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We analyze the effect of a scale-dependent horizontal hyperdiffusivity in rotating
Rayleigh-Bénard convection. The hyperdiffusion (HD) is parametrized by a cutoff wave
number k0 and a growth rate q to limit its effects to the smaller scales, enabling simulations
to be conducted at more rapid rotation rates and buoyancy forcing (as measured by the
Ekman number Ek and Rayleigh number Ra, respectively) than in conventional direct
numerical simulations (DNSs). We have performed 107 simulations spanning the ranges
E = 10−4–10−7 and Ra = 106–7 × 1010 and directly compared HD and DNS heat transfer
(measured by the Nusselt number Nu), flow speeds (quantified by the Péclet number Pe),
force balances, and boundary layer thicknesses. We identify two different effects of HD
that are particularly clear when k0 is below the dominant scale of the flow k⊥: At low
supercriticality R̃a, Nu, and Pe are increased compared to DNS due to a weakening of
the rotational constraint; at high R̃a, Nu and Pe are decreased compared to DNS owing
to suppression of energy at scales greater than k⊥. The thermal boundary layer thickness
changes in proportion to Nu, while the mechanical boundary layer thickness is marginally
affected because it is determined by a vertical balance, whereas HD is applied horizontally.
Heat transfer diagnostics are more strongly affected by HD than flow diagnostics, while
changing k0 has a greater impact on solution behavior than changing q over the range of
values studied. For all HD simulations with k0 � 3k⊥, all diagnostics remain within the
standard deviation of the DNS.

DOI: 10.1103/jvgr-d2mw

I. INTRODUCTION

Rotating convection-driven flows are ubiquitous throughout the natural world. These flows are
thought to be integral to the formation of magnetic fields in stars and planets [1,2], the atmospheres
of celestial bodies [3], and flows within earth’s oceans [4]. The addition of rotation into a convective
flow introduces anisotropy by constraining the flow variations parallel to the axis of rotation [5–7].
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This affects all global properties of the flow, including boundary layer thicknesses, heat transfer,
flow speeds, energy, and force balances.

The motivation for this work is to understand the dynamics of the earth’s liquid outer core,
which gives rise to a magnetic field through dynamo action. Despite its proximity, the earth’s core
remains poorly understood due to the impracticality of direct observation and must be analyzed
experimentally, theoretically, and numerically. Self-consistent simulations of the geodynamo have
been conducted for nearly three decades [2], but due to computational limitations the viscous and
thermal diffusivities must be increased by many orders of magnitude compared with their molecular
values. Attempting to simulate earth’s core dynamics with realistic parameters would result in
prohibitively long runtimes [8] owing to the vast range of spatial and temporal scales that need
to be resolved. Fine resolution is required to resolve the small-scale structures in the flow, which
necessitates small time steps. At present, the most extreme direct numerical simulations (DNSs)
are still orders of magnitude away from replicating the conditions found in the earth’s outer core
(see, e.g., [9–11]). Reaching more realistic conditions therefore requires numerical schemes that
enable the required spatial resolution to be reduced. In this work we focus on large-eddy simulations
(LESs), which have received significant recent attention in the geodynamo literature (e.g., [12,13]).
We investigate the effect of LES in the rotating Rayleigh-Bénard system, which allows a systematic
investigation of the fundamental fluid dynamics in the regime of rapid rotation that is thought to
characterize planetary cores.

A. Large-eddy simulations

The LES method effectively applies a low-pass filter to the governing fluid dynamical equations,
eliminating scales smaller than the grid size. This filtering process generates equations for features
larger than the grid size, which depend on a subgrid-scale (SGS) term that accounts for the
interactions between the unresolved and resolved scales.

One representation of the SGS term is an eddy diffusivity [14] νt . Multiple approaches for
calculating νt have been proposed (e.g., [15]). Regardless of the magnitude of νt , a shortcoming
of the eddy-viscosity method is the inherent lack of scale separation. Due to their comparable size,
the unresolved SGS eddies will have the largest impact on the smallest resolved eddies in the flow.
Therefore, increasing diffusion at all scales does not align with the anticipated physical behavior.

A variant of these eddy-viscosity methods is hyperdiffusion (HD). In this method, the SGS
processes are accounted for by changing the standard diffusion term in the governing equations.
The diffusion term can be modified by increasing the order of the derivative, which has the effect of
enhancing diffusion at smaller scales [16]. Alternatively, the diffusion term can be multiplied by a
function that is dependent on length scale [17–19]. A benefit of this so-called scale-dependent HD
scheme is the flexibility in selecting the function so that it can be customized to suit the problem.
Although HD struggles to accurately model anisotropic turbulence found in planetary cores [20],
this flexibility in function selection enables the adjustment of parameters to preserve the large scales.

The similarity model is a method that uses the large-scale flow to control the behavior of the
SGS term [21]. In this approach, the energy exchange resulting from the interaction with the
SGS eddies is approximated by the energy transfer from the smallest resolved scales. This model
has the advantage of being able to accurately capture anisotropic turbulence. However, it requires
adding an additional term for nonuniform grids due to commutation errors found at the boundaries
[22,23]. Furthermore, essential to the method are coefficients which depend on both space and time
[24,25]. Although the similarity method is better equipped to model anisotropic turbulence than HD
and the eddy-viscosity models [20], these added complications make the method more difficult to
implement.

Recent geodynamo simulations have employed a scale-dependent HD scheme based on the
spherical harmonic representation of scalar fields in spherical geometry [13,19]. This method is
straightforward to implement and allows explicit control of the scales that are influenced by HD.
Initial comparisons with DNS are promising [13,19]; however, systematic comparisons have yet
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to be performed. Here we perform such a comparison within the framework of rotating Rayleigh-
Bénard convection.

B. Rotating Rayleigh-Bénard convection

The classic framework for studying convective flows is rotating Rayleigh-Bénard convection
(RRBC). Within this framework, a plane layer of fluid is heated from below and rotated around a
central axis. The fluid density is assumed to be constant other than in the buoyancy term (the Boussi-
nesq approximation) [26]. This simplified system still captures the interaction between rotation and
convection but allows more extreme parameters to be accessed compared to the spherical shell
geometry that characterizes geophysical systems. In RRBC, the Rayleigh number Ra measures the
ratio of buoyant forcing compared with dissipation, the Ekman number Ek is the ratio of viscosity
to rotation, and the Prandtl number Pr is the ratio of viscous to thermal dissipation.

The behavior of the system is often characterized by relationships of the form ∼RaαEkβPrγ

for the heat transfer as measured by the Nusselt number Nu, the typical flow speed given by the
Reynolds number Re, and the typical dimensionless flow length scale � = L⊥/L‖, where L⊥ is the
dominant horizontal length scale and L‖ is the dominant vertical length scale.

Broadly speaking, the dynamics of RRBC can be separated into weakly rotating and rapidly
rotating regimes. In the weakly rotating regime, which occurs at high supercriticality, the
influence of rotation is subdominant and the system exhibits scaling behavior similar to classical
Rayleigh-Bénard convection, with Nu ∼ Ra1/3, Re ∼ Pr−1/2Ra1/2, and � ∼ Re−1/2 (see, e.g., [27]).
The transition to the rapidly rotating regime occurs as Ra is decreased at fixed Ek and Pr. The value
of Ra at which the transition occurs is still debated; however, it probably depends on Ek and Pr, for
example, as Ek−8/5Pr3/5 [28] or Ek−2Pr [29]. In this paper we are interested in the rapidly rotating
regime as this is thought to be most relevant for planetary cores [30,31]. We focus on the aspects of
the system behavior that will be important for identifying the influence of hyperdiffusion and refer
the reader to the work of Ecke and Shishkina [32] for a recent detailed review of RRBC.

Rotation inhibits vertical heat transfer and delays the onset of convection. In the limit of small
Ek and for Pr > 0.68 the critical Rayleigh number Rac determining the onset of convective motion
is given by Rac ≈ 8.7 Ek−4/3 [33]. As such, Rac increases significantly as Ek is decreased and it is
often useful to utilize R̃a = Ra/Rac when comparing flows at different Ek. The nonlinear regime has
been investigated using DNS (e.g., [34,35]), experiments (e.g., [36,37]), and asymptotically reduced
models (e.g., [28,38,39]). These studies have found a variety of flow structures ranging from regular
cells to geostrophic turbulence [34,35]. These flows are characterized by a primary balance between
the Coriolis force and the pressure gradient [35]. The important dynamical differences are found in
the secondary force balance.

