
Space-Efficient Hierholzer:

Eulerian Cycles in O(m) Time and O(n) Space

Ziad Ismaili Alaoui∗ Detlef Plump† Sebastian Wild∗‡

Abstract

We describe a simple variant of Hierholzer’s algorithm that finds an Eulerian cycle in a
(multi)graph with n vertices and m edges using O(n lgm) bits of working memory. This sub-
stantially improves the working space compared to standard implementations of Hierholzer’s
algorithm, which use O(m lg n) bits of space. Our algorithm runs in linear time, like the clas-
sical versions, but avoids an O(m)-size stack of vertices or storing information for each edge.
To our knowledge, this is the first linear-time algorithm to achieve this space bound, and the
method is very easy to implement. The correctness argument, by contrast, is surprisingly subtle;
we give a detailed formal proof. The space savings are particularly relevant for dense graphs or
multigraphs with large edge multiplicities.

1 Introduction

An Eulerian cycle in a graph is a closed walk that traverses every edge exactly once. A graph is
called Eulerian if it contains an Eulerian cycle. Euler’s study of the existence of Eulerian cycles
and their computation is often cited as the birth of modern graph theory. Apart from historical
significance, efficiently computing them has applications in, e.g., genome assembly [7], routing
problems [6], and 3D printing [9].

Classic algorithms such as Fleury’s algorithm or Hierholzer’s algorithm [5], both dating from
the late 19th century, are simple to describe and find an Eulerian cycle in any Eulerian graph in
polynomial time. Indeed, both consider each edge only once, and Hierholzer’s algorithm can be
implemented to run in optimal linear time. Being both simple and efficient, the latter is the method
of choice in practice. Typical implementations of Hierholzer’s algorithm (see below) use O(m lgn)
bits of working memory. (Here and throughout, lg = log2.)

In this paper, we present a simple variant of Hierholzer’s algorithm that uses only O(n lgm)
bits of working memory and runs in optimal O(n + m) time. For dense graphs or multigraphs
with many parallel edges, this is a substantial saving. Note that this space can neither hold the
entire input nor the entire output of the problem; we treat the input graph as given in read-
only memory and produce the Eulerian cycle in order to a write-only stream. In particular,
our algorithm would be suitable for an application that directly consumes and uses edges of the
Eulerian cycle as they are computed, potentially without ever storing the entire cycle. By working
memory, we mean the extra space occupied by auxiliary data structures during the computation.
Our algorithm relies on an assumption about the graph representation, which is satisfied in typical
adjacency-list implementations: for directed graphs, we require that we can iterate over incoming

∗University of Liverpool, United Kingdom. {ziad.ismaili-alaoui, sebastian.wild} @ liverpool.ac.uk
†University of York, United Kingdom. detlef.plump @ york.ac.uk
‡Philipps-Universität Marburg, Germany. wild @ informatik.uni-marburg.de

1

ar
X

iv
:2

50
8.

05
25

1v
2

 [
cs

.D
S]

 2
8

O
ct

 2
02

5

https://arxiv.org/abs/2508.05251v2

and outgoing edges; for undirected graphs, we (instead) require a consistent ordering of vertices
across all adjacency lists.

To our knowledge, we present the first algorithm with working space O(n lgm) bits that runs in
linear time and explicitly produces an Eulerian cycle as its output. Our algorithm is also usable in
rule-based models of computation, such as graph-transformation languages like GP2 [8], which do
not natively support stacks or recursion. This is not known to be true for other standard efficient
implementations of Eulerian cycle algorithms.

1.1 Hierholzer’s Algorithm

Hierholzer’s algorithm was originally described in 1873 [5], unsurprisingly without detailed infor-
mation about data structures for efficient execution on a computer. The original algorithm consists
of following an arbitrary walk in an Eulerian graph until we get stuck, which can only happen when
we closed a cycle. If this cycle has not used all edges yet, starting at such an unused edge, again
following an arbitrary walk of unused edges can again only get stuck when closing a cycle; we can
then fuse this new cycle into the previous one as a detour before continuing the original cycle. By
iterating this procedure, we eventually obtain an Eulerian cycle.1

1.2 Typical Implementations

Several implementations of Hierholzer’s algorithm are in use. Closest to the above description is
using a linked list of edges to represent the Eulerian cycle; then one can insert cyclic detours as
sketched above at any point in the tour. This approach is used, e.g., in the widely used Java graph
library JGraphT [2]. It clearly needs Θ(m lgm) bits of working memory for storing the linked list
of edges.

