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Lithium-ion Battery Thermal Runaway Propagation Prevention — Predicting
Critical Parameters Considering Uncertainty

Dr Peter J. Bugryniec?, Prof Solomon F. Brown®*

“School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Abstract

Li-ion batteries (LIBs) are integral to modern society, driving the electrification of transport and supporting renew-
able energy generation to meet Net Zero. However, LIBs suffer from the potential to undergo thermal runaway (TR)
which can lead to fire and explosions. Computational modelling of TR is essential to understanding its hazards, and
to accurately quantify risks there is a need to account for the uncertainty in TR behaviour. To adequately predict the
safe limits of battery operation we incorporate the stochasticity of thermo-physical and kinetic reaction parameters
in module thermal runaway propagation (TRP) analysis. A 0-dimension heat transfer model for TRP predictions is
validated against experimental findings. From this, Monte Carlo simulations are undertaken to determine the uncer-
tainty in the predicted cell temperatures, times to cell TR and times to TRP. The critical heat dissipation coefficient
to prevent TRP considering cell uncertainty was found to be 2.5 and 4.6 times larger for LFP and NMC stacks, re-
spectively, compared to the scenario where cell uncertainty was not considered. For the LFP stack, the less severe TR
events mean, in theory, that TRP can be prevented by heat pipe or submersion cooling thermal management systems.
Without considering cell stochasticity there is a significant overestimate of TRP time and an underestimate of critical
heat dissipation coefficient to prevent TRP. Hence, the predicted safe time for evacuation and appropriate thermal
management methods are inaccurate. This work highlights the need to incorporate uncertainty in predictions of risk.

Keywords: Battery Safety, Battery Abuse, Stochastic Modelling, Statistical Analysis, Risk Assessment

Nomenclature

trrp TRP time between cell; to cell;,; (s)
Roman symbols trr Time (absolute) to cell TR (s)
Trnaz Maximum cell temperature (°C) Abbreviations
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BESS Battery energy storage system (stationary LFP Lithium iron phosphate

applications)
LIB Lithium ion (Li-ion) battery
CoV Coefficient of variation
NMC Lithium nickel manganese cobalt oxide
EV Electric vehicle (automotive)
IQR Interquartile range TR Thermal runaway
15C Internal short circuit TRP Thermal runaway propagation

1. Introduction

Today Li-ion batteries (LIBs) are ubiquitous to automotive [1], marine [2], aviation [3] and stationary energy
storage applications. With this increased adoption and use in safety-critical applications, specifically the aviation [4]
and marine [5] sectors, understanding and preventing thermal runaway propagation (TRP) is paramount [6].

TRP is the cascading effect of cell-to-cell and module-to-module thermal runaway (TR) failure [6, 7]. TR is of
great concern as it leads to extreme heat generation and the production of flammable gasses [8]. These gases lead to
fire or, in confined scenarios, explosions. Further, due to the nature of LIBs, LIB fires are very difficult to extinguish,
can burn for prolonged periods and reignite hours or possibly days later [9, 10].

Unfortunately, at a cell level, TR is always possible even with safety devices installed, due to the chemical poten-
tial of the cell materials, therefore maintaining system safety is only possible by preventing TRP [7]. Experimental
and computational studies have investigated the use of different thermal management (cooling) and thermal barriers
(insulation) to prevent TRP [6, 11]. Further, cell TR behaviour can be uncertain due to natural variations in materials
and structural properties introduced through the manufacturing process. As such, it is important to consider the uncer-
tainties in battery parameters and model assumptions in design optimisation, especially in safety-critical applications,
to determine the probability of the most severe events and the practicality of mitigating them. Therefore, this work
aims to determine the consequence of cell variability on the optimised battery design for TRP prevention.

The variation in TR severity (i.e. maximum temperature) and time to TR has been shown by several sources [e.g.
12-14] for cells of different chemistries under accelerated rate calorimetry (ARC), oven exposure and constant power
heating. Further, the probability density of the heat output from the ejected dust/gases, ejected electrode winding and
through the cell’s surface have been calculated by Walker et al., showing that the electrode winding and dust/gases
carry away most of the heat [15]. The uncertainty in maximum temperature, heating rate and mass loss under ARC
has been determined from a limited number of tests [16]. Thus highlighting the necessity to be able to incorporate

uncertainty into predictions of cell and pack TR failure.



The sensitivity of cell TR to thermo-physical [17—19] and decomposition kinetic parameters [20] has been studied.
From which, it has been shown that increasing the activation energy of the SEI reaction delays the onset of TR but
does not prevent it [20]. It is found that TR severity is influenced most by internal short resistance ratio, cooling
power, electrolyte combustion and the heat release from anode decomposition [17]. Further, the ability to maintain
thermal safety is reduced with increased degradation and internal resistance [21]. Huang ef al. [19] determined TR
initiation and propagation are highly dependent on heat capacity and thermal contact. Applying a Gaussian Process
surrogate model, Yeardly er al. [18] found that emissivity, followed by convection and conductivity properties, are
most significant parameters regarding the variability of TR onset time and maximum TR temperature (when kinetic
parameters not considered). For a module of prismatic cells, the thermal runaway process was most influenced by
the “critical temperature” (the TR inducing temperature), while the specific heat capacity significantly influenced TR
duration [19].

In our previous work on cylindrical cells, we show that when considering uncertainty in thermo-physical and
kinetic parameters it is possible to predict the increase in failure probability with environmental temperature and also
the resulting change in hazard level [22]. Further, for a large array of cylindrical cells, when random heat transfer
coefficients are considered the propagation front deviates from the ideal path [23]. Using a probability distribution
function for cell failure based on cell surface temperature (determined from experimental results) Zhai et al. predicted
the TRP path and its likelihood considering different locations of initiating cells in a four-by-four pack of cylindrical
cells [24]. Using a surrogate model, Zhang et al. [25] predict the uncertainty in maximum cell temperature, finding at
45% SOC the greatest uncertainty occurs. They further showed that if TR occurs in the first cell of a stack there then is
a 90% chance of full TRP. Xia et al. [21] considered the uncertainty in the cell mass, cell internal resistance, ambient
temperature and operating power within a TR model of a battery module. From this, they showed it is possible to
predict the mean and standard deviation of both the critical ambient temperature and operating power for reducing the
risk of TR.

It is important to consider the stochastic nature of cell parameters to enable predictions of uncertainty on time to
TR, severity of TR, critical parameters to prevent TR(P) and propagation pathway. However, no work has considered
the uncertainty in the kinetic parameters governing cell exothermic decomposition (alongside thermo-physical para-
meters) to predict the critical parameters to prevent TRP in modules or packs. This is evidently a crucial point to
address considering that the kinetic parameters directly govern the TR behaviour of a Li-ion cell.

Carrying out statistical analysis studies, such as Monte Carlo simulations, on stochastic parameters to predict the
uncertainty in outcomes requires many thousands of independent runs. As such, models need to be as computation-

ally efficient as possible while still retaining accuracy, leading to lumped or O-dimensional models being preferred.



Lumped thermal resistive network modelling is shown to be a useful method for simulating cell TR and TRP in bat-
tery modules [26-28] and packs [23, 29, 30]. These models have been used to study how battery parameters affect
propagation severity, speed and direction; as well as how propagation can be prevented, but do not consider the effect
of uncertainty on these predictions. Further, the lumped thermal runaway models can be coupled with electrochemical
models or 3D computation fluid dynamics models to account for charge/discharge behaviour and vent-gas dispersion
respectively.