At asymptotically low Ek, theoretical studies suggest that there exists a range of Ra within the
rapidly rotating regime where the system exhibits diffusion-free behavior. In this case the secondary
dynamical balance in the bulk is between ageostrophic Coriolis (C), Archimedian buoyancy (A), and
inertial (I) (CIA) forces, which yields the scaling relations Re ∼ Ra Ek/Pr and � ∼ (Ra/Pr)1/2Ek =
Ro1/2, where Ro is the Rossby number [40]. Assuming a balance between mean and fluctuating
thermal advection in the bulk leads to the scaling Nu ∼ (Ra3/2/Pr1/2)Ek2 [40]. These scalings have
recently been found in DNS at very low Ek � 10−8 [41]. However, owing to computational expense,
the majority of DNS studies of RRBC, including those presented here, are conducted at higher
Ek � 10−7 where viscosity remains dynamically significant even at high R̃a. Guzmán et al. [35]
found a secondary balance between viscosity (V), buoyancy (A), and the ageostrophic Coriolis force
(C) in the bulk for R̃a < 6, the so-called VAC balance. This balance implies that � ∼ Ek1/3 and Re ∼
Pr Ra Ek. A balance between the Coriolis force and viscosity is present in the boundaries, resulting
in a scaling of δv ∼ Ek1/2, where δv is the thickness of the viscous boundary layer [42]. Using the
assumption that rotation stabilizes the thermal boundary layer (TBL) and that the temperature drop
occurs only in the TBLs results in Nu ∼ R̃a

3
[43]. This exponent has been found in DNS conducted

at extreme parameter values [41]. As Ra increases, inertia enters the secondary balance [35].
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C. This study

Hyperdiffusion has been used in several previous studies of the geodynamo process [13,19,44–
49]. However, only a handful of direct comparisons between DNS and the HD solutions have been
conducted, in part because of the computational costs of solving the dynamo equations in the rapidly
rotating regime. For the scale-dependent horizontal HD function used in this study, Aubert et al. [19]
and Aubert [13] compared DNS and HD for four different combinations of control parameters and
found satisfactory agreement when considering a wide range of system diagnostics. Moreover, the
effect of HD in RRBC is not well studied.

In this paper we systematically study the effect of scale-dependent horizontal HD in RRBC,
which is computationally cheaper than the full dynamo problem and allows a systematic investiga-
tion across a broad range of parameter space. We present 107 simulations spanning the parameters
ranges Ek = 10−4–10−7 and Ra = 106–7 × 1010 for Pr = 7 and assess the effect of HD on heat
transfer, flow speeds, force balances, energy balances, boundary layer thicknesses, and length scales.

The remainder of this paper is set out as follows. In Sec. II the governing equations of RRBC,
output parameters, and relevant theoretical results are presented. In Sec. III we consider two cases in
depth: The first is a solution with Ra just above Rac and the second is a solution with Ra roughly at
the transition between rapidly rotating and weakly rotating convection. In Sec. IV the performance
increase gained from using HD is investigated along with some guidelines for choosing the HD
scheme. Knowledge acquired from the initial parameter sweep at Ek = 10−5 is then tested at lower
Ek. In Sec. V we present our conclusions.

II. THEORY

A. Problem formulation

We consider a Cartesian domain defined by spatial coordinates x, y, and z. The system of
equations consists of the nondimensional momentum equation, the incompressible continuity equa-
tion, and the temperature equation. We employ the simplest form of the Oberbeck-Boussinesq
approximation [26,50] whereby all fluid properties are assumed to be constant except that the
density ρ in the buoyancy term depends linearly on temperature T as ρ = ρ0(1 − α(T − T0)), where
T0 is the base state temperature profile, ρ0 is the baseline density, and α is the thermal expansion
coefficient. The base state is in hydrostatic balance, and we consider perturbations from this base
state with temperature given by T = T0 + θ . The rotation vector � = 
ẑ is parallel to the unit
vector ẑ, and gravity is given by g = −gẑ. At the top and bottom boundaries (located at z = ±0.5),
no-slip boundary conditions are applied to the velocity field, and isothermal conditions are applied
to the temperature field; the sidewalls are periodic in all fields. The top and bottom boundaries are
separated by a distance L and maintain a temperature difference of �T . The fundamental timescale
is taken to be the thermal diffusion timescale τ = L2/κ and v is scaled by κ/L, where κ is the
thermal diffusivity, and the reduced pressure P by ρ0κ

2/L2, resulting in

∂v

∂t
+ (v · ∇)v︸ ︷︷ ︸

inertia

+ Pr

Ek
ẑ × v︸ ︷︷ ︸
Coriolis

= −∇P︸ ︷︷ ︸
pressure

+ Pr∇2v︸ ︷︷ ︸
diffusion

+ Ra Prθ ẑ︸ ︷︷ ︸
buoyancy

, (1)

∇ · v = 0, (2)

∂θ

∂t
+ (v · ∇)θ = w + ∇2θ, (3)

where t is time. The Rayleigh number Ra, Prandtl number Pr, and Ekman number Ek are defined as

Ra = gα�T L3

νκ
, Pr = ν

κ
, Ek = ν

2
L2
, (4)

where ν is the kinematic diffusivity.
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Simulations are conducted using the open source pseudospectral code DEDALUS [51]. The
solution is represented by Fourier modes in the x and y directions and Chebyshev polynomials
in the z direction. The Chebyshev grid has collocation points clustered near the boundaries,
allowing for adequate resolution for the boundary layers [51]. The use of Fourier modes guarantees
periodic boundary conditions at the horizontal boundaries. The spatial resolution of each simulation
is described by the number of collocation points Nx, Ny, and Nz in the x, y, and z directions,
respectively. Time stepping is carried out using a fourth-order Runge-Kutta scheme; linear terms
are treated implicitly and nonlinear terms explicitly. DEDALUS utilizes a pseudospectral method such
that the nonlinear terms are computed in grid space and the linear terms in coefficient space. The
aspect ratio of the box, denoted by �, is varied from 0.5 to 4. To capture the convective dynamics
adequately, a minimum of ten convective cells is ensured in all simulations.

B. Output parameters

We calculate several flow diagnostics to understand the global properties of each simulation. The
integral Nusselt number NuI is

NuI = 1

�2

∫ 0.5

−0.5

∫ �

0

∫ �

0

(
wθ − ∂θ

∂z

)
dx dy dz. (5)

Flow speeds are quantified by the Péclet number Pe, calculated as

Pe = 1

�2

∫ 0.5

−0.5

∫ �

0

∫ �

0

√
v · vdx dy dz, (6)

and the Reynolds number Re is given by Re = Pe Pr. The thickness of the thermal boundary layer
δT is calculated by taking the location of the peak of the horizontally averaged root mean square
(rms) of the thermal perturbation field [52] given by

θrms(z) = 〈
√

θ − 〈θ〉H
2〉H , (7)

where 〈 〉H refers to an average along the horizontal coordinates and an overbar refers to a time
average. The viscous boundary layer thickness δv is calculated using the peak of the horizontally
averaged velocity field [53]

Uh =
√

〈v · v〉H . (8)

To check convergence, we use the fact that the time-averaged kinetic energy equation yields an
exact balance between the viscous dissipation Vd and the buoyant production Bp [54], where

Vd = Pr

�2

∫ 0.5

−0.5

∫ �

0

∫ �

0
v · ∇2v dx dy dz, (9)

Bp = Ra Pr

�2

∫ 0.5

−0.5

∫ �

0

∫ �

0
θw dx dy dz. (10)

A balance within 1% between the time average of each quantity, denoted by Eb and given by

Eb = Vd − Bp

Vd
, (11)

is used to show statistical convergence. A further convergence check is provided by comparing the
Nusselt number evaluated as an integral over the volume (5) and the Nusselt number Nut (Nub)
evaluated at the top (bottom) of the domain, where

Nut = 1

�2

∫ �

0

∫ �

0

∂θ

∂z

∣∣∣∣
z=0.5

, (12)
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Nub = 1

�2

∫ �

0

∫ �

0

∂θ

∂z

∣∣∣∣
z=−0.5

. (13)

Conservation of energy requires that Nut = Nub = NuI [43]. A tolerance of 1% in the maximum
error is used to further show convergence (a summary of all runs is shown in Table III).

