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A B S T R A C T

Convective storms in the tropics are inherently unpredictable on the scales typical of global Numerical Weather
Prediction (NWP) models. Rapid-refresh short term predictions, so called nowcasts, provide added value and
can improve forecasts on short timescales. Nowcasts provide the most up to date predictions, making them
particularly relevant for rapidly developing high impact weather that is not reproduced in global NWP models.
While NWP nowcasts exist for USA, UK, and continental Europe, this is not the case for Africa where nowcasts
are primarily observation-based. Here we focus on West Africa, an area where convective storms are frequent
weather events. Besides direct impacts from the convective storms, outflow from these storms frequently causes
large-scale dust storms. Dust storms are high impact weather and directly impact human life. Early warning
is crucial for mitigating their adverse impacts. While dust storms are poorly forecast in currently operational
weather prediction models, they are well observed from space, posing great potential for nowcasting. The
desert dust red–green–blue (RGB) composite highlights dust and convective systems in bright colours, making
it a useful product for a trained observer for identifying and tracking dust storms. In this study, we introduce
DustCast, a diffusion model for image-based nowcasting of dust storms by predicting the SEVIRI desert dust
RGB composite up to 6 h ahead. Our nowcasts can reproduce convectively generated dust storms that currently
operational NWP do not reliably reproduce. We also predict convective storms that are contained in the same
imagery and provide useful context information for a forecaster assessing the weather situation. Our model
shows limited capability of reproducing entirely new features that are not contained in the input data. This
primarily poses limitations for cases with convection initiation. On average, our model achieves useful skill
(Fractions Skill Score > 0.5) for predicting dust storms up to 5 h lead time, and for convective systems for up
to 4 h. DustCast is the first model of its kind for nowcasting dust, and extends skill for nowcasting convective
storms by more than 2 h compared to conventional methods based on optical flow. Deployment during a
nowcasting testbed has shown that our nowcast provides an easy-to-use product for operational forecasters.
Our method could also be adapted to predict other RGB composites such as those specifically for convection,
ash or fog, and indeed other products using observation data from geostationary satellites, opening potential
for a large variety of applications.
1. Introduction

Numerical weather prediction (NWP) models are a well estab-
lished tool for predicting the weather around the globe. While NWP
models perform well for most situations, observation-based short-term
predictions (nowcasts) provide a complementary approach on short
timescales. Nowcasts can be frequently initialised and provide the
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most up-to-date forecasts for short timescales with typical lead times
of up to 6 h (Burton et al., 2022; Roberts et al., 2022). Although
the World Meteorological Organisation (WMO) definition of nowcasts
includes short-range predictions from NWP, generally a large focus is
on observation-driven predictions (World Meteorological Organization,
2017). While rapid-refresh convection-permitting NWP is available for
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USA, UK and mainland Europe, such forecasts are currently unavailable
or Africa. Therefore, nowcasting in Africa is essentially based on obser-
ations (Roberts et al., 2022). Such nowcasts are particularly valuable

when they capture features that NWP has missed or mis-represented,
and allow warnings for fast-developing high-impact weather. Storms
in the tropics are inherently unpredictable on NWP timescales (Keane
t al., 2025), underlining the added value from nowcasts.

Here we focus on West Africa, a region that is frequently affected by
convective storms and convectively-generated dust storms (Knippertz
et al., 2007; Knippertz and Todd, 2010). Dust storms are high-impact
vents (Knippertz et al., 2007; Knippertz and Todd, 2010) and directly

impact human life (Middleton, 2017) by disrupting land (Bhattachan
t al., 2019) and air traffic (Baddock et al., 2013), affect energy
elivery from solar energy systems (Sarver et al., 2013), pose a health
hreat (de Longueville et al., 2013) and cause significant financial

loss (Al-Hemoud et al., 2017). Early predictions of dust storms are
rucial for mitigating adverse impacts. In West Africa, cold pools from
oist convective systems frequently cause particularly large-scale dust

torms (Trzeciak et al., 2017). Also known as haboobs, these storms
an travel more than 1,000 km (Flamant et al., 2007; Roberts and Knip-
ertz, 2014), and their occurrence is closely linked to moist convective
ctivity (Heinold et al., 2013). While currently operational NWP models
nd reanalyses perform well in reproducing mean flow and surface
inds during winter when convective activity is low, cold pools which
re frequent during summer are often missed due to moist convec-
ion being parametrised (Marsham et al., 2011; Roberts et al., 2017;

Trzeciak et al., 2017). Within convection parameterisations convective
p and down draughts are assumed to occur within a column, and
esultant cold pools are very weak or missing. Further uncertainties are

introduced through the non-linear nature of dust emission and their
parameterisations, resulting in many large dust storms being missed
in currently operational models (Marsham et al., 2011; Heinold et al.,
2013; Trzeciak et al., 2017). While radar coverage is limited and in-situ
bservations in West Africa are sparse (Cowie et al., 2014), instruments
ased on geostationary satellites provide excellent data coverage and
otential for nowcasting (Browning and Collier, 1989; Roberts et al.,

2022).
Traditional optical-flow-based (OF) nowcasts extract motion from a

equence of observations and generate predictions by forward extrap-
lating pixel locations based on these motion vectors. Such forward
xtrapolations typically start from recent observations, and therefore
nly predict features that are already contained in the observations.
hile OF nowcasts for precipitation and storms have successfully been

deployed for more than two decades (e.g., Turner et al., 2004; Bowler
t al., 2006; Srivastava et al., 2012), nowcasting the initiation of
onvection remains challenging (Smith et al., 2024). Traditional OF
owcasts further reach limits for scenes with occluded features, or
cenes with colour and brightness changes in the input frames. In such

situations, detecting the relevant flow is challenging (Alfarano et al.,
2024), while forward extrapolations can suffer from additional issues
such as scenes with opposing motion vectors that can unrealistically
istort the data field. For observations of dust, it is common that
igh or mid-level clouds move in different directions than the dust
hich is close to the surface, and that dust is partially hidden under

louds. This is where machine learning (ML) could become particularly
aluable. ML excels for modelling non-linear systems, as it can capture

complex relationships directly from data. ML can reliably derive multi-
cale motion directly from sequences of images without the explicit

assumptions that are required for OF methods (Ilg et al., 2017). ML
odels have been shown capable of predicting images with moving,

olliding, merging or occluded features (e.g., Denton and Fergus, 2018;
Wang et al., 2018), a task that resembles weather observations from a
satellite.

