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Lithium-ion Battery Thermal Runaway Propagation Prevention ± Predicting

Critical Parameters Considering Uncertainty

Dr Peter J. Bugrynieca, Prof Solomon F. Browna,∗

aSchool of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Abstract

Li-ion batteries (LIBs) are integral to modern society, driving the electrification of transport and supporting renew-

able energy generation to meet Net Zero. However, LIBs suffer from the potential to undergo thermal runaway (TR)

which can lead to fire and explosions. Computational modelling of TR is essential to understanding its hazards, and

to accurately quantify risks there is a need to account for the uncertainty in TR behaviour. To adequately predict the

safe limits of battery operation we incorporate the stochasticity of thermo-physical and kinetic reaction parameters

in module thermal runaway propagation (TRP) analysis. A 0-dimension heat transfer model for TRP predictions is

validated against experimental findings. From this, Monte Carlo simulations are undertaken to determine the uncer-

tainty in the predicted cell temperatures, times to cell TR and times to TRP. The critical heat dissipation coefficient

to prevent TRP considering cell uncertainty was found to be 2.5 and 4.6 times larger for LFP and NMC stacks, re-

spectively, compared to the scenario where cell uncertainty was not considered. For the LFP stack, the less severe TR

events mean, in theory, that TRP can be prevented by heat pipe or submersion cooling thermal management systems.

Without considering cell stochasticity there is a significant overestimate of TRP time and an underestimate of critical

heat dissipation coefficient to prevent TRP. Hence, the predicted safe time for evacuation and appropriate thermal

management methods are inaccurate. This work highlights the need to incorporate uncertainty in predictions of risk.
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Nomenclature

Roman symbols

Tmax Maximum cell temperature (°C)

tTRP TRP time between celli to celli+1 (s)

tTR Time (absolute) to cell TR (s)
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BESS Battery energy storage system (stationary

applications)

CoV Coefficient of variation

EV Electric vehicle (automotive)

IQR Interquartile range

ISC Internal short circuit

LFP Lithium iron phosphate

LIB Lithium ion (Li-ion) battery

NMC Lithium nickel manganese cobalt oxide

TR Thermal runaway

TRP Thermal runaway propagation

1. Introduction

Today Li-ion batteries (LIBs) are ubiquitous to automotive [1], marine [2], aviation [3] and stationary energy

storage applications. With this increased adoption and use in safety-critical applications, specifically the aviation [4]

and marine [5] sectors, understanding and preventing thermal runaway propagation (TRP) is paramount [6].

TRP is the cascading effect of cell-to-cell and module-to-module thermal runaway (TR) failure [6, 7]. TR is of

great concern as it leads to extreme heat generation and the production of flammable gasses [8]. These gases lead to

fire or, in confined scenarios, explosions. Further, due to the nature of LIBs, LIB fires are very difficult to extinguish,

can burn for prolonged periods and reignite hours or possibly days later [9, 10].

Unfortunately, at a cell level, TR is always possible even with safety devices installed, due to the chemical poten-

tial of the cell materials, therefore maintaining system safety is only possible by preventing TRP [7]. Experimental

and computational studies have investigated the use of different thermal management (cooling) and thermal barriers

(insulation) to prevent TRP [6, 11]. Further, cell TR behaviour can be uncertain due to natural variations in materials

and structural properties introduced through the manufacturing process. As such, it is important to consider the uncer-

tainties in battery parameters and model assumptions in design optimisation, especially in safety-critical applications,

to determine the probability of the most severe events and the practicality of mitigating them. Therefore, this work

aims to determine the consequence of cell variability on the optimised battery design for TRP prevention.

The variation in TR severity (i.e. maximum temperature) and time to TR has been shown by several sources [e.g.

12±14] for cells of different chemistries under accelerated rate calorimetry (ARC), oven exposure and constant power

heating. Further, the probability density of the heat output from the ejected dust/gases, ejected electrode winding and

through the cell’s surface have been calculated by Walker et al., showing that the electrode winding and dust/gases

carry away most of the heat [15]. The uncertainty in maximum temperature, heating rate and mass loss under ARC

has been determined from a limited number of tests [16]. Thus highlighting the necessity to be able to incorporate

uncertainty into predictions of cell and pack TR failure.
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The sensitivity of cell TR to thermo-physical [17±19] and decomposition kinetic parameters [20] has been studied.

From which, it has been shown that increasing the activation energy of the SEI reaction delays the onset of TR but

does not prevent it [20]. It is found that TR severity is influenced most by internal short resistance ratio, cooling

power, electrolyte combustion and the heat release from anode decomposition [17]. Further, the ability to maintain

thermal safety is reduced with increased degradation and internal resistance [21]. Huang et al. [19] determined TR

initiation and propagation are highly dependent on heat capacity and thermal contact. Applying a Gaussian Process

surrogate model, Yeardly et al. [18] found that emissivity, followed by convection and conductivity properties, are

most significant parameters regarding the variability of TR onset time and maximum TR temperature (when kinetic

parameters not considered). For a module of prismatic cells, the thermal runaway process was most influenced by

the ªcritical temperatureº (the TR inducing temperature), while the specific heat capacity significantly influenced TR

duration [19].

