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SUMMARY

Enhanced mineral weathering in agricultural settings is an approach for carbon dioxide removal in which
crushed silicate rocks are added to soils. However, the effects of long-term application of crushed basalt
on soil structure and organic carbon stabilization are still poorly constrained. We investigated a wide range
of soil chemical and physical indicators in control, basalt, and lime treatment sites to provide a comprehen-
sive evaluation of soil response to enhanced mineral weathering. The field study showed that soil organic car-
bon preservation was influenced by soil structure rather than rock additions. Basalt amendment improved
overall soil chemical quality, and accumulating basalt from high application rates did not have any negative

impact on soil physical characteristics even after six years.

INTRODUCTION

The effects of climate change are increasingly influencing eco-
systems worldwide. For instance, agricultural ecosystems are
stressed by extreme climate events (i.e., elevated temperatures,
frequent droughts, and heavy rainfall), which increase concerns
about crop productivity and global food security.' ™ Understand-
ing the consequences of climate change on a global scale grows
consensus that we need to not only rapidly curtail emissions, but
also move to net negative emissions if we want to meet interna-
tionally agreed climate goals.®

Nature sequesters carbon through biotic and abiotic pro-
cesses, which has inspired researchers to develop and investi-
gate carbon dioxide removal technologies that can be imple-
mented at a gigaton scale.” ' In agricultural settings,
enhanced mineral weathering (EMW) has been proposed and
shown to be a promising technology for increasing carbon
sequestration in soils through chemical weathering of silicate
rocks.'"'? The core idea of EMW is to use carbonic acid pre-
sent in the soil system to accelerate the chemical weathering
of silicate rocks that are rich in Mg and Ca—such as basalt.
The dissolution of silicate minerals by carbonic acid releases
base cations and bicarbonate ions, which are transported to
deeper layers of soil in solution.'® This process in terrestrial
systems has the potential to capture billions of tons of CO,
annually."*""

Gheck for

Besides carbon removal from the atmosphere, it has been hy-
pothesized that EMW with basalt has co-benefits for crop pro-
duction and soil physicochemical properties.'®'® Basalt in
particular has been proposed to have a range of benefits over
limestone addition, which is a common substrate for soil pH
regulation in agricultural soils.?° For example, the release of cat-
ions from basalt during chemical weathering can provide nutri-
ents and, in combination with an increase in pH, improve crop
yields.'"?"?? Released base cations may also increase soil
structural stability and carbon protection through organo-min-
eral associations, suggesting that EMW could be a strategy to
mitigate soil organic carbon (SOC) losses,?*° which is a topic
in the EMW community that has been given less attention. Cal-
cium cations (Ca?*) promote flocculation of clay particles and
act as a cation bridge, linking negatively charged clay particles
and organic matter (OM).?° Furthermore, adding fine to coarse
grained basalt to soils might have the potential to provide addi-
tional charged surface area for chemical interactions®'**” and
change soil physical properties (e.g., pore-size distribution and
soil water characteristics) by altering soil grain-size distribu-
tion.?® It appears likely that basalt application affects numerous
other soil processes such as carbon mineralization, nutrient
cycling, gas diffusion, nitrification, and soil water regulation,
but this has yet to be demonstrated empirically.”*"

Although the influence of basalt application on soil has
been widely discussed,'92"?7*2 there are still gaps in our
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Table 1. Bulk soil chemical properties (both depths merged) in
each treatment (+ standard deviation)

Parameter Control (n = 3) Basalt (n = 3) Lime (n = 3)
SOC[mgg™'] 15 +2 15 +1 15 +2
Pimgkg™" 19 +8 16 +2 21 +9
Kmgkg™l 126 +19 110 +24 127  +16
Mg [mgkg™" 306 +68 288 8 317  +46
Ca[mgkg™'] 1608  +174® 2171 +151° 2122 1211%®
pH 6.1 £0.22 7.2 £0.1° 67  +02%
Buffer pH 6.8 +0.1 n.a. n.a. 6.8 +0.1
CEC 13 *2 14 +1 14 =1
[meg 100g~"]

Exch. K [%] 3 +1 2 +1 2 +0
Exch. Mg [%] 19 +5 18 +1 18 +2
Exch. Ca[%] 60 +22 80 +1P 73 +43°
Exch. H[%] 18 +72 2 1P 9 +63°

The average was calculated of each field plot (n = 3) per treatment. Lower
case letters indicate significant differences (« < 0.05) between treat-
ments.

understanding of soil physicochemical responses because
long-term field data combining soil physical and chemical char-
acteristics are missing. Here we address this knowledge gap by
investigating the change in soil physicochemical properties re-
sulting from basalt application on a maize/soybean rotation in
the corn belt region of the US (lllinois, US), which is one of
the most productive agricultural regions in the world.*® Our
goal was to test whether basalt treatment enhanced soil struc-
ture (hypothesis 1) evaluated by a new index of soil structure
development (Kullback-Leibler [KL] divergence) and the resis-
tance of aggregates to break down to finer units, which was
associated with the release of divalent cations during basalt
weathering. Furthermore, we tested whether additional mineral
surfaces and elevated concentration of Ca®* and Mg®*
improved the preservation of SOC due to organo-mineral inter-
actions (hypothesis 2), thereby increasing long-term organic
carbon stabilization.