Recent advances in ML methods have led to their adaptation for
eather prediction purposes (Keisler, 2022; Bi et al., 2022; Lam et al.,

2023; Lang et al., 2024). However, as of 2025, most ML-based weather
 t

2 
prediction models (MLWP) are trained on reanalyses and can there-
fore predict only features that are contained in the model analyses.

herefore, also reanalysis-trained MLWP cannot reliably predict dust
storms.

While these issues make dust storm forecasts in NWP and MLWP
challenging, these storms are well observed from space. The Spinning
Enhanced Visible and Infrared Instrument (SEVIRI) onboard the Me-
teosat Second Generation (MSG) satellites provides measurements on
2 spectral channels from the visible range to the infrared. The red–
reen–blue (RGB) false-colour-composite for desert dust (Lensky and

Rosenfeld, 2008) highlights dust in bright colours. A trained observer
an identify and track storms from the dust composite images and

their evolution in time which makes it a very useful tool for studying
ust storms in North Africa. This composite has been used for various

applications, such as to identify dust source regions and their frequency
of activation (Schepanski et al., 2007; Ashpole and Washington, 2013),
ssess dust transport (Knippertz and Todd, 2012), and is used for

operational dust forecasting. ML nowcasts for the RGB composites that
highlight convective clouds (Ionescu et al., 2021) and fog (Bari et al.,
2023) have been developed on country-scale domains. These meth-
ds can provide skilful forecasts on short lead times, but are limited
y their domain size through missing forcings that may be advected

into the domain through its boundaries and suffer from blurring with
ncreasing lead times. Blurring is a common issue of ML predictions
hen optimised with loss functions such as mean squared error (MSE).
his can be seen as a visualisation of forecast uncertainty, however

limits the interpretability for the human forecaster and does not allow
comprehensive probabilistic predictions through scenario assessment.

Here we use a diffusion model (DM) (Sohl-Dickstein et al., 2015)
to generate nowcasts. DMs are a family of deep generative models and
achieve state-of-the-art performance in image generation tasks (for a
comprehensive overview see Yang et al., 2023). DMs use stochastic
differential equations to model an iterative forward process that incre-
mentally destroys data by injecting noise and a backward process in
which the models learn to stepwise reverse this process for generating
new samples from noise. This process can be conditioned, e.g., with
additional image input. Furthermore, DMs have an ensemble method
built into their architecture. Sampling from different noise fields results
in different but sharp new realisations. DMs have been shown to
outperform previous methods in terms of image quality and ensemble
diversity even if trained using a MSE loss (Dhariwal and Nichol, 2021)
and have been adapted for nowcasting precipitation (Leinonen et al.,
2023), hail (Shi et al., 2025), or convective clouds (Chen et al., 2025).

In this study, we introduce DustCast, a DM for image-based now-
asting of false-colour RGB dust imagery for a large domain over

West Africa up to 6 h ahead. By nowcasting images, DustCast also
nowcasts clouds from convective storms that are contained in the
same imagery. Section 2 provides an overview about data, generation
of the dust composite imagery and data-preprocessing for machine
earning, Section 3 summarises the implementation of the nowcasting

model and explains verification metrics, Section 4 evaluates the model
performance on unseen data, and Section 5 summarises conclusions and
provides suggestions for future model improvements and applications.

2. Data and methods

2.1. SEVIRI observation data

We use brightness temperature (BT) from SEVIRI onboard MSG
geostationary satellites positioned at 0 °N, 0 °E, operated by the Eu-
ropean Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT). SEVIRI provides retrievals on twelve spectral channels
from the visible to infrared (0.4–13.4 μm), with a spatial resolution
of 1 to 3 km at nadir, and a temporal resolution of 15 min for a
full-disk scan (Schmetz et al., 2002). The data record covers more
han 20 years and new data are available in near real time directly



K. Hermes et al.

p
f

S
L

m
d
p
a

t
a
1

i

t
w
g
s
a

d
a

w
m
h

o
p
h
s
r
c
h
c
b
r
t
l
l
t
o
a

a

Weather and Climate Extremes 50 (2025) 100828 
Table 1
Colour channel and assigned Brightness Temperate (BT) or Brightness Tem-
erature Differences (BTD) from SEVIRI, scaling range and gamma correction
actor for the desert dust RGB compositea.
Colour Channel BT𝑚𝑖𝑛(K) BT𝑚𝑎𝑥(K) 𝛤

Red BTD(120–108) −4 2 1
Green BTD(108–087) 0 15 2.5
Blue BT(108) 261 289 1

a After Lensky and Rosenfeld (2008).

from EUMETSAT. This high temporal resolution and low latency makes
EVIRI BT data ideal for nowcasting purposes. For this study, we use
evel 1.5 data (EUMETSAT, 2017) from the channels centred at 8.7,

10.8, and 12.0 μm (the same channels that are exploited in the desert
dust RGB composite). These data come geolocated and radiometrically
calibrated and are provided in a geostationary projection with 3 km
resolution at the sub-satellite point. We further use the Meteosat cloud
mask (EO:EUM:DAT:MSG:CLM, EUMETSAT, 2015) for cloud screening.

2.2. Desert dust RGB composite

The RGB composite for desert dust (Lensky and Rosenfeld, 2008)
akes use of the spectral absorption characteristics of aeolian desert
ust. While desert dust generally is an inhomogeneous aerosol with
articles form various different mineral species, size ranges and shapes,
nd varies in its exact properties by region (Formenti et al., 2011), its

bulk radiative properties typically comprise an absorption maximum
around 10 μm (Ackerman, 1997). Within the SEVIRI channels, highest
dust absorption rates are reached in the 10.8 μm band, with lower
absorption in the adjacent bands centred at 8.7 and 12.0 μm. The desert
dust RGB composite uses brightness temperature differences (BTDs)
between the high and lower absorbing bands, and assigns colours as
given in Table 1. Values outside of the min–max range are clipped to
he value of range boundaries. The three channels are then normalised,
nd minimum intensity is assigned 0, maximum intensity is assigned
. Additionally, gamma correction is applied by exponentiating the

normalised values with the factor 1
𝛤 , with 𝛤 as specified by Lensky

and Rosenfeld (2008). In a last step, all three channels are combined
nto one RGB image.