Adequate spatial resolution is ensured by conducting several runs at Ek = 10−5, Ra = 7.00 ×
107, Pr = 7, and � = 1. Runs are conducted with a resolution (Nx, Ny, Nz ) of (64, 64, 64),
(128, 128, 64), (128, 128, 128), and (192, 192, 128). In all cases NuI , Nut , and Nub agree with
one another to a tolerance of less than 1%, and the resolution of (128, 128, 128) is used for all
remaining DNS at Ek = 10−5. However, to ensure more than ten convective cells are present in
each simulation, � is adjusted for each Ek. Also, Nz is adjusted to ensure at least seven points are
within each boundary layer.

Force balances and length scales

Previous studies have assessed force balances in a number of different ways. These include
calculating forces at the midplane [35], as a function of wave number [19], or using projected
forces that remove gradient contributions [55]. Another possibility is to use the vorticity balance
[56,57], which also removes the dynamically irrelevant gradient components of each force while
being easier to compute than the projection method. Here we use the vorticity balance, obtained by
taking the curl of each force, which yields the following terms [57]:

ωI = (ω · ∇)v − (v · ∇)ω, ωC = − Pr

Ek

∂v

∂z
,

ωv = Pr∇2ω, ωB = Ra Pr

(
∂θ

∂y
,
∂θ

∂x
, 0

)
.

(14)

We analyze the vorticity terms in two ways.
First we calculate integrated squared vorticity terms over the bulk domain. We find that a robust

estimate of the bulk balance required removing regions of size 2δv adjacent to the top and bottom
boundaries, i.e., twice the viscous boundary layer thickness, and this is the definition of the bulk
domain used throughout. Second, we compute the horizontal length scale dependence of each
vorticity term. For a quantity A = (ax, ay, az ), we take Fourier transforms in x and y, multiply by the
complex conjugate of each component, add these products together, and integrate over z (excluding
the boundary layers) to obtain

a(kx, ky) =
∫ 0.5−2δv

−0.5+2δv

[F (ax ) ∗ F (ax ) + F (ay) ∗ F (ay) + F (az ) ∗ F (az )]dz. (15)

We then sum over shells in the (kx, ky) plane where shell n is defined by wave numbers which satisfy

kn−1 < kh < kn, where kh =
√

k2
x + k2

y is the horizontal wave number.

A final important quantity in the analysis of HD is the dominant horizontal flow length scale
L⊥ = 2π/k⊥. We estimate k⊥ using the peak in the kinetic energy spectrum obtained from Eq. (15).

C. Scaling in RRBC

1. Length scales

All simulations reported in this paper exhibit a leading-order geostrophic force balance, given by

ẑ × v ∼ −∇P. (16)

Taking the curl of both sides yields

∇ × (ẑ × v) ∼ 0, (17)
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from which follows ∂v
∂z ∼ 0, which is the Taylor-Proudman (TP) constraint and shows that the flow

will be largely invariant in z [5,6]. This invariance in z can be formalized by defining the horizontal
(L⊥) and vertical length scales (L||). Horizontal derivatives are associated with L⊥ and vertical
derivatives with L|| ∼ L.

The TP constraint must be broken to sustain convective motion, and other forces must enter the
force balance. When the TP constraint is broken by viscosity, the vorticity balance can be estimated
as

2
V

L||
∼ νV

L3
⊥

, (18)

where V is the typical scale of velocity. It follows from (18) that (e.g., [58])

� = L⊥
L‖

∼ Ek1/3. (19)

At higher Ra, inertia can become important in the vorticity balance. Assuming a balance between
rotation and inertia gives

2
V

L||
∼ V 2

L2
⊥

(20)

and hence

� = L⊥
L‖

∼ Ro1/2, (21)

where Ro = V/2
L is the Rossby number.

2. Heat transfer and thermal boundary layers

Scaling relations for Nu and δT differ depending on whether the boundary layers or the bulk
throttle the heat transport. In the rotationally dominated regime, scaling theories for Nu begin with
the assumption that rotation stabilizes the TBL. It is also assumed that most of the temperature drop
occurs within the TBL and that heat is primarily transferred by conduction across the TBL. From
this, a scaling is derived for both the TBL thickness and Nu [43], given by

δT ∼ Ra−3, (22)

Nu ∼ 0.0023 Ra3Ek4. (23)

In rotationally affected regimes, a scaling theory for Nu is derived by assuming that the heat flux
q is diffusionless. Stevenson [59] and Julien et al. [28] show that the only combination of parameters
which satisfy this assumption are

Nu − 1 ∼ Ra3/2Ek2

Pr1/2
. (24)

3. Flow speeds

Taking the scalar product of Eq. (1) with v and integrating over space and time leads to [27,54,60]

ν〈(∇v)2〉V = ν3

L4
||

Ra(Nu − 1)

Pr2
, (25)

where 〈 〉v is a volume average. In the rotationally dominated regime where the VAC balance is
thought to hold, Eq. (19) is used to get

PeVAC = Ek1/3Ra1/2(Nu − 1)1/2. (26)
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In the rotationally affected regime where we expect the CIA force balance to hold, a scaling law
for flow speeds is derived by first balancing the inertia and buoyancy terms in the energy equation,
giving

V 3

L⊥
∼ ν3

L||

Ra(Nu − 1)

Pr2
. (27)

Combining this with (21) yields [61]

PeIAC = Ra2/5Ek1/5(Nu − 1)2/5Pr1/5. (28)

Combining this with the scaling for Nu in the CIA regime [Eq. (24)] gives

PeIAC ∼ Ra Ek. (29)

4. Mechanical boundary layers

In the rotationally dominated and rotationally affected regimes, the dominant force balance in
the boundary layer is between the pressure gradient, Coriolis force, and the viscous force, given by

∇P ∼ 2� × v ∼ ν∇2v. (30)

The dominant term in the Laplacian is the vertical derivative and is of order νV/δ2
v , which implies

that [42]

δv/L|| ∼ Ek1/2. (31)

D. Form of the hyperdiffusion function

We follow the work of Nataf and Schaeffer [12] and choose a function with two variables: a
cutoff wave number k0 and a growth rate q. The function is defined as

f (k) =
{

1 for k < k0

qk−k0 otherwise.

Each second-order derivative in the diffusion term is multiplied by a function which depends on the
wave number of that derivative. However, so as not to directly affect boundary layers in the problem,
the z derivative is excluded. As such, the horizontal diffusion operator is given by

∇2
H = f (kx )k2

x + f (ky)k2
y . (32)

Hyperdiffusion is applied only to the velocity field to damp small-scale motion; although it could
equally be applied to the temperature field, we have chosen not to in order to clearly isolate its effect
on the flow, with the thermal case offering an interesting avenue for future work. Other forms of HD

could have been used, for example, the horizontally isotropic form
√

(k2
x + k2

y ) × (k2
x + k2

y ).

As explained in Sec. II B 1, L⊥ is an important length scale as this is the length scale that contains
the most energy. Given that L⊥ can be predicted from scaling theories, this can be used to construct
HD schemes (via the selection of k0) that do not affect the most important scales. In principle, an
upper value on q could be chosen such that the ordering of forces at any scale is left unchanged.
However, this cannot be chosen a priori but rather from empirical evidence from previous runs.

III. RESULTS

Figure 1 shows the four contributions to the vorticity balance in our DNS runs for all Ra at Ek =
10−5 [Fig. 1(a)] and 10−7 [Fig. 1(b)]. The general balances and ordering of terms is compatible with
the results of Guzmán et al. [35], who analyzed forces at the midplane of a Cartesian domain. At low
R̃a, the dominant balance is VAC with the inertial term strongly subdominant, as found by Guzmán
et al. [35] in their so-called cell and column regimes. The inertial term increases with increasing R̃a
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FIG. 1. Integrated squared vorticity contributions for all DNS runs conducted at (a) Ek = 10−5 and (b)
Ek = 10−7.

and eventually reaches the same order as the remaining terms, creating an IVAC balance as in the
plume regime of Guzmán et al. [35]. Since we focus on vorticity contributions (over momentum
terms), we find the diffusion term to be larger when compared to other terms. This is to be expected
as taking the curl of a quantity disproportionately increases terms which are larger at smaller scales.