More amenable to producing the output directly in the correct order is the approach to treat
Hierholzer’s algorithm as an edge-centric depth-first-search. We follow the basic steps of a graph
traversal, but mark edges rather than vertices. So we only backtrack from a vertex when all of its
incident edges have been traversed. When this happens for the first time, the last edge traversed
to this dead end was the edge closing the first cycle of Hierholzer’s algorithm, and can thus be
output now as the last edge of the Eulerian cycle. Iteratively, the same is true for the next dead
end vertex.2 Both the stack and the marking of edges require Θ(m lgm) bits of working space in
the worst case. A minor twist of this approach, where edges are not marked, but removed from
a copy of the input graph, is used, e.g., in NetworkX [1], a popular graph framework for Python.
The copy, of course, also uses Ω(m lgn) bits of space.

1.3 Our Idea

Our key idea is the following observation. While an edge-centric DFS is one correct implementation
of Hierholzer’s algorithm, it is a needlessly specific one. Concretely, there is no need to keep the
entire constructed walk on a stack; the order in which we add remaining “detour cycles” to the tour
is immaterial for Eulerian cycles anyway. The only constraint we have is that we reserve the edges
of the original cycle/traversal to be the last ones to backtrack on, to make sure that we end at the
starting vertex and do not omit any edges. For that, it suffices to remember one incoming edge per
vertex. The second thing we need to remember is which edges have already been traversed; but for
that, we can store for each vertex an iterator in its adjacency list.

1Throughout the paper, we always assume the graphs to be Eulerian, i.e. to contain an Eulerian cycle.
2See, e.g., slide 33 of these lecture notes: https://www.wild-inter.net/teaching/ea/09-graph-algorithms.

pdf#page=40.

2

https://www.wild-inter.net/teaching/ea/09-graph-algorithms.pdf#page=40
https://www.wild-inter.net/teaching/ea/09-graph-algorithms.pdf#page=40

1.4 Directed and Undirected Eulerian Cycles

Hierholzer’s algorithm works equally well for directed and undirected graphs, and it can deal with
parallel edges even if these are represented as duplicate entries in the adjacency list. Since the
implementation is slightly cleaner to state for directed graphs, in what follows, we consider directed
Eulerian multigraphs that are given in adjacency list representation with no further assumptions.

For directed graphs, it is convenient to (logically) reverse directions of edges; then the order
of edges produced via backtracking from the edge-centric DFS directly gives the Eulerian cycle in
the correct order. For undirected graphs, clearly, we can skip the reversal of edges as the Eulerian
cycle can be traversed in both directions.

1.5 Related Work

Glazik, Schiemann, and Srivastav [3] present a streaming algorithm for Eulerian cycles. While they
also achieve O(n lgn)-space and in a much more restrictive model, it is not clear if their algorithm
can be implemented to run in linear total time, and they construct the cycle implicitly via a
successor function. Their algorithm is arguably more complicated than Hierholzer’s algorithm.

Hagerup, Kammer, and Laudahn [4] proposed an algorithm using O(n+m) time and O(n+m)
bits of space for computing Eulerian cycles. They do not need strong assumptions regarding the
graph data representation, but focus on undirected graphs only. They build a nontrivial dynamic
data structure in each vertex that stores which pairs of edges are adjacent in the Eulerian cycle.
Their algorithm is considerably more involved than the typical implementations of Hierholzer’s
algorithm using O(n+m) words of space.

1.6 Outline

Our paper is organised as follows. Section 2 introduces basic notation. Section 3 presents the
Space-Efficient-Hierholzer algorithm. Finally, Section 4 proves correctness, establishes the
O(m) running time, and shows that the working memory usage is O(n lgm).

2 Preliminaries

We write [n] for {1, 2, . . . , n}. Throughout the paper, G = (V,E) denotes a finite directed multi-
graph, where V is the set of vertices and E is the multiset of directed edges, with |V | = n and
|E| = m. Loop edges are allowed. We assume without loss of generality that V = [n]. We denote
by d+(v) and d−(v) the out-degree and in-degree of vertex v, respectively. The ith out-neighbour of
a vertex v is denoted by Γ+(v, i), and its ith in-neighbour by Γ−(v, i), assuming arbitrary but fixed
orderings of incoming and outgoing edges for each vertex. We concisely write uv for a (directed)
edge from u to v.