This work, therefore, aims to understand the effect of exothermic decomposition uncertainty in Li-ion batteries
on the variation of TRP behaviour. In doing so our objectives are to (1) incorporate, for the first time, uncertainty of
thermo-physical and reaction kinetic parameters in a battery module (pack) simulation; (2) predict the probability and
uncertainty to which critical parameters can prevent TRP; and (3) compare how the chemistry of a battery module
affects these predictions. From this, we wish to highlight the importance of incorporating TR uncertainty in the
evaluation of safety systems and the integral role it plays in supporting risk assessments of battery systems at any
scale - such as determining the probability a thermal management system can prevent TRP or predicting the available

time for evacuation.
2. Methodology

This work considers six NMC prismatic cells in series to form a cell stack representing experimental work by
Feng et al. [26]. The model is validated against the experimental data, while the model is further used to study a
similar LFP stack to allow a comparison of the two chemistries. The governing energy balance and heat generation
terms of the cell model are presented in Section 2.1. These are incorporated into the thermal resistive network model
representing the 6-cell stack described in Section 2.2. Abuse of the stack is by nail penetration of the first cell, as
in Ref. [26], which is modelled by an additional heating term representing an internal short circuit (ISC) described
in Section 2.1.4. The uncertainty analysis, considering the effects of cell variations on the predictions of significant
TRP values (maximum cell temperature, time to TR and time to TRP) and the prevention of TRP, is discussed in

Section 2.3.
2.1. Lumped Li-ion Cell Thermal Runaway Model

The governing theory for the thermal and decomposition behaviour of the cell model follows previous work

[31, 32] and is described below.



Table 1: Cell physical parameters [33].

Description Symbol  Unit Value

Cell mass Mo kg 0.72
Cell heat capacity Cp.cell J/kg/K 1100
Cell width, y direction Weenr m 0.1480
Cell height, z direction H . m 0.0913
Cell depth, x direction Dol m 0.0265
Tab height Hiwp m 0.0020
Tab width Wiab m 0.0265
Cell surface area, z direction A, m? WeentDeetr
Cell surface area, y direction A, m? DeepiHeeny
Cell surface area, x direction A, m? Weett Heel
Tab surface area Atap m? HiosWiap

2.1.1. Energy Balance
The energy balance, and therefore the cell temperature, is governed by:
dT
pcelleﬁcellV;:ellE = Qconv + Qrad + Qdecomp (1)

This assumes the temperature gradient within the cell negligible so the lumped heat capacity assumption holds. Here,
p (kg/m3) is the density of the cell and V.., (m?) is the volume of the cell. Hence, Peeli Veelr 18 equivalent to the mass
of the cell Mce; (kg). Further, C, (J/kg/K) is the heat capacity of the cell, T (K) is the temperature of the cell, ¢
(s) is time, while Qconv, @rad and Qgecomp (J/s) are heat sources for convection, radiation and TR decomposition

respectively. The physical parameters of the cell are given in Table 1.
2.1.2. Heat Sources

The radiation and convection heat transfer to/from the environment are governed by:

Qrad - Acell{‘:rado—rad(Tfmb - T4) (2)

Qconv = Acellhconv (Tamb - T) (3)

where Ag.;; (m?) is the surface area of the cell, Ty (K) is the ambient temperature, €,,¢ (unit-less) is the radi-
ation efficiency coefficient, 0,,4 (J/s/m?/K*) is the Stefan-Boltzmann constant and %oy, (J/s/m?/K) is the natural

convection coefficient.



The decomposition heat generation is the sum of four major exothermic reactions:

Qdecomp = Qsei + Qne + Qpe + Qele

“

The heat from the decomposition of the solid electrolyte interphase (Q)s.;), negative-electrode/electrolyte reaction

(@ne), positive-electrode/electrolyte reaction (@) and the decomposition of the electrolyte (Q)¢;c) are described as:

dClei

sei — nehsei -
@ mn dt

dChpe

Qne = *mnehnew
dCle
Qpe = mpehpeT:
dC

Qete = _meleheleT;le

&)

(6)

@)

®)

where m; (kg), h; (J/kg) and C; (unit-less) are the mass of reactant, enthalpy of reaction and fractional conversion of

reactant ¢, respectively, where ¢ = sei, ne, pe, ele.
2.1.3. Reaction Rates

The rate of decomposition of species C; are given by:

dCsei ‘
7t = _Asei exp (_Ea,sei/RgaST)C:esim
ane
) =—An. exp (—Ea,ne/RgasT)C:LLge exp (_tsei/tseiO)
dtsei
W = Ane exp (_Ea,ne/RgasT)C':zlge exp (_tsei/tseio)
dCpe
% — Apeexp (~Bupe/ Ryas T)Cpe (1= Cpe) s
dCe e n
dtl = _Aele exp (_-Ea,ele/RgaST’)CYeleél8

€))

(10)

an

12)

13)

where A; (1/s) is the frequency factor, £, ; (J) is the activation energy, Ryqs (J/K) is the ideal gas-constant, ¢,.; and

tsei0 are the non-dimensional thickness and initial thickness of the SEI, and n; is a non-dimensional power term. The

parameters for the reaction kinetics of Egs. (5) to (13) are given in Table 2.



Table 2: Kinetic parameters for thermal runaway reactions [34]. Values for the LFP chemistry in brackets [35], positive-electrode/electrolyte
reaction only, all other values same as NMC.

Description Symbol Value
Frequency factors (1/s)
Solid electrolyte interphase Agei 1.67 x 1013
Negative-electrode/electrolyte Ane 1.67 x 10'2
Positive-electrode/electrolyte Ape 6.67 x 10!
(2.00 x 10%)
Electrolyte decomposition” Agie 1.00 x 103
Electrochemical short circuit? A, 1.67 x 1010
Activation energies (J)
Solid electrolyte interphase Eq sei 224 %1071
Negative-electrode/electrolyte Eqne 2.24x 107"
Positive-electrode/electrolyte Eqpe 2.03x 107"
(3.62x 10719
Electrolyte decomposition Ea.cle 1.75 x 1071°
Electrochemical short circuit? Eqec 1.40 x 10719
Heats of Reaction (J/kg)
Solid electrolyte interphase H.; 2.570 x 10°
Negative-electrode/electrolyte H,, 1.714 x 10°
Positive-electrode/electrolyte H,. 3.140x 10°
(1.947 x 10°)
Electrolyte decompositioni Hg. 7.200 x 10°
Initial value of dependent variables (-)
Solid electrolyte interphase Cseipn 0.15
Negative-electrode/electrolyte Che,0 0.75
Solid electrolyte interphase thickness  t4c;,0 0.033
Positive-electrode/electrolyte Che,0 0.04
Electrolyte decomposition Cele,0 1
Mass content in cell (kg)
Anode Me 0.13
Cathode myp 0.29
Electrolyte® Me 0.18
Reaction orders (-)
Solid electrolyte interphase Nsei 1
Negative-electrode/electrolyte Nne 1
Positive-electrode/electrolyte, 1 Npe,1 1
Positive-electrode/electrolyte, 2 Npe,2 1
Electrolyte decomposition Nele 1
Gas constant (J/K) Ryas 1.38x 10723

“Fit.

"From Jiang et al. [29].

*Fit given the range of values from [26, 33].
SFrom Feng et al. [36].



2.1.4. Internal Short Circuit

The decomposition heat can be extended to include heat generated by ISC, Q sport [29]:

dSOC

- H,.(1—n—y) 2% 14
Qshort ec( n ’Y) dt ( )

where H. (J) is the total electrochemical energy stored within the cell, 77 is an efficiency factor representing the frac-
tion of energy leaving via the venting process, while v is a factor denoting the energy release due to nail penetration.
The term H.. is calculated by:

H..=C-V-3600 (15)

where C'is the capacity (Ah) and V' is the nominal voltage of the cell respectively.

The change in SOC is [29, 34]:

dsoC

dt B _Aec(l - Cpe)c’ﬂe exp (_Ea,ec/RgasT> + (dcpe dcne

dt+ dt

) soC (16)

where A, and E, .. are the frequency factor and activation energy of the electrochemical reaction. Further, the
second term on the right-hand side represents the consumption of the active material, while the process stops when
the SOC term reaches zero. The change in SOC determines the rate of energy release from the short, and hence the
rate of heat generation. The range of SOC determines the overall possible amount of energy that can be released, i.e.
a larger initial SOC leads to greater heat of electrical short.