In our previous work on cylindrical cells, we show that when considering uncertainty in thermo-physical and

kinetic parameters it is possible to predict the increase in failure probability with environmental temperature and also

the resulting change in hazard level [22]. Further, for a large array of cylindrical cells, when random heat transfer

coefficients are considered the propagation front deviates from the ideal path [23]. Using a probability distribution

function for cell failure based on cell surface temperature (determined from experimental results) Zhai et al. predicted

the TRP path and its likelihood considering different locations of initiating cells in a four-by-four pack of cylindrical

cells [24]. Using a surrogate model, Zhang et al. [25] predict the uncertainty in maximum cell temperature, finding at

45% SOC the greatest uncertainty occurs. They further showed that if TR occurs in the first cell of a stack there then is

a 90% chance of full TRP. Xia et al. [21] considered the uncertainty in the cell mass, cell internal resistance, ambient

temperature and operating power within a TR model of a battery module. From this, they showed it is possible to

predict the mean and standard deviation of both the critical ambient temperature and operating power for reducing the

risk of TR.

It is important to consider the stochastic nature of cell parameters to enable predictions of uncertainty on time to

TR, severity of TR, critical parameters to prevent TR(P) and propagation pathway. However, no work has considered

the uncertainty in the kinetic parameters governing cell exothermic decomposition (alongside thermo-physical para-

meters) to predict the critical parameters to prevent TRP in modules or packs. This is evidently a crucial point to

address considering that the kinetic parameters directly govern the TR behaviour of a Li-ion cell.

Carrying out statistical analysis studies, such as Monte Carlo simulations, on stochastic parameters to predict the

uncertainty in outcomes requires many thousands of independent runs. As such, models need to be as computation-

ally efficient as possible while still retaining accuracy, leading to lumped or 0-dimensional models being preferred.
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Lumped thermal resistive network modelling is shown to be a useful method for simulating cell TR and TRP in bat-

tery modules [26±28] and packs [23, 29, 30]. These models have been used to study how battery parameters affect

propagation severity, speed and direction; as well as how propagation can be prevented, but do not consider the effect

of uncertainty on these predictions. Further, the lumped thermal runaway models can be coupled with electrochemical

models or 3D computation fluid dynamics models to account for charge/discharge behaviour and vent-gas dispersion

respectively.

This work, therefore, aims to understand the effect of exothermic decomposition uncertainty in Li-ion batteries

on the variation of TRP behaviour. In doing so our objectives are to (1) incorporate, for the first time, uncertainty of

thermo-physical and reaction kinetic parameters in a battery module (pack) simulation; (2) predict the probability and

uncertainty to which critical parameters can prevent TRP; and (3) compare how the chemistry of a battery module

affects these predictions. From this, we wish to highlight the importance of incorporating TR uncertainty in the

evaluation of safety systems and the integral role it plays in supporting risk assessments of battery systems at any

scale - such as determining the probability a thermal management system can prevent TRP or predicting the available

time for evacuation.

2. Methodology

This work considers six NMC prismatic cells in series to form a cell stack representing experimental work by

Feng et al. [26]. The model is validated against the experimental data, while the model is further used to study a

similar LFP stack to allow a comparison of the two chemistries. The governing energy balance and heat generation

terms of the cell model are presented in Section 2.1. These are incorporated into the thermal resistive network model

representing the 6-cell stack described in Section 2.2. Abuse of the stack is by nail penetration of the first cell, as

in Ref. [26], which is modelled by an additional heating term representing an internal short circuit (ISC) described

in Section 2.1.4. The uncertainty analysis, considering the effects of cell variations on the predictions of significant

TRP values (maximum cell temperature, time to TR and time to TRP) and the prevention of TRP, is discussed in

Section 2.3.

2.1. Lumped Li-ion Cell Thermal Runaway Model

The governing theory for the thermal and decomposition behaviour of the cell model follows previous work

[31, 32] and is described below.
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Table 1: Cell physical parameters [33].

Description Symbol Unit Value

Cell mass Mcell kg 0.72

Cell heat capacity Cp,cell J/kg/K 1100

Cell width, y direction Wcell m 0.1480

Cell height, z direction Hcell m 0.0913

Cell depth, x direction Dcell m 0.0265

Tab height Htab m 0.0020

Tab width Wtab m 0.0265

Cell surface area, z direction Axy m2 WcellDcell

Cell surface area, y direction Axz m2 DcellHcell

Cell surface area, x direction Azy m2 WcellHcell

Tab surface area Atab m2 HtabWtab

2.1.1. Energy Balance

The energy balance, and therefore the cell temperature, is governed by:

ρcellCp,cellVcell

dT

dt
= Qconv +Qrad +Qdecomp (1)

This assumes the temperature gradient within the cell negligible so the lumped heat capacity assumption holds. Here,

ρ (kg/m3) is the density of the cell and Vcell (m3) is the volume of the cell. Hence, ρcellVcell is equivalent to the mass

of the cell Mcell (kg). Further, Cp (J/kg/K) is the heat capacity of the cell, T (K) is the temperature of the cell, t

(s) is time, while Qconv , Qrad and Qdecomp (J/s) are heat sources for convection, radiation and TR decomposition

respectively. The physical parameters of the cell are given in Table 1.

