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Abstract

We give a systematic construction of the symmetries, or observables in the vacuum sector,
of a full conformal őeld theory on an arbitrary real two-dimensional conformal manifold
Σ. Speciőcally, we construct a prefactorisation algebra on Σ which locally encodes the
full (non-chiral) version F

a,α = V
a,α ⊗ V̄

a,α of a universal enveloping vertex algebra V
a,α,

where a is a őnite-dimensional vector space labelling the set of őelds and α is a 2-cocycle
controlling the central extension of their Lie brackets. Our construction provides a uniőed
treatment of the three canonical examples of (full) universal enveloping vertex algebras ś
Kac-Moody, Virasoro and βγ system ś using the notion of unital local Lie algebra. By
using the coordinate-invariant nature of prefactorisation algebras we derive an analogue
of Huang’s change of variable formula for full vertex algebras. We give a careful treatment
of (both Euclidean and Lorentzian) reality conditions in this formalism which allows us,
in the Kac-Moody and Virasoro cases, to construct a Hermitian sesquilinear form on these
full vertex algebras by using the factorisation product to the global observables on S2.
We also give an explicit derivation of Borcherds type identities and a construction of the
operator formalism for F

a,α.
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1 Introduction

Two-dimensional conformal őeld theory [BPZ] has been extensively studied by physicists and
mathematicians alike over the past four decades. Its original applications in physics ranged
from the study of critical phenomena in two-dimensional statistical systems to string theory,
see for instance [DMS], but it has also found far-reaching applications in mathematics, from
the monstrous moonshine [Bor] to the geometric Langlands correspondence [Fre1, Fre2].

An important distinction to be made is between chiral and full two-dimensional conformal
őeld theories. Indeed, in both the Euclidean and Lorentzian settings, the inőnite dimensional
symmetry algebra of a two-dimensional conformal őeld theory involves a direct sum of two
copies of the Virasoro algebra, see e.g. [Sch]. The collection of őelds which transform trivially
with respect to either of these two copies generates the so-called chiral and anti-chiral sectors
of the conformal őeld theory, respectively. By contrast, the full conformal őeld theory deals
with all of the őelds, transforming under both copies of the Virasoro algebra.

The main purpose of this paper is to initiate the construction and study of full conformal
őeld theories within the modern framework of prefactorisation algebras [CG1, CG2] recently
introduced by Costello and Gwilliam. We focus on describing the full/non-chiral versions of a
broad class of vertex algebras, known as universal enveloping vertex algebras [Pri], which are
deőned as Verma modules over inőnite-dimensional Lie algebras, including centrally extended
loop algebras, the Virasoro algebra and the inőnite-dimensional Weyl algebra. These full vertex
algebras encode the vacuum sectors, or symmetry algebras, of many rational and logarithmic
conformal őeld theories, including the Wess-Zumino-Witten model [WZ, Wit1, Wit2, Nov] and
its more recent generalisations associated to non-semisimple Lie algebras [BR, Que], minimal
models and the βγ system; see [DMS] for an extensive review.

The prefactorisation algebra perspective that we follow has several important advantages.
It provides a coordinate-invariant description of (full) vertex algebras; this will, in particular,
allow us to derive a generalisation of Huang’s change of variable formula [Hua] for full vertex
algebras which leads to a simple formulation of the operator formalism in full conformal őeld
theories. It also provides an elegant geometric formulation of (full) vertex algebras allowing
us to work on an arbitrary two-dimensional conformal manifold; for instance, by paying close
attention to reality conditions we will construct a canonical Hermitian sesquilinear form on
the full vertex algebra using the factorisation product to the global observables on S2.

In the remainder of the introduction we begin in ğ1.1 by providing a general overview of
different mathematical approaches to conformal őeld theory and their interconnections. In
ğ1.2 we explain the main idea for realising the notion of full vertex algebras in the framework
of prefactorisation algebras, based on an observation from [FS]. In ğ1.3 we describe the class
of vertex algebras whose non-chiral versions we will formulate using prefactorisation algebras,
and in ğ1.4 we give an outline the content of the paper to help guide the reader.
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1.1 Approaches to conformal őeld theory

There are various mathematical formulations of both chiral and full two-dimensional conformal
őeld theory, each of which is based on a different axiomatic framework for quantum őeld the-
ory. These include the GårdingśWightman axioms [GåWi, SW] or the OsterwalderśSchrader
axioms [OS1, OS2] related by analytic continuation, the HaagśKastler axioms [HaKa] or the
closely related BrunettiśFredenhagenśVerch axioms [BFV] in the locally covariant case, and
the AtiyahśSegalśWitten axioms [Seg, Ati, Wi3] for functorial quantum őeld theory.