The first cell is initiated into TR by nail penetration. This is modelled by:
Hpait = vHee (17

For the initiation cell vy is fit to experimental data [29] but is zero for all other cells. In the initiation cell the heat
released is assumed to cause near instantaneous temperature rise. Hence, the temperature of the cell immediately at

the time of penetration is [29]:

YHee
Tiriggero = 7 + Tin 18
trigger.0 Cp,cellMcell * ’ ( )

where T}, is the initial cell temperature. The parameters for the ISC heat generation are given in Table 3.



Table 3: Cell electrochemical and internal short circuit parameters [29].

o .. Value
Description Symbol Unit NMC LFP*
Cell capacity C Ah 25 16.25
Cell voltage, nominal v v 3.7 3.2
Electrical energy H,. J Eq. (15)
Initial SOC SOCy, - 1
Efficiency factor, vent energy n - 0.12
Efficiency factor, nail energy, Cell 1 vy - 0.51
Efficiency factor, nail energy, Cell 2-6 v - 0.00

“The capacity of the LFP cell is assumed to be 65% of the NMC cell considering each
have the same form factor.

2.2. Thermal Resistance Network Model of Li-ion Module

A thermal resistive network is used because of its computational efficiency allowing for relatively fast simulation
times making it practical for uncertainty analysis. Under the electrical circuit analogy [37] the governing equation for
the energy balance is given by Eq. (19), where CY, is the thermal capacitance of the object (J/K) derived from the heat
capacity and mass (see Eq. (1)).

dl' Tomp —T

Congr=—1p — 19)

R is the thermal resistance (K/W) derived from the right hand side of Eq. (1) where:

o Tamb -T
Q= — 5 (20)

The conductive resistance is derived from Fourier’s law of conduction, Eq. (21). Equating Eq. (21) to Eq. (20)

conductive resistance is determined and given by Eq. (22).

M2Awp(Th —Tp) Ty —1Ts

qcondiction,1—2 = 612 R12 (21)

(512 1
R= = (22)
)\12A12 hcondA12

Where A5 (m?) is the area of an object in a given direction / —2 (which can be averaged if the area changes from one
point to the other), 1 (m) is the distance between walls and A (W/m/K) is the thermal conductivity of the material.
The resulting conductive heat transfer coefficient h.,,q equates to Ajo/d12.

Newton’s law of cooling defining convective heat transfer is given by Eq. (3) and can be equated to Eq. (20) such



that:

Tsurface - Tfluid
Reonw

(23)

hconvAsurface (Tsurface - Tfluid)

where heony (W/m2/K) is the convection coefficient and Ag,,, f (m?) is the surface area of a given face. From this the
convective resistance, R ., is therefore:
1

Rco’rw = 7 i 24
hconvAsurf ( )

For two objects touching, but where conduction does not occur, the contact resistance (R,,¢) is given as:

1
cont — 7 A 2
R ont hcontAsqu ( 5)

where heon: (W/m?/K) is the contact heat transfer coefficient.

Stefan—Boltzmann and Kirchhoff’s radiation laws for a grey body, Eq. (2) can be expanded:

Qraa,1—2 = e10A; (T} — Ty)

(26)
=104y (T +T3) (Ty + To) (Th — T2) = hyaa(Ty — T)
where the radiation heat transfer coefficient (h,.q) is defined as:
hrad = €10 A1 (TE +T5) (Ty + T») (27)
Hence, radiative heat transfer can be expressed in resistive terms as:
T —T5 T —T5
= = 28
Q12 1/(hradA1> Rrad ( )
and the radiative resistance is:
1
Rra = 29
¢ hradAl ( )

Each of the cells in the stack, see Fig. 1, are denoted by a lumped thermal node (yellow dot) with a temperature
T.enn governed by Eq. (19) with heat sources from Sections 2.1.2 and 2.1.4. Each cell (node) is connected to its
neighbours through appropriate thermal resistances (R;) to create the thermal resistance network. Each cell considers
heat conduction from its lumped mass to is surface in each principle direction (x, y and z) through resistances I2,, 12,
and R, as well as conduction via the cell tabs to neighbour cells through resistances Ry, as shown in Fig. 1.

At a cell’s top/bottom and front/back surfaces heat is transferred through convective R .., and radiative R,qq

10



Table 4: Thermal resistance definitions and parameters.

Description Symbol Parameter values to determine R;
Conductive resistance, Eq. (22)
x-direction R, § = Deey/2; A = 0.15W/m /K"
y-direction R, § = Weenr/2; A = 30 W /m/K"
z-direction R, § = Heer/2; X = 30 W/m/K"
Tab connections’ Riap § =0.001m; A = 0.5W/m/K

Contact resistance between cells, Eq. (25)  Reont h. = 1000 W/m? /K"

Resistance between cell and environment™, R, Convection: hgony = 20 W/ m? / K$
Eq. (24) and Eq. (29) Radiation: € = 0.04, o = 5.67037 x 108 VV/mZ/K4
Environment temperature Tomp 25°C

“From Jiang et al. [29].
TEquivalent conduction parameters from Feng et al. [33].
$The convection coefficient is assumed to be the same in all directions.

resistances, combined into an overall resistance R},. For the front surface of cell one and the back surface of cell six
heat transfer is also by radiation and convection, see Fig. 1. For the cell surfaces touching a neighbouring cell surface
heat transfer is through contact resistance R.,,: as shown in Fig. 1.

The parameter values for the thermal resistances are given in Table 4. The thermal resistive network model is built

in MATLAB® Simulink® and is presented in Figure S1 of the supplementary material.
2.3. Uncertainty Analysis

Uncertainty analysis of the stack TRP behaviour is determined through Monte Carlo methods. Random values
for cell reaction parameters (Mcei1, Cp cett, Ai, Eq i, H; for i = sei, ne, pe, ele, ec) are generated assuming a normal
distribution and no interdependence. The parameters are generated using MATLAB®’s normrnd function given a
mean and standard deviation, where the mean is assumed to be the parameter values from Tables 1 and 2 and the
standard deviation is equal to 1% of the mean (as in previous work [22]), i.e. a CoV of 1%. This value is based on
the variation in measurable parameters, mass and dimensions, and applied to the kinetic parameters as there is a lack
of data on the values of kinetic parameters by direct measurement to determine their CoV independently. Note the
value of Ty,i44er,0 (BEQ. (18)) is the same in all cases given a cell’s chemistry as it is based on the “base” parameters
of Tables 1 and 3.

The appropriate sample size (i.e. number of replicates) N for the Monte Carlo analysis is determined in the results,
see Section 3. Further, the random parameters are determined such that for each run of the sample size N each of the

six cells has random parameters representing the cell-to-cell differences within a given batch of manufactured cells.
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Figure 1: Schematic of battery stack and resistive network.
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Lastly, each parameter generated within the normal distribution is checked to be positive as negative values have no
real meaning.

Using this method the mean behaviour of TRP (with error quantified by a standard deviation) is predicted, i.e the
maximum cell temperature, time to cell TR and time of cell TRP, and the median probability of preventing TRP (with
error quantified as an interquartile range) is estimated. The mean is used in the analysis of TRP behaviour as the
temperature and time are continuous numbers. The median is used in the analysis of the prevention of TRP because
prevention is categorical, i.e. yes/no TRP has been prevented. The probability of prevention is determined from the
percentage of “yes” in the sample size [N, with the variation calculated from 100 samples (a.k.a 100 runs) each with

a size N.
3. Results and Discussion

The TRP model of the 6-cell stack is first validated against experimental data, see Fig. 2(a). From this, it can be
seen, for the NMC case, that the model predicts maximum cell temperatures and time to cell TR well. The errors in
predicted maximum cell temperatures are shown in Table 5. The average error is approximately 5% when considering
cells 2 to 6 (i.e. ignoring the initiation cell), and less than 5% when excluding cell 3 that shows a larger maximum
temperature in the experimental data compared to the rest of the cells. While the simulated temperature profile to
peak cell temperatures represents the experimental data well, the cooling of the cell after peak temperatures is slower.
This is attributed to the thermal mass and heat capacity of the experimental cells decreasing after thermal runaway
due to the venting process. This reduction leads to faster heat dissipation and, consequently, more rapid cooling of
the experimental cells compared to the model, which currently does not account for venting. However, the critical
parameters for TRP analysis, maximum cell temperature - 7., the absolute time to cell TR - ¢7r and the relative
time between one cell undergoing TR following the previous cell (i.e the TRP time between cells) - ¢ r p, are predicted
well. As such, the model is deemed suitable for further studies.