2.1.2. Heat Sources

The radiation and convection heat transfer to/from the environment are governed by:

Qrad = Acellεradσrad(T
4

amb − T 4) (2)

Qconv = Acellhconv(Tamb − T ) (3)

where Acell (m2) is the surface area of the cell, Tamb (K) is the ambient temperature, εrad (unit-less) is the radi-

ation efficiency coefficient, σrad (J/s/m2/K4) is the Stefan±Boltzmann constant and hconv (J/s/m2/K) is the natural

convection coefficient.
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The decomposition heat generation is the sum of four major exothermic reactions:

Qdecomp = Qsei +Qne +Qpe +Qele (4)

The heat from the decomposition of the solid electrolyte interphase (Qsei), negative-electrode/electrolyte reaction

(Qne), positive-electrode/electrolyte reaction (Qpe) and the decomposition of the electrolyte (Qele) are described as:

Qsei = −mnehsei

dCsei

dt
(5)

Qne = −mnehne

dCne

dt
(6)

Qpe = mpehpe

dCpe

dt
(7)

Qele = −melehele

dCele

dt
(8)

where mi (kg), hi (J/kg) and Ci (unit-less) are the mass of reactant, enthalpy of reaction and fractional conversion of

reactant i, respectively, where i = sei, ne, pe, ele.

2.1.3. Reaction Rates

The rate of decomposition of species Ci are given by:

dCsei

dt
= −Asei exp (−Ea,sei/RgasT )C

nsei

sei (9)

dCne

dt
= −Ane exp (−Ea,ne/RgasT )C

nne

ne exp (−tsei/tsei0) (10)

dtsei
dt

= Ane exp (−Ea,ne/RgasT )C
nne

ne exp (−tsei/tsei0) (11)

dCpe

dt
= Ape exp (−Ea,pe/RgasT )C

npe1

pe (1− Cpe)
npe2 (12)

dCele

dt
= −Aele exp (−Ea,ele/RgasT )C

nele

ele (13)

where Ai (1/s) is the frequency factor, Ea,i (J) is the activation energy, Rgas (J/K) is the ideal gas-constant, tsei and

tsei0 are the non-dimensional thickness and initial thickness of the SEI, and ni is a non-dimensional power term. The

parameters for the reaction kinetics of Eqs. (5) to (13) are given in Table 2.
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Table 2: Kinetic parameters for thermal runaway reactions [34]. Values for the LFP chemistry in brackets [35], positive-electrode/electrolyte

reaction only, all other values same as NMC.

Description Symbol Value

Frequency factors (1/s)

Solid electrolyte interphase Asei 1.67 × 1013

Negative-electrode/electrolyte Ane 1.67 × 1012

Positive-electrode/electrolyte Ape 6.67 × 1011

(2.00 × 108)

Electrolyte decomposition* Aele 1.00 × 1013

Electrochemical short circuit² Aec 1.67 × 1010

Activation energies (J)

Solid electrolyte interphase Ea,sei 2.24 × 10−19

Negative-electrode/electrolyte Ea,ne 2.24 × 10−19

Positive-electrode/electrolyte Ea,pe 2.03 × 10−19

(3.62 × 10−19)

Electrolyte decomposition Ea,ele 1.75 × 10−19

Electrochemical short circuit² Ea,ec 1.40 × 10−19

Heats of Reaction (J/kg)

Solid electrolyte interphase Hsei 2.570 × 105

Negative-electrode/electrolyte Hne 1.714 × 106

Positive-electrode/electrolyte Hpe 3.140 × 105

(1.947 × 105)

Electrolyte decomposition³ Hele 7.200 × 105

Initial value of dependent variables (-)

Solid electrolyte interphase Csei,0 0.15

Negative-electrode/electrolyte Cne,0 0.75

Solid electrolyte interphase thickness tsei,0 0.033

Positive-electrode/electrolyte Cpe,0 0.04

Electrolyte decomposition Cele,0 1

Mass content in cell (kg)

Anode mc 0.13

Cathode mp 0.29

Electrolyte§ me 0.18

Reaction orders (-)

Solid electrolyte interphase nsei 1

Negative-electrode/electrolyte nne 1

Positive-electrode/electrolyte, 1 npe,1 1

Positive-electrode/electrolyte, 2 npe,2 1

Electrolyte decomposition nele 1

Gas constant (J/K) Rgas 1.38 × 10−23

*Fit.
²From Jiang et al. [29].
³Fit given the range of values from [26, 33].
§From Feng et al. [36].
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2.1.4. Internal Short Circuit

The decomposition heat can be extended to include heat generated by ISC, Qshort [29]:

Qshort = −Hec(1− η − γ)
dSOC

dt
(14)

where Hec (J) is the total electrochemical energy stored within the cell, η is an efficiency factor representing the frac-

tion of energy leaving via the venting process, while γ is a factor denoting the energy release due to nail penetration.

The term Hec is calculated by:

Hec = C · V · 3600 (15)

where C is the capacity (Ah) and V is the nominal voltage of the cell respectively.

The change in SOC is [29, 34]:

dSOC

dt
= −Aec(1− Cpe)Cne exp (−Ea,ec/RgasT ) +

(

dCpe

dt
+

dCne

dt

)

SOC (16)

where Aec and Ea,ec are the frequency factor and activation energy of the electrochemical reaction. Further, the

second term on the right-hand side represents the consumption of the active material, while the process stops when

the SOC term reaches zero. The change in SOC determines the rate of energy release from the short, and hence the

rate of heat generation. The range of SOC determines the overall possible amount of energy that can be released, i.e.

a larger initial SOC leads to greater heat of electrical short.