1.1.1 (Full) vertex operator algebras

A vertex (operator) algebra is a vector space V equipped with a state-őeld correspondence,
also known as a őeld map or a vertex operator map, Y : V ⊗ V → V ((ζ)), valued in formal
Laurent series in the formal variable ζ with coefficients in V , satisfying certain axioms [Bor,
FHL, Hua, Kac2, FB, LL]. The vertex operator map already encodes an ‘algebraic’ version of
the Wightman őelds [SW] for a chiral two-dimensional conformal őeld theory, see [Kac2, ğ1].
If, moreover, V is unitary in the sense of [DL], then under certain extra mild assumptions one
can use the vertex operator map to associate [CCHW, RTT] to each state a ∈ V an operator-
valued distribution on S1, i.e. a Wightman őeld on S1, acting on a dense open subset of the
Hilbert space completion HV of V with respect to its positive-deőnite sesquilinear form. In the
very recent work [CRTT] a rigorous connection is also established in the broader non-unitary
context and without the need for any additional technical assumptions.

Vertex operator algebras only encode chiral two-dimensional conformal őeld theories, but
a number of closely related extensions describing full two-dimensional conformal őeld theories
have also been developed: a non-chiral version of vertex algebras was őrst introduced in [KO]
and further studied in [Ros] under the name OPE-algebras, the notion of a full őeld algebra was
deőned in [HuKo, Kon], that of a full vertex algebra in [Mor1, Mor2] and that of a non-chiral
vertex operator algebra in [SS]. All of these non-chiral versions of vertex (operator) algebras
are closely related and we refer the reader to the original articles for the various comparisons.
A notion of unitarity was also recently introduced in [AMT] to relate the algebraic approach
of [Mor1, Mor2] with an analytic one based on the OsterwalderśSchrader axioms.

1.1.2 Conformal nets

A conformal net [FröG, FJ, KL1], by constrast, encodes the local observables of a chiral two-
dimensional conformal őeld theory as a conformal HaagśKastler net [HaKa] on S1, i.e. as
a functor from the category of open intervals in S1 to that of von Neumann subalgebras of
B(H) for a őxed Hilbert space H. There is also a ‘coordinate-free’ formulation of conformal
nets [BDH] built instead on the axiomatic framework of BrunettiśFredenhagenśVerch [BFV],
see also [FV, BDRY, Rej, BSW], which rather than working on a őxed spacetime (S1 in this
case) treats all contractible compact 1-dimensional manifolds on an equal footing.

Conformal nets on S1 similarly only encode chiral two-dimensional conformal őeld theories,
whereas full two-dimensional conformal őeld theories are encoded instead in terms of conformal
Haag-Kastler nets on two-dimensional Minkowski space R

1,1 or the Einstein cylinder E. The
relationship between a full two-dimensional conformal őeld theory and its chiral and anti-chiral
sectors was studied in the conformal nets setting in [Reh1, KL2, BKL], see also [Reh2] for a
review. This was also recently studied from a purely categorical perspective in [BGS] within
a general operadic reformulation [BSW] of the BrunettiśFredenhagenśVerch framework.

3



1.1.3 Segal’s functorial approach

In the chiral setting, unitary vertex operator algebras and conformal nets are intimately related
[CKLW, Gui], see also [CGH] in the supersymmetric case. A more geometric perspective on
this relationship was also obtained in [Ten1, Ten2] based on ideas from [Hen1], using Segal’s
functorial deőnition of a chiral conformal őeld theory [Seg] to interpolate between the two.
Although a similar comparison in the non-chiral case does not yet exist, note that Segal’s
axioms [Seg] can encode both chiral and full two-dimensional conformal őeld theories.

1.1.4 Factorisation algebras

In the present work we will, instead, be working in the modern formulation of quantum őeld
theory based on factorisation algebras due to CostellośGwilliam [CG1, CG2]. It is known to
be closely related, at least on a heuristic level [CG1, ğ1.4], to all of the frameworks mentioned
above. The precise relationship between factorisation algebras in the Lorentzian setting and
the BrunettiśFredenhagenśVerch framework was clariőed in the recent series of works [GR1,
BPS, BMS, GR2]. In the setting of chiral two-dimensional conformal őeld theories, conformal
nets were also shown in [Hen2] to be a particular instance of factorisation algebras on S1.

The notion of (pre)factorisation algebra à la CostellośGwilliam encapsulates, in a simple
and general axiomatic framework, the algebra of observables in general quantum őeld theories
[CG1, CG2]. Its development was originally inspired by the theory of factorisation algebras à la
BeilinsonśDrinfel’d [BD2], see also [FraG] and the book [FB] for a nice review, which provides
a sheaf-theoretic coordinate-free formulation of vertex (operator) algebras, and hence of chiral
two-dimensional conformal őeld theory. Indeed, the axioms of a vertex algebra also admit a
very natural and elegant reformulation in terms of holomorphic prefactorisation algebras à la
CostellośGwilliam on C, see [CG1, ğ5] and [Bru1]. There is also a close connection with the
theory of geometric vertex (operator) algebra őrst introduced in [Hua], see [Bru2]. Note that
the relation between the two different notions of factorisation algebras of BeilinsonśDrinfel’d
and CostellośGwilliam remains to be elucidated, see however [HeKa] for the comparison in
the locally constant setting corresponding to topological őeld theories [Lur]. From now on, we
shall always consider the notion of (pre)factorisation algebra in the sense of CostellośGwilliam
and we will refer to these simply as (pre)factorisation algebras.