RESULTS

Soil chemical properties in study sites

Bulk soil chemical properties did not show any depth stratifica-
tion, likely due to the homogenization from tillage. Therefore, in
Table 1, we merged the data of both sampling depths. Signifi-
cant differences between treatments were observed in terms
of available Ca concentration, pH, and contribution of exchange-
able cations (Ca2* and H*). The pH was the highest in the basalt
treatment (pH = 7.2), lower in the lime treatment (pH = 6.7), and
lowest in the control treatment (pH = 6.1). In addition to soil pH,
the contribution of exchangeable Ca®* increased and H*
decreased in the basalt (80% Ca®*, 2% H*) and lime (73%
Ca?*, 9% H*) treatments compared to the control site (60%
Ca?*, 18% H*). This was in line with the available Ca content,
where higher concentrations were in basalt treatment with
2,171 £ 178 mg Ca kg’1 and in lime treatment with 2,122 =
261 mg Ca kg™, whereas the content in control subplot was
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1,608 + 250 mg Ca kg~'. Other observed bulk soil chemical
properties, such as SOC concentration, available nutrients,
and CEC, were not statistically different between treatments
(Table 1).

Soil physical properties

The soil texture (Table 2) measured at this site was classified as
silt loam (SiL; FAO), and did not differ between sampling depths
and treatments. Soil water retention curves are presented in
Figure S4 (1-6 cm soil depth) and S5 (15-20 cm soil depth),
and the parameters of the Kosugi bimodal hydraulic are given
in Table S3. The Kosugi bimodal model fitted well to the water
retention measurements, where the root mean-square error
(RMSE) 6 remained below 0.01 throughout the dataset.
Conversely, the RMSE K values for the hydraulic conductivity
data were more variable, where the hydraulic conductivity curve
for the basalt and lime treatments showed better fits (RMSE
K < 0.1) than the control (RMSE K > 0.1) (Table S3). Plant-avail-
able water (W), field capacity (Fc), and permanent wilting point
(PWP), which were all derived from the soil water retention
curve s, were in similar ranges for each sampling depth and
treatment (Table 2; Figures S4 and S5). In some cases, the
mean value of PWP in the basalt treatment was lower, but the
change was not significant due to the high standard deviation.
Soil bulk density (BD) showed depth stratification, in which lower
bulk densities (1.28-1.33 g cm™3) were measured at 1-6 cm soil
depth as compared to 15-20 cm (1.38-1.47 g cm™9).

Soil aggregation

The large macroaggregate size class (>500 pm) was the most
dominant aggregate size class across all treatments (Figure 1).
Among all subplots, aggregate size distributions among treat-
ments did not differ, but there was depth stratification in all treat-
ments, where the contribution of small macroaggregates was
significantly greater in the 15-20 cm depth interval than at the
surface. Aggregate size class contribution to the total SOC con-
tent did not differ between treatments, showing rock additions
did not alter SOC storage in soil aggregates (Figure 2). Differ-
ences between sampling depths were visible in the small macro-
aggregate size class, where the relative contribution of small
macroaggregates to the total SOC was significantly lower in
1-6 cm (2 mg g~ ') than in 15-20 cm (3-4 mg g~ ). The heatmap
in Figure 3 describes relative OC enrichment (Eoqc) in each aggre-
gate size class. SOC concentrations of all aggregate size classes
and their relative Eqc values are provided in Table S4. The rela-
tive Eqc differed with soil depth (Figure 3), where the S + C-size
class was more enriched in 15-20 cm (Eoc = 0.84-0.88) as
compared to 1-6 cm (Eoc = 1.11-1.15) (Figure 3), where the
finest fraction was less enriched.

Changes in soil structural development and soil
physicochemical properties

A principal component analysis (PCA) was used to summarize
the multi-correlation of structural variables and their interactions
between the treatments (Figure 4). The quality of representation
for each variable is presented in Figure 5. Approximately
49.8% of the variation was explained by the first two principal
components (Figure 4). PCA analysis showed that the pH,
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Table 2. Soil physical properties and soil water characteristics in each treatment (+ standard deviation), where BD stands for bulk
density, ¢ for porosity, W, for plant available water, Fc for field capacity at pF 1.8 and PWP for permanent wilting point at pF 4.2

Soil texture
Depth Treatment BD[gcm™S] o [] W,[Vol-%] Fc [Vol-%] PWP [Vol-%] Sand [%] Silt[%] Clay [%] (FAO)
1-6 cm Control (n=3) 1.32+0.08 050+0.03 27.4+33 351+39 77=zx1.1 24+7 65+1 118 Silt loam (SiL)
Basalt(n=3) 1.33+0.06 0.50+0.03 26.7+26 345+37 79x1.2 29 +11% 59x5% 12+6° Silt loam (SiL)
Lime (n = 3) 1.28+0.09 052+0.03 269+09 362+24 93x1.8 14+4 67+4 19x2 Silt loam (SiL)
15-20cm Control (n=3) 1.47 +0.03 0.44+0.01 248+22 346+16 98=+0.5 20+ 6 67+6 131 Silt loam (SiL)
Basalt(n=3) 1.42+0.03 046+0.02 238+25 328+18 9.0:08 23+10° 62+5% 15+5%  Silt loam (SiL)
Lime (n = 3) 1.38 £ 0.03" 0.48 +0.01° 24.6+0.1° 34.5+1.8° 9.9+ 1.7° 15+5 64+6 21+3 Silt loam (SiL)

20ne field replicate was lost due to unexpected technical failures.

exchangeable Ca®*, available Ca concentration, treatment and
exchangeable H* provided the highest contribution to the PC
analysis (Figure 5). The contributions of exchangeable H*, avail-
able K, bulk SOC concentration, available P concentration, and
field capacity (Fc) were negatively correlated with the treatment.