Figure 2 shows NuI , Pe, δv , δT , and � for all DNS runs in this study. Also shown is the ratio
ωI/ωC , which characterizes the dominant vorticity balance in our simulations (see Fig. 1). At
relatively low R̃a the scalings of all quantities are consistent with theoretical predictions for the VAC
balance (Sec. III A). For Nu there is no evidence of the diffusion-free scaling Nu ∼ (Ra/Rac)3/2 as
expected given the values of Ek considered. The dominant flow length scale shows a clear Ek1/3

dependence [Fig. 2(f)], with some deviation from the behavior as Ra increases. At the highest values
of Ra considered, the scaling behavior of all quantities changes, which is consistent with the change
in the dominant vorticity balance [Fig. 2(d)]. The spatial resolution of each run was determined by
considering the peak-to-trough drop-off in the kinetic energy spectrum and the temperature field
spectrum plotted as a function of kh. For all runs, both fields were resolved sufficiently with a
drop-off of at least two orders of magnitude between peak and trough.

We begin by examining in detail the two cases circled in Figs. 1 and 2. The red circled case,
discussed in Sec. III A, corresponds to the cellular regime of Guzmán et al. [35] and is in VAC
balance. The blue case, discussed in Sec. III B, is in the plumes regime of Guzmán et al. [35] and is
in IVAC balance. In Sec. III C we then consider the effect of HD as a function of Ra and Ek before
evaluating the effect of changing the growth factor q. Finally, we consider the computational gains
of using HD in Sec. III E.

A. Example solution in VAC balance

We consider the solution with Ek = 10−5, R̃a = 1.16, Pr = 7, and � = 2, which is in VAC
balance. At these conditions k⊥ = 17 and so we ran four HD runs with k0 = 8, 16, 32, 48 in Eq. (32),
which are close to multiples of k⊥ and set q = 1.05.

Table III shows NuI , Pe, δv , δT , Vd , L⊥, and Eb for all runs conducted with q = 1.05; the cases
considered in this section are highlighted in bold and indicated with an asterisk. For k0 � 16, both
NuI and Pe remain within the standard deviation of the DNS; however, when k0 = 8, both values
exceed the DNS. Figures 3(a) and 3(b) show NuI and Pe plotted against convective overturn time,
given by t × Pe, and shows that the k0 = 8 case never overlaps with the DNS at any t and has greater
variability. Figures 3(c) and 3(d) show vertical profiles of Uh and θrms. The increased kinetic energy
for k0 = 8 is again apparent and there is greater vertical variation in Uh for this case. For θrms there
is also a clear change in δT . This is not the case for δv; although the profile of Uh is changed, the
location of the peak of the profile is not. Figure 4 shows the vertically integrated ẑ component of
velocity for the DNS case [Fig. 4(a)], the k0 = 32 case [Fig. 4(b)], and the k0 = 8 case [Fig. 4(c)]
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FIG. 2. (a) Nusselt number as a function of Ra and colored by Ek, with scaling laws Nu ∼ R̃a
3

[43] and
Ra1/3 [62]. (b) Péclet number as a function of Ra and colored by Ek, with a best-fit scaling law of Ra1/2 [60].
The black solid line shows PeVAC [Eq. (26)]. (c) Thermal boundary layer, with scalings from classical TBL
theory [43,62]. (d) Ratio of the integrated squared inertia vorticity term to the integrated squared vorticity
Coriolis term. (e) Viscous boundary layer thickness as a function of Ek, with a 1/2 scaling law [42]. (f)
Convective length scale as a function of Ek with the VAC scaling [Eq. (18)].

and the kinetic energy spectrum for difference values of k0 [Fig. 4(d)]. For k0 = 8, k⊥ decreases
from 17 to 15 and there is also more energy in the large-scale modes than the DNS.

Figures 3 and 4 both demonstrate that kinetic energy is increased for the HD case with k0 = 8
compared with the DNS. We argue this arises because HD with k0 < k⊥ weakens the influence of
rotation by increasing the dominant scale of the flow. In the VAC regime L⊥ ∼ Ek1/3 [Eq. (19)] and
so the decrease in k⊥ from the DNS value of 17 to the k0 = 8 value of 15 [Fig. 4(d)] corresponds
to an effective increase in the Ekman number of the simulation (cf. [18]). Since Rac ∼ Ek−4/3,
increasing Ek lowers Rac and increases the supercriticality R̃a of the simulation because Ra is
fixed. In the VAC regime Nu ∼ R̃a

3
and Pe ∼ Ek1/3Nu1/2, and hence both Nu and Pe are expected

to increase for the k0 = 8 case compared to the DNS. A weakening of the rotational constraint
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FIG. 3. (a) Integral Nusselt number plotted as a function of convective overturn time for the DNS case
and four HD cases with a cutoff wavelength of k0 = 48, 32, 16, and 8. All cases were run at Ra = 4 × 107,
R̃a = 1.16, Ek = 10−5, Pr = 7 and � = 2. (b) Péclet number plotted as a function of convective overturn time
for the same runs. (c) Vertical profile of θrms for the same runs. The black dotted line shows the peak of the
DNS profile and the pink dottedline shows the peak of the HD profile with k0 = 8. (d) Vertical profile of Uh for
each run. The gray dotted line shows the peak of all runs.

also implies greater vertical variation in the velocity (Fig. 3). This behavior is consistent with the
simulation results in Figs. 3 and 4.

To test the proposed mechanism, we conducted linear stability analysis using the DEDALUS

eigenvalue solver [51] to determine Rac and L⊥ for a DNS case and a HD case where k0 = 8. In the
DNS Rac = 3.46 × 107 and L⊥ = 17, whereas in the HD case Rac = 3.08 × 107 and L⊥ = 15.28.
The DNS and HD spectrum peaks in Fig. 4(d) align well with the predicted peaks from the linear
stability analysis. To confirm that the HD treatment has lowered Rac, a DNS and HD run with
k0 = 8 were conducted at Ra = 3.2 × 107, which is below the DNS Rac for this Ek. In the HD case,
convection was observed yielding solutions with Pe > 1 and Nu > 1, whereas in the DNS case, no
convection was observed, reflecting the difference in Rac.

The vorticity balances for the DNS and HD runs are shown in Fig. 5. The dominant balance
is between ωC and ωB in all runs. The viscous term becomes comparable to ωC and ωB at k⊥ for
each run, while at higher k the magnitude of all three terms drops dramatically. Inertia remains
subdominant at all scales. Coriolis and inertial terms are most reduced in the HD runs compared
with DNS. However, the reduction occurs only for k � k⊥ at scales that make an insignificant
contribution to the overall vorticity balance and therefore have a negligible effect on the flow (see
Figs. 3 and 4). The variation of the viscous term with k is similar for all runs and does not show an
increase at high k as might be expected from the form of the hyperdiffusion function (32) because
the increase in f (k) with k is compensated by both the reduction in v and increase in L⊥. For k0 =
16, 32, and 48, the spectra at large scales (k < k⊥) for all terms are only marginally perturbed from
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Horizontal Wave Number

FIG. 4. (a) Integrated ẑ component of velocity of a run at Ra = 4 × 107, R̃a = 1.16, Ek = 10−5, and � = 2
for DNS. (b) k0 = 32. (c) k0 = 8. (d) Time-averaged kinetic energy spectrum of each of the runs plotted as a
function of the horizontal wave number. The black dashed line is the first unstable mode in the HD case where
k0 = 8, as predicted from the linear stability analysis. The black solid line is the first unstable mode in the DNS
case.

the DNS. For k0 = 8 the spectra for all terms are essentially shifted towards lower wave number and
higher amplitude; the relative ordering of terms is closely preserved even to wave numbers far above
k⊥. Indeed, the k0 = 8 spectra qualitatively resemble the spectrum of a marginally supercritical
simulation at slightly higher Ek to the DNS.