Even though the origins of factorisation algebras are deeply rooted in the theory of vertex
algebras, hence in chiral two-dimensional conformal őeld theory, their scope of applicability is
much broader, extending to general quantum őeld theories in arbitrary space-time dimensions.
This is very reminiscent of the axiomatic framework for quantum őeld theory in curved space-
time of HollandsśWald [HW1, HW2, HW3], see also [HO, HH], in which the operator product
expansion takes centre stage, exactly as in a vertex (operator) algebra V where it is given by
the state-őeld correspondence Y : V ⊗ V → V ((ζ)). Indeed, factorisation algebras can encode
operator product expansions of local observables in a general quantum őeld theory [CG2, ğ10].

1.2 The orientation double construction

Let Σ be a real two-dimensional conformal manifold. The decomposition of a full conformal
őeld theory on Σ into its chiral and anti-chiral sectors is often motivated from a dynamical
point of view by the fact that the space of solutions of the classical őeld theory factorises into
left and right moving solutions in the Lorentzian setting, or holomorphic and anti-holomorphic
solutions in the Euclidean setting. We will instead adopt the more geometric perspective, as
őrst advocated in [FS], which relates the chiral and anti-chiral sectors of a full conformal őeld
theory to the two possible choices of orientations one can locally make on Σ. For concreteness
we will work with a Euclidean conformal manifold Σ, in which case the choice an orientation
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corresponds to a choice of complex structure. However, we will also deal with the Lorentzian
case in ğ4 by working in the Hamiltonian formalism and restricting őelds to a Cauchy surface.

The orientation bundle Or(Σ)→ Σ is the principal Z2-bundle whose őbre over any p ∈ Σ
consists of two points corresponding to the two possible orientations at p. The double of Σ,
denoted π : Σ̂ → Σ, is deőned as the quotient of Or(Σ) by the relation which identiőes the
pair of points above any p ∈ ∂Σ. By construction, Σ̂ is a 2-dimensional conformal manifold
without boundary which is naturally oriented and thus carries a canonical complex structure.
Moreover, Σ̂ comes naturally equipped with an orientation reversing involution τE : Σ̂ → Σ̂,
such that πτE = π, induced by the involution Or(Σ) → Or(Σ) exchanging the pair of points
in each Z2 őbre. In particular, the őxed point set of τE corresponds to the boundary ∂Σ →֒ Σ̂.

Following [FS], we can describe a full conformal őeld theory on Σ using a chiral conformal
őeld theory on the oriented cover Σ̂. For instance, the double of the 2-sphere Σ = S2 is given
by the disjoint union Σ̂ = Σ+ ⊔ Σ− of two copies of Σ equipped with opposite orientations
and the chiral and anti-chiral sectors of the full conformal őeld theory then correspond to Σ+

and Σ−, respectively. We will later specialise to this particular case. The subscript ‘E’ on the
orientation reversing involution τE : Σ̂ → Σ̂ refers to the fact that it then describes reality
conditions in Euclidean signature. In this case we shall also consider a different orientation
reversing involution τL : Σ̂ → Σ̂ which acts individually on each of the two spheres Σ±, by
reŕection through the equatorial plane, rather than exchanging them as τE does:

Σ+

o′
+

o+

p+

Σ
−

o′
−

o
−

p
−τE

τL τL

We use the subscript ‘L’ here since this will correspond to reality conditions in the Lorentzian
setting (also in the Euclidean setting after Wick rotation from the Lorentzian setting), which
send the chiral and anti-chiral őelds to themselves rather than exchanging them.

1.3 Universal enveloping vertex algebras

A general class of vertex algebras can be constructed using a vertex-algebraic analogue of the
universal enveloping algebra construction for Lie algebras, starting from the simpler notion
of a vertex Lie algebra, also known as a Lie conformal algebra, introduced in [Pri]; see also
[Kac2, FB]. Speciőcally, a vertex Lie algebra L is determined by a vector space of őelds
a(z) =

∑
n∈Z a(n)z

−n−1 labelled by a ∈ a for some őnite-dimensional vector space a, which
together with all of their derivatives ∂kz a(z) for k ∈ Z≥1 is closed under taking the singular part
of their operator product expansions. Then the associated universal enveloping vertex algebra
[Pri] is the vertex algebra V(L ) that is freely generated by the őelds of the vertex Lie algebra
L under taking derivatives and normal ordered products, modulo the relations encoded in L .
More precisely, a general element of the vector space V(L ) is given by a linear combination
of states of the form ar(−mr)

. . . a1(−m1)
|0⟩ where ai ∈ a and mi ∈ Z≥1 for i ∈ {1, . . . , r}, with

associated őelds

Y
(
ar(−mr)

. . . a1(−m1)
|0⟩, z

)
= :

1

(mr − 1)!
∂mr−1
z ar(z) . . .

