466 

maximum stem diameter (β = 10.17, p < 0.001), mean annual precipitation (β = 7.89, p = 0.001), and soil 467 

available calcium (β = 9.27, p = 0.012) (Fig. 5).  468 

Moreover, functional richness and maximum plant-available soil water showed marginally significant 469 

effects on AGBW (β = 4.27, p = 0.082 for functional richness; and β = 5.69, p = 0.066 for maximum plant-470 

available soil water). In the SEM framework, climatic water deficit did not affect vegetation traits or AGBW (β 471 

= -0.33, p = 0.915). Finally, a significant negative covariance between community-weighted mean wood density 472 

and maximum stem diameter (estimate = -0.21; p = 0.037) was detected in the model, indicating that higher 473 

wood density is associated with smaller diameters. Significant variances in community-weighted mean wood 474 

density and maximum stem diameter, functional richness, and AGBW point to considerable variability in the 475 

data.  476 

Fig. 5: Structural equation model (SEM) showing the relationships between environmental variables [climatic 

water deficit (CWD), soil nutrient availability (exchangeable Ca), mean annual precipitation (MAP), and 

maximum plant-available soil water content (AWC)] and vegetation attributes [community-weighted maximum 

diameter (CWMDMAX), community-weighted mean wood density (CWMWD), and functional richness (FRIC)] 

with above-ground biomass (AGBW). Soil nutrient availability was significantly related to CWMDMAX, 

CWMWD, and AGBW, and marginally to FRIC. MAP and CWMDMAX also significantly influenced AGBW, while 

soil AWC and FRIC showed marginal effects (dashed lines). Numbers (path coefficients, β) represent 

standardised regression weights. Black solid arrows indicate positive relationships, and the red arrow indicates 

a negative relationship. Except for AGBW, all variables were standardised; therefore, model estimates are shown 

only for significant paths towards AGBW to avoid misinterpretation. 
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Discussion 477 

We aimed to identify the key environmental factors influencing above-ground woody biomass in the 478 

seasonally dry vegetation of the Caatinga region, addressing gaps in the literature by adopting standardised 479 

sampling and analysis protocols. Our research covers a large spatial scale, encompassing the largest and most 480 

continuous SDTF area in Latin America. We confirm our main hypothesis that, alongside climate, soils affect 481 

biomass directly and indirectly by mediating structural traits such as wood density and maximum stem diameter. 482 

This study highlights the critical role of soils in shaping vegetation properties in the dry tropics, providing new 483 

insights into the ecology of these understudied ecosystems.  484 

 485 

Region-wide AGBW is driven by complex soil–climate interactions 486 

 The AGBW range in this study (4.87–85.65 Mg ha⁻¹) aligns with Santos et al. (2023), who reported 487 

similar values (2.85–80.88 Mg ha⁻¹) in seasonally dry vegetation of Bahia State, Brazil. Such variation reflects 488 

the spatial heterogeneity of the region, notably diverse edaphic conditions and distinct vegetation 489 

physiognomies. We highlighted that, while we cannot assert to what extent some of our study sites have 490 

undergone more drastic changes in the past, SDTFs are known for faster recovery after disturbances than 491 

moister forests due to their simpler structure (Josse and Balslev 1994; Pennington et al. 2006; Becknell et al. 492 

2012). 493 

Above-ground woody biomass in the Caatinga was shaped by both soil and climate, as well as their 494 

interactions (Fig. 2). Notably, MAP significantly influenced AGBW only in a multivariate context, suggesting 495 

its effect is conditioned by other factors. This contrasts with the notion that, given the water-limited ecology of 496 

SDTFs, a coarse index like MAP is an adequate proxy for biomass content in these environments (Becknell et 497 

al. 2012). The MAP range in our study was on the drier end for global SDTFs, with 17 of 29 plots having MAP 498 

≤ 800 mm yr-1. Menezes et al. (2021) noted that Caatinga is even drier than Mexican ‘very dry deciduous 499 

forests’ studied by Lebrija-Trejos et al. (2008), where MAP lies around 900 mm yr-1. While Becknell et al. 500 