Comparing the TRP predictions between the NMC (Fig. 2(a)) and LFP (Fig. 2(b)) cell stacks it can be seen that
the LFP stack also undergoes TRP. However, the LFP stack has maximum cell temperatures 300°C to 350°C less
than the NMC case while taking approximately twice as long to propagate from Cell 1 to 6. Note that according to
Eq. (18), the instantaneous initiation temperatures (simulating nail penetration) are 179°C and 112°C for the NMC
and LFP stack respectively. Even though the initiation temperature is much lower in the LFP case TR still occurs in
Cell 1. Further, from Fig. 2 it is clear that TR initiates in both the NMC and LFP cells at a temperature much lower
than 100°C as a rapid temperature rise is seen by this point.

Further details on the differences in 1},,4%, tTR, tTrRP fOr the two stacks of different chemistries are discussed in
the next section. This is accompanied by a discussion of the effect of parameter uncertainty on model output (7},,4,

13
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Figure 2: Predictions of TRP in a 6 cell stack (a) considering NMC cells, the simulation and experimental data is represented by solid and dashed
lines respectively [experimental data from 26], and (b) considering LFP cells.

Table 5: Error in maximum cell temperature predictions of Fig. 2(a).

Cell  Error (%)

1 -0.8
-3.7
-9.1
-4.1
-5.7
-3.1

AN AW

trr, trrp) Uncertainty.
3.1. Thermal Runaway Propagation Analysis

To analyse the uncertainty in TRP behaviour, the effect of Monte Carlo sample size on results if first studied, see
Fig. 3. From this, it can be seen that the error in mean maximum cell temperature (of Cell 6) is relatively unaffected
by increased sample size. However, for the predicted time to TRP (for Cell 5 to Cell 6), the error significantly reduces
to approximately 1% absolute error at N = 103, The CoV for both T},,, and t7rp initially increases with sample
size but becomes stable at N = 10*. Hence, considering the value of N at which the error no longer significantly
reduces and where the CoV for T,,,, and t7rp becomes stable, the smallest sample size that satisfies both conditions

is N = 10*. This used in the remainder of this section on the analysis of TRP uncertainty.
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Considering a sample size of N = 10*, Fig. 4 presents the uncertainty in predictions of T,4z, tTr, tTrp for the
NMC cell and LFP cell stacks. Figs. 4(a) to 4(c) compare the Monte Carlo predictions to a base case simulation and
experimental results for the NMC cell stack, and Figs. 4(d) to 4(f) compare the Monte Carlo predictions between the
NMC cell and LFP cell stacks.

The predicted maximum temperature for the NMC stack (see Fig. 4(a)) is less than the experimental values (as
noted in the discussion above) so direct comparisons to the Monte Carlo simulation can not be made. However, it can
be seen that there is a slight downward trend in 75, as TR progresses through the stack. Further, it can be seen that
there is a deviation of the mean value of the Monte Carlo simulation compared to the base case simulation, with the
mean of the Monte Carlo simulation having lower values than the base case. Regarding ¢ and t7rp in Fig. 4(b) and
Fig. 4(c) it can be seen that the mean values are again slightly lower than the base case scenario. Most important is
the t7rp, which can be seen to reduce as propagation progresses. For the base case scenario, this behaviour is steady,
while the experimental data follows a similar downward trend but with significant fluctuations. However, it can be
seen from Fig. 4(c) that all the experimental t7rp are picked up within one standard deviation of the mean values
from the Monte Carlo simulation.

As shown above, even though T,,,, slightly reduces as TR progresses so does trrp. The reduction in t7pp
is attributed to the preheating of later cells by the TR of former cells [38—40]. Thus, applied to different module

geometries or full packs the effect of failed cell location on the rate of TRP can be investigated. The above discussion
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Table 6: Coefficient of variation (CoV) in Figs. 4(d) to 4(f).

CoV (%)
Cell Tmax iTr iTrRP
NMC LFP NMC LFP NMC LFP

1.19 143 NA N/A NA NA
1.59 1.80 10.70 10.75 10.70 10.75
1.61 183 828 818 14.11 14.00
1.66 194 758 730 1870 17.94
1.73 215 826 7.58 30.62 26.16
1.82 242 1025 891 50.25 39.30

AN AW~

also highlights the importance of considering cell variations to capture the fluctuation in maximum cell temperature
and TRP time, and therefore the uncertainty in TRP behaviour.

Comparing the TRP behaviour of the NMC and LFP cell stacks (see Figs. 4(d) to 4(f)), it can be seen that the
LFP stack behaves in much the same way as the NMC stack. Regarding maximum cell temperatures, the LFP stack
reaches much lower peak cell temperatures (as also noted in Fig. 2). However, Fig. 4(d) and Table 6 show that as TRP
progresses the uncertainty in the maximum cell temperature increases, with the LFP stack having greater uncertainty.
The time to TR, see Fig. 4(e), is slower in the LFP cell stack but the CoV (Table 6) between to two chemistries is
similar and shows no clear change with TRP progression. The TRP time, which reduces as propagation progresses,
is greater for the LFP cell stack (see Fig. 4(e)). Further, as propagation progresses the uncertainty in ¢t rp increases,
see Fig. 4(e) and Table 6, while the NMC stack has a larger CoV at the latter stages of propagation.

Considering the CoV of the cell input parameters is 1%, we see this leads to 1.5-2.5 times more variation in 7}, 4,
and an order of magnitude more variation in t7rp. This shows that predictions on the time to TRP are much more
sensitive than predictions of maximum temperature. This is attributed to the fact that some instances of cell-to-cell
TRP time were negative, meaning that TRP was out of sequence, due to randomly generated parameters leading to cell
stability being much lower than the former cell. Note that there is no correlation between maximum cell temperatures
and time to cell TR.

The significant variation in ¢t7rp is important as it has practical implications on the predictions of safety at a
pack and system level. Considering the requirement for a 5-minute warning of TR for EVs [41] or a similar minimum
requirement for the propagation in BESSs, not accounting for cell variability could lead to considerable overestimation
of TRP time. In turn, this would lead to incorrectly assessing a propagation event as acceptable when in many instances
considering uncertainty it is not. Such is the importance of understanding cell TR variation and its incorporation into
models for the prediction of events as pass/failure against safety criteria.

There is limited experimental data comparing NMC and LFP stacks, but our work broadly agrees with the tests
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done by Schoeberl et al. [42]. The experimental comparison of NMC and LFP TRP uses larger capacity cells than this
work, but the maximum cell temperatures are on average 900°C and 524°C for NMC and LFP respectively, compared
to 845°C and 505°C predicted here. Further, the total time to complete TRP of the LFP stack is much longer than the
NMC stack in both the simulated case and the experimental work of [42]. As such, this gives us further confidence in
the simulation of the LFP stack. The t7rp (cell-to-cell) of the experimental data shows greater propagation times for
the LFP stack, similar to our predictions. However, while the LFP and NMC stacks show a downward trend in t7rp
as TRP progresses in our simulations and the experimental cases for NMC [26] and LFP [42], the NMC experimental
case of [42] shows an upward trend. This highlights there is an uncertainty in t7rp that needs to be considered in

computational modelling.
3.2. Thermal Runaway Propagation Prevention

Predicting the variation of key TR metrics (i.e. T4z, tTR, tTrRP) 1S important, but it is more insightful to
understand how the same governing cell variations affect the values of critical parameters for TRP prevention. In this
work, the necessary heat transfer conditions to prevent TRP are studied. To do this, the model is redefined such that
convective and radiative heat transfer are considered together in one overall heat transfer coefficient h ;s (W/m?/K).
This allows for a simple method to determine the magnitude of heat transfer required to prevent TRP. The refined
model is found to reproduce that of Fig. 2(a) when hg;s = 25 W/m? /K (which agrees with previous work by Feng et
al. [26]), see Figure S2 in the supplementary material.