The energy and vorticity spectra for the VAC simulation (Figs. 4 and 5) are strongly peaked
around k⊥. Our HD simulations with k0 � 2k⊥ perturb the dynamics at small scales (k � k⊥) but
leave the dynamics at scales less than or equal to k⊥ largely unaltered. For k0 < k⊥ HD suppresses
the most unstable mode of the DNS and a mode of larger scale is preferred instead. When interpreted
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(a) (b)

(c) (d)

FIG. 5. Wave-number dependence of each vorticity contribution for each HD run. The shaded regions are
the standard deviation surrounding the average of the DNS run at the same parameter regime. The dotted
vertical line is located at k⊥ of the HD run. The case was run at Ra = 4 × 107, R̃a = 1.16, Ek = 10−5, Pr = 7,
� = 2, and (a) k0 = 48, (b) k0 = 32, (c) k0 = 16, and (d) k0 = 8.

as a reduction in the rotational constraint, this behavior can explain the increase in Nu, Pe, and
vertical velocity variations seen in the HD simulation compared to its DNS counterpart.

B. Example solution in IVAC balance

We now consider the solution with Ek = 10−5, R̃a = 10.12, Pr = 7, and � = 2, for which k⊥ =
13. In this run the inertial, viscous, buoyancy, and Coriolis terms are of comparable magnitude
[Fig. 2(d)] and so the force balance can be termed IVAC. We conducted four HD runs for these
parameters using the same k0 values as in Sec. III A and keep q = 1.05 to aid comparison.

A summary of NuI , Pe, δv , δT , and Eb for each of the HD runs along with the DNS run is
shown with a plus sign and highlighted in bold in Table III. With k0 � 16 both Nu and Pe remain
within the standard deviation of the DNS; however, for k0 = 8 both quantities are reduced below
the standard deviation of the DNS run [Figs. 6(a) and 6(b)]. The viscous boundary layer thickness
remains consistent up to four significant figures throughout all runs. The thermal boundary layer
thickens as k0 is reduced, with a maximum increase of 14.3% for the case with k0 = 8. Figure 7
shows the vertically integrated ẑ component of velocity and the kinetic energy spectrum for DNS
and HD cases. The figure shows that each HD run contains less energy than the DNS run at the
smallest resolved scale.

Figures 6 and 7 show that decreasing k0 decreases the convective vigor of the solution. Increasing
the viscous effects reduces the amplitude of the velocity fields, particularly at the small scales where
f (k) is the largest. Here, unlike the VAC regime, there is substantial energy in wave numbers up to
3–4 times k⊥ and hence the reduction in energy at these scales can affect global quantities such as
Pe. Since Nu ∼ Pe2 the heat transfer is also expected to decrease. The reduction in Nu and Pe is
most pronounced when k0 = 8. This occurs because decreasing k0 increases the number of scales
affected by the HD and also because the magnitude of f (k) and hence the effect of HD at a given k
increases as k0 decreases.
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(a) (b)

FIG. 6. (a) Integral Nusselt number plotted as a function of convective overturn time for the DNS case and
four HD cases with a cutoff wavelength of k0 = 48, 32, 16, and 8. All cases were run at 3.5 × 108, R̃a = 10.12,
Ek = 10−5, Pr = 7 and � = 2 and showed an IVAC force balance. (b) Péclet number plotted as a function of
convective overturn time for the same runs.

Figure 8 shows the vorticity balances for the DNS and each HD run. In the DNS at k⊥ the
dominant balance is between Coriolis, buoyancy, and inertial terms and hence the dominant flow
scale may be expected to follow the CIA scaling [Eq. (21)]. This is supported by the scaling of �

at high Ra in Fig. 9. At higher k (�40) the viscous term reaches the same magnitude as the CIA
terms, which may be what gives rise to the IVAC balance seen in the integrated forces and vorticity
terms (Fig. 2). In the HD cases the most significant changes compared to the DNS are an increase
in the viscous term and decrease in the inertial term for k > k⊥. These differences get larger as k0

decreases. Indeed, and unlike the VAC case in Sec. III A, at k0 = 8 the HD perturbs the dominant
vorticity balance for k > k⊥ as inertia remains subdominant and the small-scale balance is VAC.

In this IVAC simulation the decrease in Nu and Pe with decreasing k0 arises because the HD
suppresses energy and changes the dominant balance of vorticity terms for k > k⊥. The dynamics
at k⊥ are relatively unaffected because they are determined by a CIA balance that is independent of
diffusivities.

C. Scaling behavior of RRBC with HD

So far we have identified two different effects of HD that are particularly clear when k0 < k⊥: At
low R̃a, Nu and Pe are increased compared to DNS due to a weakening of the rotational constraint;
at high R̃a, Nu and Pe are decreased compared to DNS owing to a suppression of energy at scales
greater than k⊥. The thermal boundary layer thickness δT is altered proportionally to the change
in Nu, while the mechanical boundary layer thickness δv is only marginally affected because it
is determined by a vertical balance whereas HD is applied in the horizontal directions. We now
consider the effect of HD in a series of simulations with R̃a = 1.16–10.12, at fixed Ek = 10−5,
Pr = 7, and � = 2.

Figure 10 shows the percentage difference of NuI , Pe, δT , and δv between the DNS and the HD
cases as a function of k0 for different suites of R̃a simulations. The δv is close to the DNS value for
all k0 as expected, while the HD value of Pe closely approximates the DNS value for all runs with
k0 � k⊥. The heat transfer diagnostics are more sensitive to HD than δv and Pe. At R̃a � 1.73, HD
with k0 = 8 overestimates Nu and underestimates δT , while for k0 � k⊥ both quantities are within
the standard deviation of their DNS values. At R̃a � 4.05 HD with k0 � 16 underestimates Nu,
while for 1.73 < R̃a � 4.05 HD gives Nu within the standard deviation of the DNS value for all k0.

We now investigate the effect of HD as a function of Ek. We have run HD simulations at all
DNS conditions shown in Fig. 2. Figure 11 shows the scaling behavior of Nu and Pe for both DNS
and HD simulations, with the latter grouped according to values of k0 in the ranges k0 < k⊥ and
2k⊥ < k0 < 3k⊥. Across all Ek considered, the cases with k0 < k⊥ have increased Nu and Pe at

013502-14



EFFECT OF HYPERDIFFUSION ON ROTATING …

FIG. 7. (a) Integrated ẑ component of velocity of a run at Ra = 3.5 × 108, R̃a = 10.12, Ek = 10−5 and
� = 2 for DNS in IVAC balance. (b) k0 = 32. (c) k0 = 8. (d) Time-averaged kinetic energy spectrum of each
of the runs plotted as a function of the horizontal wave number.

low supercriticality and decreased Nu and Pe at high supercriticality, consistent with the results in
Secs. III A and III B. To further demonstrate that increased Nu and Pe are related to a decrease in
the rotational constraint at low R̃a we conducted linear stability analysis for all Ek considered in
this study (Table I). For HD with k0 < k⊥ there is a reduction in Rac compared to DNS at all Ek.
This is also consistent with Fig. 9, which shows that HD simulations with k0 = 8 yield a larger
dominant length scale compared to DNS at all Ek considered. For 2k⊥ < k0 < 3k⊥, Fig. 11 shows
good agreement between the DNS and HD at all Ek and Ra, indicating that a value of k0 between
2k⊥ and 3k⊥ is sufficient to yield large-scale diagnostics within standard deviation of the DNS.

The black line in Fig. 11(a) shows the approximate values of Ra at which HD runs with k0 = 8
yield values of Nu and Pe within the standard deviation of the DNS. These lines, which delineate
the transition between overestimation and underestimation of Nu and Pe in the HD runs, occur at
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(a) (b)

(c) (d)

FIG. 8. Wave-number dependence of each vorticity contribution for each HD run. The shaded regions are
the standard deviation surrounding the average of the DNS run at the same parameter regime. The black dashed
line is k⊥ for each HD run. The case was run at Ra = 3.5 × 108, R̃a = 10.12, Ek = 10−5, Pr = 7, � = 2, and
(a) k0 = 48, (b) k0 = 32, (c) k0 = 16, and (d) k0 = 8.