The first cell is initiated into TR by nail penetration. This is modelled by:

Hnail = γHec (17)

For the initiation cell γ is fit to experimental data [29] but is zero for all other cells. In the initiation cell the heat

released is assumed to cause near instantaneous temperature rise. Hence, the temperature of the cell immediately at

the time of penetration is [29]:

Ttrigger,0 =
γHec

Cp,cellMcell

+ Tint (18)

where Tint is the initial cell temperature. The parameters for the ISC heat generation are given in Table 3.
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Table 3: Cell electrochemical and internal short circuit parameters [29].

Description Symbol Unit
Value

NMC LFP*

Cell capacity C Ah 25 16.25

Cell voltage, nominal V V 3.7 3.2

Electrical energy Hec J Eq. (15)

Initial SOC SOC0 - 1

Efficiency factor, vent energy η - 0.12

Efficiency factor, nail energy, Cell 1 γ - 0.51

Efficiency factor, nail energy, Cell 2-6 γ - 0.00
*The capacity of the LFP cell is assumed to be 65% of the NMC cell considering each

have the same form factor.

2.2. Thermal Resistance Network Model of Li-ion Module

A thermal resistive network is used because of its computational efficiency allowing for relatively fast simulation

times making it practical for uncertainty analysis. Under the electrical circuit analogy [37] the governing equation for

the energy balance is given by Eq. (19), where Cth is the thermal capacitance of the object (J/K) derived from the heat

capacity and mass (see Eq. (1)).

Cth

dT

dt
=

Tamb − T

R
(19)

R is the thermal resistance (K/W) derived from the right hand side of Eq. (1) where:

Q =
Tamb − T

R
(20)

The conductive resistance is derived from Fourier’s law of conduction, Eq. (21). Equating Eq. (21) to Eq. (20)

conductive resistance is determined and given by Eq. (22).

qcondiction,1−2 =
λ12A12(T1 − T2)

δ12
≡

T1 − T2

R12

(21)

R =
δ12

λ12A12

=
1

hcondA12

(22)

Where A12 (m2) is the area of an object in a given direction 1✙2 (which can be averaged if the area changes from one

point to the other), δ12 (m) is the distance between walls and λ (W/m/K) is the thermal conductivity of the material.

The resulting conductive heat transfer coefficient hcond equates to λ12/δ12.

Newton’s law of cooling defining convective heat transfer is given by Eq. (3) and can be equated to Eq. (20) such
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that:

hconvAsurface(Tsurface − Tfluid) ≡
Tsurface − Tfluid

Rconv

(23)

where hconv (W/m2/K) is the convection coefficient and ASurf (m2) is the surface area of a given face. From this the

convective resistance, Rconv , is therefore:

Rconv =
1

hconvAsurf

(24)

For two objects touching, but where conduction does not occur, the contact resistance (Rcont) is given as:

Rcont =
1

hcontAsurf

(25)

where hcont (W/m2/K) is the contact heat transfer coefficient.

Stefan±Boltzmann and Kirchhoff’s radiation laws for a grey body, Eq. (2) can be expanded:

Qrad,1−2 = ε1σA1

(

T 4

1
− T 4

2

)

= ε1σA1

(

T 2

1
+ T 2

2

)

(T1 + T2) (T1 − T2) = hrad(T1 − T2)

(26)

where the radiation heat transfer coefficient (hrad) is defined as:

hrad = ε1σA1

(

T 2

1
+ T 2

2

)

(T1 + T2) (27)

Hence, radiative heat transfer can be expressed in resistive terms as:

Q12 =
T1 − T2

1/(hradA1)
=

T1 − T2

Rrad

(28)

and the radiative resistance is:

Rrad =
1

hradA1

(29)

Each of the cells in the stack, see Fig. 1, are denoted by a lumped thermal node (yellow dot) with a temperature

Tcell governed by Eq. (19) with heat sources from Sections 2.1.2 and 2.1.4. Each cell (node) is connected to its

neighbours through appropriate thermal resistances (Ri) to create the thermal resistance network. Each cell considers

heat conduction from its lumped mass to is surface in each principle direction (x, y and z) through resistances Rx, Ry

and Rz , as well as conduction via the cell tabs to neighbour cells through resistances Rtab, as shown in Fig. 1.

At a cell’s top/bottom and front/back surfaces heat is transferred through convective Rconv and radiative Rrad
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Table 4: Thermal resistance definitions and parameters.

Description Symbol Parameter values to determine Ri

Conductive resistance, Eq. (22)

x-direction Rx δ = Dcell/2; λ = 0.15W/m/K*

y-direction Ry δ = Wcell/2; λ = 30W/m/K*

z-direction Rz δ = Hcell/2; λ = 30W/m/K*

Tab connections² Rtab δ = 0.001m; λ = 0.5W/m/K

Contact resistance between cells, Eq. (25) Rcont hc = 1000W/m2/K*

Resistance between cell and environment², Rh Convection: hconv = 20W/m2/K§

Eq. (24) and Eq. (29) Radiation: ε = 0.04, σ = 5.670 37× 10−8 W/m2/K4

Environment temperature Tamb 25°C
*From Jiang et al. [29].
²Equivalent conduction parameters from Feng et al. [33].
§The convection coefficient is assumed to be the same in all directions.

resistances, combined into an overall resistance Rh. For the front surface of cell one and the back surface of cell six

heat transfer is also by radiation and convection, see Fig. 1. For the cell surfaces touching a neighbouring cell surface

heat transfer is through contact resistance Rcont as shown in Fig. 1.