(2012) noted a clear tendency of higher and lower above-ground biomass values above and below a MAP of 501 

900 mm, respectively, our study did not confirm these differences, possibly due to the underrepresentation of 502 

high-MAP sites. The DryFlor Network (2016) sets an upper limit of 1800 mm MAP for SDTFs, but areas near 503 

this limit resemble semi-deciduous Atlantic forests. Cardoso et al. (2021) defined the ‘core Caatinga’ boundary 504 
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at 1300 mm MAP, above which distinct functional and floristic traits emerge. We reiterate that, while such 505 

studies relate biomass to MAP, integrated metrics that incorporate potential evapotranspiration and soil water 506 

availability may provide more informative insights in the Caatinga, where water availability is among the lowest 507 

in the tropics. 508 

We found no significant effect of temperature variables or elevation on AGBW, in contrast to the 509 

findings of Santos et al. (2023), who reported that MAP, MAT, and elevation together explained 46% of AGBW 510 

variation across sharp climatic and topographic gradients in Bahia’s Chapada Diamantina. At the broader scale 511 

of our study, other environmental drivers likely become more influential. In particular, soils with higher 512 

maximum plant-available water may buffer the intense seasonal drought typical of the Caatinga. Although 513 

shallow impermeable layers can retain moisture beyond the rainy season (Lloyd et al. 2015), rapid 514 

evapotranspiration generally depletes these reserves in the Caatinga’s shallow soils (Sampaio 2010). The 515 

importance of water availability metrics observed in this study aligns with Terra et al. (2018), who demonstrated 516 

that water availability is an important determinant of vegetation structure, function, and diversity across 517 

Caatinga–Atlantic rainforest–Cerrado transitions. 518 

Our results indicate that soil secondary macronutrients play an important role in shaping stand-level 519 

AGBW. Although required in smaller quantities than primary macronutrients (N, P, and K)|, secondary 520 

macronutrients (Ca, Mg, and S) are essential to plant growth, metabolism, and structure (Marschner 2012). 521 

Specifically, soil calcium was strongly supported in our modelling. Beyond its structural role in cell walls, 522 

calcium enhances antioxidant activities during heat stress (Jiang and Huang 2001) and provides osmoprotection 523 

under water deficit conditions (Jaleel et al. 2007). It also regulates a complex signalling network that helps 524 

plants respond to various stresses (Tong et al. 2021), with its cytosolic concentration being linked to soil calcium 525 

levels (Song et al. 2008; Sharma and Kumar 2021). Calcium is vital for root exocytosis and growth, enabling 526 

roots to exploit soil resources (Wilkins et al. 2016), which may support the survival of Caatinga trees. 527 

Furthermore, calcium plays a crucial role in multiple photosynthetic pathways by stomatal movement and 528 

photosynthetic proteins (Wang et al., 2019). In contrast, our results indicate no significant role for magnesium 529 

or potassium in determining AGBW in Caatinga dry forests. Despite magnesium potentially alleviating 530 

aluminium toxicity (Chen et al. 2018), this effect is unlikely to apply here due to the predominantly moderate 531 

acid to alkaline soils found in our dataset. While potassium, in combination with plant-available soil water, has 532 
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been shown to positively influence tropical woody vegetation (CWAK hypothesis—Lloyd et al. 2015; Ametsitsi 533 

et al. 2020), these studies were conducted in forest-savanna ecotones with markedly different climate conditions 534 

and vegetation characteristics. Soil exchangeable sodium concentrations were minimal, with salinity not being 535 

an issue in most Caatinga soils (Pessoa et al. 2022).  536 

Variations in total soil P and N concentrations appeared to have a limited impact on biomass stocks 537 

in our study plots, showing lower relative importance values in our analyses. Although total soil P does not 538 

represent readily available forms, it can reflect overall P availability and serve as a proxy in forest ecosystems 539 