R̃a ≈ 1.85. Comparison with Fig. 2 shows that this transition does not correspond to a transition
from VAC to IVAC balance in the vorticity equation. This is because the effect of HD is determined
by the shape of the energy spectrum in our solutions. As R̃a increases, the peak in the energy
spectrum of the solution broadens (see Figs. 4 and 7). At the transition in HD behavior, a balance
exists between the added energy due to a reduced Rac and the reduction of energy at small scales.
In our simulations this transition occurs within the VAC regime.

We now analyze the scaling exponents predicted by HD simulations. We restrict attention to the
VAC regime as this is well sampled by our dataset across four generations of Ek. We fit a function
of the form Nu = α RaβNu and Pe = α RaβPe to data sets grouped by k0 < k⊥ and 2k⊥ < k0 < 3k⊥.

FIG. 9. (a) Perpendicular length scale plotted against the Ekman number for runs with the lowest Ra at each
Ekman number. The scaling shown is a best-fit line with gradient 0.35. (b) Perpendicular length scale plotted
against the Rossby number for the highest Ra conducted at each Ekman number. The scaling is a best-fit line
with a gradient of 0.49.
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FIG. 10. (a) Ratio of the integral Nusselt number calculated in the HD runs to the Nusselt number
calculated in the DNS runs as a function of the cutoff wave number k0. The shaded region represents the average
standard deviation across all the DNS runs for Nu, Pe, and δT . The perpendicular length scale is highlighted
by color for each run and shown as a vertical line. We present the runs as a function of R̃a = Ra/Rac, where
Rac = 3.45 × 107 (b) Péclet number Pe. (c) Thermal boundary layer thickness. (d) Viscous boundary layer
thickness.

Table II shows both βNu and βPe calculated for each data group. In the DNS βNu increases with
decreasing Ek from 2.523 at Ek = 10−4 to 3.660 at Ek = 10−7, which is consistent with the results
of Cheng et al. [36] and encompasses the βNu = 3 scaling of King et al. [43]. In the data sets where
2k⊥ < k0 < 3k⊥, β remains within the standard deviation of the DNS runs. In the cases where
k0 < k⊥, βNu is smaller than the DNS at all Ek. In the DNS βPe varies with Ek and covers a range
from 2.712 to 3.192. Mirroring the results for βNu, data sets grouped by 2k⊥ < k0 < 3k⊥ remain

FIG. 11. (a) Nusselt number and (b) Péclet number plotted for all DNS runs and HD runs with k0 < k⊥ and
2k⊥ < k0 < 3k⊥. The black line in (a) is fitted to the Ra which delineates the transition of increasing Nu and
decreasing Nu for each Ek other than Ek = 10−4.
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FIG. 12. Minimum k0 for a Ra and Ek for which Nu and Pe in the HD remain within the standard deviation
of the DNS.

within the standard deviation of the DNS and cases with k0 < k⊥ are below the DNS for all Ek. For
k0 < k⊥, both exponents are reduced at all Ek compared to the DNS because HD increases Nu and
Pe at low supercriticality. Therefore, to obtain scaling behavior consistent with DNS it is necessary
to set k0 > k⊥.

Figure 12 shows the minimum value of k0 in HD runs that produces a value of Nu within the
standard deviation of the comparable DNS run, normalized by k⊥. All runs other than Ra = 7 × 107

require k0 > k⊥ to match Nu in the DNS. The run with Ra = 7 × 107 exemplifies a case where
the two effects of HD are in balance, and the energy increase coming from reducing Rac is in
balance with the reduction of energy at small scales. This figure suggests that setting k0 = 3k⊥
is a conservative strategy in order for HD runs to produce large-scale diagnostics consistent with
DNS. More detailed knowledge of the changing effects of HD with Ek and Ra would allow k0 to be
reduced below this value.

D. Effect of changing the growth factor q

Figure 13 shows Nu and Pe for HD cases conducted at Ra = 1.4 × 108, Ek = 10−5, Pr = 7,
and � = 2 with varying q and k0, normalized by Nu and Pe calculated in a DNS run at the same
parameters. In these runs, R̃a = 4.05, and therefore both Nu and Pe decrease when compared with

FIG. 13. (a) Nusselt number and (b) Péclet number calculated in the HD simulation divided by the Nu and
Pe, respectively, calculated in the DNS runs conducted at Ra = 1.4 × 108, R̃a = 4.05, Ek = 10−5, Pr = 7, and
� = 2.
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the DNS. This effect is largest when k0 = 8 and q = 1.20; these are the lowest k0 tested and the
highest q. The greatest similarity is the case where k0 = 48 and q = 1.05. Over the range of values
tested here, changing k0 has a larger impact than changing q. All cases where k0 = 8 result in
reductions to Nu by at least 7.9% and Pe by at least 7.7%, which are greater differences than the
standard deviation of the DNS, whereas when q = 1.2 and k0 = 48, a reduction in Nu of 0.4% and
Pe of 2% is observed. Figure 13 shows that the choice of k0 is more important than the choice of q
if the goal of the simulation is to understand flow speeds and heat transfer. The choice of k0 has a
greater impact in RRBC due to the concentration of energy around L⊥.

E. Computational gain from hyperdiffusion

The aim of HD is to stabilize a simulation at a lower resolution, thus saving computational
resources while not affecting the dynamics at the important scales. To investigate the potential com-
putational gain, three simulations were carried out at R̃a = 14.45, Pr = 7, � = 2, and Ek = 10−5,
the first being a DNS run, the second and third utilizing HD. To compare the computational demand
of each simulation, we use the CPU hours needed to compute one convective time step, excluding the
transient. The DNS case was run at a resolution of (Nx, Ny, Nz ) of (256, 256, 128), while the HD runs
were conducted at resolutions of (192, 192, 128) (case 1) and (128, 128, 128) (case 2). In both cases,
k0 was set to 2k⊥ and q was chosen so that both simulations have the same or greater peak-to-trough
drop-off in kinetic energy as the DNS: q = 1.073 in case 1 and q = 1.104 in case 2. Additionally, we
require that the HD simulation produces Nu, Pe, δθ , and δv all within the standard deviation of the
DNS. To ensure fair comparison, all three cases were run on the same high-performance computing
architecture (the UK facility ARCHER2) using the same compiled version of DEDALUS and with
identical distributions of processes across nodes.

The DNS run required 7983 CPU hours to compute one convective overturn, compared with 5855
hours for case 1 (1.36 times faster than DNS) and 2263 CPU hours for case 2 (3.82 times faster than
DNS). Although both runs had the same level of resolution and the boundary layers were within 1%
of each other, both NuI and Pe were not within the standard deviation of the DNS in case 2. The
computational savings are larger using this lower resolution, but the solution deviates meaningfully
from the DNS. At q = 1.104, k0 = 2k⊥ is too small; achieving a workable HD run at this resolution
would require a larger cutoff (e.g., approaching 3k⊥). Whether such an increase would stabilize the
numerical scheme without degrading the large-scale dynamics may or may not hold.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the influence of a scale-dependent horizontal form of hyperdif-
fusion on the large-scale properties of rotating Rayleigh-Bénard convection. The HD function was
applied to the horizontal directions and was controlled by two parameters: the wave number k0 above
which HD is applied and the growth rate q such that the effect of HD scales with wave number k as
qk−k0 . In the range of parameters Ek = 10−4–10−7, Ra = 106–7 × 1010, and Pr = 7 we found two
primary effects of HD on the large-scale solution that are most prominent when k0 < k⊥. At low
R̃a = Ra/Rac, the Nusselt number Nu and Péclet number Pe were increased compared to DNS due
to a weakening of the rotational constraint, while at high R̃a, Nu and Pe were decreased compared to
DNS owing to suppression of energy at scales greater than k⊥. The thermal boundary layer thickness
δT broadly followed the behavior of Nu, while the mechanical boundary layer thickness δu was
determined primarily by a vertical balance of terms and was therefore only marginally affected by
the HD. For k � 3k0, all of the aforementioned diagnostics remained within the standard deviation
of the DNS solution at all parameter combinations considered. This conclusion is broadly consistent
with results obtained from recent dynamo simulations [19].