If desert dust is present in the atmospheric column, it suppresses
he BT signal at 10.8 μm more strongly than in the adjacent channels,
hich results in a positive signal in the red and a negative signal in the
reen channel. Limits of the blue channel are chosen so that it typically
aturates during clear sky conditions during day, which results in dust
ppearing in bright pink colours (strong red, weak green, strong blue).

Besides dust, this product highlights high and therefore cold cloud
tops which typically appear dark red due to an absence of blue. Note
that the general colour of the image is also determined by a series of
other factors such as surface emissivity, surface skin temperature, the
atmospheric temperature profile, presence of other aerosols and trace
gases, or water vapour in the atmospheric column. Since many of these
controlling factors undergo a diurnal cycle, the colour of dust changes
from bright pink over hot desert surfaces during day, to washed-
out purple during night, or during conditions with increased water
vapour in the atmospheric column (Brindley et al., 2012). Particularly
ust at altitudes below 1 km often is almost undetectable, hidden by
tmospheric water vapour in the column above (Banks et al., 2019).

2.3. Feature detection

We apply automated detection methods to identify characteristic
eather features in the RGB images and underlying BT data. These
ethods are threshold-based and do not require manual tuning or
uman supervision.
 a

3 
Table 2
Criteriaa for detecting dust in the SEVIRI RGB composite from
thresholds for Brightness Temperate (BT) and Brightness Tem-
perature Differences (BTD).

Colour Channel Criterion

Red BTD(120–108) ≥ 285 K
Green BTD(108–087) ≥ 0 K
Blue BT(108) ≤ 10 K
Green anomaly BTD(108–087)𝑎𝑛𝑜𝑚 ≤ −2 K

a After Ashpole and Washington (2012).

Firstly, we detect convective storms by their high and therefore cold
cloud top in the 10.8 μm channel. This is equivalent to an absence of
blue colour in the RGB image, as convective storms would often show as
dark areas. We use a threshold of −40 °C (233.15 K) on the 10.8 μm chan-
nel (blue colour) to generate a binary mask of convective storms. This
threshold was shown appropriate for detecting and tracking convective
systems in the Sahel (Goyens et al., 2012) and West Africa (Crook
et al., 2019), and is commonly used for highlighting coldest areas in
visualisations of the 10.8 μm channel.

Secondly, we detect dust using the automated method from Ashpole
and Washington (2012). This method identifies dust by detecting
anomalously pink areas in the image, using thresholds for the three RGB
channels and an anomaly threshold for deviations from a 15-day cloud-
screened background value in the green channel, as given in Table 2.
This detection method was shown to perform on-par with a human
bserver; pixels flagged as dusty agree with subjectively classified
ixels at a similar fraction as subjective classifications from different
uman observers. The method works best when the colour of dust has a
trong spectral contrast from the background colour. Limitations to the
eliability of the method arise from conditions that affect this spectral
ontrast. This can be through changes in the colour of dust due to the
eight of the dust layer, the water vapour above, or the mineralogical
omposition of dust (see Section 2.2), but also the thermal contrast
etween dust and the surface. This results in dust detection being more
eliable during day than during night, and more reliable for optically
hick and high altitude dust during dry conditions than for thin and
ow altitude dust during conditions with high moisture levels. These
imitations must be taken into account when interpreting results from
his detection method. Our detection method for convective storms
nly selects coldest pixels via an absolute threshold, therefore it is not
ffected by a diurnal cycle in reliability.

2.4. Data preprocessing

We use SEVIRI data from the years 2018, 2019, and the first 7
months of 2024, selected based on data availability. We preprocess data
as follows: We select a domain that covers West Africa (3–38 °N, 18 °W–
20 °E, see Fig. 1a), from the Mediterranean to the Gulf of Guinea, and
from Chad to the Atlantic. Every SEVIRI image is checked for missing
values and images from timestamps that contain missing values are
discarded. The remaining observations are then remapped from the
native SEVIRI grid to a regular grid of 256 × 256 data points using
bilinear remapping in order to simplify projection handling and reduce
data resolution. This results in a mean pixel size of about 15 × 15 km.
From the remapped data, BTD(120-108), BTD(108-087) are computed.
In the final step, the obtained BTDs and the BT at 10.8 μm are min-max
normalised to values from 0 and 1 using the limits given in Table 4.
Values exceeding these boundaries are clipped to the respective min
and max values. This is equivalent to the boundaries for the red and
green channel in the dust RGB, but includes information from a wider
value range in the 10.8 μm channel to capture growth and decay of
convective systems. The data from the years 2018 and 2019 contains
bout 60,000 frames and is used for model training and validation. We
pply a 80 % to 20 % split for training and validating the model, applied
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Table 3
Summary of the data used to train, validate and test our model. Frames covers all valid timestamps with SEVIRI image data
available for this study. Error filtering during preprocessing reduces this number by discarding frames with missing data. The
number of frames with the pixel count of detected features exceeding 1 % of image pixels gives an estimate of the frequency of
occurrence of dust and convection (cold clouds) in this dataset.

Year Frames Error filtering Features exceeding 1% of image pixels

discarded clean dust convection

2018 35 014 76 (0.2%) 34 938 (99.8%) 11 495 (32.9%) 28 337 (81.1%)
2019 23 333 61 (0.3%) 23 272 (99.7%) 8817 (37.9%) 19 453 (83.6%)
2024a 16 965 403 (2.4%) 16 562 (97.6%) 9199 (55.5%) 13 365 (80.7%)

a Only months January through July.
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Table 4
Normalisation limits for data input into DustCast. Channel in-
formation from SEVIRI Brightness Temperate (BT) or Brightness
Temperature Differences (BTD).