(Quesada et al. 2010). Moreover, while only a small fraction of total soil P is directly available to plants, it may 540 

still indicate long-term P availability across stages of pedogenesis (Cross and Schlesinger 1995). Mechanisms 541 

such as ‘P buffering capacity,’ in which less bioavailable P pools are accessed during periods of scarcity 542 

(Kitayama et al. 2000; Quesada et al. 2010), remain unexplored in the Caatinga, despite its generally P-deficient 543 

soils (Sampaio 2010).  544 

Regarding N, while many Caatinga legumes have the potential for biological nitrogen fixation (BNF), 545 

only a small fraction effectively fix nitrogen (Freitas et al. 2010; Silva et al. 2017), at least in part because BNF 546 

is an energy-intensive process (Gutschick 1981).  Many legumes, particularly those in the Detarioideae and 547 

Caesalpinoideae subfamilies, cannot even nodulate (Sprent 2009), and no correlation between Fabaceae 548 

biomass and soil δ¹⁵N (a potential indicator of the BNF degree) was observed by Brunello et al. (2024) for the 549 

same plots evaluated in this study. Studies on ‘nutrient use efficiency’ mechanisms (Vitousek 1982; 1984) 550 

could deepen our understanding of nutrient resorption from senescing leaves (Aerts 1996) in seasonal SDTFs. 551 

The soil N: P ratios found in this study suggest potential nutrient limitations. As an indicative metric, soil N: P 552 

ratios below 10 generally point to N limitation, whereas ratios above 20 suggest phosphorus limitation 553 

(Güsewell 2004). In our dataset, most sites were consistent with N limitation, although five values exceeded 554 

20 (Table 1 of Online Resource 1), suggesting possible P limitation in some areas. Leaf nitrogen and 555 

phosphorus concentrations strongly influence photosynthetic traits, such as maximum carboxylation rate 556 

(Vcmax) (Walker et al., 2014), which in turn affects canopy growth. Therefore, variations in these nutrient levels 557 

may have influenced AGBW depending on the plant species composition at each site, even though these patterns 558 

were not explored in detail in our analysis.  559 
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Finally, while differences in AGBW were not statistically significant among geological substrates, a 560 

trend toward higher values in vegetation stands growing on carbonate-derived soils (SCAR) was noticeable 561 

(‘Karst’ in Fig. 4-a of Online Resource 1). The lack of statistical significance might be due to the low number 562 

of observations in this category (n = 3). Recently, Muñoz et al. (2023) found that tropical dry forests growing 563 

on limestone-derived soils exhibit higher structural complexity and diversity (i.e., higher basal area, stand-level 564 

above-ground biomass, tree density, and species richness) compared to forests growing in phyllite-derived soils 565 

in southern Mexico.  566 

Interestingly, AGBW in GBR-01 was 58% higher than in GBR-02, despite both study plots sharing 567 

similar climatic and soil nutrient conditions. This difference may be related to the markedly shallower soil 568 

observed at GBR-02 (average depth = 28 cm), which could limit root anchorage and water storage. In contrast, 569 

the deeper soil at GBR-01 (average depth = 127 cm) likely offers greater physical support and functions as a 570 

larger reservoir for soil water. Within the SCAR plots, PFF-01 exhibited the lowest AGBW, even though it 571 

receives approximately 300 mm more annual precipitation than the other SCAR sites. This discrepancy could be 572 

attributed to shallow or rocky soils, species composition effects, or potential unaccounted human disturbance, 573 

as the plot is located near small farms. 574 

 575 

Relationships between soil properties and community functional composition  576 

In this study, we found negative correlations between community-weighted wood density and several 577 

soil properties, notably exchangeable calcium, magnesium, potassium, zinc, and the silt fraction, while wood 578 

density was positively correlated with sand content (Fig. 7 of Online Resource 1). These correlations are likely 579 

to reflect hydraulic safety and water-use efficiency patterns. Specifically, low-wood-density species may have 580 