The parameter values for the thermal resistances are given in Table 4. The thermal resistive network model is built

in MATLAB® Simulink® and is presented in Figure S1 of the supplementary material.

2.3. Uncertainty Analysis

Uncertainty analysis of the stack TRP behaviour is determined through Monte Carlo methods. Random values

for cell reaction parameters (Mcell, Cp,cell, Ai, Ea,i, Hi for i = sei, ne, pe, ele, ec) are generated assuming a normal

distribution and no interdependence. The parameters are generated using MATLAB®’s normrnd function given a

mean and standard deviation, where the mean is assumed to be the parameter values from Tables 1 and 2 and the

standard deviation is equal to 1% of the mean (as in previous work [22]), i.e. a CoV of 1%. This value is based on

the variation in measurable parameters, mass and dimensions, and applied to the kinetic parameters as there is a lack

of data on the values of kinetic parameters by direct measurement to determine their CoV independently. Note the

value of Ttrigger,0 (Eq. (18)) is the same in all cases given a cell’s chemistry as it is based on the ªbaseº parameters

of Tables 1 and 3.

The appropriate sample size (i.e. number of replicates) N for the Monte Carlo analysis is determined in the results,

see Section 3. Further, the random parameters are determined such that for each run of the sample size N each of the

six cells has random parameters representing the cell-to-cell differences within a given batch of manufactured cells.
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Figure 1: Schematic of battery stack and resistive network.
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Lastly, each parameter generated within the normal distribution is checked to be positive as negative values have no

real meaning.

Using this method the mean behaviour of TRP (with error quantified by a standard deviation) is predicted, i.e the

maximum cell temperature, time to cell TR and time of cell TRP, and the median probability of preventing TRP (with

error quantified as an interquartile range) is estimated. The mean is used in the analysis of TRP behaviour as the

temperature and time are continuous numbers. The median is used in the analysis of the prevention of TRP because

prevention is categorical, i.e. yes/no TRP has been prevented. The probability of prevention is determined from the

percentage of ªyesº in the sample size N , with the variation calculated from 100 samples (a.k.a 100 runs) each with

a size N.

3. Results and Discussion

The TRP model of the 6-cell stack is first validated against experimental data, see Fig. 2(a). From this, it can be

seen, for the NMC case, that the model predicts maximum cell temperatures and time to cell TR well. The errors in

predicted maximum cell temperatures are shown in Table 5. The average error is approximately 5% when considering

cells 2 to 6 (i.e. ignoring the initiation cell), and less than 5% when excluding cell 3 that shows a larger maximum

temperature in the experimental data compared to the rest of the cells. While the simulated temperature profile to

peak cell temperatures represents the experimental data well, the cooling of the cell after peak temperatures is slower.

This is attributed to the thermal mass and heat capacity of the experimental cells decreasing after thermal runaway

due to the venting process. This reduction leads to faster heat dissipation and, consequently, more rapid cooling of

the experimental cells compared to the model, which currently does not account for venting. However, the critical

parameters for TRP analysis, maximum cell temperature - Tmax, the absolute time to cell TR - tTR and the relative

time between one cell undergoing TR following the previous cell (i.e the TRP time between cells) - tTRP , are predicted

well. As such, the model is deemed suitable for further studies.

Comparing the TRP predictions between the NMC (Fig. 2(a)) and LFP (Fig. 2(b)) cell stacks it can be seen that

the LFP stack also undergoes TRP. However, the LFP stack has maximum cell temperatures 300°C to 350°C less

than the NMC case while taking approximately twice as long to propagate from Cell 1 to 6. Note that according to

Eq. (18), the instantaneous initiation temperatures (simulating nail penetration) are 179°C and 112°C for the NMC

and LFP stack respectively. Even though the initiation temperature is much lower in the LFP case TR still occurs in

Cell 1. Further, from Fig. 2 it is clear that TR initiates in both the NMC and LFP cells at a temperature much lower

than 100°C as a rapid temperature rise is seen by this point.

Further details on the differences in Tmax, tTR, tTRP for the two stacks of different chemistries are discussed in

the next section. This is accompanied by a discussion of the effect of parameter uncertainty on model output (Tmax,
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Figure 2: Predictions of TRP in a 6 cell stack (a) considering NMC cells, the simulation and experimental data is represented by solid and dashed

lines respectively [experimental data from 26], and (b) considering LFP cells.

Table 5: Error in maximum cell temperature predictions of Fig. 2(a).

Cell Error (%)

1 -0.8

2 -3.7

3 -9.1

4 -4.1

5 -5.7

6 -3.1

tTR, tTRP ) uncertainty.