Channel BT𝑚𝑖𝑛(K) BT𝑚𝑎𝑥(K)

BTD(120-108) −4 2
BTD(108-087) 0 15
BT(108) 200 320

in blocks of 800/200 consecutive frames. This reduces autocorrelation
etween the training/validation sets and spreads both sets over the full

year. The remaining data from the first 7 months of 2024 are used for
valuating the model on previously unseen data. These cover boreal

spring and summer, which are the most active seasons for dust storms
in West Africa. For a data summary see Table 3.

3. Model implementation and verification metrics

3.1. Model implementation

Fig. 1 shows a schematic overview of the data flow and sampling
procedures. We implement the model using the method of Denoising
Diffusion Probabilistic Models (DDPM) as introduced by Ho et al.
(2020), with the diffusion process operating directly in pixel space. We
implement the denoiser using a modified U-Net model (Ronneberger
et al., 2015) with several layers of ResNet (He et al., 2016) blocks,
spatial attention layers and 2D convolutions. Skip connections between
the encoding and decoding path help with the reconstruction of small-
scale features in the decoding path. An overview of the architecture
is shown in Fig. A.9. For learning the denoising process, a linear beta
chedule adds Gaussian noise over 1,000 iterations to all three image
hannels of the target frame. The denoiser is directly conditioned with
he previous three frames of SEVIRI BT observations relative to the
arget, by directly concatenating conditional input and the noisified
arget. The conditioned-noisified tensor is passed into the model at top-
ayer, positional time step embeddings are passed into each model layer
n the encoding and decoding branch. For sampling, we use the method
ntroduced by Song et al. (2021) for Denoising Diffusion Implicit Mod-

els (DDIM), with 100 denoising steps for generating one new frame.
Further consecutive frames are then generated recursively, by updating
the conditional input with the newly sampled frame (Fig. 1b). Starting
the sampling process from different noise fields allows the generation
f multiple realisations and the creation of ensemble predictions. For
enerating the dust RGB images (Fig. 1c), the predicted 10.8 μm channel

must be transformed back to BT before it can be normalised with the
narrower limits used for the blue image channel. Data for the red and
green channels are already normalised with the same limits as used for
he dust RGB. Applying gamma correction for the green channel and
erging the colour channels into one image generates the final RGB

utput.
4 
3.2. Model training and tuning

Training the model from scratch with 256 × 256 pixels data requires
considerable computational resources. For speeding up convergence,
we apply an iterative training approach with pre-training at lower
esolution before fine-tuning on high-resolution data. For this, we
ownsample the images using bilinear interpolation with antialiasing.
e further run grid-based hyperparameter sweeps in order to find hy-

erparameter values that achieve best results with the existing model.
his results in the following training procedure: We start training over
0 epochs with reduced image resolution data of 64 × 64 pixels, using
he AdamW optimizer (Loshchilov and Hutter, 2019) with a MSE loss.

We use an aggressive learning rate schedule (Smith and Topin, 2019)
and a maximum learning rate of 2.5 × 10−5 to speed up training at early
stages. In this stage, the model learns the general colour of the images
as well as large-scale motion. We then retrain the model with data of
128 × 128 pixels, followed by final training with ‘‘full’’ 256 × 256 pixels
resolution, during which the model learns small-scale features. Both
retraining steps are performed over 20 epochs using a cosine scheduler.
The cosine scheduler adjusts the learning rate with each cycle, starting
from an initial value of 1.0 × 10−5 and gradually decreases the learning
rate following a cosine curve. Further details on the training procedure
can be found in Appendix A.1.

3.3. Fractions skill score for nowcast evaluation

Conventional image-generation methods often use pixel-wise eval-
uation metrics for assessing their performance. These metrics are not

ell suited for the evaluation of weather forecasting since only a
mall spatial or temporal displacement of features causes large penal-

ties, even though key patterns might be reproduced. To overcome
his double-penalty issue and account for good forecasts with spatial

displacement, neighbourhood methods were developed. Fractions Skill
Score (FSS) (Roberts and Lean, 2008) is a commonly used neighbour-
ood method that evaluates deterministic forecasts on different spatial

scales. As a first step, binary masks (BM) are created from predicted
nd observed fields by applying the feature detection methods for
onvective storms and dust as explained in Section 2.3. Binary masks

have the value 1 where a feature is detected, and 0 elsewhere. The next
step computes neighbourhood probabilities (NPs) around the point 𝑘:

NP𝑘 = 1
𝐿

𝐿
∑

𝑙=1
BM𝑘,𝑙 , (1)

with BM𝑘,𝑙 the value of the binary feature mask at the point 𝑙, and 𝐿
he total number of points in the neighbourhood. NPs are the fraction
f points in a neighbourhood where a feature is detected. In this study,
e use square neighbourhoods centred around the point 𝑘, with the

quare’s edge length defined as scale parameter. The scale parameter is
elected based on the typical size scale of features of interest. Using NPs
rom prediction (NP𝑝𝑟𝑑) and observation (NP𝑜𝑏𝑠) fields, the Fractions
rier Score (FBS) can be computed:

FBS = 1
𝐾
∑

(NP𝑘,𝑝𝑟𝑑 − NP𝑘,𝑜𝑏𝑠)2 . (2)

𝐾 𝑘=1
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Fig. 1. Schematic overview of the domains, data flow and the sampling procedures used in this study for generating nowcasts. Note that DustCast is primarily
focused on predicting the desert dust RGB composite for West Africa. DustCast uses brightness temperature observations from the same three SEVIRI channels
that are used for generating this composite as conditional model input. A simplified spinout version of DustCast has been deployed for Zambia.
FBS compares fractions of predicted to fractions of observed features in
all neighbourhoods within a domain. A perfect alignment yields a score
of 0, larger scores indicate worse agreement between predicted and
observed features. FBS strongly depends on the frequency of features.
Normalisation with a reference score can be used to generalise FBS.
The worst possible FBS is observed when there is no overlap between
prediction and observation and can be computed as:

FBS𝑤𝑜𝑟𝑠𝑡 =
1
𝐾

[ 𝐾
∑

𝑘=1
NP2

𝑘,𝑝𝑟𝑑 +
𝐾
∑

𝑘=1
NP2

𝑘,𝑜𝑏𝑠

]