The KL divergence (Figure 6) was significantly different be-
tween sampling depths, with higher values at 1-6 cm, suggest-
ing that soil structure was more developed very close to the
soil surface. Comparing treatments, the KL divergence was on
average larger in the basalt (KLD = 0.43) and lime treatments
(KLD = 0.53) as compared to the control treatment (KLD =
0.35) at the depth of 1-6 cm; however, these differences were
not statistically significant. In contrast, in the 15-20 cm depth,
the lime treatment had significantly higher KL divergence
(KLD = 0.45) as compared to the control and basalt treatments.

DISCUSSION

This study at the Energy Farm investigated the long-term appli-
cation of crushed basalt and its impact on chemical and physical
soil properties (Figures 4 and 5). At the Energy Farm, the basalt
amendment altered soil chemical quality by increasing soil pH
up to 7.2, which activated soil feedback mechanisms such as

N w B w o] ~
o o o o o o
|
1

Aggregate size distribution [%]

=
o

o

LLLLL

shifts in nutrient availability (Table 1) and plant growth dynamics,
resulting in higher crop yields.'? Soil pH responded to changes in
soil management practices and governs subsequent biogeo-
chemical reactions that regulate the capacity of the soil to func-
tion®***" and these results highlight that pH is a primary indicator
for evaluating the response of soil quality to different treatments.
However, in the lime treatment, we observed that after only two
years, the impact on pH had already begun to diminish as the pH
had declined to 6.7 and the contribution of exchangeable H* was
higher than in basalt treatment (Table 1). In soils, pH fluctuates
seasonally because of the production of carbonic acid, the
release of H* ions from OM mineralization, and nitrification of
ammonium-based fertilizers, which activates buffering capacity
and influences shifts in the abundance of Ca®* and Mg**

exchangeable sites.®®*" At the Energy Farm, UAN (urea and
ammonium nitrate) fertilizer was applied two out of every three
years in the maize/maize/soybean rotation, which produces H*
ions when ammonium is nitrified. As soils acidify, bivalent cations
are replaced on mineral surfaces by H*, as we started to observe
in the lime treatment (Table 1). Despite the weakened effect of
lime on soil pH, both basalt and lime treatments had a significant
impact on Ca concentration and the dominance of Ca* as an
exchangeable cation, all of which reflect that soil structural

Figure 1. Aggregate size class distribution
at the 1-6 cm and 15-20 cm

Control (n=3) Basalt (n=3) Lime (n=3) Control (n=3)

1-6 cm

M Large macroaggregates (>500 pum)

Basalt (n=3)

Lime (n=3)

15-20 cm
@ Small macroaggregates (250-500pum)

[@ Large microaggregates (53-250 um) @ Silt+clay-sized fraction (<53 pm)
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20 —+ Figure 2. Aggregate size class contribution
to the bulk soil organic carbon (OC) concen-
trationinmg g~*
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o g 1 the weathering rate of Blue Ridge and
© Pioneer Valley basaltic rocks, which was
strongly influenced by grain size and
4T mineralogy, with finer fractions (<45 pm)
weathering at approximately double the
0 - rate of sand-sized (250-500 pm) frac-
Control Basalt Lime Control Basalt Lime tions. From the mineralogy, Blue Ridge
1-6 cm 15-20 cm exhibited rapid Mg leaching due to

M Large macroaggregates (>500 pum)

[ Large microaggregates (53-250 um) @ Silt+clay-sized fraction (<53 um)

quality and dynamics in OM protection have probably shifted to-
ward mechanisms that result in higher SOC accumulation.?*

Cation addition affects the development of soil
structure

The evaluation of soil structure through KL divergence (Figure 6),
which quantifies the extent of soil structural development
compared to a single-grain soil structure,*” suggests that only
the addition of lime led to a more developed soil structure.
Although the KL divergence on average was the highest in the
lime treatment in both sampling depths (KLD = 0.53 and KLD =
0.45, respectively), the soil structure close to the soil surface in
the basalt treatment (KLD = 0.43) was more developed than in
the control treatment (KLD = 0.35). Basalt weathering is a slow
process by which bivalent cations are gradually released,
whereas lime dissolves rapidly due to the presence of calcite,
and its influence on soil structure can be quickly observed in
both sampling depths.*>** Vanderkloot and Ryan*® investigated

B Small macroaggregates (250-500um)

chlorite dissolution, whereas Pioneer
Valley basalt weathered primarily through
augite and plagioclase breakdown.
Considering the grain size of the basaltic
rocks (Figure S3) used in this field exper-
iment, the influence of bivalent cations on
the soil structure is expected to proceed slowly. The structural
responses of soil to a rock amendment can include the formation
of organo-mineral or mineral-mineral interactions between clay
minerals or OM and cations derived from the rock.?®“S In this
study, we cannot identify dominant mechanism of soil structural
development; however, differences in dissolution speed could
explain why soil structural alterations were more favorable for
the lime treatment. It has also been argued that basalt grains
can affect the redistribution of soil primary particles due to the
slow weathering rate of basalt. According to Rinder and Von
Hagke (2021),% the complete dissolution of coarse basalt grains
can take several hundreds of years, which can have a negative
impact on soil porosity and soil structural quality when unweath-
ered basalt grains begin to accumulate. However, this field study
revealed that basalt addition had no negative effects on these
soil physical parameters after six annual applications (Table 2;
Figure 5). In addition, the relationship between the high contribu-
tion of large macroaggregates and their relative OC enrichment