Definition 1 (Eulerian, Eulerian cycle). A directed graph G is Eulerian if and only if it is strongly
connected3 and the in-degree equals the out-degree at every vertex; i.e. d+(v) = d−(v) for all v ∈ V .
An Eulerian cycle in G is a closed trail that traverses every edge exactly once and returns to its
starting vertex.

A trail in a graph is a walk in which all edges are distinct. A closed trail is a trail whose first and
last vertices coincide.

3A set of vertices is considered strongly connected if, for every pair of vertices u, v, there is a path from u to v.
This condition rules out isolated vertices.

3

We assume that basic arithmetic and memory operations on lgm-bit integers take constant
time, and that the in- and out-degree functions as well as in- and out-neighbour queries can be
evaluated in constant time per operation.

3 Space-Efficient Implementation of Hierholzer’s Algorithm

We now describe our algorithm, which computes an Eulerian cycle in a directed graph using only
O(n lgm) bits of working space, where n is the number of vertices and m is the number of edges.

3.1 Conceptual Algorithm

Let G be a directed Eulerian graph, and let v0 be the starting vertex (it may be chosen arbitrarily).
Unlike the classical approach, our algorithm traverses the graph by following incoming edges rather
than outgoing ones; that is, we perform a reverse traversal of the graph. This reversal allows the
algorithm to compute the tour incrementally, in the correct order, without needing to store the
entire tour and reverse it at the end.

We first describe the conceptual algorithm in terms of edge markings (colouring edges Black,
Red, Green, or Dashed) to clarify the traversal and backtracking logic. Our implementation will
represent these only implicitly.

Initially, all edges are Black. The algorithm begins at an arbitrary starting vertex v0 and
follows Black incoming edges via a reverse traversal. When a vertex v is reached for the first time
in this traversal, via a Black edge e = uv, we colour e Red. Otherwise, if we traverse an edge
e = uv to a vertex v that had already been reached before, we colour e Green.

When we reach a vertex v without Black incoming edges, we backtrack from it via an outgoing
edge according to the following rule:

1. If v has an outgoing Green edge, backtrack along it;

2. otherwise, if v ̸= v0, backtrack via its (unique) Red outgoing edge;

3. otherwise, if v = v0, terminate the algorithm.

Each time we backtrack across an edge (irrespective of whether it was Green or Red before),
we mark it Dashed and we output it as the next edge of the Eulerian cycle. In this way, the
Eulerian cycle is produced sequentially, in the correct order. Figure 1 shows a sample execution of
the algorithm. Notice that, at step (m) of the figure, the traversal proceeds to vertex 2 instead of
vertex 6; this is due to the backtracking rules, which prioritise Green edges over Red ones. Indeed,
if the traversal proceeded to vertex 6 instead, it would get stuck at vertex 1, and the two edges
between vertices 2 and 5 would never be counted as part of the computed cycle. The backtracking
rules ensure that such a scenario does not happen.

3.2 Space-Efficient Implementation

We now describe our space-efficient implementation of the conceptual algorithm, see Algorithm 1.
For each vertex u, the algorithm uses a counter next[u] to keep track of how many of its incoming
and outgoing edges have been traversed. The bit vector visited stores whether a vertex has been
seen before, and skipped ensures that the special backtracking edge (the Red outgoing edge) is
not used until all other outgoing edges have been used.

When a vertex v is visited for the first time (via an outgoing edge vu), the algorithm records u
as v’s predecessor by setting B[v]← u; this is equivalent to marking uv Red. Backtracking begins

4

(a)

1 2 3

456

(b)

1 2 3

456

(c)

1 2 3

456

(d)

1 2 3

456

(e)

1 2 3

456

(f)

1 2 3

456

1

(g)

1 2 3

456

1

(h)

1 2 3

456

1

(i)

1 2 3

456

1

(j)

1 2 3

456

1

(k)

1 2 3

456

1 2

(l)

1 2 3

456

1 2

3

(m)

1 2 3

456

1 2

3

4

(n)

1 2 3

456

1 2

3

4

5

(o)

1 2 3

456

1 2

3

4

6 5

(p)

1 2 3

456

1 2

3

47

6 5

(q)

1 2 3

456

1 2

3

47

8 6 5

Figure 1: Sample execution of Space-Efficient-Hierholzer. For clarity, Dashed edges are
labelled in the order in which they are written. The current vertex is represented by double
borders.