First, the value of hy;s required to prevent TRP is determined without considering cell variations to provide a point
of reference. This is accomplished by running a parameter sweep of hg;s at 5 W/m?/K steps whilst using a simulation
time ten times greater than the base case (£im, base = 1200s) to ensure all TR events are captured. The results of this
are presented in Fig. 5. This shows that the NMC stack is prevented from full TRP at a value hg;s = 335 W/m? /K
while TRP in the LFP stack is prevented at a value of k4, = 160 W/m? /K (see Figure S3 in supplementary material
for stack temperature profiles in the time domain). Similar magnitudes of heat dissipation have been shown in the
literature, for a stack of five 3 Ah cells a convection heat transfer coefficient of 500 W /m? /K is required to suppress
TR [43].

As is expected from the LFP stack, due to the lower heat generation, it requires a lower hy;s than the NMC
stack, but it is still a significant increase on hgy;s = 25 W/ m? /K that represents natural convection and radiation.
Considering different heat dissipation methods, forced air cooling can reach up to 250 W/m?/K, while heat pipes can
reach 500 W/m?/K and oil or water submersion cooling can reach 700 W/m?/K and 1000 W/m?/K respectively [26].
As such, the LFP stack could be managed with forced convection cooling while the NMC stack would require one of
the alternate methods. Note, that one has to be conservative with these predictions as the additional heat sources from

18



9001 500
800F 4507
:6700 ﬁ~ g_) 400
o L3501
3600 3
8 —Cell1] £ 300} —Cell 1
a0} —Cell 2 a —Cell 2
g Cell3| & P | Cell 3
= —Cell4| = —Cell 4
400 —Cell5| —Cell 5
g Cell 6 ; 2001 Cell 6
S 300 =)
£ E150¢1
s s
= 2007 =100t
Il S\
0 y i bW L L L | 0 s s f i L N
320 325 330 335 340 345 350 140 145 150 155 160 165 170
Heat dissipation coefficient (W/m2/K) Heat dissipation coefficient (W/m2/K)

(@ (b)

Figure 5: Parameter sweep of hg;s to determine critical value to fully prevent TRP, (a) NMC stack and (b) LFP stack.

electrochemical behaviour, cell series-parallel connectivity and fire are not considered here but have implications on
TR and TRP behaviour in reality.

Following on from the base case scenario above, the effect of cell variation on the calculated value of h4;; for TRP
prevention is studied. As TRP is a binary event, i.e. “yes/no TRP is prevented”, the Monte Carlo simulation has to be
sampled several times (with a given sample size) to calculate the variation in the predicted probability of preventing
TRP. To determine an appropriate sample size for the study a sensitivity analysis is carried out.

The sensitivity analysis considers 100 samples (a.k.a runs) each with a sample size (i.e. number of replicates) N,
again the simulation time is ten times the base case to ensure all TR events are captured. N is increased from 10!
to 10°, where at 10° the overall time for running the Monte Carlo simulation is prohibitive, thus 107 is taken as the
scenario with maximum accuracy. The effect of N on the median and error (interquartile range - IQR and min/max
range) is presented in Fig. 6. It can be seen that N has very little effect on the predicted median, but has a significant
effect on the error. However, in relative terms, at a sample size of 10* the min/max values of the box plot are with 5%
of the values at 10°. As such the rest of the study uses 100 samples with a sample size of 10%.

Under the Monte Carlo conditions described above, the probabilities of different severities of TRP (i.e. from full
TRP to no TRP) are calculated for each stack at the hy;s determined in Fig. 5, as shown in Fig. 7. From this, it can be

seen that for both chemistries complete TRP is only achieved in less than 50% of cases. This shows that a 1% CoV
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on cell kinetic and thermophysical parameters has a significant impact on determining pass/fail criteria. To further
investigate this, a parameter sweep of hg;s now considering cell variability is undertaken.

Fig. 8 shows the parameter sweep of hg;s for one sample (with size N = 10%) to approximately determine values
of hg;s that lead to complete TRP prevention in 99% of cases. From this, it can be seen that the probability of the LFP
stack being completely prevented from undergoing TRP increases more rapidly with h ;s than the NMC stack, while
the NMC stack has a longer taper towards 100%. The LFP stack reaches a 99% percent probability at approximately
hais = 300 W/m? /K while it is not until hg;s = 850 W/m? /K for the NMC stack. These values are used as a
starting point to calculate the confidence in preventing TRP in more than 99.9% of cases (again using 100 samples
with N = 10%). For the NMC at hg;s = 850 W/m? /K the min/max values are not greater than 99%. As such, the
uncertainty analysis on the NMC stack is carried out at values of h4; at the maximum range of the study. This and
similarly the LFP stack results are presented in Figs. 8(b) to 8(c).

From Fig. 8(b) it can be seen that at the maximum hgy;s of the study (1550 W/m2/K) the NMC stack is prevented
from TRP in approximately 99.96% of cases, with a minimum value of 99.91%. At, hg;s = 1500 W/m? /K the
minimum probability of prevention is 99.89%. However, the LFP stack (Fig. 8(c)) reaches a probability of preventing
TRP in over 99.9% of cases (including the minimum percentage) at 400 W/m?/K. Further, for the LFP stack with

the relatively quick increase in median probability, there is a noticeable reduction in the IQR and min/max range of
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Figure 7: Probability of each level of TRP at hy;, determined in Fig. 5 for (a) NMC stack at hg;s = 335 W/m2/K and (b) LFP stack hg;s =
160 W/m? /K.
the predicted probability. From this, it can be reasoned that even under the same cell variability (i.e. 1% CoV on
input parameters) the greater severity of cell TR for the NMC chemistry leads to greater variation in the predicted
probability of preventing TRP. Therefore, understanding and accounting for cell variability, while important, is more
important in the NMC chemistry.

In comparison to the base case in which uncertainty is not considered (Fig. 5) the values of hg;s for the LFP
and NMC stack are 2.5 and 4.6 times larger when considering uncertainty. This is a significant difference, which
considering a safety-critical system would lead to devastating consequences. Preventing TRP in the LFP stack at
hais = 400 W /m? /K is still theoretically possible with heat pipes or submersion cooling as long as the system can
continually dissipate heat at this value and the working fluids can withstand the high temperatures. However, for the
NMC stack, to achieve a hg;s value over 1550 W/m?/K a system employing heat dissipation via liquid/vapour phase
change is needed [44]. Using a lumped heat capacity model for the rapid undertaking of Monte Carlo simulations,
as is common in system design and optimisation [45], we have shown that preventing TRP requires tailored cooling
technologies specific to different battery chemistries. As such, future studies can use this method or findings to
focus more detailed studies (accounting for dimensionality, fluid flow, etc.) on the most ideal cooling technology to

determine specific operating parameters and more accurate overall heat transfer coefficients.
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4. Conclusions

A lumped heat capacity model of 6 prismatic cells is used to investigate the effect of cell-to-cell variations on TRP
behaviour of NMC and LFP stacks. The variations in cell thermophysical and kinetic parameters are represented by
normal distributions with a CoV of 1%. The model shows the LFP stack has cell temperatures 300°C to 350°C less
than the NMC stack and propagation times approximately double that of the NMC stack.