greater sapwood water capacitance, as wood density is generally correlated with xylem density. Low-density 581 

trees may store more water in their parenchymatic tissues, which are responsible for the storage of water, 582 

nutrients, and carbohydrates (Sarmiento et al. 2011; Lira-Martins et al. 2019). Osmotically active cations, such 583 

as potassium, improve water-use efficiency by enhancing plant cell capacitance (Quesada et al. 2012), which 584 

can be particularly important under water-limited conditions. An inverse relationship between wood density 585 

and these cations may indicate an evolutionary strategy in low-wood-density species, as a response to 586 
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anatomical constraints that increase embolism susceptibility, such as larger vessels (Lira-Martins et al. 2019). 587 

It is important to note that deciduousness is closely linked to embolism avoidance. However, evidence is not 588 

entirely consistent: Lima et al. (2018) demonstrated that lignin composition, rather than wood density alone, 589 

was the main factor explaining differences in xylem embolism resistance and leaf lifespan, with some high-590 

wood-density species shedding their leaves earlier than expected. By contrast, other studies have suggested that 591 

high-wood-density species typically retain their leaves longer during dry periods and are generally considered 592 

the last to avoid embolism by shedding leaves, with their narrow vessels playing a crucial role in this process 593 

(Markesteijn et al. 2011; Lima et al., 2021).  Noteworthily, leaf flushing is strongly dependent on soil water 594 

availability in the Caatinga (Paloschi et al. 2021). Lima et al. (2012) also identified distinct functional groups 595 

in the Caatinga, i.e., evergreen, low-wood-density, and high-wood-density species, and showed that 596 

phenological events (leaf flush and flowering) are driven by water availability in high-wood-density species 597 

and by photoperiod in low-wood-density species. 598 

Regarding the inverse relationship between soil zinc and wood density, zinc has been shown to 599 

enhance the activity of osmoregulation substances during drought stress (Wu et al. 2015). This suggests that 600 

zinc likely participates in structural and biochemical trade-offs within cells, potentially improving drought 601 

resilience. Soil texture also influenced wood density, with sand content showing a positive association and silt 602 

content a negative association. This relationship may be difficult to interpret due to the strong correlation 603 

between soil texture and cation availability (Table 4 of Online Resource 1), which complicates the separation 604 

of their individual effects. However, soil texture is known to influence plant and soil hydraulic properties, as 605 

well as tree mechanical stability, factors that can affect wood density (Quesada et al. 2012). Moreover, the 606 

observed positive association between sand content and community wood density (Fig. 7 of Online Resource 607 

1) may reflect an adaptive strategy whereby trees tolerate and cope with, rather than avoid, water scarcity. In 608 

coarse-textured soils, water drains more rapidly, and nutrient retention may be lower. Thus, species with denser 609 

wood may be favoured due to their ability to withstand drought stress under such conditions. 610 

Maximum stem diameters were positively associated with stand functional richness, suggesting that 611 

stands with larger trunks also occupy more niche space. Soil properties, specifically exchangeable calcium and 612 

the sum of bases, are significantly related to maximum stem diameter, highlighting the importance of soil bases 613 

for secondary growth, as already observed in other Brazilian dry forests (Angélico et al. 2021).  614 
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The relationships between functional richness and all measured soil cations (excluding exchangeable 615 

aluminium) suggest that variations in soil properties may drive differences in plant physiology and anatomy, 616 

yielding optimal trade-offs between secondary growth and water-use efficiency strategies. Our results suggest 617 

that increased soil nutrient availability across different geological formations in the Caatinga enables a broader 618 

range of conservative and acquisitive strategies, as reflected in the community functional properties studied 619 

here, thereby maximising functional diversity at the regional scale.  620 

 621 

Soil-mediated effects of functional assemblage on above-ground woody biomass 622 

Our Structural Equation Model (SEM; Fig. 5) highlights how soil properties, specifically nutrient 623 

availability, indirectly shape biomass by mediating community functional composition. The SEM shows that 624 

soil nutrient availability, tree diameter, and mean annual precipitation are crucial for stand-level biomass 625 

accumulation in the Caatinga region. Specifically, soil calcium not only directly impacts above-ground biomass 626 

through mechanisms already discussed in the previous sections, but also influences wood density, maximum 627 

stem diameter, and functional richness, aligning with previous studies on the role of soil nutrients in vegetation 628 

structure and community assembly in the Caatinga region (Souza et al. 2019; Oliveira et al. 2019; Maia et al. 629 