5

Algorithm 1 Space-Efficient-Hierholzer

Input: An Eulerian directed graph G with n vertices and m edges.
Output: An Eulerian cycle, incrementally written.

1: next[1..n], visited[1..n], skipped[1..n], B[1..n]← [0]n

2: c← 0
3: v0 ← k ∈ [n] ▷ Pick an arbitrary starting vertex.
4: u← v0 ▷ Initially, the current vertex is the starting one.
5: visited[u]← 1
6: while c < m do ▷ We loop as long as there are still edges to write.
7: next[u]← next[u] + 1
8: i← next[u]
9: if i ≤ d−(u) then ▷ Reverse traversal phase.

10: v ← Γ−(u, i)
11: if visited[v] = 0 then
12: if v ̸= v0 then
13: B[v]← u
14: visited[v]← 1
15: u← v
16: else ▷ Backtracking phase.
17: i← next[u]− d−(u)
18: if Γ+(u, i) = B[u] and skipped[u] = 0 then
19: skipped[u]← 1
20: next[u]← next[u] + 1
21: i← i+ 1
22: if i > d+(u) then
23: v ← B[u]
24: else
25: v ← Γ+(u, i)
26: Write(uv)
27: c← c+ 1
28: u← v

when a vertex u has no unexplored incoming (Black) edges, which occurs when next[u] > d−(u)
(i.e. when next[u] is out of the bounds of d−(u)). At that point, the algorithm starts following
outgoing edges from u. To ensure the Red edge is used last, it checks whether the next candidate
edge (indexed by next[u]− d−(u)) leads to B[u]. If so, and if it has not already been skipped, the
algorithm skips this edge. This guarantees that all non-Red (i.e.Green) edges are backtracked over
first.4 Finally, after all other outgoing edges have been used (i.e. when next[u] > d+(u) + d−(u) =
d(u)), the Red edge becomes the only option and is followed. As the algorithm backtracks from
vertices, each traversed edge is immediately written to the output.

4Since the graph may contain parallel edges, the target vertex v = B[u] could appear multiple times in the multiset
{Γ+(u, i) : i ∈ [d+(u)]}. Hence we use skipped-array to only skip the first edge uv.

6

4 Analysis

We now analyse the correctness and complexity of the algorithm. In Subsection 4.1, we mainly
use the high-level abstraction involving edge marks (Black, Red, Green, and Dashed) to prove
that the algorithm outputs a valid Eulerian cycle. In Subsection 4.2, we analyse the running time
and space usage of the algorithm by referring directly to the pseudocode in Algorithm 1.

4.1 Proof of Correctness

For a vertex v and a mark X, let d+(v,X) denote the number of outgoing edges from v marked X,
and define d−(v,X) analogously as the number of incoming edges to v marked X.

Definition 2 (Needle vertex). Let u denote the current vertex of the traversal. A vertex w is a
needle vertex if and only if:

• w = u and d+(w,Black) = d−(w,Black); or

• w ̸= u and d+(w,Black) = d−(w,Black) + 1.

Our first claim and corollary establish a crucial invariant of Space-Efficient-Hierholzer
by showing that there is exactly one needle vertex throughout the execution of the algorithm. Our
follow-up claim states that backtracking occurs from u only when u is a needle vertex.

Lemma 1. At every step of the execution of Space-Efficient-Hierholzer, exactly one of the
following statements holds:

1. for all v ∈ V , d+(v,Black) = d−(v,Black);

2. there are two vertices a and b s.t.:

• d+(a,Black) = d−(a,Black) + 1 and d+(b,Black) + 1 = d−(b,Black),

• for all v ∈ V \ {a, b}, d+(v,Black) = d−(v,Black), and

• b is the current vertex.

Proof. We prove this claim by induction on the number of traversed edges. The base case is
trivial, as no edges have been traversed. Hence, for all vertices v ∈ V , we have d+(v,Black) =
d−(v,Black), and the invariant is satisfied.