For both chemistries, Monte Carlo simulations show that as TRP progresses maximum cell temperatures slightly
reduce while there is a significant increase in cell-to-cell propagation speed. Further, as TRP progresses there is a slight
increase in the uncertainty of predicted cell temperature, however, there is a significant increase in the uncertainty of
cell-to-cell TRP time.

The critical heat dissipation coefficient to prevent TRP considering uncertainty is calculated to be hg;s = 400 W/m? /K
for the LFP stack compared to hg;s = 1550 W/ m? /K for the NMC stack. These values are 2.5 and 4.6 times larger,
respectively, compared to the scenario where cell uncertainty is not considered.

From this, the key findings are:

1. the less severe TR events of LFP cells means, in theory, that TRP can be prevented by heat pipe or submersion

cooling thermal management systems;

2. without considering cell uncertainty there could be a significant overestimation of the TRP time and hence

available time for evacuation - putting people in harm’s way; and

3. when not considering cell uncertainty the critical heat dissipation coefficient needed to prevent TRP is drastic-

ally underestimated, leading to incorrect assessments of safety and appropriate thermal management methods.

This work highlights the importance of accounting for uncertainty when predicting TRP behaviour so that the
necessary propagation prevention method and available evacuation time can be correctly assessed, in turn allowing a
more rigorous quantification of propagation risk. Further work is required to account for electrochemical behaviour to
factor in the additional ohmic heat source during drive cycles, the effects of cell parallel/series connectivity, mass loss
from venting and heat from off-gas fires in modules or batteries in a closed configuration or confined space. However,

this work is integral to the battery sector to improve safety through facilitating probabilistic hazard assessments.
Conflicts of interest

There are no conflicts to declare.
Acknowledgements

This work was supported by the Faraday Institution [grant number FIRG061].
23



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Y. Ding, Z. P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-Ion Batteries: Current Status and Future Perspectives,

Electrochemical Energy Reviews 2 (1) (2019) 1-28. DOI:10.1007/s41918-018-0022~z.
DNV, Marine Vessel Battery Statistics, online, accessed: 2023-11-28 (2023).

A. Schwab, A. Thomas, J. Bennett, E. Robertson, S. Cary, Electrification of Aircraft: Challenges, Barriers, and

Potential Impacts (10 2021). DOI:10.2172/1827628.

S. Sripad, A. Bills, V. Viswanathan, A Review of Safety Considerations for Batteries in Aircraft with Electric

Propulsion, MRS Bulletin 46 (5) (2021) 435-442. DOI1:10.1557/s43577-021-00097-1.

H. Helgesen, S. Henningsgard, A. A. Langli, Study on Electrical Energy Storage for Ships: Battery Systems For

Maritime Applications — Technology, Sustainability And Safety, Tech. rep. (2020).

S. Mallick, D. Gayen, Thermal Behaviour and Thermal Runaway Propagation in Lithium-ion Battery Systems —

A Critical Review, Journal of Energy Storage 62 (2023) 106894. DOTI:10.1016/j.est.2023.106894.

X. Feng, D. Ren, X. He, M. Ouyang, Mitigating Thermal Runaway of Lithium-Ion Batteries, Joule 4 (4) (2020)

743-770. DOT:10.1016/3.joule.2020.02.010.

P. J. Bugryniec, E. G. Resendiz, S. M. Nwophoke, S. Khanna, C. James, S. F. Brown, Review of Gas emissions
from Lithium-ion Battery Thermal Runaway Failure — Considering Toxic and Flammable Compounds, Journal

of Energy Storage 87 (2024) 111288. DOI:10.1016/j.est.2024.111288.

L. B. Diaz, X. He, Z. Hu, F. Restuccia, M. Marinescu, J. V. Barreras, Y. Patel, G. Offer, G. Rein, Review -
Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions, Journal

of The Electrochemical Society 167 (9) (2020) 090559. DOT:10.1149/1945-7111/aba8b9.

L. Zhang, K. Jin, J. Sun, Q. Wang, A Review of Fire-Extinguishing Agents and Fire Suppression
Strategies for Lithium-Ion Batteries Fire, Fire Technology 60 (2) (2024) 817-858. DO0OI:10.1007/

s10694-022-01278-3.

S. Shahid, M. Agelin-Chaab, A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-
ion Batteries, Energy Conversion and Management: X 16 (2022) 100310. DOI:10.1016/j.ecmx.2022.

100310.

24


https://doi.org/10.1007/s41918-018-0022-z
https://doi.org/10.1007/s41918-018-0022-z
https://afi.dnv.com/
https://www.osti.gov/biblio/1827628
https://www.osti.gov/biblio/1827628
https://doi.org/10.2172/1827628
https://doi.org/10.1557/s43577-021-00097-1
https://doi.org/10.1557/s43577-021-00097-1
https://doi.org/10.1557/s43577-021-00097-1
https://www.emsa.europa.eu/publications/item/3895-study-on-electrical-energy-storage-for-ships.html
https://www.emsa.europa.eu/publications/item/3895-study-on-electrical-energy-storage-for-ships.html
https://www.sciencedirect.com/science/article/pii/S2352152X23002918
https://www.sciencedirect.com/science/article/pii/S2352152X23002918
https://doi.org/10.1016/j.est.2023.106894
https://doi.org/10.1016/j.joule.2020.02.010
https://doi.org/10.1016/j.joule.2020.02.010
https://www.sciencedirect.com/science/article/pii/S2352152X24008739
https://www.sciencedirect.com/science/article/pii/S2352152X24008739
https://doi.org/10.1016/j.est.2024.111288
https://dx.doi.org/10.1149/1945-7111/aba8b9
https://dx.doi.org/10.1149/1945-7111/aba8b9
https://doi.org/10.1149/1945-7111/aba8b9
https://doi.org/10.1007/s10694-022-01278-3
https://doi.org/10.1007/s10694-022-01278-3
https://doi.org/10.1007/s10694-022-01278-3
https://doi.org/10.1007/s10694-022-01278-3
https://www.sciencedirect.com/science/article/pii/S2590174522001337
https://www.sciencedirect.com/science/article/pii/S2590174522001337
https://doi.org/10.1016/j.ecmx.2022.100310
https://doi.org/10.1016/j.ecmx.2022.100310

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, V. Hacker,
Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes, RSC

Adv. 4 (2014) 3633-3642. DOTI:10.1039/C3RA45748F.

P.J. Bugryniec, J. N. Davidson, D. J. Cumming, S. F. Brown, Pursuing safer batteries: Thermal abuse of LiFePO4

cells, Journal of Power Sources 414 (2019) 557-568. DOI:10.1016/7. jpowsour.2019.01.013.

L. Zhang, S. Yang, L. Liu, P. Zhao, Cell-to-cell variability in Li-ion battery thermal runaway: Experimental
testing, statistical analysis, and kinetic modeling, Journal of Energy Storage 56 (2022) 106024. DOI:https:

//doi.org/10.1016/7j.est.2022.106024.

W. Q. Walker, G. A. Bayles, K. L. Johnson, R. P. Brown, D. Petrushenko, P. J. Hughes, D. T. Calderon, J. J. Darst,
R. A. Hagen, B. A. Sakowski, J. P. Smith, K. I. Poast, E. C. Darcy, S. L. Rickman, Evaluation of Large-Format
Lithium-Ion Cell Thermal Runaway Response Triggered by Nail Penetration using Novel Fractional Thermal
Runaway Calorimetry and Gas Collection Methodology, Journal of The Electrochemical Society 169 (6) (2022)

060535. DOT:10.1149/1945-7111/ac7897.

M. Buckwell, C. Kirchner-Burles, R. E. Owen, T. P. Neville, J. S. Weaving, D. J. Brett, P. R. Shearing, Failure
and hazard characterisation of high-power lithium-ion cells via coupling accelerating rate calorimetry with in-
line mass spectrometry, statistical and post-mortem analyses, Journal of Energy Storage 65 (2023) 107069.