1

(m1 − 1)!
∂m1−1
z a1(z):. (1.1)

The fact that this formula endows V(L ) with the structure of a vertex algebra is an immediate
application of the recontruction theorem, see for instance [Kac2, Theorem 4.5] or [FB, ğ2.3.11].
The proof of the latter, however, relies on various technical results including Dong’s lemma.
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We will see that the formula (1.1) (and in particular its counterpart for full vertex algebras)
has a very simple and elegant geometric origin from the prefactorisation algebra perspective
on (full) vertex algebras. Therefore, rather than invoke the reconstruction theorem (for which
there does not appear to be a full vertex algebra analogue in the literature) to construct (full)
vertex algebras from holomorphic prefactorisation algebras, as is done for instance in [CG1,
ğ5] in the chiral setting, we will show directly that the formula (1.1) emerges very naturally
from the structure of the prefactorisation algebra itself.

1.3.1 Main examples

We will consider the following three canonical examples of vertex Lie algebras:

Kac-Moody: For any őnite-dimensional complex Lie algebra g equipped with a symmetric
invariant bilinear form κ = ⟨·, ·⟩ : g⊗g→ C, the Kac-Moody vertex Lie algebra L is generated
by őelds X(z) for each X ∈ g with operator product expansions given, for any X,Y ∈ g, by

X(z)Y(w) ∼
[X,Y](w)

z − w
+
⟨X,Y⟩

(z − w)2
.

When g is reductive the associated universal enveloping vertex algebra V(L ) is known as the
affine (Kac-Moody) vertex algebra Vκ(g), see for instance [LL, Kac2, FB]. This includes the
Heisenberg vertex algebra as a special case for the trivial Lie algebra C with invariant bilinear
form given by multiplication. Note, however, that the Lie algebra g need not be reductive.
For instance, one may take g to be a Takiff algebra [Tak], i.e. g = Tnf := f[t]/tn+1f[t] for some
reductive Lie algebra f and n ∈ Z≥0. This can be equipped with a non-degenerate symmetric
invariant bilinear form [Que] and the associated universal enveloping vertex algebra V(L )
gives rise to examples of (logarithmic) chiral conformal őeld theories őrst studied in [BR], see
also [RR1, RR2], and related to generalised WZW models in [Que].

Virasoro: The Virasoro vertex Lie algebra L is generated by one őeld, often called T (z),
whose operator product expansion with itself depends on the central charge c ∈ R and reads

T (z)T (w) ∼
∂wT (w)

z − w
+

2T (w)

(z − w)2
+

1
2c

(z − w)4
.

The associated universal enveloping vertex algebra V(L ) is the Virasoro vertex algebra Virc.

βγ system: The Weyl vertex Lie algebra L is generated by two free bosonic ghost őelds
β(z) and γ(z) with operator product expansion

β(z)γ(w) ∼
1

z − w
.

The associated universal enveloping vertex algebra V(L ) is the βγ vertex algebra Vβγ , named
after the βγ bosonic ghost system in the physics literature.

1.3.2 Analytic Langlands correspondence

One important motivation for studying the affine vertex algebra Vκ(g) comes from the fact
that at the critical level κ = κc it plays a central role in the study of the geometric Langlands
correspondence, as formulated by Beilinson and Drinfel’d in their seminal work [BD1] on the
quantisation of Hitchin’s integrable system. For an extensive review on the subject we refer
the reader to [Fre1, Fre2] and references therein. Much more recently, an analytic version
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of the geometric Langlands correspondence was formulated and studied by Etingof, Frenkel
and Kazhdan in the series of works [Fre3, EFK1, EFK2, EFK3, EFK4], implementing and
extending earlier ideas of Teschner [Tes]. The gauge theoretic interpretation of the geometric
Langlands correspondence as electric-magnetic duality in twisted N = 4 super Yang-Mills
theory in four dimensions [KW] has also been recently extended in [GW] to the analytic
version. It is expected, see for instance [Tes, Fre3], that the role of the vertex algebra Vκc(g)
in the geometric Langlands correspondence should be replaced by that of the full affine vertex
algebra Fκc(g) = Vκc(g)⊗ Vκc(g) at critical level κ = κc in the analytic version.