Figure 3. Heatmap of relative OC enrich-

1-6 cm 15-20 cm
<53 uym <53 pm+
53-250 um 53-250 pm+
250-500 pm 250-500 pm{
>500 um >500 um-

ment factors in each aggregate size class

relative OC enrichment
12

1.1
1.0

0.9

Control Basalt Lime Control Basalt

Treatment
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Figure 4. The biplot of the first two principal components, where the
contribution of variables to the principal components is given in
gradient colors

In this figure, Fc stands for field capacity, PWP for permanent wilting point, TP,
TK, TMg, and TCa stand for available nutrient concentrations (P, K, Mg, and
Ca), H_CEC, K_CEC, Ca_CEC, and Mg_CEC stand for exchangeable H, K, Ca
and Mg, KLD stands for Kullback-Leibler divergence, and Ein S + C for relative
OC enrichment in S + C-sized fraction.

(Eoc >1.0) at the surface depth suggested that soil aggregates
was unaffected by accumulating unweathered basalt grains.
Soil physical parameters such as the KL divergence and soil
BD showed high variability and depth stratification, which is
typical of cropland soils. Conventional tillage increases the
spatial heterogeneity in soil architecture by creating locally
denser and looser aggregate structures and increasing the pro-
portion of macropores throughout the plow layer.*”*® Over the
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time of several growing seasons, soil layers that are not actively
used by roots will settle, resulting in higher bulk densities as seen
at the lower sampling depth (Table 2). This causes soil compac-
tion, which is characterized by a lower degree in soil structural
development as compared to the surface (Figure 5). These differ-
ences in soil structural development are in line with the aggre-
gate size distribution, in which the mass contribution of small
macroaggregates and large microaggregates was higher at
15-20 cm as compared to 1-6 cm soil depth (Figure 2). Soil
breaking down into finer fractions at 15-20 cm showed that the
soil layer contained a high proportion of unstable aggregates,
creating unfavorable environmental conditions for air and water
flow, and ultimately affecting biological activity.***°° These struc-
tural differences within the plow layer underline the multi-facto-
rial dependence on the treatment, rooting depth, and tillage
practices, all of which can significantly affect SOC-storage.

Co-benefits for OC storage depend on soil management
strategies

The application of basalt and lime increased available Ca con-
centrations, the dominance of Ca?* at the exchangeable sites
(Table 1), and, in the lime treatment, the development of soil
structure, (Figure 6) which, in theory, should lead to an enhanced
SOC stabilization in the Energy Farm field trial. The interaction
between bivalent cations and clay minerals builds organo-min-
eral associations, which protect OC in the soil for a long
time.?>>" However, despite the improved chemical conditions
for soil structure and SOC protection, there was no impact of
basalt and lime treatments on SOC concentration, neither in
the bulk soil nor in aggregate size classes (Table 1; Figure 2;
Table S4). However, it is important to note that the mass addition
of the basalt, which is roughly 10% of the upper portion of
the soil,"" did not lead to a significant decrease in SOC

Figure 5. The quality of representation in
the PCA
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1-6 cm

15-20 cm

Figure 6. Soil structure as quantified by the
Kullback-Leibler (KL) divergence

0.6 0.6 4

0.4+ 0.4+

KL divergence [-]

0.24 0.24

® plexes with A

KLD index is presented as mean values together
with 95% confidence level.

(A1).595" In case of low soil pH, exchange-
able surfaces are interacting with Al, shift-
ing SOC adsorption mechanisms toward
forming resistant organo-mineral com-
,5%6% which is important
SOC stabilization mechanism for forest
soils and andosols.®*°® In some agricul-
tural soils, the continuity in acidification
produces Al-toxicity (at pH < 5.5), which

impedes plant growth that will have nega-
tive impact on SOC dynamics by having
higher SOC losses than gains.®” However,
in our control fields, the exchangeable

T T T T
Control Basalt Lime Control

Treatment

concentrations. This is in contrast to the recent study by Lei
et al.,>> who reported a decrease in SOC concentrations in
response to basalt addition after a six-month incubation experi-
ment, likely due to increased soil pH and thus more favorable
conditions for OM decomposition. However, the authors also
noted that exchangeable Ca2* promoted the retention and stabi-
lization of OC, thereby counteracting SOC loss. The net change
in SOC concentrations in response to basalt applications would
thus be determined by the question of whether EMW or OC sta-
bilization weighs higher. The fact that, in our study, no differ-
ences in SOC concentrations were observed after six annual
applications of basalt suggests that both processes were
balanced.