Now, suppose the invariant holds after k edge traversals. We consider the (k+1)st edge traversal,
which must either be a forward step over a Black incoming edge, or a backtracking step over a
Red or Green outgoing edge, from some vertex u.

Case 1. Statement 1 holds after k edge traversals. Let u be the current vertex. By the induction
hypothesis, we have d+(u,Black) = d−(u,Black). If d+(u,Black) = 0, the traversal backtracks
via an outgoing Red or Green edge, meaning that neither d+(v,Black) nor d−(v,Black) of any
vertex v ∈ V is affected, preserving the invariant. Otherwise, if d+(u,Black) > 0, the traversal
walks forward via one incoming Black edge and marks it either Red or Green. Let w be the
new current vertex. Vertex u loses one Black incoming edge, and w loses one Black outgoing
edge; thus, we have d+(u,Black) = d−(u,Black) + 1 and d+(w,Black) + 1 = d−(w,Black),
the measure of Black edges is not affected for vertices in V \ {u,w}, and w becomes the new
current vertex, satisfying the invariant.

7

Case 2. Statement 2 holds after k edge traversals. We then have u = b. Since d+(b,Black)+1 =
d−(b,Black), the traversal then proceeds by walking forward towards some vertex x. Consider
two possible subcases.

Subcase 2.1. x = a. By entering a from b, b loses one Black incoming edge, a loses one Black
outgoing edge, and thus we have d+(v,Black) = d−(v,Black) for all v ∈ V .

Subcase 2.2. x ̸= a. Before entering x from b, we have d+(x,Black) = d−(x,Black); upon
entering it, we now have d+(x,Black) + 1 = d−(x,Black), d+(b,Black) = d−(b,Black),
d+(a,Black) = d−(a,Black) + 1, and x is the new current vertex.

The following corollary immediately follows from Lemma 1 and Definition 2.

Corollary 1. At every step of the execution of Space-Efficient-Hierholzer, there is exactly
one needle vertex.

Lemma 2. At every step of the execution of Space-Efficient-Hierholzer, backtracking occurs
from u only when u is a needle vertex.

Proof. It is established in Corollary 1 that exactly one needle vertex exists in the graph throughout
the execution of the algorithm; thus, consider w to be the needle vertex, and for the sake of
contradiction, suppose that the algorithm backtracks from u ̸= w. By Lemma 1, we arrive at two
distinct cases.

Case 1. Statement 1 of Lemma 1 holds. For all v ∈ V , we have d+(v,Black) = d−(v,Black)
before backtracking. Since there is exactly one needle vertex, then it must be the current vertex u
by Definition 2, which is in contradiction with the assumption that the current vertex is not the
needle vertex.

Case 2. Statement 2 of Lemma 1 holds. We then have d+(u,Black) + 1 = d−(u,Black),
implying that prior to backtracking from u, there existed a Black incoming edge incident on u,
which is not possible by the definition of the algorithm.

This completes the proof.

Lemma 3. The needle vertex changes only upon backtracking.

Proof. Towards a contradiction, suppose otherwise; that is, assume that a forward step into v
makes v the needle vertex. Before this forward step, we had d+(v,Black) = d−(v,Black). After
the step, however, d+(v,Black) + 1 = d−(v,Black). Since v is now the current vertex and
d+(v,Black) ̸= d−(v,Black), this contradicts Definition 2.

Remark 1. A consequence of Lemmata 2 and 3 is that backtracking occurs for the first time at v0
(the first needle vertex), and then makes a vertex incident on v0 the new needle vertex. Observe
that this process indeed forms a trail of Dashed edges in the graph.

We now show that this trail is closed at termination, i.e. forms a cycle where v0 is included. To do
so, it suffices to show that the algorithm terminates and that v0 is the last current vertex. To prove
termination, we fix the cost function c : M → N∪{0} s.t. M = {Black, Red, Green, Dashed},
c(Black) = 3, c(Red) = 2, c(Green) = 2, and c(Dashed) = 0.

Lemma 4. The algorithm Space-Efficient-Hierholzer terminates.