1.4 Outline of the paper

In ğ2 we construct a local Lie algebra LΣ̂
α over the complex curve Σ̂, which is an analogue of

the notion of vertex Lie algebra in the present prefactorisation algebra setting. Since we are
interested in describing a full vertex algebra on Σ, to forget about the orientation introduced
by passing from Σ to the orientation double Σ̂, see ğ1.2, the main object of interest will be the
pushforward LΣ

α of the local Lie algebra along the projection π : Σ̂→ Σ. We focus on the three
examples of vertex Lie algebras described in ğ1.3.1. Importantly, in all of these the identity
operator appears as one term in the operator product expansions. Correspondingly, the local
Lie algebra LΣ

α will be centrally extended and to keep track of its crucial central extension 1

we will work with the notion of unital local Lie algebras. The counterpart of the universal
enveloping vertex algebra construction is the prefactorisation envelope ULΣ

α which we adapt
from the case of local Lie algebras in [CG1, Deőnition 3.6.1] to the unital case. The technical
details are relegated to Appendix A. This allows us to deal with (full) vertex algebras over
C rather than over the base ring C[s1], as in [CG1, Deőnition 5.5.2]. Our construction thus
uniőes three key examples of holomorphic prefactorisation algebras in a single framework: the
Kac-Moody case [CG1, ğ5.5], the Virasoro case [Wil] and the βγ system case [CG1, ğ5.4].

In ğ3 we consider the vector space F
a,α = V

a,α ⊗ V̄
a,α where V

a,α denotes the vector space
underlying the universal enveloping vertex algebra V(L ) and V̄

a,α its anti-chiral analogue. We
realise this vector space in the limit F

a,α
p of the prefactorisation algebra ULΣ

α over any point
p ∈ Σ◦ in the interior Σ◦ of Σ. In Proposition 3.9 we show that the state-őeld correspondence at
a point p ∈ Σ◦ is determined by the factorisation product F

a,α
q → ULΣ

α(Y ) for some annulus
q ∈ Y ⊂ Σ◦ around p. In particular, the formula for the state őeld correspondence of an
arbitrary state in F

a,α, i.e. the analogue of (1.1), has a very elegant geometric origin from the
prefactorisation algebra perspective. We derive a number of properties satisőed by the modes
of the vertex operators of arbitrary states in F

a,α, including ‘Borcherds type’ identities when
one of the states involved is (anti-)chiral, i.e. belongs to V

a,α or V̄a,α. In ğ3.4 we introduce the
(anti-)conformal states of Fa,α and use these to derive a non-chiral version of Huang’s łchange
of variablež formula for the state-őeld correspondence of Fa,α, see Theorem 3.19 and Corollary
3.20. In ğ3.5 we specialse to Σ = S2 and use the factorisation product to ULΣ

α(S
2) to deőne an

invariant bilinear form on F
a,α. We then use this to prove in Theorem 3.26 that F

a,α satisőes
the axioms of a full vertex algebra in the sense of [Mor1, Mor2]. Finally, in ğ3.6 we discuss
reality conditions on F

a,α and deőne a Hermitian sesquilinear form on F
a,α.

In ğ4 we make use of the framework developed in ğ3 to describe the operator formalism
for F

a,α, cf. [DMS, ğ6]. In particular, we use the change of variable formula applied to the
conformal transformation from the plane to the cylinder in order to describe Fourier series
decompositions of quantum operators on S1 associated to generic states in F

a,α. In ğ4.2 we
also derive ‘Borcherds type’ identities for the Fourier modes of states in F

a,α, again in the case
when one of the states involved is (anti-)chiral. Finally, in ğ4.3 we discuss reality conditions,
deőne a natural notion of Hermitian conjugate for quantum operators on S1 and show that it
corresponds to the adjoint with respect to the Hermitian sesquilinear from on F

a,α.
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2 Prefactorisation algebra ULΣ
α

Throughout this section we let Σ be an arbitrary connected 2-dimensional conformal manifold
but which could be non-orientable and possibly with boundary.

Let VecC denote the symmetric monoidal category of complex vector spaces with the tensor
product over C serving as the monoidal product. We shall also need the symmetric monoidal
category dgVecC of DG vector spaces over C, also equipped with the tensor product over C as
the monoidal product. Let dgLieC denote the symmetric monoidal category of DG Lie algebras
over C with the direct sum of DG Lie algebras serving as monoidal product.

2.1 Unital local Lie algebra LΣ
α

Let Ω•
c denote the cosheaf of compactly supported sections of the de Rham complex on the

complex manifold Σ̂. Let Ω0,•
c be the cosheaf of compactly supported sections of the Dolbeault

complex on Σ̂, equipped with the Dolbeault differential ∂̄, namely the anti-holomorphic part
of the de Rham differential d = ∂ + ∂̄. These are cosheaves of commutative DG algebras.

2.1.1 General setup

Let L be a holomorphic vector bundle over Σ̂. We will make a number of assumptions about
L, motivated in part by the list of examples considered in ğ2.1.2 below, which will allow us to
deőne a unital local Lie algebra LΣ

α on Σ that will form the basis for the rest of the paper.