While the increased presence of divalent cations did not lead
to any changes in SOC concentration, soil aggregation seemed
to be a key mechanism in defining the soil’s ability to stabilize
OM, either by physically entrapping OM in macroaggregates or
chemically adsorbing decomposed OM onto mineral surfaces
in the S + C-sized fraction. Our data showed that the highest pro-
portion of SOC was stored in large macroaggregates (Figure 2)
which are formed by labile OM, such as plant residues and
roots.>>>* Labile OC mineralizes quickly in a well-aerated sys-
tem,>® and only a small proportion will result in the mineral phase
for long-term storage.° In conventionally tilled soils, such accel-
erated OM mineralization often takes place at surface depths,
which results in relative carbon depletion in the S + C-sized frac-
tion (Eoc < 0.88) (Figure 3). In addition, when biogeochemical
reactivity is enhanced by substrate addition, such as lime, this
can trigger a priming effect which intensifies the mineralization
of stable OC.>"°° Nonetheless, this study provides an indication
that, over a six year period, no SOC loss is observed even at high
basalt application rates (Table 1).

In acidic soils SOC storage depends on the interaction between
plant productivity and microbial turnover of OM that is governed
by soil pH and, in strongly acidic soils, the availability of aluminum

6 iScience 28, 114232, December 19, 2025
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Lime Al was not present in the soil (Table 1),
which counteracts possible mechanisms
in C-protection that are characteristic for
acidic soils. Thus, it is likely that long-term SOC storage at this
site mainly depends on plant productivity and the availability of
exchangeable Ca®*,°® which diminishes over time when Ca is
continuously leached out.

Similar to aggregation, soil depth played an important role in
carbon storage and protection, and it had a greater impact
than either of the treatments (Figure 3). The organo-mineral as-
sociation in the finest fraction was unaffected by rock additions,
shown by similar aggregate size class distribution (Figure 1) and
no OC accumulation in the finest fraction (Figures 2 and 3). There
was a trend toward SOC accumulation in the finest fraction in the
basalt treatment, but within the range of analytical error. Bulk
SOC had a uniform distribution within the top 15 cm (Table 1)
likely due to annual tillage, but observed differences in aggregate
size class distribution showed that mechanisms in SOC storage
differed with depth. Microbial activity and carbon turnover are
depth dependent even when soils are tilled.®® This is evident
by the OC heatmap in Figure 3, which shows that at the surface
depth of 1-6 cm SOC was depleted in the S + C-sized fraction
relative to the bulk soil, whereas it was enriched at 15-20 cm.
The SOC in the S + C-sized fraction is protected from microbial
activities by forming organo-mineral associations, hence, the
deeper sampling depth showed a greater potential for long-
term carbon storage, as demonstrated by the relative enrich-
ment of OC in the S + C-sized fraction (Eoc>1.10). The chemical
characteristics of basalt play a key role in defining whether C will
be retained through binding mechanism at the molecular level or
whether soil management dominates over C-stabilization mech-
anisms.’® This indicates a clear trade-off between soil manage-
ment strategies and OC protection in soils (Figure 4). Neverthe-
less, our data show that aggregate size class fractionation is a
more comprehensive measure to reflect management-induced
(e.g., soil tillage, rock application) impact on SOC protection
(Figures 2 and 3) than just measuring bulk SOC (Table 1), hence
providing better indications for SOC storage. Although rock
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additions did not affect soil aggregate stability (Figure 1), the
structural disturbance by tillage negatively influenced C dy-
namics (Figure 3), resulting in SOC-relative depletion in the S +
C-sized fraction at the 1-6 cm, even when there were beneficial
conditions (e.g., higher Ca concentrations) for increasing OC
protection (Table 1).

Conclusions

In a field study at the Energy Farm at University of lllinois inves-
tigated the long-term application of crushed basalt and its
impact on soil chemical properties, soil structure development,
and SOC concentrations. Both soil pH and the dominance of
Ca®* in the exchangeable cations increased in response to
both treatments. However, improvements in soil chemical quality
(e.g., increase in available Ca concentration) were reflected by
an increase in soil structure development only in the lower topsoil
of the lime treatment. Soil physical parameters, such as Kull-
back-Leibler divergence and soil bulk density, showed high vari-
ability and depth stratification in both treatments and control
field, which is typical of conventional tillage. At 15-20 cm, soil
had a higher bulk density and aggregates were broken down
to finer fractions, which showed that the soil layer contained a
high proportion of unstable aggregates, and thus, soil structure
was less developed compared to the surface. Our data showed
that depth stratification played a greater role in carbon protec-
tion than either treatment, even when there were beneficial con-
ditions for increasing OC protection. The organo-mineral associ-
ation in the finest fraction was unaffected by the basalt
amendment because neither the aggregate size class distribu-
tion nor relative OC enrichment in the finest fraction differed be-
tween the control, lime, and basalt treatments. In contrast, soil
depth was more important with respect to carbon storage
because differences in relative OC enrichment between soil
layers. This highlights that even when basalt or lime has great po-
tential to increase OC storage because of improved soil structure
and higher availability of Ca, cultivation practices such as chisel
plow used in this experiment destroy soil aggregates and coun-
teract potential benefits in OC protection. This study demon-
strates that the repeated application of basalt has the potential
to improve soil chemical quality, while there are no indications
for changes in soil physical properties even after six years of
high annual applications.

