Supplementary	material	for	mobile	sensors	for	hydraulic	calibration	of pipe	network
models									

Alemtsehay G. Seyoum, Simon Tait, Alma N.A. Schellart, Will Shepherd, Joby Boxall School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, United Kingdom

Corresponding author: a.g.seyoum@sheffield.ac.uk

List of Tables:

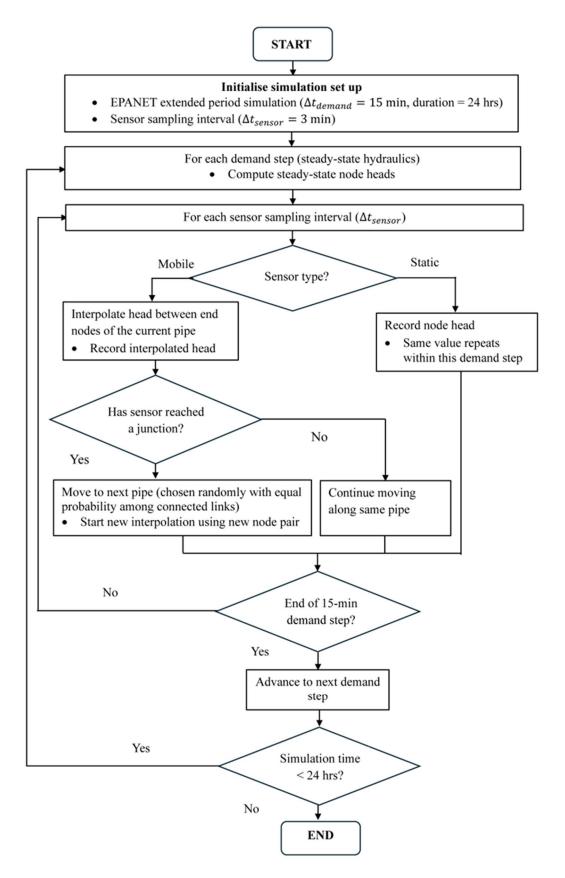

Table S1. Candidate pipe roughness values used in the optimisation	
List of Figures:	
Figure S1 . Flowchart illustrating how static and mobile sensors record data within EPANET's extended-period simulation.	4

 Table S1. Candidate pipe roughness values used in the optimisation

No.	Water supply network roughness height (Ks)	Sewer network (Manning's <i>n</i>)		
	(mm)	(dimensionless)		
1	0.045	0.0060		
2	0.104	0.0087		
3	0.155	0.0095		
4	0.184	0.0101		
5	0.212	0.0108		
6	0.239	0.0115		
7	0.277	0.0121		
8	0.316	0.0128		
9	0.320	0.0132		
10	0.331	0.0138		
11	0.435	0.0147		
12	0.659	0.0157		
13	1.121	0.0165		
14	2.074	0.0182		
15	3.164	0.0202		
16	6.769	0.0260		

 Table S2. Summary of key simulation and optimisation parameters used in the study

Category	Parameter name	Value	Sensing type	Applicable scenario	Rational for selection
Simulation parameters	Demand profile resolution	15 minutes	Both	Water supply	Defined in the water supply case study network.
	Rainfall data resolution	1 minute	Both	Sewer	Defined in the sewer case study network.
	Sampling interval	3 minutes	Both	Water supply	For mobile sensing, ensuring the possibility of collecting at least one measurement per pipe.
		10 seconds	Both	Sewer	Static sensing uses the same rate for consistency.
	Sensor speed	0.25 m/s	Mobile	Both	For the mobile sensor to traverse the entire network twice in the 24 hours.
	Data collection duration	24 hours	Both	Both	Matches 24-hour extended-period simulation for full daily demand cycle coverage.
	Number of sensor paths	4	Mobile	Both	To evaluate calibration robustness under different spatial sampling patterns.
Optimisation	Population size	400	Both	Water supply	To maintain population diversity for complex
parameters (NSGA II)		200	Both	Sewer	optimisation.
	Number of generations	5,000	Both	Both	To ensure convergence of both objective
	Function evaluations	2,000,000	Both	Water supply	functions.
		1,000,000	Both	Sewer	
	Crossover probability	1	Both	Both	For exploitation of good solutions for faster convergence
	Mutation probability	0.005	Both	Both	To maintain population diversity and avoid premature convergence.
	Number of optimisations runs	5	Static	Both	To account for NSGA-II randomness and to
	1	5 per path (20 total)	Mobile	Both	verify consistency of the results.
	Convergence generation criterion	10-4	Both	Both	Defined as the earliest generation at which the absolute change in objective values remains below 10^{-4} over a 50-generation window.

Figure S1. Flowchart illustrating how static and mobile sensors record data within EPANET's extended-period simulation.