Assumption 1 The compactly supported sections of the L-valued Dolbeault complex U 7→
Ω0,•
c (U,L) deőne a precosheaf of DG Lie algebras on Σ̂, whose Lie bracket we denote by

[·, ·] : Ω0,•
c (U,L)⊗ Ω0,•

c (U,L) −→ Ω0,•
c (U,L). (2.1)

Assumption 2 The holomorphic vector bundle L is locally holomorphically trivial over any
coordinate chart on Σ̂, that is for any open subset U ⊂ Σ̂ equipped with a local holomorphic
coordinate ξ : U → C we have L|U ∼= U × aξ for some őnite-dimensional vector space aξ with
the Dolbeault operator ∂̄L of L given locally by ∂̄.

Although the vector space aξ will typically depend on the choice of coordinate ξ, hence the
use of the subscript ξ in the notation, there is a canonical isomomorphism aη

∼=−→ aξ between the
vectors spaces associated with different local holomorphic coordinates ξ, η : U → C determined
by the the change of coordinate from η to ξ. We then have the isomorphism of DG vector spaces

Ω0,•
c (U,L) ∼= aξ ⊗ Ω0,•

c (U). (2.2)

It will be useful to also introduce a canonical copy a of the őnite-dimensional vector spaces
aξ with a corresponding isomorphism (·)ξ : a

∼=−→ aξ. However, it is important to note at this
stage that the induced map (·)η→ξ := (·)ξ ◦ ((·)η)

−1 : aη
∼=−→ aξ will generally be different from

the canonical change of coordinate isomomorphism aη
∼=−→ aξ described above.

Assumption 3 For each U ∈ Σ̂, the DG Lie algebra Ω0,•
c (U,L) is equipped with a 2-cocycle

α : Ω0,•
c (U,L)⊗ Ω0,•

c (U,L) −→ C. (2.3)
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We use this 2-cocycle to introduce the twisted precosheaf of DG Lie algebras LΣ̂
α as a central

extension of the precosheaf of DG Lie algebras U 7→ Ω0,•
c (U,L) following [CG1]. Speciőcally,

for any open U ⊂ Σ̂ we deőne the DG vector space

LΣ̂
α(U) := Ω0,•

c (U,L)⊕ C1,

where 1 is a formal variable of cohomological degree 1 so that C1 is a 1-dimensional complex
DG vector space concentrated in degree 1, isomorphic to the inverse suspension C[−1] of C.

We have a morphism of DG vector spaces extU,V : LΣ̂
α(U)→ LΣ̂

α(V ) deőned as the extension
by zero on the őrst summand and as the identity on C1. We deőne the C-linear operation

[·, ·]α : LΣ̂
α(U)⊗ LΣ̂

α(U) −→ LΣ̂
α(U) (2.4a)

by declaring C1 to be central and for every a, b ∈ Ω0,•
c (U,L) setting

[a, b]α := [a, b] + α(a, b)1. (2.4b)

It is straightforward to show that the above structure makes LΣ̂
α into a precosheaf of DG Lie

algebras on Σ̂. In fact, since the central extension will play a key role in what follows, it will be
important to keep track of it by introducing the notion of a unital DG Lie algebra1. A unital DG

Lie algebra can be described as a DG Lie algebra L equipped with a map η ∈ MapdgVecC(C, L)
of degree 1 whose image is both central and closed in L. In other words, a DG Lie algebra L
is unital if it has a central cocycle in degree 1, namely η(1). We will refer to the degree 1 map
η : C→ L as the unit of the unital DG Lie algebra. See ğA.1 for more details. Finally, a unital
local Lie algebra is a precosheaf of unital DG Lie algebras with the property that sections over
disjoint opens commute. Let uLocLieC(D) denote the category of unital local Lie algebras on
a manifold D, see ğA.2 for more details. It is straightforward to check by direct computation
that LΣ̂

α is a unital local Lie algebra on Σ̂.
In order to get rid of the dependence on the orientation which was introduced by going

from Σ to its oriented cover Σ̂, from now on we will only consider the pushforward

LΣ
α := π∗L

Σ̂
α ∈ uLocLieC(Σ) (2.5)

of the unital local Lie algebra LΣ̂
α on Σ̂ introduced above, along the projection π : Σ̂→ Σ. In

other words, the sections of (2.5) over any open U ⊂ Σ are given by

LΣ
α(U) = LΣ̂

α

(
π−1(U)

)
. (2.6)

Note that on a general 2-dimensional conformal manifold Σ, with possibly non-empty boundary
∂Σ and interior region Σ◦ := Σ \ ∂Σ, there are two types of connected open subsets U ⊂ Σ
one may consider:

(i) U ⊂ Σ◦ in which case π−1(U) ⊂ Σ̂ consists of two connected components,

(ii) U ⊂ Σ with U ∩ ∂Σ ̸= ∅ for which π−1(U) ⊂ Σ̂ has a single connected component.