3.1. Thermal Runaway Propagation Analysis

To analyse the uncertainty in TRP behaviour, the effect of Monte Carlo sample size on results if first studied, see

Fig. 3. From this, it can be seen that the error in mean maximum cell temperature (of Cell 6) is relatively unaffected

by increased sample size. However, for the predicted time to TRP (for Cell 5 to Cell 6), the error significantly reduces

to approximately 1% absolute error at N = 103. The CoV for both Tmax and tTRP initially increases with sample

size but becomes stable at N = 104. Hence, considering the value of N at which the error no longer significantly

reduces and where the CoV for Tmax and tTRP becomes stable, the smallest sample size that satisfies both conditions

is N = 104. This used in the remainder of this section on the analysis of TRP uncertainty.
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Figure 3: (Solid line) Error in the mean value of the maximum temperature of Cell 6 and the TRP time for Cell 5 to Cell 6 at different sample sizes,

error calculated against the mean values at N = 10
5. (Dashed line) The coefficient of variation (CoV) at each sample size for the same cells.

Considering a sample size of N = 104, Fig. 4 presents the uncertainty in predictions of Tmax, tTR, tTRP for the

NMC cell and LFP cell stacks. Figs. 4(a) to 4(c) compare the Monte Carlo predictions to a base case simulation and

experimental results for the NMC cell stack, and Figs. 4(d) to 4(f) compare the Monte Carlo predictions between the

NMC cell and LFP cell stacks.

The predicted maximum temperature for the NMC stack (see Fig. 4(a)) is less than the experimental values (as

noted in the discussion above) so direct comparisons to the Monte Carlo simulation can not be made. However, it can

be seen that there is a slight downward trend in Tmax as TR progresses through the stack. Further, it can be seen that

there is a deviation of the mean value of the Monte Carlo simulation compared to the base case simulation, with the

mean of the Monte Carlo simulation having lower values than the base case. Regarding tTR and tTRP in Fig. 4(b) and

Fig. 4(c) it can be seen that the mean values are again slightly lower than the base case scenario. Most important is

the tTRP , which can be seen to reduce as propagation progresses. For the base case scenario, this behaviour is steady,

while the experimental data follows a similar downward trend but with significant fluctuations. However, it can be

seen from Fig. 4(c) that all the experimental tTRP are picked up within one standard deviation of the mean values

from the Monte Carlo simulation.

As shown above, even though Tmax slightly reduces as TR progresses so does tTRP . The reduction in tTRP

is attributed to the preheating of later cells by the TR of former cells [38±40]. Thus, applied to different module

geometries or full packs the effect of failed cell location on the rate of TRP can be investigated. The above discussion
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Figure 4: Uncertainty in predictions of Tmax (a) and (d), tTR (b) and (e), and tTRP (c) and (f) for the NMC cell stack vs. experiential (a)-(c) and

the NMC stack vs. the LFP stack (d)-(f). Error bars show +/- one standard deviation from mean.
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Table 6: Coefficient of variation (CoV) in Figs. 4(d) to 4(f).

Cell

CoV (%)

Tmax tTR tTRP

NMC LFP NMC LFP NMC LFP

1 1.19 1.43 N/A N/A N/A N/A

2 1.59 1.80 10.70 10.75 10.70 10.75

3 1.61 1.83 8.28 8.18 14.11 14.00

4 1.66 1.94 7.58 7.30 18.70 17.94

5 1.73 2.15 8.26 7.58 30.62 26.16

6 1.82 2.42 10.25 8.91 50.25 39.30

also highlights the importance of considering cell variations to capture the fluctuation in maximum cell temperature

and TRP time, and therefore the uncertainty in TRP behaviour.

Comparing the TRP behaviour of the NMC and LFP cell stacks (see Figs. 4(d) to 4(f)), it can be seen that the

LFP stack behaves in much the same way as the NMC stack. Regarding maximum cell temperatures, the LFP stack

reaches much lower peak cell temperatures (as also noted in Fig. 2). However, Fig. 4(d) and Table 6 show that as TRP

progresses the uncertainty in the maximum cell temperature increases, with the LFP stack having greater uncertainty.

The time to TR, see Fig. 4(e), is slower in the LFP cell stack but the CoV (Table 6) between to two chemistries is

similar and shows no clear change with TRP progression. The TRP time, which reduces as propagation progresses,

is greater for the LFP cell stack (see Fig. 4(e)). Further, as propagation progresses the uncertainty in tTRP increases,

see Fig. 4(e) and Table 6, while the NMC stack has a larger CoV at the latter stages of propagation.

Considering the CoV of the cell input parameters is 1%, we see this leads to 1.5-2.5 times more variation in Tmax

and an order of magnitude more variation in tTRP . This shows that predictions on the time to TRP are much more

sensitive than predictions of maximum temperature. This is attributed to the fact that some instances of cell-to-cell

TRP time were negative, meaning that TRP was out of sequence, due to randomly generated parameters leading to cell

stability being much lower than the former cell. Note that there is no correlation between maximum cell temperatures

and time to cell TR.

The significant variation in tTRP is important as it has practical implications on the predictions of safety at a

pack and system level. Considering the requirement for a 5-minute warning of TR for EVs [41] or a similar minimum

requirement for the propagation in BESSs, not accounting for cell variability could lead to considerable overestimation

of TRP time. In turn, this would lead to incorrectly assessing a propagation event as acceptable when in many instances

considering uncertainty it is not. Such is the importance of understanding cell TR variation and its incorporation into

models for the prediction of events as pass/failure against safety criteria.