Limitations of the study

Chemical weathering of minerals releases Ca?*, which has been
widely agreed to have a positive effect on soil structural stability
and a positive correlation with SOC concentration. Our study
showed contradictory results from the theory we know, suggest-
ing that Ca-mediated OC protection is a highly complex process,
which requires further investigation. This is complicated by the
fact that there are many possible mechanisms by which Ca®*
can interact with reactive surfaces in soil°®; yet, there is no suit-
able analytical method to investigate mechanisms behind Ca-
mediated interactions between OC and mineral surfaces.
Recently, Shabtai et al.”" introduced an innovative approach to
study microbe-mineral-OM interactions using **Ca-labeled
soils, which holds promise for advancing our understanding of
calcium-mediated interactions in greater detail. A primary limita-
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tion of our study was the inability to examine how weathering in-
fluences the formation of stable organic carbon within the soil.
Addressing this question would require more comprehensive
laboratory analyses, such as '3C solid-state nuclear magnetic
resonance or mesocosm experiments utilizing '*C-labeled OM
sources, enabling the tracing of decomposition and redistribu-
tion processes of OM in basalt-amended soils.”®
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Mehlich Ill Extraction A & L Great Lakes Laboratories N/A

Software and algorithms

RStudio Open-source software https://www.r-project.org/
Other

Eltra CS analyzer YASIC N/A

HYPROP METER Group https://metergroup.com/
WP4C METER Group https://metergroup.com/
PARIO METER Group https://metergroup.com/

METHOD DETAILS

Study site description and sampling design

The study site was located in central lllinois (40.06°N, 88.19°W) at the University of lllinois Energy Farm. In the region, the mean annual
air temperature is 10.9°C and mean annual precipitation is 1051 mm."? The first application of basalt at this site occurred in November
2016 using a randomized block design, which consisted of four 0.7 ha small fields and two additional large fields of 3.8 haeach."""'? In
this study, we sampled from small plots outlined in those studies (0.7 ha each) consisting of control (n = 3), basalt (n = 3) and lime (n =
3) treatment (Figure S1). Within these fields subplots (10 m x 20 m) were randomly assigned to one of the three treatments and
divided into small subplots (0.1 ha each). In the basalt treated plots, two different basaltic rocks were used at different times, namely
Blue Ridge basalt’® and Pioneer Valley basalt. The chemical composition of both basaltic rocks was similar and contained high con-
centrations of SiO, and Al,O3, Fe-O3 and CaO (Table S2). The X-ray diffraction (XRD) analysis showed differences in mineralogical
composition (Figure S2), where Blue Ridge basalt contained chlorite, actinolite, plagioclase feldspar, quartz, and epidote. Pioneer
Valley basalt was dominated by chlorite, vermiculite, plagioclase feldspar, quartz, and augite. The Blue Ridge basalt contained
6% of >600 pm, 31% 250-600 pm, 27% 75-250 pm and 35% < 75 pm sized grains. (Figure S3). In comparison, the Pioneer Valley
had moderately finer grain size—having 6% of >600 pm, 17% 250-600 pm, 38% 75-250 pm and 39% < 75 pm sized grains. The mass
proportions of the <2 pm fraction was low in both, namely 2% for Blue Ridge and 0% for Pioneer Valley. From 2016 to 2019, the Blue
Ridge basalt was applied annually (four applications) at a rate of 50 tonne ha™" after crop harvest in the fall. From 2020 onward, the
material was changed to Pioneer Valley basalt (two applications) with an adjusted annual application rate of 40 tonne ha~". Inthe lime
treatment plots, lime (containing calcite) was applied in April 2020 at a rate of 6.7 tonne ha™' using a broadcast spreader prior to
spring planting and cultivation. After each application, all plots were chisel plowed to a depth of approximately 18 cm. All fields
were managed a 3-year maize-maize—soybean rotation since 2008. Before each maize planting, 28% urea and ammonium nitrate
(UAN) fertilizer was applied to all plots at a rate of 168 kg ha~' and then 202 kg ha~" in the second maize year. No N fertilizers
was applied during soybean year. Soil samples were collected in October 2022 after soybean harvest and before the next application
of basalt.

The soil sampling scheme was divided into two parts, which differed in number of sampling points: a) soil chemical, and b) soil
physical properties and aggregate size class fractionation. For soil chemical analysis, one sampling point was selected in each small
subplot (n = 6) within each block (n = 3). (Figure S1). For the analysis of soil hydraulic properties and aggregate fractionation, one
sampling point was selected for each treatment in the field. In each sampling point, undisturbed soil samples were collected at
the depths of 1-6 cm and 15-20 cm using 250 cm® steel soil cylinders that were pounded into the ground and removed with soil intact.
These were used for measuring soil water retention and hydraulic conductivity and were stored at 4°C until analysis. Undisturbed
(moist) soil samples for chemistry and soil aggregation analyses were gently broken at the plane of their weak points, sieved to
<8 mm, and air-dried at 21°C.