. (3)

FSS is then defined as:

FSS = 1 − FBS
FBS𝑤𝑜𝑟𝑠𝑡

. (4)

Perfect skill yields a FSS score of 1, no skill yields 0. Values above
0.5 are typically considered skilful (Roberts and Lean, 2008). For
extending FSS to ensemble predictions, Schwartz et al. (2010) introduce
a probabilistic FSS (pFSS) which replaces the prediction NPs with
neighbourhood ensemble probabilities (NEPs):

NEP𝑘,𝑝𝑟𝑑 = 1
𝐿

𝐿
∑

𝑙=1
EP𝑘,𝑙 , (5)

with EP𝑘,𝑙 the predicted ensemble probability at point 𝑙 in a neighbour-
hood of point 𝑘. The equation for pFSS therefore is:

pFSS = 1 −
∑𝐾

𝑘=1(NEP𝑘,𝑝𝑟𝑑 − NP𝑘,𝑜𝑏𝑠)2
∑𝐾

𝑘=1 NEP2
𝑘,𝑝𝑟𝑑 +

∑𝐾
𝑘=1 NP2

𝑘,𝑜𝑏𝑠

. (6)

Scores from pFSS behave in analogy to FSS but take into account
ensemble probabilities at the neighbourhood level. Necker et al. (2024)
recommend pFSS over other ensemble FSS variants since it is well be-
haved and scales with ensemble size. In this study, we use FSS for eval-
uating deterministic predictions (persistence) and pFSS for evaluating
ensemble predictions.
5 
4. Results and discussion

For evaluating the performance of our model for actual nowcasting
purposes, we generate a large number of predictions from observa-
tion data that were previously unseen by the model. Each nowcast is
initialised with three observation frames, with the latest input time
assigned as initialisation time. Using recursive sampling, we predict
the following 24 frames. We maintain the time-spacing of SEVIRI
data, which results in predictions in 15-minute increments. This makes
a +24 frames prediction equivalent to the next 6 h. For each time
step, the sampling starts from five different noise samples, generating
an ensemble prediction with five members. Using this procedure, we
generate nowcasts initialised at every full hour from January to July
2024, unless one of the input frames is missing or contains missing
values. This results in about 3,900 nowcasts for evaluation.

4.1. Case study 7 June 2024

We present an example case for a nowcast over West Africa on 7
June 2024. Fig. 2 (top row) shows the observed dust RGB composite
for this event. This particularly active weather situation contains a
large number of different meteorological features that can be observed
during the West African monsoon season: deep convective systems in
the Sahel (dark red clusters), a large-scale convectively generated dust
storm (‘‘haboob’’, bright pink cluster) over Mauritania, and further
features of blowing dust (pink) or high cirrus clouds (dark red line
structures) scattered across the domain.

Fig. 3 shows simulated Outgoing Longwave Radiation at Top of
Atmosphere (OLR) and Dust Optical Depth at 550 nm (DOD) from the
Unified Model (UM) (Willett et al., 2025), currently operational at the
Met Office. OLR serves as proxy for clouds, where high values indi-
cate cloud free conditions (radiation largely from the warm surface),
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Fig. 2. Observed and predicted desert dust RGB images for a nowcast initialised at 07/06/2024 17 UTC (𝑡0). The top left shows the latest observation which was
fed into the model and observations for 𝑡0 +1 h, +2 h, +4 h, and +6 h. The bottom row shows the corresponding predicted frames. Dark red colours show high
and cold cloud tops, bright pink colours show dust, light blue and light purple mainly show stationary background features.
Fig. 3. Simulated outgoing longwave radiation at top of atmosphere (shading)
and integrated dust optical depth at 550 nm (contours, from 0.6 to 1.2 in
increments of 0.1) from the operational Met Office Unified Model; (a) forecast
for 07/06/2024 18 UTC from the initialisation at 07/06/2024 12 UTC, and (b)
analysis for 07/06/2024 18 UTC.

and low values indicate high clouds (lower OLR compared to surface
due to their lower temperature). The UM prediction and analysis for
18 UTC both show low OLR values over southern Mali and Burkina
Faso, indicating high clouds. This matches with the dark red cluster
in the dust RGB in the same area. Compared to the dust RGB, the UM
lacks the smaller convective cells in the Sahel (dark red clusters over
Niger) in both the simulation and the analysis. For dust, the UM shows
highest DOD values over northern Niger and northern Algeria in the
forecast for 18 UTC, and patches of high DOD values exceeding 0.7
over Mauritania, however, without distinct structures. The dust RGB
prominently shows the haboob dust storm (bright pink cluster) over
the same area at 17 UTC (and after). It takes until the next model
initialisation at 18 UTC that the UM simulation shows peak DOD values
with a distinct front over Mauritania and Mali, extending towards the
Senegal. The UM does not reproduce the haboob dust storm during
the previous simulation period, and peak DOD values only appear in
the model after the assimilation of observations. This demonstrates a
typical situation where our nowcast can improve forecasts on short
timescales and could be used to issue warnings for events that NWP
does not reproduce.

Fig. 2 (bottom row) shows the first ensemble member of a RGB
nowcast for the same event, initialised at 17 UTC. A visualisation of
the complete ensemble nowcast can be found in appendix Fig. A.10.
6 
Detected features can be found in appendix Fig. A.11. An animation of
the nowcast can be found in the supplementary material.

On visual inspection, key strengths and weaknesses of such a now-
cast can be identified: the nowcast reproduces the general colour of
the dust RGB and the evolution of key features such as the large
haboob dust storm over Mauritania, the growth of convective storms
in the Sahel area, or propagation of high clouds in the northwestern
part of the domain, while surface features remain stationary. The
propagation speed of the haboob and the timing that it reaches the
Senegal is reproduced realistically in the nowcast. Limitations can be
identified when focusing on convective activity in the Sahel. Convective
features already contained in the initialisation frame grow and decay
at reasonable rates, although their extent is slightly underestimated.
Features that are not yet contained in the initialisation data are not
reproduced in the prediction, indicating that the model struggles to
reproduce convection initiation. This can be observed over Niger at
lead times of 2 h and after, where new dark red features appear
in the observations, but are missing in the prediction. Such failure
to predict convection initiation is common across many nowcasting
methods (Smith et al., 2024). Further limitations can be seen in the
propagation speed of the haboob beyond 2 h lead time, which exceeds
the observed speed. We hypothesise that the information contained in
the input data and the limited model complexity are insufficient for re-
producing the evolution of complex atmospheric flow patterns at longer
lead times. The prediction further shows blurring with increasing lead
time. This causes small-scale features to disappear after about 4 h and
significantly changes the appearance of the image so that it limits the
interpretability to a human observer.