There is limited experimental data comparing NMC and LFP stacks, but our work broadly agrees with the tests
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done by Schöeberl et al. [42]. The experimental comparison of NMC and LFP TRP uses larger capacity cells than this

work, but the maximum cell temperatures are on average 900°C and 524°C for NMC and LFP respectively, compared

to 845°C and 505°C predicted here. Further, the total time to complete TRP of the LFP stack is much longer than the

NMC stack in both the simulated case and the experimental work of [42]. As such, this gives us further confidence in

the simulation of the LFP stack. The tTRP (cell-to-cell) of the experimental data shows greater propagation times for

the LFP stack, similar to our predictions. However, while the LFP and NMC stacks show a downward trend in tTRP

as TRP progresses in our simulations and the experimental cases for NMC [26] and LFP [42], the NMC experimental

case of [42] shows an upward trend. This highlights there is an uncertainty in tTRP that needs to be considered in

computational modelling.

3.2. Thermal Runaway Propagation Prevention

Predicting the variation of key TR metrics (i.e. Tmax, tTR, tTRP ) is important, but it is more insightful to

understand how the same governing cell variations affect the values of critical parameters for TRP prevention. In this

work, the necessary heat transfer conditions to prevent TRP are studied. To do this, the model is redefined such that

convective and radiative heat transfer are considered together in one overall heat transfer coefficient hdis (W/m2/K).

This allows for a simple method to determine the magnitude of heat transfer required to prevent TRP. The refined

model is found to reproduce that of Fig. 2(a) when hdis = 25W/m2/K (which agrees with previous work by Feng et

al. [26]), see Figure S2 in the supplementary material.

First, the value of hdis required to prevent TRP is determined without considering cell variations to provide a point

of reference. This is accomplished by running a parameter sweep of hdis at 5 W/m2/K steps whilst using a simulation

time ten times greater than the base case (tsim,base = 1200 s) to ensure all TR events are captured. The results of this

are presented in Fig. 5. This shows that the NMC stack is prevented from full TRP at a value hdis = 335W/m2/K

while TRP in the LFP stack is prevented at a value of hdis = 160W/m2/K (see Figure S3 in supplementary material

for stack temperature profiles in the time domain). Similar magnitudes of heat dissipation have been shown in the

literature, for a stack of five 3 Ah cells a convection heat transfer coefficient of 500W/m2/K is required to suppress

TR [43].

As is expected from the LFP stack, due to the lower heat generation, it requires a lower hdis than the NMC

stack, but it is still a significant increase on hdis = 25W/m2/K that represents natural convection and radiation.

Considering different heat dissipation methods, forced air cooling can reach up to 250 W/m2/K, while heat pipes can

reach 500 W/m2/K and oil or water submersion cooling can reach 700 W/m2/K and 1000 W/m2/K respectively [26].

As such, the LFP stack could be managed with forced convection cooling while the NMC stack would require one of

the alternate methods. Note, that one has to be conservative with these predictions as the additional heat sources from
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Figure 5: Parameter sweep of hdis to determine critical value to fully prevent TRP, (a) NMC stack and (b) LFP stack.

electrochemical behaviour, cell series-parallel connectivity and fire are not considered here but have implications on

TR and TRP behaviour in reality.

Following on from the base case scenario above, the effect of cell variation on the calculated value of hdis for TRP

prevention is studied. As TRP is a binary event, i.e. ªyes/no TRP is preventedº, the Monte Carlo simulation has to be

sampled several times (with a given sample size) to calculate the variation in the predicted probability of preventing

TRP. To determine an appropriate sample size for the study a sensitivity analysis is carried out.

The sensitivity analysis considers 100 samples (a.k.a runs) each with a sample size (i.e. number of replicates) N,

again the simulation time is ten times the base case to ensure all TR events are captured. N is increased from 101

to 105, where at 105 the overall time for running the Monte Carlo simulation is prohibitive, thus 105 is taken as the

scenario with maximum accuracy. The effect of N on the median and error (interquartile range - IQR and min/max

range) is presented in Fig. 6. It can be seen that N has very little effect on the predicted median, but has a significant

effect on the error. However, in relative terms, at a sample size of 104 the min/max values of the box plot are with 5%

of the values at 105. As such the rest of the study uses 100 samples with a sample size of 104.

Under the Monte Carlo conditions described above, the probabilities of different severities of TRP (i.e. from full

TRP to no TRP) are calculated for each stack at the hdis determined in Fig. 5, as shown in Fig. 7. From this, it can be

seen that for both chemistries complete TRP is only achieved in less than 50% of cases. This shows that a 1% CoV
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Figure 6: Convergence of Monte Carlo simulations for 100 samples each with a sample size (or number of replicates) N. (a) Absolute values of

predicted median and box plot data, and (b) values of predicted median relative to values at N = 10
5 and min/max data relative to median values

at N = 10
i.

on cell kinetic and thermophysical parameters has a significant impact on determining pass/fail criteria. To further

investigate this, a parameter sweep of hdis now considering cell variability is undertaken.