2020).  630 

Considering its effect size, the community-weighed maximum stem diameter was the strongest 631 

predictor of biomass, consistent with the ‘biomass ratio’ hypothesis (Grime 1998), in which predominant traits 632 

are crucial for determining vegetation stand-level attributes in a given community. This suggests that the 633 

abundance of typically larger species reflects biomass patterns at the stand level. Rather than serving solely as 634 

a biomass predictor, community-weighted maximum stem diameter captures ecological filtering, reflecting the 635 

ability of certain species to establish and dominate in the community. In the SEM, mean annual precipitation 636 

influenced biomass positively alongside other variables, underscoring the importance of rainfall totals for 637 

biomass accumulation, as comprehensively discussed in this paper. However, variables related to water 638 

availability, such as climatic water deficit and maximum plant-available soil water, showed weaker or no 639 

significant effects on biomass in the SEM. The multi-model inference framework tested a broader set of 640 

environmental variables, including interaction terms, while the SEM provides a more integrative picture of the 641 
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relationships among environmental and vegetation variables. These approaches were conceived as 642 

complementary rather than directly comparable. 643 

The inverse relationship found between wood density and maximum stem diameter indicates that 644 

thicker trees tend to have lower wood densities, which may reflect different plant life-history strategies. Wood 645 

density is linked to plant hydraulic safety and construction costs, with thicker trunks often resulting in higher 646 

respiration costs, which may not be optimal for Caatinga trees (Bosc et al. 2003; Larjavaara and Muller-Landau 647 

2010). Additionally, wood density has been strongly associated with mortality rates in tropical forests, with 648 

higher survival rates generally associated with denser wood (Kraft et al., 2010). Alongside these findings, it is 649 

worth noting that although our study plots are considered structurally mature, older, thicker trees are relatively 650 

rare in many areas of the Caatinga due to chronic wood extraction by local communities. 651 

The functional richness index exhibited only a weak, marginally positive association with AGBW, 652 

providing little support for the niche complementarity hypothesis (Tilman 1999). Despite this marginal effect, 653 

our result contrasts with the findings of Prado-Junior et al. (2016), who observed a positive effect of functional 654 

divergence and evenness on biomass, rather than functional richness. Their study suggested that communities 655 

with functionally distinct, yet evenly abundant individuals, are more likely to exhibit higher biomass over time. 656 

Prado-Junior et al. (2016) included specific leaf area (SLA) in their functional diversity index, although this 657 

trait was less significant in explaining biomass in their work. 658 

 659 

Caveats and future directions 660 

Our Space-for-Time approach (Pickett 1989) supports existing ecological hypotheses while contrasting 661 

others. For example, we found no significant impact of the maximum temperature of the warmest month on 662 

AGBW in the Caatinga. High temperatures can induce tree mortality via hydraulic failure and carbon starvation 663 

(McDowell et al. 2018), but the Caatinga flora is adapted to endure extreme heat and drought. High temperatures 664 

also affect photosynthesis via stomatal closing, which depends on the optimal/maximum values for each 665 

species. Adaptive mechanisms include deciduousness, leaf trait modifications, osmoprotectant accumulation 666 