8

Proof. Let Φ be a potential function defined as Φ(G) =
∑

e∈E c(m(e)) for a graph G = (V,E),
where m(e) denotes the mark of edge e; in other words, Φ is equal to the total sum of the costs of
all edges in G. On an input graph G, we show that at each step of the traversal, the measure Φ(G)
strictly decreases.

Initially, all edges are Black, hence Φ(G) = 3|E|. Observe that each edge changes its mark
over time in a fixed and monotonic order: Black → {Red,Green} → Dashed. Since each
step forward or backwards in the traversal alters the mark of an edge, and no Red or Green
edge is remarked Green or Red respectively, the measure strictly decreases at each step, and the
algorithm eventually terminates as Φ(G) ≥ 0.

Lemma 5. Upon termination of Space-Efficient-Hierholzer, the Dashed edges form a closed
trail which includes v0 as an endpoint.

Proof. By Remark 1, the algorithm first backtracks from v0. Observe that, by the definition of
an Eulerian graph, entering a non-starting vertex via an outgoing Black edge (which is then
marked Red or Green) guarantees that there is a corresponding incoming Black edge that will
eventually be used to exit the vertex and marked accordingly. Similarly, entering a non-starting
vertex via a Red or Green outgoing edge (which is then marked Dashed) ensures that there is
a corresponding incoming Red or Green edge that will eventually be used to exit the vertex and
also be marked Dashed. Therefore, at every step of the algorithm, if u is the current vertex, the
following conditions hold:

• d+(v,Red) + d+(v,Green) = d−(v,Red) + d−(v,Green) for all v ∈ V \ {v0, u}, and

• d+(u,Red) + d+(u,Green) = d−(u,Red) + d−(u,Green) + 1 if u ̸= v0.

Towards a contradiction, suppose now that the last current vertex is v ̸= v0 upon termination.
This implies that there was no Red or Green outgoing edge to backtrack through from v, hence
the termination. However, if v were entered via a Black incoming edge, then, by the observation
above, there would have been a Black incoming edge to resume the traversal, a contradiction.
If, analogously, v were entered via a Green or Red edge, then there would be at least one Red
or Green outgoing edge to backtrack through, a contradiction. Therefore, the last current vertex
cannot be in V \ {v0}, and can only be v0 since the algorithm terminates by Lemma 4.

We now need to show that the closed trail produced by the algorithm includes all edges in the
graph; it suffices to show that all edges are Dashed upon termination. First, we show that there
are no Black edges at termination, indicating that all edges have been traversed at least once.
The following structural property of Eulerian graphs comes in handy.

Lemma 6. Let G be an Eulerian graph, and let T be some arbitrary closed trail in G = (V,E).
Then, G′ = (V,E \ T) consists of multiple (possibly none) vertex-disjoint closed trails.

Proof. Initially, for all v ∈ V , we have d+(v) = d−(v). Clearly, removing the trail T preserves
that equality. Let H be some arbitrary weakly5 connected component of G′; then, for all vertices
vH ∈ H, we have d+(vH) = d−(vH). Hence, H is Eulerian and its edges form a closed trail.

Lemma 7. Upon termination of Space-Efficient-Hierholzer, no Black edges remain.

Proof. Let T be the trail of Dashed edges computed by Space-Efficient-Hierholzer by
Lemma 5; for the sake of contradiction, we split the proof into two distinct assumptions.

5A set of vertices is considered weakly connected if there exists a path of edges from every pair of vertices within
that set when edge directions are ignored.

9

Case 1. A Black edge is incident on a vertex v ∈ T . If v has a Black incoming edge, this implies
that the algorithm backtracked from or terminated at v despite there being a Black incoming edge
to traverse, which is a contradiction. If, on the other hand, the Black edge is outgoing from v,
then by Lemma 1, there must also be an incoming Black edge at v. Indeed, Statement 1 of the
lemma applies, since the current vertex cannot possess incoming Black edges without violating the
algorithm’s definition (i.e. backtracking would have occurred instead of termination). Therefore,
the previous subcase applies.

Case 2. No Black edge is incident on a vertex v ∈ T . By Lemma 6, we can remove T and
obtain multiple Eulerian connected components, each containing a closed trail. Let H1, H2, . . . ,Hk

be the k vertex-disjoint strongly connected components obtained. Now, define Si = VT ∩Hi, where
VT is the set of endpoints in T ; in other words, Si is the set of all vertices that are part of both the
trail and the ith connected component. We claim that for each Si for i ∈ [k], there is at least one
vertex w ∈ Si such that d+(w,Green) ≥ 1, and d+(w,Red) = 0.