Soil chemical analysis

Soil organic carbon (SOC) concentration measurements of the bulk soil and soil aggregate fractions, and TIC concentration of
basaltic rocks were performed at the Yale Analytical and Stable Isotope Center (YASIC), a Yale Institute for Biospheric Studies
(YIBS) research center, using a dry combustion Eltra CS analyzer. Since the control soil was carbonate free (tested with 1M HCI),
and the basalt had a low TIC concentration (Blue Ridge 0.21% and Pioneer Valley Basalt 0.19%) it was assumed the total C
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concentration corresponds to the OC concentration. The lime treatment the total inorganic carbon content remained low (0.00-
0.06 mg IC g’1), validating this assumption. The pH, buffer pH, available nutrient concentrations (P, K, Mg, Ca), CEC and exchange-
able K, Mg, Ca, and H were analyzed by A & L Great Lakes Laboratories, Inc. (Indiana, USA). All applied methods are described in
detail by NCERA-13 (2015).”“ Soil pH was measured in a soil and water solution of 1:1 (s:w) ratio and the buffer pH was determined in
a mixture of soil:water:Sikora Buffer in a ratio of 1:1:1. The nutrient content (P, K, Mg and Ca) and exchangeable cations were
measured using Mehlich Il Extraction (ratio 1:10) and subsequently analyzed by ICP-OES for mineral analysis.

Aggregate size class distribution

Aggregate fractionation was conducted to evaluate the effects of the different treatments on soil aggregate structure, aggregate
physical stability, and distribution of organic matter. The aggregate size class distribution for each depth (1-6 cm and 15-20 cm)
was determined using wet sieving.°>"® 10 g of air dried soil (<8 mm) was gently moistened on top of filter paper to avoid slaking.
The pre-moistened sample was transferred to a stacked sieve tower (500 pm, 250 pm and 53 pm) to obtain four different aggregate
size class fractions: large macroaggregates (>500 pm), small macroaggregates (250-500 pm), large microaggregates (53-250 pm),
and the silt- and clay-sized (<53 pm) fractions (S + C-sized fraction). The soil sample was oscillated vertically at approximately 2 cmin
distilled water for 2 min (30 cycles per minute), and all fractions were collected. Collected fractions were then freeze-dried and
weighed to record their mass contribution. Aggregate fractionation was conducted four times for each sample to obtain sufficient
sample material for further chemical analysis and sand correction. The sand content (>500 pm, 250-500 pm and 53-250 pm) in
the aggregates was measured by dispersing each aggregate size class fraction with sodium hexametaphosphate (5 g L~") and
shaking samples for 18 h.”® Each fraction was then wet-sieved, dried in an oven at 60°C and its mass was recorded. We corrected
for sand content by subtracting the mass contribution of sand to the aggregate fraction. We evaluated the accumulation of OC in soil
aggregate size classes by calculating an relative OC enrichment (Eog) factor using the following equation’”:

OCaggregate Mg g~ ']

Equation 1
OChuik soil [Mg 9~ 1] (Ea )

Eoc =
where OC,ggregate iS the OC concentration of the aggregate size class and OCy i soil the OC concentration in the bulk soil. An Eoc>1
indicates a relative OC enrichment and Eoc<1 a relative OC depletion of the respective aggregate size class relative to the bulk soil.

Soil dilution from basalt addition

During the 6 years of annual basalt applications, there was a substantial mass of basalt added on the field (Table S1). Minerals within
basaltic rock have a slow weathering rate, which will have an effect on diluting soil elemental concentrations that are scarce in basalt.
We estimated the basalt contribution (B) to the bulk soil mass and to aggregate fractions with following equation:

_ Z M basalt
M soit + Z Mpasait

where My,sart is the total mass of basalt added on the field [t ha~'] and Mpui soit iS the total soil mass [t ha~"] for the soil depth of 18 cm,
which represents the incorporation depth of basalt. The basalt contribution to the aggregate fractions was calculated based on the
particle size distribution of basalt grains (Figure S3). Basalt sieving was done using Tyler sieve sizes and a 75 pm-sized sieve was
the smallest size used to determine particle size distribution. Consequently, the smallest basalt fraction did not coincide exactly
with the smallest aggregate size class fraction (<53 pm) and the 75 pm size limit was equalized with the 53 pm size range to calculate
dilution rates. This increased the uncertainty in the dilution rate of the finest aggregates, however, dilution correction was still neces-
sary to prevent over- and under-interpretations of elemental concentrations.

Basaltic rocks had low concentrations of OC, P and K (Table S2). Thus, the dilution in the elemental concentration of SOC, available
P and K was corrected with:

B (Equation 2)

é\element = Celement * (1 + B) (Equation 3)

where ée,emem is the corrected elemental concentration, Ceement is the concentration of an element and B is the basalt contribution
calculated from Equation 2.

Soil texture

A 30 g portion of sieved (<2 mm) soil was suspended in 30% H,0, solution and heated to 60°C. The oxidation with H,O, was repeated
until the reaction ceased. The pre-treated soil was dispersed in sodium pyrophosphate decahydrate (Na,P,0- x 10 H,0, 40 g L™
and shaken for 18 h. The silt and clay content of the suspension was measured with a PARIO automated soil particle size analyzer in
the Classic mode, where the differences in suspension pressure were recorded over a measurement period of 9 h. After completing
the PARIO measurement, the sand content was determined by wet sieving (500 pm, 250 pm and 53 um) and drying sand fractions in
an oven at 105°C. The data were evaluated using PARIO Control software, which calculated the primary particle size distribution
based on the integral suspension pressure (ISP) method.”® Because of the high temperature drift, the inverse modeling of the re-
corded pressure data could not be computed by PARIO Control software for five measurements.
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Soil hydraulic properties