(Medina 1983; Mathur et al. 2014; Jajoo and Allakhverdiev 2017), deeper root systems, and arbuscular 667 
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mycorrhizal associations (Hodge 2009; Smith and Smith 2011). However, the lack of temporal data limits our 668 

conclusions. Long-term monitoring is crucial for accurately assessing the impact of temperature and other 669 

environmental variables on vegetation structure and functioning in SDTFs. 670 

While AGBW values were not significantly influenced by the RSGs, clay mineral types, or geological 671 

substrates evaluated here, we do not generalise these findings to the entire region. A broader sampling 672 

incorporating more observations, a wider range of clay mineral proportions, additional RSGs (e.g., Ferralsols), 673 

and geological substrates would be necessary to more comprehensively test this hypothesis. 674 

Another limitation of the current approach is that the estimation of maximum plant-available soil 675 

water does not account for stoniness. The presence of stones and rock fragments was recorded only semi-676 

quantitatively during field sampling, making it unsuitable for volume correction without introducing 677 

considerable uncertainty. Additionally, the pedotransfer function employed was not calibrated to accommodate 678 

significant coarse fragment content. While the work of Saxton and Rawls (2006) incorporates rock fragment 679 

corrections, it is not considered appropriate for the edaphoclimatic conditions of the semi-arid Caatinga. It is 680 

also important to note that most of our study sites are located in sedimentary terrains, where stoniness is 681 

generally negligible or absent. In crystalline landscapes, although rock fragments may be more frequent, the 682 

depth of soil is likely the primary constraint on plant-available water storage. Future work could benefit from 683 

more detailed assessments of coarse fragment contents and their implications for water retention, particularly 684 

in rocky landscapes.  685 

Although our SEM demonstrated reasonably good fit indices, it is important to acknowledge the 686 

exploratory nature of the model and its relatively small sample size, which can reduce statistical power and 687 

increase the risk of Type II errors, where true relationships may go undetected. A larger sample size would 688 

strengthen the robustness of the estimates and enhance the generalisability of the findings. Furthermore, while 689 

the model tested various explanatory pathways, incorporating additional environmental variables or alternative 690 

pathways could reveal relationships not captured in the current analysis. Therefore, future studies with larger 691 

datasets are needed to disentangle other intricate relationships among environmental factors, ecosystem 692 

structure, and functioning. Furthermore, future studies should explore the role of clay mineralogy on soil 693 

hydraulic properties (water retention curve and hydraulic conductivity) and related effects on root zone storage 694 
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and root water uptake, as well as on root viability, which could enhance plant resilience under water-limited 695 

conditions. Finally, given the significant environmental heterogeneity of the Caatinga region and its long 696 

history of human alterations, caution is needed to avoid overgeneralising our results.  697 

 698 

Conclusions 699 

Our study unravels the complex interplay between climate, soil properties, and vegetation properties 700 

in SDTFs of the Caatinga region. The multi-model inference approach employed proved effective in capturing 701 

these relationships, while the structural equation model provided a comprehensive picture of how environmental 702 

factors and functional attributes collectively influence above-ground woody biomass. 703 

Soil nutrient availability, mean annual precipitation, and the interaction between climatic and edaphic 704 

factors emerged as key drivers of above-ground woody biomass in the Caatinga. Beyond their direct influence 705 

on stand-level biomass, soil cations played a significant role in shaping community-weighted traits and 706 

functional richness. In synthesis, more favourable soil conditions (i.e., higher nutrient availability and greater 707 

water storage capacity) and higher mean annual precipitation, altogether, positively influenced above-ground 708 

woody biomass. 709 

While our study provides valuable insights into the ecology of SDTFs, limitations such as a relatively 710 

small sample size and the absence of temporal data restrict the generalisability of our findings. Nevertheless, 711 

our research advances understanding of the role of functional attributes in AGBW accumulation patterns within 712 

SDTFs, supporting the forecasting of potential tipping points and ecosystem state shifts, as highlighted by 713 

Muñoz et al. (2023). These findings carry important implications for biodiversity conservation and carbon 714 

sequestration initiatives in dry tropical regions, offering guidance for policymaking in the face of global 715 

environmental change. 716 

 717 

 718 

 719 
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