First, observe that theRed edges marked by Space-Efficient-Hierholzer form a tree rooted
at v0, the starting vertex; hence d+(v,Red) ≤ 1 for any vertex v. Pick an arbitrary set Si: using
the invariant from the proof of Lemma 5, for each w ∈ Si, we have d+(w,Red) + d+(w,Green) =
d−(w,Red) + d−(w,Green) > 0. If v0 ∈ Si, then we are done since d+(v0,Red) = 0 and thus
d+(v0,Green) ≥ 1. Now, towards a contradiction, suppose that we have d+(w,Red) = 1 for all
w ∈ Si (recall that this measure cannot be greater than 1), and v0 ̸∈ Si. Since Hi does not share
vertices with other components in

⊎
j∈[k]\{i}Hj , there is no path from a vertex in Hi \ Si to v0

that does not include an outgoing edge incident on a vertex in Si. Thus, the assumption entails
that the starting vertex (i.e. the root of the tree of Red edges) v0 ∈ Hi \ Si, which contradicts our
assumption that v0 ∈ T since T ∩ (Hi \ Si) = ∅.

Now, as we have shown that a vertex w ∈ T such that d+(w,Green) ≥ 1 and d+(w,Red) = 0
exists, we can pick one arbitrarily and consider two distinct cases. If w = v0, then the algorithm
terminated at v0 despite d+(v0,Green) ≥ 1, which is impossible by the way the algorithm is
defined. Finally, if w ̸= v0, then the algorithm backtracked via a Red outgoing edge (later marked
Dashed) despite there being a Green outgoing edge to backtrack through, which contradicts the
definition of the algorithm.

In either case, we reach a contradiction; therefore, no Black edges remain in the graph.

The following corollary strictly follows from Case 2 of the proof of Lemma 7.

Corollary 2. Upon termination of Space-Efficient-Hierholzer, all edges are Dashed.

Proof. For the sake of contradiction, suppose that, at termination, the graph contains Red or
Green edges; recall that it has been established in Lemma 7 that the graph cannot contain Black
edges. Let T be the trail of Dashed edges produced by the algorithm (Lemma 5). Then, by
the argument of Case 2 of the proof of Lemma 7, there must exist some vertex w ∈ T such
that d+(w,Green) ≥ 1 and d+(w,Red) = 0, which leads to contradicting the definition of the
algorithm. Therefore, all edges are Dashed at termination.

Theorem 1. The algorithm Space-Efficient-Hierholzer correctly computes an Eulerian cycle.

Proof. By Lemma 4, the algorithm terminates after a finite number of steps. Lemma 5 establishes
that, upon termination, the set of Dashed edges forms a closed trail containing the starting vertex
v0. Moreover, Lemma 3 and Lemma 2 together ensure that a new Dashed edge is created exactly
when the traversal backtracks from the current needle vertex, and that the next needle vertex

10

is incident to the previously Dashed one, thus producing the trail in a correct order. Finally,
Corollary 2 implies that all edges are marked Dashed upon termination, which ensures that the
closed trail includes every edge exactly once.

This completes the proof of correctness.

4.2 Space and Time Complexity

Recall that we assume computing the ith in- or out-neighbour of a vertex, or its in- or out-degree,
takes O(1) time.

Theorem 2. The algorithm Space-Efficient-Hierholzer (Algorithm 1) terminates in time
O(m), where m is the number of edges in the input graph.

Proof. Termination follows from Lemma 4. Initialising the arrays next, visited, skipped and B
takes O(n) time. We claim that the while loop (Lines 6-28) iterates 2m times. The loop terminates
when c ≥ m; and during an iteration, c is incremented if and only if next[u] > d−(u). Since the
latter is incremented at each iteration of the loop, the if statement (Line 9) is satisfied exactly∑

v∈V d−(v) = m times. Thus, the else block (Line 16) is executed m times.
The overall complexity is O(n+m) ∈ O(m) since, in any Eulerian graph of 2 or more vertices,

n ≤ m.

Theorem 3. The algorithm Space-Efficient-Hierholzer (Algorithm 1) uses O(n lgm) bits of
working space.