DOTI:https://doi.org/10.1016/7j.est.2023.1070609.

A. Kriston, A. Podias, I. Adanouj, A. Pfrang, Analysis of the Effect of Thermal Runaway Initiation Conditions
on the Severity of Thermal Runaway—Numerical Simulation and Machine Learning Study, Journal of The

Electrochemical Society 167 (9) (2020) 090555. DOI:10.1149/1945-7111/ab9%b0b.

A. S. Yeardley, P. J. Bugryniec, R. A. Milton, S. F. Brown, A study of the thermal runaway of lithium-ion
batteries: A gaussian process based global sensitivity analysis, Journal of Power Sources 456 (2020) 228001.

DOI:https://doi.org/10.1016/7.jpowsour.2020.228001.

C. Huang, R. Bisschop, J. Anderson, A Sensitivity Study of a Thermal Propagation Model in an Automotive

Battery Module, Fire Technology 59 (4) (2023) 1405-1420. DOI:10.1007/s10694-023-01383~-x.

K. Shah, A. Jain, Prediction of thermal runaway and thermal management requirements in cylindrical li-ion
cells in realistic scenarios, International Journal of Energy Research 43 (5) (2019) 1827-1838. DOI:https:

//doi.org/10.1002/er.4411.

25


http://dx.doi.org/10.1039/C3RA45748F
https://doi.org/10.1039/C3RA45748F
https://doi.org/10.1016/j.jpowsour.2019.01.013
https://www.sciencedirect.com/science/article/pii/S2352152X22020126
https://www.sciencedirect.com/science/article/pii/S2352152X22020126
https://doi.org/https://doi.org/10.1016/j.est.2022.106024
https://doi.org/https://doi.org/10.1016/j.est.2022.106024
https://dx.doi.org/10.1149/1945-7111/ac7897
https://dx.doi.org/10.1149/1945-7111/ac7897
https://dx.doi.org/10.1149/1945-7111/ac7897
https://doi.org/10.1149/1945-7111/ac7897
https://www.sciencedirect.com/science/article/pii/S2352152X23004668
https://www.sciencedirect.com/science/article/pii/S2352152X23004668
https://www.sciencedirect.com/science/article/pii/S2352152X23004668
https://doi.org/https://doi.org/10.1016/j.est.2023.107069
https://dx.doi.org/10.1149/1945-7111/ab9b0b
https://dx.doi.org/10.1149/1945-7111/ab9b0b
https://doi.org/10.1149/1945-7111/ab9b0b
http://www.sciencedirect.com/science/article/pii/S0378775320303049
http://www.sciencedirect.com/science/article/pii/S0378775320303049
https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228001
https://doi.org/10.1007/s10694-023-01383-x
https://doi.org/10.1007/s10694-023-01383-x
https://doi.org/10.1007/s10694-023-01383-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4411
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4411
https://doi.org/https://doi.org/10.1002/er.4411
https://doi.org/https://doi.org/10.1002/er.4411

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

Q. Xia, Y. Ren, Z. Wang, D. Yang, P. Yan, Z. Wu, B. Sun, Q. Feng, C. Qian, Safety risk assessment method
for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method,

Energy 264 (2023) 126228. DOI :https://doi.org/10.1016/j.energy.2022.126228.

P. J. Bugryniec, S. F. Brown, Predictive hazard level assessment of Li-ion cell thermal runaway failure, in:

Energy Storage Conference 2023 (ESC 2023), Vol. 2023, 2023, pp. 9-14. DOI:10.1049/1icp.2023.3096.

Y. Jia, M. Uddin, Y. Li, J. Xu, Thermal runaway propagation behavior within 18,650 lithium-ion battery packs:
A modeling study, Journal of Energy Storage 31 (2020) 101668. DOI:https://doi.org/10.1016/7.

est.2020.101668.

H. Zhai, H. Li, P. Ping, Z. Huang, Q. Wang, An experimental-based Domino prediction model of thermal run-
away propagation in 18,650 lithium-ion battery modules, International Journal of Heat and Mass Transfer 181

(2021) 122024. DOTI:https://doi.org/10.1016/7j.1ijheatmasstransfer.2021.122024.

W. Zhang, J. Yuan, J. Huang, Y. Xie, Uncertainty assessment method for thermal runaway propagation of
lithium-ion battery pack, Applied Thermal Engineering 238 (2024) 121946. DOI:https://doi.org/10.

1016/j.applthermaleng.2023.121946.

X. Feng, X. He, M. Ouyang, L. Lu, P. Wu, C. Kulp, S. Prasser, Thermal Runaway Propagation Model for
Designing a Safer Battery Pack with 25Ah LiNi,CoyMn,O, Large Format Lithium Ion Battery, Applied Energy

154 (2015) 74-91. DOI:10.1016/j.apenergy.2015.04.118.

J. Chen, D. Ren, H. Hsu, L. Wang, X. He, C. Zhang, X. Feng, M. Ouyang, Investigating the thermal runaway
features of lithium-ion batteries using a thermal resistance network model, Applied Energy 295 (2021) 117038.

DOI:https://doi.org/10.1016/7j.apenergy.2021.117038.

G. Wang, D. Kong, P. Ping, X. He, H. Lv, H. Zhao, W. Hong, Modeling venting behavior of lithium-ion batteries
during thermal runaway propagation by coupling cfd and thermal resistance network, Applied Energy 334 (2023)

120660. DOI:https://doi.org/10.1016/7j.apenergy.2023.120660.

Z. Jiang, Z. Qu, J. Zhang, Z. Rao, Rapid Prediction Method for Thermal Runaway Propagation in Battery
Pack Based on Lumped Thermal Resistance Network and Electric Circuit Analogy, Applied Energy 268 (2020)

115007. DOI:10.1016/7.apenergy.2020.115007.

C. Xu, H. Wang, F. Jiang, X. Feng, L. Lu, C. Jin, F. Zhang, W. Huang, M. Zhang, M. Ouyang, Modelling of

26


https://www.sciencedirect.com/science/article/pii/S0360544222031140
https://www.sciencedirect.com/science/article/pii/S0360544222031140
https://doi.org/https://doi.org/10.1016/j.energy.2022.126228
https://doi.org/10.1049/icp.2023.3096
https://www.sciencedirect.com/science/article/pii/S2352152X2031505X
https://www.sciencedirect.com/science/article/pii/S2352152X2031505X
https://doi.org/https://doi.org/10.1016/j.est.2020.101668
https://doi.org/https://doi.org/10.1016/j.est.2020.101668
https://www.sciencedirect.com/science/article/pii/S0017931021011303
https://www.sciencedirect.com/science/article/pii/S0017931021011303
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2021.122024
https://www.sciencedirect.com/science/article/pii/S1359431123019750
https://www.sciencedirect.com/science/article/pii/S1359431123019750
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2023.121946
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2023.121946
https://www.sciencedirect.com/science/article/pii/S0306261915005814
https://www.sciencedirect.com/science/article/pii/S0306261915005814
https://doi.org/10.1016/j.apenergy.2015.04.118
https://www.sciencedirect.com/science/article/pii/S0306261921004980
https://www.sciencedirect.com/science/article/pii/S0306261921004980
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117038
https://www.sciencedirect.com/science/article/pii/S0306261923000247
https://www.sciencedirect.com/science/article/pii/S0306261923000247
https://doi.org/https://doi.org/10.1016/j.apenergy.2023.120660
https://www.sciencedirect.com/science/article/pii/S0306261920305195
https://www.sciencedirect.com/science/article/pii/S0306261920305195
https://doi.org/10.1016/j.apenergy.2020.115007
https://www.sciencedirect.com/science/article/pii/S0360544223000403
https://www.sciencedirect.com/science/article/pii/S0360544223000403

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

thermal runaway propagation in lithium-ion battery pack using reduced-order model, Energy 268 (2023) 126646.

DOI:https://doi.org/10.1016/j.energy.2023.126646.