Summarising, DustCast shows the capability of realistically predict-
ing several frames of the dust RGB composite including key features,
their propagation and development if features are already contained in
the initialisation data. The limited capability of the model to produce
entirely new features, uncertainties in the evolution of flow patterns,
and blurring at high lead times pose limitations to the product and the
maximum lead time for a useful nowcast.

4.2. Probabilistic feature-based evaluation

For creating probabilistic nowcasts, we generate ensemble nowcasts
with 5 members, with the ensemble size chosen by a trade-off be-
tween sampling time and image quality. For a systematic feature-based
evaluation, we automatically detect convective cells and dust in the
images by applying the criteria explained in Section 2.3. We average
the obtained binary feature masks over all ensemble members. This
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Fig. 4. Mean fractions skill scores (FSS) from about 3,900 nowcasts over lead times up to 6 h; for (a) detected convective cells, and (b) detected dust. FSS window
size over scales from 30 to 240 km (2 to 16 pixels). Model predictions as solid, persistence as dashed lines. FSS of 0.5 (useful skill) as dashed grey reference line.
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generates probabilistic fields for dust and convective cells. To avoid
edge-effects at the domain boundaries, we introduce an 8 pixels crop
to the domain edges. The evaluation therefore covers a domain of
about 4–37 °N, -17–19 °E. To minimise the issues introduced through
the limitations of the dust detection method at night, we only evaluate
dust for forecast validity times between 06 and 18 UTC. We further
exclude timestamps from the respective analysis where less than 1% of
observed pixels are detected as convective cells (cold clouds) or dust.
This minimises misleading scores from events where the scene is largely
free from convection or dust.

Fig. 4 shows mean pFSS for convection and dust for the ensemble
nowcast and the corresponding FSS for a persistence forecast, evaluated
at spatial scales of 30 km, 60 km, 120 km, and 240 km. While FSS on
mall scales shows the fastest decline with lead time, our model con-

sistently outperforms the persistence forecast, and achieves useful skill
(FSS > 0.5) for convection up to about 4 h lead time, and for dust for up
to 5 h on all analysed scales. In general, skill on small scales declines
faster with increasing lead time than on large scales. This fits with
processes on the size-range of individual convective storms operating
on much shorter timescales than meso- and synoptic-scale systems and
processes. Any future observation therefore shows more differences on
small scales than on large scales when compared to initialisation, and
requires the nowcast to reproduce more small-scale features to achieve
good scores. Note that the persistence forecast also achieves scores of
useful skill for lead times of multiple hours. The skill benefit compared
with persistence increases with lead time, and is greater for smaller
scales. Besides typical timescales of processes at these scales, this can
be related to increasing blurring of the model nowcast, leading to a
reduction of total feature points at large lead times. Comparing lead
time for forecasts with useful skill, our nowcast on average extends the
maximum lead time by about 1.5 h for convection, and about 1.25 h
for dust compared to a persistence forecast and for features operating
on 30 km scales, reducing to about 45 min for convection and 1 h for
dust on 240 km scales.

For evaluating probabilistic forecasts, receiver operating charac-
teristic (ROC) curves assess how well predicted events correspond to
observed occurrences and non-occurrences of events across varying
probability thresholds. For each probability threshold, the probabilistic
nowcast fields are converted to binary fields with value 1 if the pre-
dicted probability is greater equal the threshold value, and 0 elsewhere.
True positive rates (forecast and observation both 1, relative to all
observed points with 1) are then compared to the false positive rate
(forecast 1 where observation 0, relative to all observed points with 0).
A perfect forecast maximises the true positive rate while minimising
the false positive rate. If true positive rates are plotted against false
positive rates, a perfect forecast would result in a curve in the top left
corner of such diagram. The area under the curve (AUC) is commonly

sed as a binary metric for expressing probabilistic forecast skill based

7 
Fig. 5. Mean receiver operating characteristic (ROC) curves at lead times of
, 2, 4, and 6 h; for (a) detected convective cells, and (b) detected dust.
erformance of a random classifier (no skill) as dashed grey reference line.

on ROC curves. A perfect forecast achieves an AOC of 1, a random
classifier achieves AUC equals 0.5. Fig. 5 shows mean ROC curves for
convection and dust for different lead times. All curves remain above
the reference level of a random classifier (diagonal line), with the AUC
achieving very high scores of above 0.9 at lead times of 1 h for both
convection and dust. Note the high values of true positive rates for very
low false positive rates. This indicates the model correctly forecasting
most events while producing only a small number of false alarms.

Fig. 6 shows AUC for convection and dust over the time of day for
which the nowcast is valid and for different lead times. The AUC curve
for convection shows highest values for nowcasts valid between morn-
ing and noon and lowest values for the afternoon. This is consistent
between nowcasts with different lead times, with a positive time-offset
n highest (lowest) values with increasing lead time and aligns with the
iurnal cycle of convection initiation, which is lowest in the morning
nd peaks in the afternoon. This confirms previous observations that
he model reproduces growth and decay of convective systems, but
truggles with convection initiation after model initialisation. For dust,

the AUC curves show a less consistent diurnal cycle in skill between
different forecast lead times compared to convection. Note that dust
detection is significantly affected by uncertainty introduced through
the dust detection method as explained in Section 2.3. In fact, the
olour change of the dust RGB in the morning and evening results
n very different feature masks when comparing forecasts initialised
t night/day to observations from day/night. While the two key pro-
esses leading to dust-emitting peak-wind-speeds in this domain show

a characteristic diurnal cycle, with the down-mixing of the nocturnal
ow level jet (Knippertz, 2008) causing gusts in the morning, and

cold pools from convective systems leading to peak-wind-speeds at
night (Marsham et al., 2011), the nowcast skill cycle for predicting dust
cannot reliably be attributed to those.
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Fig. 6. Mean receiver operating characteristic (ROC) area under curve (AUC)
score over time of day that the nowcast is valid, at lead times of 1, 2, 4,
and 6 h; for (a) for detected convective cells, and (b) detected dust. Note that
nighttime dust before 6 UTC and after 18 UTC is excluded in our analysis due
to the double-penalty introduced by limitations of the dust detection method
during night.