Fig. 8 shows the parameter sweep of hdis for one sample (with size N = 104) to approximately determine values

of hdis that lead to complete TRP prevention in 99% of cases. From this, it can be seen that the probability of the LFP

stack being completely prevented from undergoing TRP increases more rapidly with hdis than the NMC stack, while

the NMC stack has a longer taper towards 100%. The LFP stack reaches a 99% percent probability at approximately

hdis = 300W/m2/K while it is not until hdis = 850W/m2/K for the NMC stack. These values are used as a

starting point to calculate the confidence in preventing TRP in more than 99.9% of cases (again using 100 samples

with N = 104). For the NMC at hdis = 850W/m2/K the min/max values are not greater than 99%. As such, the

uncertainty analysis on the NMC stack is carried out at values of hdis at the maximum range of the study. This and

similarly the LFP stack results are presented in Figs. 8(b) to 8(c).

From Fig. 8(b) it can be seen that at the maximum hdis of the study (1550 W/m2/K) the NMC stack is prevented

from TRP in approximately 99.96% of cases, with a minimum value of 99.91%. At, hdis = 1500W/m2/K the

minimum probability of prevention is 99.89%. However, the LFP stack (Fig. 8(c)) reaches a probability of preventing

TRP in over 99.9% of cases (including the minimum percentage) at 400 W/m2/K. Further, for the LFP stack with

the relatively quick increase in median probability, there is a noticeable reduction in the IQR and min/max range of
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Figure 7: Probability of each level of TRP at hdis determined in Fig. 5 for (a) NMC stack at hdis = 335W/m2/K and (b) LFP stack hdis =

160W/m2/K.

the predicted probability. From this, it can be reasoned that even under the same cell variability (i.e. 1% CoV on

input parameters) the greater severity of cell TR for the NMC chemistry leads to greater variation in the predicted

probability of preventing TRP. Therefore, understanding and accounting for cell variability, while important, is more

important in the NMC chemistry.

In comparison to the base case in which uncertainty is not considered (Fig. 5) the values of hdis for the LFP

and NMC stack are 2.5 and 4.6 times larger when considering uncertainty. This is a significant difference, which

considering a safety-critical system would lead to devastating consequences. Preventing TRP in the LFP stack at

hdis = 400W/m2/K is still theoretically possible with heat pipes or submersion cooling as long as the system can

continually dissipate heat at this value and the working fluids can withstand the high temperatures. However, for the

NMC stack, to achieve a hdis value over 1550 W/m2/K a system employing heat dissipation via liquid/vapour phase

change is needed [44]. Using a lumped heat capacity model for the rapid undertaking of Monte Carlo simulations,

as is common in system design and optimisation [45], we have shown that preventing TRP requires tailored cooling

technologies specific to different battery chemistries. As such, future studies can use this method or findings to

focus more detailed studies (accounting for dimensionality, fluid flow, etc.) on the most ideal cooling technology to

determine specific operating parameters and more accurate overall heat transfer coefficients.
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Figure 8: (a) Probability of fully preventing TRP at various hdis values for NMC and LFP cells stacks (determined from 1 sample with a size of

N = 10
4). (b) and (c) Certainty that TRP will be prevented for the (b) NMC stack and (c) LFP stack (determined from 100 sample with a size of

N = 10
4).
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4. Conclusions

A lumped heat capacity model of 6 prismatic cells is used to investigate the effect of cell-to-cell variations on TRP

behaviour of NMC and LFP stacks. The variations in cell thermophysical and kinetic parameters are represented by

normal distributions with a CoV of 1%. The model shows the LFP stack has cell temperatures 300°C to 350°C less

than the NMC stack and propagation times approximately double that of the NMC stack.

For both chemistries, Monte Carlo simulations show that as TRP progresses maximum cell temperatures slightly

reduce while there is a significant increase in cell-to-cell propagation speed. Further, as TRP progresses there is a slight

increase in the uncertainty of predicted cell temperature, however, there is a significant increase in the uncertainty of

cell-to-cell TRP time.

The critical heat dissipation coefficient to prevent TRP considering uncertainty is calculated to be hdis = 400W/m2/K

for the LFP stack compared to hdis = 1550W/m2/K for the NMC stack. These values are 2.5 and 4.6 times larger,

respectively, compared to the scenario where cell uncertainty is not considered.

From this, the key findings are:

1. the less severe TR events of LFP cells means, in theory, that TRP can be prevented by heat pipe or submersion

cooling thermal management systems;

2. without considering cell uncertainty there could be a significant overestimation of the TRP time and hence

available time for evacuation - putting people in harm’s way; and

3. when not considering cell uncertainty the critical heat dissipation coefficient needed to prevent TRP is drastic-

ally underestimated, leading to incorrect assessments of safety and appropriate thermal management methods.

This work highlights the importance of accounting for uncertainty when predicting TRP behaviour so that the

necessary propagation prevention method and available evacuation time can be correctly assessed, in turn allowing a

more rigorous quantification of propagation risk. Further work is required to account for electrochemical behaviour to

factor in the additional ohmic heat source during drive cycles, the effects of cell parallel/series connectivity, mass loss

from venting and heat from off-gas fires in modules or batteries in a closed configuration or confined space. However,

this work is integral to the battery sector to improve safety through facilitating probabilistic hazard assessments.
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