Throughout this paper we will only consider bulk őelds in the twisted prefactorisation envelope
of LΣ

α , to be introduced in ğ2.3.2, namely observables living on open subsets U ⊂ Σ◦ of type
(i). We leave the study of boundary őelds associated with open subsets U ⊂ Σ of type (ii),
and their interplay with bulk őelds, for future work.

1I thank Alex Schenkel for this suggestion which makes some of the later constructions more elegant.
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2.1.2 Main examples

The three primary examples of the above general setup which we will consider throughout this
paper correspond to the three canonical examples of vertex Lie algebras discussed in ğ1.3.1.
Upon taking their twisted prefactorisation envelopes in ğ2.3 below, these will lead to the full
versions of the Kac-Moody, Virasoro and βγ vertex algebras, respectively. We now describe
the data underlying the unital local Lie algebra LΣ

α in each of these cases.

Kac-Moody: Let g be any őnite-dimensional complex Lie algebra and consider the trivial
vector bundle

L = Σ̂× g. (2.7)

This clearly satisőes the assumption of local triviality over any open U ⊂ Σ̂ equipped with a
holomorphic coordinate ξ : U → C, where aξ = g is actually independent of the coordinate ξ
in this case. The Lie bracket (2.1) on Ω0,•

c (U,L) ∼= aξ ⊗ Ω0,•
c (U) is given by

[X⊗ ω,Y ⊗ η] := [X,Y]⊗ ω ∧ η (2.8a)

for X,Y ∈ g and ω, η ∈ Ω0,•
c (U).

We also deőne a = g and the isomorphism (·)ξ : a
∼=−→ aξ is the identity.

We őx a symmetric invariant bilinear form κ : g⊗ g→ C on g. Using this we can deőne a
2-cocycle (2.3) on Ω0,•

c (U,L) by the following formula, see [CG1, ğ5.5.1],

α(X⊗ ω,Y ⊗ η) := −
κ(X,Y)

2πi

∫

U

∂ω ∧ η (2.8b)

for any X,Y ∈ g and ω, η ∈ Ω0,•
c (U). The integral over U in (2.8b) is trivially zero on degree

grounds if |ω| + |η| ̸= 1. Indeed, if ω ∈ Ω0,r
c (U) and η ∈ Ω0,s

c (U) then ∂ω ∧ η ∈ Ω1,r+s
c (U),

which can be integrated over U only if r + s = 1.
The unital local Lie algebra LΣ̂

α in this case corresponds to the affine Kac-Moody example
considered in [CG1, ğ5.5].

Virasoro: Consider the holomorphic tangent bundle

L = T 1,0Σ̂. (2.9)

Over any open U ⊂ Σ̂ equipped with a holomorphic coordinate ξ : U → C we have the local
trivialisation L|U ∼= U × aξ with aξ = spanC{∂ξ}. The induced isomorphism (2.2) then allows
us to represent an element of Ω0,•

c (U,L) in the form ∂ξ ⊗ u ∈ aξ ⊗ Ω0,•
c (U) with u ∈ Ω0,•

c (U)

and the Lie bracket (2.1) on Ω0,•
c (U,L) explicitly reads

[∂ξ ⊗ u, ∂ξ ⊗ v] = ∂ξ ⊗ (u ∧ ∂ξv − v ∧ ∂ξu) (2.10a)

for any u, v ∈ Ω0,•
c (U). One can view ∂ξ ⊗ u as a compactly supported Dolbeault form valued

vector őeld on U , which would be more conventionally denoted u∂ξ. The Lie bracket (2.10a)
is then simply the commutator of vector őelds combined with the wedge product on forms.

We let a = spanC{Ω} and the isomorphism (·)ξ : a
∼=−→ aξ is given by Ω 7→ −∂ξ.

Following [Wil], a formula for the 2-cocycle (2.3) on Ω0,•
c (U,L) is obtained by generalising

the formula for the Gelfand-Fuchs 2-cocycle on the Lie algebra of vector őelds on S1. First,
we suppose that U ⊂ Σ̂ is covered by a local coordinate chart ξ : U → C. A pair of elements
in Ω0,•

c (U,L) can then be represented as ∂ξ ⊗ u and ∂ξ ⊗ v, whose coefficients u, v ∈ Ω0,•
c (U)

transform as components of (1, 0) vector őelds on U . We then deőne the 2-cocycle [Wil, ğ2.2.2]

αξ(∂ξ ⊗ u, ∂ξ ⊗ v) :=
c

24πi

∫

U

∂(∂ξu) ∧ ∂ξv, (2.10b)
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where c ∈ R is őxed. As in the previous example, the integral over U in (2.10b) is trivially
zero on degree grounds if |u| + |v| ≠ 1. The subscript ξ on the left hand side of (2.10b) is
used to indicate that this 2-cocycle explicitly depends on the chosen coordinate ξ. However,
it depends on the coordinate ξ only up to a 2-coboundary. Indeed, given any other local
coordinate η : U → C on the open U ⊂ Σ̂ and introducing the 1-cochain