Proof. The arrays visited and skipped take O(n) bits, as these represent bit vectors. Values in
the arrays next and B are bounded by m, and thus the arrays take O(n lgm) bits.

5 Conclusion

We presented a simple and memory-efficient algorithm for computing Eulerian cycles in directed
graphs. Unlike classical implementations of Hierholzer’s algorithm, which require storing all edges
or large stacks, our method uses only O(n lgm) bits of working space by storing a small amount
of data per vertex rather than per edge. Despite the reduced memory usage, our algorithm still
runs in linear time and produces the Eulerian cycle incrementally, without needing to reverse it at
the end. Our approach is especially useful for dense graphs, where the number of edges is much
larger than the number of vertices, and in settings where memory is limited. It is also well-suited
for environments such as graph rewriting systems that do not support stacks or pointer-based data
structures.

Our approach focuses on directed graphs, but the underlying principle can also be applied to
undirected graphs. A nuisance not present in directed graphs is that an edge might have been
traversed in the opposite direction when we now consider it, so we have to detect this. When the
undirected graph is simple (i.e. no parallel edges) and the adjacency lists are sorted (that is, for
all i < j ∈ [d(v)], we have Γ(v, i) < Γ(v, j) for all v ∈ V), we can determine whether an edge uv
incident at u has already been traversed via Γ(v, next[v]) ≥ u.

Extending the algorithm to handle unsorted adjacency lists and undirected multigraphs, while
preserving or improving the current time and space complexity, remains open for future work.

Acknowledgements.

We would like to thank Viktor Zamaraev and Nikhil Mande for the initial discussions on the topic.

11

References

[1] eulerian circuit in NetworkX. https://networkx.org/documentation/stable/_modules/
networkx/algorithms/euler.html#eulerian_circuit. Accessed on 06/08/2025.

[2] HierholzerEulerianCycle.java in JGraphT. https://github.com/jgrapht/

jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/cycle/

HierholzerEulerianCycle.java. Accessed on 06/08/2025.

[3] Christian Glazik, Jan Schiemann, and Anand Srivastav. A one pass streaming algorithm for
finding Euler tours. Theory of Computing Systems, 67(4):671–693, 2023.

[4] Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-efficient euler partition and
bipartite edge coloring. Theoretical Computer Science, 754:16–34, 2019.

[5] Carl Hierholzer and Christian Wiener. Über die Möglichkeit, einen Linienzug ohne Wiederhol-
ung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, 1873.

[6] Clifford S Orloff. A Fundamental Problem in Vehicle Routing. Networks, 4(1):35–64, 1974.

[7] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path approach to DNA
fragment assembly. Proceedings of the national academy of sciences, 98(17):9748–9753, 2001.

[8] Detlef Plump. The design of GP 2. In Proc. Workshop on Reduction Strategies in Rewriting
and Programming (WRS 2011), volume 82 of Electronic Proceedings in Theoretical Computer
Science, pages 1–16, 2012.

[9] Kohei Yamamoto, Jose Victorio Salazar Luces, Keiichi Shirasu, Yamato Hoshikawa, Tomonaga
Okabe, and Yasuhisa Hirata. A Novel Single-Stroke Path Planning Algorithm for 3D Printers
using Continuous Carbon Fiber Reinforced Thermoplastics. Additive Manufacturing, 55:102816,
2022.

12

https://networkx.org/documentation/stable/_modules/networkx/algorithms/euler.html#eulerian_circuit
https://networkx.org/documentation/stable/_modules/networkx/algorithms/euler.html#eulerian_circuit
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/cycle/HierholzerEulerianCycle.java
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/cycle/HierholzerEulerianCycle.java
https://github.com/jgrapht/jgrapht/blob/master/jgrapht-core/src/main/java/org/jgrapht/alg/cycle/HierholzerEulerianCycle.java

	Introduction
	Hierholzer's Algorithm
	Typical Implementations
	Our Idea
	Directed and Undirected Eulerian Cycles
	Related Work
	Outline

	Preliminaries
	Space-Efficient Implementation of Hierholzer's Algorithm
	Conceptual Algorithm
	Space-Efficient Implementation

	Analysis
	Proof of Correctness
	Space and Time Complexity

	Conclusion