Fig. 7. Mean calibration curves at lead times of 1, 2, 4, and 6 h; for (a)
etected convective cells, and (b) detected dust. Perfect calibration as dashed

grey reference line.

Calibration curves assess how well predicted probabilities align with
he observed relative frequency of cases. A perfect forecast predicts

probabilities that match how often events are observed, which results
in a calibration curve that lies on the diagonal. Fig. 7 shows mean
calibration curves for convection and dust at different lead times. For
convection, the curves closely follow the diagonal line of a perfectly
calibrated prediction for lead times of up to two hours and predicted
probabilities up to about 0.5, and slightly fall under the diagonal for
higher predicted probabilities. This means the model predicts high
probabilities for convection being present more frequently than it
is observed, which is known as overconfidence. For increasing lead
times, the curve falls lower under the diagonal, indicating increas-
ing overconfidence for predicting convection. For dust, all curves are
located closely together but below the diagonal. This indicates the
model generally being overconfident for predicting the presence of
dust (or underconfident for predicting clear conditions). Nevertheless,
the calibration curve for dust predictions roughly follows the diagonal
trend of a well-calibrated model.

4.3. Computational requirements

Diffusion models are computationally more expensive than conven-
ional machine learning methods since they require multiple passes
hrough the model to generate one output sample. To allow DustCast
eing run in rapid-refresh cycles, we aim for a +6 h ensemble nowcast
o be generated in less than 10 min on one of the GPUs used for
raining. This allows for the complete nowcast to be available before
he next SEVIRI observations are received. For our model, one frame of
he ensemble (5 × 256 × 256) requires about 19 s of computation time,
hich results in about 7.5 min for generating a full +6 h ensemble
8 
nowcast. We tested larger ensemble sizes with fewer sampling steps
that maintain the total sampling time. However, the reduced number
f sampling steps lead to instabilities in the recursive sampling process,

worsened the model calibration and did not significantly improve
pFSS (not shown). We suggest that future developments make use of
improved samplers that can be run with a lower number of sampling
steps. The reduced sampling time could be used to reduce the overall
latency for producing the nowcast, or to increase the number of high-
quality ensemble members. Alternatively, the prediction process could
be run in parallel on multiple GPUs for increasing the number of
ensemble members while maintaining latency. Note that our implemen-
tation of DustCast is a rather simplistic one, and that computational
requirements could likely be reduced with a latent-space diffusion
model.

4.4. Observations from live deployment

We deployed a spin-out version of DustCast during a nowcasting
testbed within the Weather and Climate Information Services (WISER)
- Early Warnings for Southern Africa (EWSA) project in Zambia in
February 2025. The testbed focused on researchers working with local
forecasters to use a variety of nowcasting tools to improve predictions
of severe storms. For this application, we deployed a simplified model
that was trained with data from southern Africa and only predicts the
SEVIRI 10.8 μm channel. This provided real-world testing of DustCast in
Africa, and new insights into DustCast’s performance for rapidly devel-
oping convective storms. We therefore report several key observations
from this live deployment:

Firstly, conventional OF-based nowcast products showed limited
capability to reproduce cases of rapid storm growth and intensification.
In these situations, DustCast clearly outperformed these conventional
methods by successfully predicting storm growth and decay. Fig. 8
shows an example case of a rapidly growing and intensifying con-
vective system in the vicinity of the testbed focus area (red cross,
growing system west from marker). Initiation and intensification hap-
pened over a short period of only two hours. As soon as initial storm
growth (sinking BTs) were contained in the model input data (ini-
tialisation at 13:30 UTC), the nowcast realistically predicted further
intensification of the system. In comparison, nowcast systems based on

F predicted low rain rates but missed the intensification (appendix
Fig. A.12). In such cases, DustCast can help forecasters to identify
expected intensification that is missed in OF-based nowcasts. Local
observers reported 31 mm of rain in the focus area, accumulated
from 14:30 and 16:00 UTC. This resulted in flooding of informal set-
tlements, directly impacting people’s daily activities and livelihoods.
Taking into account the latency of receiving satellite data and running
DustCast, our nowcast could have been used for issuing warnings
30 min ahead of the flooding. Such early warning is crucial for mit-
igating adverse impacts, and highlights the potential for operational
deployment of DustCast. Secondly, predicting convection initiation re-
mains challenging for both OF-based products and DustCast due to
its inherent stochastic nature. Thirdly, the accessibility of the product
is a significant hurdle to operational forecasters making use of the
nowcast. A nowcast of an existing visualisation such as false-colour RGB
imagery or the 10.8 μm cloud channel provides significant advantages
over entirely new products, since forecasters are already trained in
their interpretation. This reduces the hurdle to adoption and ultimately
allows improvements of forecasters’ predictions and early warnings
issued.