G.-H. Kim, A. Pesaran, R. Spotnitz, A Three-Dimensional Thermal Abuse Model for Lithium-ion Cells, Journal

of Power Sources 170 (2) (2007) 476-489. DOI:10.1016/7. jpowsour.2007.04.018.

P. J. Bugryniec, J. N. Davidson, S. F. Brown, Advanced Abuse modelling of Li-ion Cells — A Novel Description
of Cell Pressurisation and Simmering Reactions, Journal of Power Sources 474 (2020) 228396. DOI:10.

1016/7. jpowsour.2020.228396.

X. Feng, L. Lu, M. Ouyang, J. Li, X. He, A 3D Thermal Runaway Propagation Model for a Large Format Lith-
ium Ion Battery Module, Energy 115 (2016) 194-208. DOI:https://doi.org/10.1016/j.energy.

2016.08.094.

P. T. Coman, S. Rayman, R. E. White, A Lumped Model of Venting During Thermal Tunaway in a Cylindrical
Lithium Cobalt Oxide Lithium-ion Cell, Journal of Power Sources 307 (2016) 56-62. DOI:10.1016/ 7.

jpowsour.2015.12.088.

P. Peng, F. Jiang, Thermal Safety of Lithium-ion Batteries with Various Cathode Materials: A Numerical Study,
International Journal of Heat and Mass Transfer 103 (2016) 1008-1016. DOI:https://doi.org/10.

1016/j.1ijheatmasstransfer.2016.07.088.

X. Feng, J. Sun, M. Ouyang, X. He, L. Lu, X. Han, M. Fang, H. Peng, Characterization of Large Format
Lithium Ion Battery Exposed to Extremely High Temperature, Journal of Power Sources 272 (2014) 457-467.

DOI:https://doi.org/10.1016/7.jpowsour.2014.08.094.

G. Sidebotham, Heat Transfer Modeling An Inductive Approach, Springer Cham, 2015. DOI:10.1007/

978-3-319-14514-3.

C. Jin, Y. Sun, H. Wang, Y. Zheng, S. Wang, X. Rui, C. Xu, X. Feng, H. Wang, M. Ouyang, Heating Power
and Heating Energy Effect on the Thermal Runaway Propagation Characteristics of Lithium-ion Battery Mod-
ule: Experiments and Modeling, Applied Energy 312 (2022) 118760. DOI:10.1016/j.apenergy.2022.

118760.

A. Kurzawski, L. Gray, L. Torres-Castro, J. Hewson, An Onvestigation into the Effects of State of Charge and
Heating Rate on Propagating Thermal Runaway in Li-ion Batteries with Experiments and Simulations, Fire

Safety Journal 140 (2023) 103885. DOI:10.1016/3j.firesaf.2023.103885.
27


https://www.sciencedirect.com/science/article/pii/S0360544223000403
https://www.sciencedirect.com/science/article/pii/S0360544223000403
https://www.sciencedirect.com/science/article/pii/S0360544223000403
https://doi.org/https://doi.org/10.1016/j.energy.2023.126646
https://www.sciencedirect.com/science/article/pii/S0378775307007082
https://doi.org/10.1016/j.jpowsour.2007.04.018
http://www.sciencedirect.com/science/article/pii/S037877532030700X
http://www.sciencedirect.com/science/article/pii/S037877532030700X
https://doi.org/10.1016/j.jpowsour.2020.228396
https://doi.org/10.1016/j.jpowsour.2020.228396
https://www.sciencedirect.com/science/article/pii/S0360544216312075
https://www.sciencedirect.com/science/article/pii/S0360544216312075
https://doi.org/https://doi.org/10.1016/j.energy.2016.08.094
https://doi.org/https://doi.org/10.1016/j.energy.2016.08.094
https://www.sciencedirect.com/science/article/pii/S037877531530700X
https://www.sciencedirect.com/science/article/pii/S037877531530700X
https://doi.org/10.1016/j.jpowsour.2015.12.088
https://doi.org/10.1016/j.jpowsour.2015.12.088
https://www.sciencedirect.com/science/article/pii/S0017931016305592
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
https://www.sciencedirect.com/science/article/pii/S0378775314013597
https://www.sciencedirect.com/science/article/pii/S0378775314013597
https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.08.094
https://doi.org/10.1007/978-3-319-14514-3
https://doi.org/10.1007/978-3-319-14514-3
https://www.sciencedirect.com/science/article/pii/S0306261922002136
https://www.sciencedirect.com/science/article/pii/S0306261922002136
https://www.sciencedirect.com/science/article/pii/S0306261922002136
https://doi.org/10.1016/j.apenergy.2022.118760
https://doi.org/10.1016/j.apenergy.2022.118760
https://www.sciencedirect.com/science/article/pii/S0379711223001534
https://www.sciencedirect.com/science/article/pii/S0379711223001534
https://doi.org/10.1016/j.firesaf.2023.103885

(40]

[41]

[42]

[43]

[44]

[45]

Y. Liu, L. Zhang, Y. Ding, X. Huang, X. Huang, Effect of Thermal Impact on the Onset and Propagation of
Thermal Runaway Over Cylindrical Li-ion Batteries, Renewable Energy 222 (2024) 119910. DOI:10.1016/

j.renene.2023.119910.

United Nations, Global Technical Regulation on the Electric Vehicle Safety (EVS) - ECE/TRANS/180/Add.20

(2018).

J. Schoberl, M. Ank, M. Schreiber, N. Wassiliadis, M. Lienkamp, Thermal Runaway Propagation in Automotive
Lithium-ion Batteries with NMC-811 and LFP Cathodes: Safety Requirements and Impact on System Integra-

tion, eTransportation 19 (2024) 100305. DOI:10.1016/j.etran.2023.100305.

H. Uwitonze, A. Ni, V. M. Nagulapati, H. Kim, H. Lim, CFD Study of Nail Penetration Induced Thermal
Runaway Propagation in Lithium-Ion Battery Cell Pack, Applied Thermal Engineering 243 (2024) 122649.

DOI:10.1016/j.applthermaleng.2024.1226409.

T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th Edition,

John Wiley & Sons, 2011.

C. Mueller, P. Tsvetkov, A review of heat-pipe modeling and simulation approaches in nuclear systems design
and analysis, Annals of Nuclear Energy 160 (2021) 108393. DOI:https://doi.org/10.1016/7.

anucene.2021.108393.

28


https://www.sciencedirect.com/science/article/pii/S0960148123018256
https://www.sciencedirect.com/science/article/pii/S0960148123018256
https://doi.org/10.1016/j.renene.2023.119910
https://doi.org/10.1016/j.renene.2023.119910
https://unece.org/fileadmin/DAM/trans/main/wp29/wp29wgs/wp29gen/wp29registry/ECE-TRANS-180a20e.pdf
https://www.sciencedirect.com/science/article/pii/S2590116823000802
https://www.sciencedirect.com/science/article/pii/S2590116823000802
https://www.sciencedirect.com/science/article/pii/S2590116823000802
https://doi.org/10.1016/j.etran.2023.100305
https://www.sciencedirect.com/science/article/pii/S135943112400317X
https://www.sciencedirect.com/science/article/pii/S135943112400317X
https://doi.org/10.1016/j.applthermaleng.2024.122649
https://www.sciencedirect.com/science/article/pii/S0306454921002693
https://www.sciencedirect.com/science/article/pii/S0306454921002693
https://doi.org/https://doi.org/10.1016/j.anucene.2021.108393
https://doi.org/https://doi.org/10.1016/j.anucene.2021.108393

	Introduction
	Methodology
	Lumped Li-ion Cell Thermal Runaway Model
	Energy Balance
	Heat Sources
	Reaction Rates
	Internal Short Circuit

	Thermal Resistance Network Model of Li-ion Module
	Uncertainty Analysis

	Results and Discussion
	Thermal Runaway Propagation Analysis
	Thermal Runaway Propagation Prevention

	Conclusions