Quantifying the range of q values that yield acceptable performance of the HD scheme (i.e.,
large-scale diagnostics within the standard deviation of the DNS) is challenging because it is linked
to the chosen value of k0. For a high k0 a larger q can be used without influencing the dynamics
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TABLE I. Rac for DNS and HD cases where k0 = 0.5k⊥ at each Ek considered in this study calculated
using linear stability analysis.

Ek Rac (DNS) Rac (HD) Difference

10−4 1.53 ×106 1.40 ×106 9.28%
10−5 3.45 ×107 3.13 ×107 11.0%
10−6 7.59 ×108 6.87 ×108 10.5%
10−7 1.69 ×1010 1.49 ×1010 13.4%

around the dominant energy scale k⊥, while lower q values are needed for lower k0. Ultimately our
results show that k0 and q should be chosen so as to leave that the dynamics unaffected up to wave
numbers approximately equal to 2–3 times k⊥.

While our study consists of over 100 simulations, it is nevertheless limited to a single value of
Pr and does not reach the very low values of Ek that have been achieved in recent simulations.
Furthermore, we have considered only one form of the HD function. More work is needed to
understand the effects of HD as these properties are varied. For now, our work and previous studies
[13,19] suggest that the form of the energy spectrum is crucial for the performance of the HD
scheme. Our results show that a viable HD scheme should not affect some large-scale component of
the solution and we would expect this to be the case as control parameters and boundary conditions
are varied.

It is clear that the implementation of any HD scheme will inevitably alter the behavior of the
solution at some scale. The choice to use a HD scheme should therefore be based in part on the
scientific question that is to be addressed. When studying planetary cores it is generally the case
that only the largest scales of the system can be recovered from observations, and so the goal
of simulations is to develop scaling laws for large-scale diagnostics (heat transfer, rms velocity,
etc.). The computational gains of scale-dependent horizontal HD suggest that such schemes are a
promising avenue for investigating the large-scale dynamics of RRBC at more extreme physical
conditions than are currently accessible via DNS.

However, care is required when implementing HD schemes, as our results suggest that large-scale
quantities may not be faithfully recovered in HD simulations of RRBC unless the HD treatment is
such that it does not strongly influence length scales containing significant energy.
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APPENDIX

Tables I–IV summarize the type of simulation, control parameters, resolution, and selected output
parameters. In all cases Pr = 7.
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TABLE II. Summary of the exponents calculated in the VAC regime for the DNS, HD runs conducted with
k0 < k⊥, and HD runs conducted with 2k⊥ < k0 < 3k⊥.

Ek 10−4 10−5 10−6 10−7

βNu (DNS) 2.523 ± 0.054 3.161 ± 0.120 3.570 ± 0.145 3.660 ± 0.142
βNu (2k⊥ < k0 < 3k⊥) 2.539 3.170 3.530 3.528
βNu (k0 < k⊥) 2.412 2.955 3.137 3.067
βPe (DNS) 2.712 ± 0.023 3.192 ± 0.122 3.041 ± 0.152 2.682 ± 0.120
βPe (2k⊥ < k0 < 3k⊥) 2.732 3.203 2.978 2.705
βPe (k0 < k⊥) 2.443 2.831 2.598 2.365

TABLE III. Summary of all runs conducted at q = 1.05; all quantities have been time and spatially averaged.

Type Ek Ra Nx = Ny Nz � k0 NuI Pe δv δT Eb

DNS 10−4 1.55 × 106 192 64 4 Na 1.05 9.69 0.0349 0.4991 0.001%
HD 10−4 1.55 × 106 96 64 4 32 1.05 9.57 0.0349 0.4878 0.010%
HD 10−4 1.55 × 106 96 64 4 8 1.29 22.18 0.0343 0.3842 0.001%
DNS 10−4 2.00 × 106 192 64 4 Na 2.14 54.36 0.0331 0.1924 0.050%
HD 10−4 2.00 × 106 96 64 4 32 2.15 54.54 0.0331 0.1963 0.040%
HD 10−4 2.00 × 106 96 64 4 8 2.28 56.18 0.0331 0.1834 0.090%
DNS 10−4 3.10 × 106 192 64 4 Na 6.32 145.4 0.0320 0.0776 0.110%
HD 10−4 3.10 × 106 96 64 4 32 6.39 146.1 0.0320 0.0776 0.421%
HD 10−4 3.10 × 106 96 64 4 8 6.26 143.4 0.0320 0.0776 0.143%
DNS 10−4 6.20 × 106 192 64 4 Na 14.40 316.2 0.0312 0.0391 0.422%
HD 10−4 6.20 × 106 96 64 4 32 14.44 316.7 0.0312 0.0429 0.124%
HD 10−4 6.20 × 106 96 64 4 8 14.12 309.0 0.0312 0.0382 0.397%
DNS 10−4 9.00 × 106 192 64 4 Na 18.63 428.8 0.0310 0.0252 0.562%
HD 10−4 9.00 × 106 96 64 4 32 18.87 432.7 0.0310 0.0335 0.319%
HD 10−4 9.00 × 106 96 64 4 8 17.91 415.4 0.0310 0.0330 0.971%
DNS 10−4 1.20 × 107 192 64 4 Na 22.13 533.1 0.0307 0.0252 0.169%
HD 10−4 1.20 × 107 96 64 4 32 22.31 536.3 0.0307 0.0252 0.532%
HD 10−4 1.20 × 107 96 64 4 8 20.90 510.5 0.0307 0.02522 0.414%
DNS 10−4 1.55 × 107 192 64 4 Na 25.49 641.9 0.0308 0.0252 0.451%
HD 10−4 1.55 × 107 96 64 4 32 25.98 648.7 0.0307 0.0252 0.763%
HD 10−4 1.55 × 107 96 64 4 8 23.81 610.3 0.0307 0.0252 0.330%
DNS 10−5 3.20 × 107 256 128 2 Na 1.00 0.00 Na Na Na
HD 10−5 3.20 × 107 128 128 2 8 1.09 25.54 Na Na Na
DNS* 10−5 4.00 × 107 256 128 2 Na 1.51 76.50 0.0108 0.4511 0.009%
HD* 10−5 4.00 × 107 128 128 2 48 1.51 75.73 0.0108 0.4025 0.010%
HD* 10−5 4.00 × 107 128 128 2 32 1.52 76.38 0.0108 0.4146 0.012%
HD* 10−5 4.00 × 107 128 128 2 16 1.52 77.20 0.0108 0.3905 0.011%
HD* 10−5 4.00 × 107 128 128 2 8 1.80 94.03 0.0108 0.2222 0.020%
DNS 10−5 5.00 × 107 256 128 2 Na 3.32 184.4 0.0107 0.0809 0.022%
HD 10−5 5.00 × 107 128 128 2 48 3.33 185.4 0.0107 0.0809 0.030%
HD 10−5 5.00 × 107 128 128 2 32 3.33 184.1 0.0107 0.0809 0.030%
HD 10−5 5.00 × 107 128 128 2 16 3.34 184.7 0.0107 0.0809 0.030%
HD 10−5 5.00 × 107 128 128 2 8 3.68 192.8 0.0107 0.0743 0.030%
DNS 10−5 6.00 × 107 256 128 2 Na 6.60 309.2 0.0106 0.0454 0.030%
HD 10−5 6.00 × 107 128 128 2 48 6.63 311.3 0.0106 0.0454 0.009%
HD 10−5 6.00 × 107 128 128 2 32 6.58 309.8 0.0106 0.0454 0.030%
HD 10−5 6.00 × 107 128 128 2 16 6.67 309.5 0.0106 0.0454 0.033%
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TABLE III. (Continued.)