5. Conclusions

We introduce DustCast, a simple diffusion model for generating
orward-predictions of the existing desert dust RGB composite. We

train the model on two years of SEVIRI observations from a large
domain over West Africa and show that our nowcasts can reproduce
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Fig. 8. Observed and predicted SEVIRI 10.8 μm channel for a nowcast over Zambia, initialised at 05/02/2025 13:30 UTC (𝑡0). The top left shows the latest
observation which was fed into the model. The remaining top row plots show observations for 𝑡0 +15 min and +1 h. The bottom row shows the corresponding
predicted frames. Lusaka (main focus area of testbed) is marked with a red cross. Temperatures lower than −40 °C are highlighted. Note this nowcast is from a
testbed-specific spin-out version of DustCast which only predicts the 10.8 μm channel, and that values colder than 200 K are clipped in the model.
convectively generated dust storms. Our method offers advantages
compared to conventional OF-based nowcasts by predicting complete
images of complex weather situations. This includes other features
besides dust such as convective systems, and helps with assessing
weather context. Compared to previous nowcasts of other RGB com-
posites (Ionescu et al., 2021; Bari et al., 2023), our implementation
using a diffusion model creates sharper realisations with the option to
generate ensemble nowcasts. Combined with feature detection within
the predicted frames, the ensemble allows a probabilistic nowcast and
scenario assessment. We generate probabilistic nowcasts for dust and
convective (cold cloud) features, which show skill at lead times of
5 h, and 4 h, respectively, on scales of 30 km. On large scales of
240 km, the dust nowcast shows skill at 6 h (and more), the convection
nowcast shows skill at 5 h lead time. In comparison to previous OF-
based nowcasts of SEVIRI-derived precipitation (Burton et al., 2022),
our nowcast extends skill by more than two hours. However, note
that feature detection introduces additional uncertainty through the
reliability of the detection method. Since dust detection from infrared
channels alone remains challenging, the visualisation as RGB composite
still holds value and leaves the interpretation to a human observer.

While DustCast performs well for predicting the growth and decay
of features, the prediction of entirely new features that are not visibly
contained in the conditional input remains challenging. This partic-
ularly applies to the initialisation of convection, which is inherently
unpredictable and might require advanced probabilistic methods. We
observed during deployment in a testbed that another hurdle to the
successful adoption of new nowcast products is their accessibility. A
nowcast of an existing visualisation such as the dust RGB therefore
provides an easy-to-use product for operational forecasters who are
already trained in the interpretation of the RGB imagery.

Our approach could be adapted to nowcast other commonly used
RGB composites, e.g., convection, ash, or fog. Our model could further
be retrained with data from the new Flexible Combined Imager (FCI)
on Meteosat Third Generation (MTG) satellites (Holmlund et al., 2021),
which provides measurements on similar bands as SEVIRI. We suggest
9 
that future implementations make use of data transformations into
lower-dimensional latent space as introduced by Rombach et al. (2022)
in order to reduce computational requirements and therefore latency.
Further improvements could likely be achieved by implementing a
separate forecaster stack and 3D convolutions as successfully demon-
strated for nowcasting precipitation (Leinonen et al., 2023). Finally, the
inclusion of additional input variables such as solar angle, time of day,
or orography could help to improve the colour cycle and potentially
reproduce convection initiation. In the wider context, nowcasts of satel-
lite observations can not only be used to predict other RGB composites,
but indeed allow predictions of retrievals which are based on these
products.
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Table A.5
Overview of schedulers and hyperparameters tested during the grid search approach.

LR schedule Beta schedule LR (max) Batch size Epochs

OneCycleLR linear 5.0 × 10−4 32 50
CosAnnealingLR cosine 2.5 × 10−4 16 20

1.0 × 10−4 8 10
1.0 × 10−5
Table A.6
Summary of schedulers and hyperparameters used for the final iterative training of DustCast.

Image resolution LR schedule Beta schedule LR (max) Batch size Epochs

64 × 64 OneCycle linear 2.5 × 10−4 16 50
128 × 128a CosineAnnealing linear 1.0 × 10−4 16 20
256 × 256b CosineAnnealing linear 1.0 × 10−4 16 20

a Retrained from 64 × 64.
b Retrained from 128 × 128.
Fig. A.9. Overview of the model architecture. This is based on the UNet2DModel from the Huggingface Diffusers Python package.
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Appendix A. Model details and extra figures

A.1. Details on training and hyperparameter tuning

We used a grid-search approach over the schedulers and parameters
listed in Table A.5. We trained the model using the AdamW opti-
mizer with MSE as loss function. Data was noisified over 1,000 steps.
Model performance for each training run was evaluated using mean
error, root mean square error (RMSE) and structural similarity measure
(SSIM). Training was performed on 4 GPUs using PyTorch Lightning in
DistributedDataParallel (DDP) mode. In DDP mode, Lightning automat-
ically shards each training batch across multiple GPUs but accumulates
the gradients so that the effective batch size remains constant and inde-
pendent from the number of GPUs. No further gradient accumulation
was used. Due to computational constraints, training was started with
downsampled images of 64 × 64 px. Downsampling was performed
using the PyTorch function ‘‘Resize’’, with bilinear interpolation and
antialiasing. The best performing model was then retrained on the same
training dataset but with increased resolution. The resulting iterative
training approach is summarised in Table A.6

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.wace.2025.100828.

https://doi.org/10.1016/j.wace.2025.100828
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Fig. A.10. Observed and predicted desert dust RGB images for a nowcast initialised at 07/06/2024 17 UTC (𝑡0). The top left shows the latest observation which
was fed into the model and observations for 𝑡0 +1 h, +2 h, +4 h, and +6 h. The remaining rows show the corresponding predictions from each ensemble member.
Dark red colours show high and cold cloud tops, bright pink colours show dust, light blue and light purple mainly show stationary background features.
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Fig. A.11. As Fig. A.10 but for dust (pink) and convection (blue) as detected in the observed and predicted desert dust RGB images.
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Fig. A.12. Retrieval and nowcast of Convective Rain Rate (CRR) over Zambia from the Nowcasting and Very Short Range Forecasting Eumetsat Satellite
Application Facility (NWC SAF) (NWC SAF, 2013) as deployed during the WISER-EWSA testbed. This nowcast is based on optical flow and a deterministic
forward propagation of the CRR retrieval. The nowcast was initialised at 05/02/2025 13:30 UTC (𝑡0). The top left shows the latest observation from which the
forward extrapolation was performed. The remaining top row plots show observations for 𝑡0 +15 min and +1:15 h. The bottom row shows the corresponding
predicted frames. Lusaka (main focus area of testbed) is marked with a red cross. Note that the CRR retrieval for 14:30 UTC is unavailable, therefore we show
data for 14:45 UTC.
Data availablity

Meteosat SEVIRI data are available from EUMETSAT: https://navig
ator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI.
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