Soil water retention and hydraulic conductivity measurements were conducted in the undisturbed soil cylinders (250 cm®) using an
HYPROP system (METER Group, Pullman, WA, USA). First, the undisturbed soil samples were saturated with degassed water from
the bottom and placed on the HYPROP device, which has two tensiometers located at cylinder depths of 1.25 and 3.75 cm. Sub-
sequently, the soil samples were placed on a weighing scale and left drying while measuring in single-balance mode. The measure-
ment was completed once the air-entry point of the tensiometers was reached, thus covering a range between near-saturation and a
pressure head of ca. —3,000 cm. After the HYPROP measurements, water retention in the dry range was determined with the dew-
point method using a WP4C Dewpoint PotentiaMeter (METER Group, Pullman, WA, USA).”®° For this, subsamples were collected
from the cylinders at three different depths. Extracted subsamples were dried at 40°C and drops of water were added stepwise to
create different moisture levels, followed by a 24 h equilibration period for moisture contents to stabilize.®' After each drop and 24 h of
equilibration, a WP4C measurement was performed and the weight of the sample was recorded. After the HYPROP and WP4C mea-
surements, all samples were dried at 105 °C for 48 h to obtain the dry mass of the soil.

The soil water retention curve (SWRC) and hydraulic conductivity curve (HCC) were derived by fitting a model to the water retention
and hydraulic conductivity measurements using the software HYPROP-Fit. The bimodal Kosugi model as proposed by Romano
et al.? was chosen for this purpose. In this model, the soil water content (6) [L> L™3] is expressed as a function of the pressure
head (h) [L] as follows®:

h h
1 '”(/T) 1P (T)
0(h) = 6, + w(0s — 0,)§ yerfe # + (1= w)(0s — 0,){ yerfe 67\’/"% (Equation 4)
1 2

where 6, denotes the residual water content [L° L~2], 65 the saturated water content [L® L=3], h,, the median pore radius [L], ¢ the stan-
dard deviation [-], w a weighing factor [-], and erfc(.) the complementary error function. The additional subscripts “1” and “2” refer to
the two pore domains. The related HCC is given as®*:

ST [ez] 1 ) (62 1 ):|2 .
K(h) = K——&— |aerfc| —=+erfc™ ' (2S, +b erfc| —+erfc” ' (2S, Equation 5
(1) = Koo aorte(Foerte™ (2840 % verto ! (25.) (Equation 5
where
0 — 6 .
Se = - (Equation 6)
and
w o3 .
a = mexp (5) (Equation 7a)
po1= Wexp<é) (Equation 7b)
hma 2

in which K(h) denotes the hydraulic conductivity [L T~'], K the saturated hydraulic conductivity [L T~'], and  is a parameter account-
ing for pore tortuosity and connectivity. Note that K was not measured but is included as a fitting parameter.
The root-mean-square error (RMSE) was used to evaluate the performance of the bimodal Kosugi model:

(Equation 8)

where y;and y; are measured and model predicted water content or hydraulic conductivity, respectively.

Quantification of soil structure

We quantified the degree of soil structure development for all three treatments using a recently proposed index by Kl&ffel et al.*” This
index requires data on particle size distribution, water retention and porosity. The index uses the concept of relative entropy, also
known as the Kullback-Leibler (KL) divergence, to quantify the difference in pore-size distribution (PSD) between the structured
soil and a hypothetical same soil without structural pores. The latter is referred to as the reference soil. A larger KL divergence indi-
cates a larger difference between the two PSDs and, thereby, a larger soil structural development. The PSD of the structured soil was
derived from the fitted SWRC using the simplified Young-Laplace relationship, where the pore radius (r) [cm] is a function of h®°:

, _ 0149
T h

The PSD of the reference soil was derived from the measured particle size distribution: first, the equivalent pore radii and corre-
sponding water contents were determined using a method described by Chang et al.?* Subsequently, the pore radius-water content

(Equation 9)
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pairs were fitted using the same model as used for the structured soil (Equation 4). In doing so, 6, was fixed to the value obtained from
fitting the SWRC of the structured soil, assuming this parameter is identical for structured and reference soil. Furthermore, 6, of the
reference soil was set to 0.30.2%°

Having obtained the parameters of the two PSDs, the KL divergence was calculated by numerically solving the following integral®®:

KL divergence = " p(r)n '[& ar (Equation 10)

i q(r)
where p(r) is the PSD of the structured soil and g(r) the PSD of the reference soil. The parameters ryax and rmin refer to the maximum
and minimum pore radius respectively, where the former was set to 1,490 pm and the latter to 0.1 pm respectively.87 The value for ryin
represents the equivalent pore radius at permanent wilting point, which is assumed to be unaffected by soil structural development.®®

QUANTIFICATION AND STATISTICAL ANALYSIS

The normal distribution of the dataset was checked in RStudio (version 4.3.0) using the ShapiroWilk test, and non-parametric tests
were applied to test for significance between treatments using the Kruskal-Wallis test followed by Dunn’s post hoc test.?%°° Differ-
ences were considered statistically significant at p < 0.05. To determine the effect of each treatment on soil physicochemical prop-
erties, principal component analysis (PCA) was applied in RStudio using the FactoMineR package. The variables used in the PCA
were normalized by standard deviation to minimize the effect of different scales and units in the dataset:

~  X; — mean(x)

X = T(X) (Equation 11)

where X; denotes the normalized value, mean(x) the mean value of the variable x and sd(x) is the standard deviation of the variable x.
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