Type Ek Ra Nx = Ny Nz � k0 NuI Pe δv δT Eb

HD 10−5 6.00 × 107 128 128 2 8 6.83 309.2 0.0106 0.0507 0.020%
DNS 10−5 7.00 × 107 256 128 2 Na 9.95 418.8 0.0106 0.0357 0.080%
HD 10−5 7.00 × 107 128 128 2 48 9.84 417.6 0.0105 0.0357 0.069%
HD 10−5 7.00 × 107 128 128 2 32 9.92 418.7 0.0105 0.0357 0.060%
HD 10−5 7.00 × 107 128 128 2 16 9.85 417.3 0.0105 0.0357 0.073%
HD 10−5 7.00 × 107 128 128 2 8 9.96 413.3 0.0105 0.0404 0.082%
DNS 10−5 1.00 × 108 256 128 2 Na 18.07 683.5 0.0104 0.0233 0.190%
HD 10−5 1.00 × 108 128 128 2 48 17.83 677.2 0.0104 0.0233 0.196%
HD 10−5 1.00 × 108 128 128 2 32 17.85 679.3 0.0104 0.0233 0.207%
HD 10−5 1.00 × 108 128 128 2 16 18.02 677.8 0.0104 0.0272 0.171%
HD 10−5 1.00 × 108 128 128 2 8 17.25 654.2 0.0104 0.0272 0.162%
DNS 10−5 1.40 × 108 256 128 2 Na 27.71 1013 0.0104 0.0165 0.361%
HD 10−5 1.40 × 108 128 128 2 48 28.31 1021 0.0104 0.0165 0.382%
HD 10−5 1.40 × 108 128 128 2 32 26.83 1016 0.0104 0.0165 0.327%
HD 10−5 1.40 × 108 128 128 2 16 26.98 994.4 0.0104 0.0165 0.353%
HD 10−5 1.40 × 108 128 128 2 8 25.52 935.9 0.0104 0.0197 0.330%
DNS 10−5 2.80 × 108 256 128 2 Na 53.35 1925 0.0101 0.0096 0.714%
HD 10−5 2.80 × 108 128 128 2 48 53.41 1926 0.0103 0.0096 0.506%
HD 10−5 2.80 × 108 128 128 2 32 52.58 1936 0.0103 0.0096 0.524%
HD 10−5 2.80 × 108 128 128 2 16 51.30 1906 0.0103 0.0108 0.390%
HD 10−5 2.80 × 108 128 128 2 8 47.82 1800 0.0103 0.0108 0.211%
DNS+ 10−5 3.50 × 108 256 128 2 Na 62.31 2294 0.0104 0.0084 0.712%
HD+ 10−5 3.50 × 108 128 128 2 48 63.49 2334 0.0104 0.0084 0.509%
HD+ 10−5 3.50 × 108 128 128 2 32 61.55 2297 0.0104 0.0084 0.529%
HD+ 10−5 3.50 × 108 128 128 2 16 59.85 2282 0.0103 0.0096 0.393%
HD+ 10−5 3.50 × 108 128 128 2 8 56.15 2161 0.0103 0.0096 0.215%
DNS 10−5 5.00 × 108 256 128 2 Na 77.31 2993 0.0104 0.0084 0.952%
DNS 10−6 8.00 × 108 192 192 1 Na 1.07 57.96 0.0036 0.4959 0.001%
HD 10−6 8.00 × 108 96 192 1 48 1.07 58.04 0.0036 0.4959 0.121%
HD 10−6 8.00 × 108 96 192 1 32 1.07 58.51 0.0035 0.4714 0.121%
HD 10−6 8.00 × 108 96 192 1 8 1.40 130.1 0.0036 0.3745 0.022%
DNS 10−6 1.20 × 109 192 192 1 Na 3.75 464.1 0.0036 0.0571 0.435%
HD 10−6 1.20 × 109 96 192 1 48 3.73 456.5 0.0036 0.0626 0.694%
HD 10−6 1.20 × 109 96 192 1 32 3.76 464.0 0.0035 0.0626 0.694%
HD 10−6 1.20 × 109 96 192 1 8 4.47 501.0 0.0036 0.00462 0.089%
DNS 10−6 1.60 × 109 192 192 1 Na 10.63 9974.3 0.0035 0.0227 0.018%
HD 10−6 1.60 × 109 96 192 1 48 10.58 972.1 0.0035 0.0227 0.650%
HD 10−6 1.60 × 109 96 192 1 32 10.47 969.1 0.0035 0.0227 0.650%
HD 10−6 1.60 × 109 96 192 1 8 11.25 977.9 0.0035 0.0227 0.610%
DNS 10−6 3.10 × 109 192 192 1 Na 43.15 2812 0.0035 0.0088 0.491%
HD 10−6 3.10 × 109 96 192 1 32 45.51 2888 0.0035 0.0088 0.654%
HD 10−6 3.10 × 109 96 192 1 8 38.73 2559 0.0035 0.0102 0.510%
DNS 10−6 6.20 × 109 192 192 1 Na 91.36 5618 0.0035 0.0043 0.781%
HD 10−6 6.20 × 109 128 192 1 12 87.84 5459 0.0035 0.0060 0.787%
DNS 10−7 2.00 × 1010 160 320 0.5 Na 1.39 324.8 0.0012 0.4975 0.011%
HD 10−7 2.00 × 1010 80 320 0.5 38 1.39 323.9 0.0012 0.4714 0.015%
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TABLE III. (Continued.)

Type Ek Ra Nx = Ny Nz � k0 NuI Pe δv δT Eb

HD 10−7 2.00 × 1010 80 320 0.5 9 1.83 445.1 0.0012 0.2390 0.014%
DNS 10−7 3.00 × 1010 160 320 0.5 Na 4.57 1228 0.0012 0.0439 0.037%
HD 10−7 3.00 × 1010 80 320 0.5 48 4.53 1220 0.0012 0.0439 0.033%
HD 10−7 3.00 × 1010 80 320 0.5 8 5.54 1327 0.0012 0.0033 0.370%
DNS 10−7 4.00 × 1010 160 320 0.5 Na 12.56 2519 0.0011 0.0132 0.054%
HD 10−7 4.00 × 1010 160 320 0.5 48 12.77 2535 0.0011 0.0126 0.070%
HD 10−7 4.00 × 1010 160 320 0.5 38 12.87 2544 0.0011 0.0131 0.268%
HD 10−7 4.00 × 1010 160 320 0.5 8 13.75 2539 0.0011 0.0116 0.891%
DNS 10−7 7.00 × 1010 160 320 0.5 Na 79.72 8749 0.0011 0.0047 0.423%
HD 10−7 7.00 × 1010 80 320 0.5 8 76.49 8148 0.0011 0.0062 0.532%

TABLE IV. Summary of all other runs; all quantities have been time and spatially averaged.

Type Ek Ra Nx = Ny Nz � k0 q NuI Pe δv δT Eb

HD 10−5 1.40 × 108 128 128 2 48 1.10 27.57 1021 0.0104 0.0165 0.428%
HD 10−5 1.40 × 108 128 128 2 32 1.10 27.35 998.4 0.0104 0.0165 0.982%
HD 10−5 1.40 × 108 128 128 2 16 1.10 26.88 983.2 0.0104 0.0165 0.381%
HD 10−5 1.40 × 108 128 128 2 8 1.10 24.66 903.8 0.0104 0.0198 0.893%
HD 10−5 1.40 × 108 128 128 2 48 1.15 28.02 1019 0.0104 0.0150 0.424%
HD 10−5 1.40 × 108 128 128 2 32 1.15 27.46 1007 0.0104 0.0150 0.980%
HD 10−5 1.40 × 108 128 128 2 16 1.15 26.46 990.2 0.0104 0.0181 0.389%
HD 10−5 1.40 × 108 128 128 2 8 1.15 23.85 884.1 0.0104 0.0216 0.893%
HD 10−5 1.40 × 108 128 128 2 48 1.20 27.61 993.6 0.0105 0.0135 0.423%
HD 10−5 1.40 × 108 128 128 2 32 1.20 27.74 1004 0.0106 0.0150 0.982%
HD 10−5 1.40 × 108 128 128 2 16 1.20 27.08 992.9 0.0107 0.0181 0.386%
HD 10−5 1.40 × 108 128 128 2 8 1.20 23.83 874.7 0.0106 0.0233 0.899%
HD 10−5 5.00 × 108 192 128 2 24 1.073 75.33 2977 0.0104 0.0084 0.479%
HD 10−5 5.00 × 108 128 128 2 24 1.104 72.94 2928 0.0104 0.0084 0.194%
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