βη,ξ : Ω
0,•
c (U,L) −→ C, ∂ξ ⊗ u 7−→

c

24πi

∫

U

(Sη)(ξ)dξ ∧ u, (2.11)

where (Sη)(ξ) =
∂3
ξη

∂ξη
− 3

2

(∂2
ξη

∂ξη

)2
denotes the Schwarzian derivative, it is straightforward to

show that
αη(∂η ⊗ ũ, ∂η ⊗ ṽ) = αξ(∂ξ ⊗ u, ∂ξ ⊗ v) + βη,ξ

(
[∂ξ ⊗ u, ∂ξ ⊗ v]

)

for any pair of vector őelds ∂η ⊗ ũ = ∂ξ ⊗ u and ∂η ⊗ ṽ = ∂ξ ⊗ v in Ω0,•
c (U,L). In other words,

αη = αξ + δβη,ξ so that we have an isomorphism of unital local Lie algebras

Φη→ξ : L
Σ̂
αη
(U)

∼=
−→ LΣ̂

αξ
(U), a+ x1 7−→ a+

(
x− βη,ξ(a)

)
1. (2.12)

The 2-cocycle (2.10b) thus leads to a well-deőned and coordinate independent central extension
(2.4). We refer to [Wil, ğ5.2] for further details.

The resulting unital local Lie algebra LΣ̂
α coincides with the local Lie algebra underlying

the Virasoro factorisation algebra in [Wil].

βγ system: Consider the direct sum of the trivial 1-dimensional line bundle on Σ̂ with the
holomorphic cotangent bundle, namely

L = (Σ̂× C)⊕ T ∗1,0Σ̂. (2.13)

Over any open U ⊂ Σ̂ equipped with a holomorphic coordinate ξ : U → C we have the local
trivialisation L|U ∼= U × aξ where aξ = spanC{1, dξ}. The Lie bracket (2.1) on Ω0,•

c (U,L) is
taken to be trivial. The isomorphism (2.2) here implies Ω0,•

c (U,L) ∼= Ω0,•
c (U)⊕ Ω1,•

c (U).
We let a = spanC{β, γ} and the isomorphism (·)ξ : a

∼=−→ aξ is given by β 7→ 1, γ 7→ dξ.
A 2-cocycle (2.3) on Ω0,•

c (U,L) is given by

α(ω, η) :=
1

2πi

∫

U

ω ∧ η (2.14)

for any ω, η ∈ Ω0,•
c (U)⊕Ω1,•

c (U), where once again the integral is understood to vanish unless
ω ∧ η ∈ Ω1,1

c (U) so that if ω ∈ Ω0,r
c (U), say, then we should have η ∈ Ω1,s

c (U) with r + s = 1.
This corresponds to the βγ system example discussed in [CG1, ğ5.4].

2.2 Cohomology of LΣ
α

In this section we compute the cohomology of the DG vector space LΣ
α(U) for connected open

subsets U ⊂ Σ◦ in the interior Σ◦ of Σ, equipped with a local holomorphic coordinate, see
the last part of Theorem 2.5 below. Although this result is well known, see e.g. [LR, ğ9] or
[CG1, Theorem 5.4.7], we shall give the details of the proof in the present context since the
full statement of Theorem 2.5 will be crucial for us in ğ3.

Given any U ⊂ C or U ⊂ Σ̂ we denote by U its closure. The following result is standard.

Lemma 2.1. Let U ⊂ C be a bounded open subset with C1 boundary.
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(a) For any f ∈ Ω0(U) we have the Cauchy-Pompeiu formula

1

2πi

∫

∂U

fdµ

µ− λ
+

1

2πi

∫

U

dµ ∧ ∂̄f

µ− λ
=

{
f(λ) if λ ∈ U,
0 if λ ∈ C \ U.

(b) For any ω ∈ Ω0,1
c (U), the ∂̄-problem ∂̄f = ω for f ∈ Ω0,0(C) on C is solved by

f(λ) = ω↓(λ) :=
1

2πi

∫

U

dµ ∧ ω

µ− λ
. □

We denote the complement of any subset S ⊂ CP 1 := C ∪ {∞} of the Riemann sphere
by Sc := CP 1 \ S. For any S ⊂ C, let O∞(Sc) denote the algebra of germs of holomorphic
functions on Sc vanishing at∞. Explicitly, an element of O∞(Sc) is the equivalence class [f ] of
a holomorphic function f ∈ OCP 1(∆f ) deőned on an open neighbourhood ∆f ⊃ Sc ∋ ∞ and
such that f(∞) = 0, where two such functions f and g are considered equivalent if f |V = g|V
for some open neighbourhood V ⊂ ∆f ∩∆g of Sc.

Lemma 2.2. Let W ⊂ C be a bounded open subset. For any ω ∈ Ω0,1
c (W ) we have:

(i) ω↓ ∈ Ω0,0(C) deőnes a germ [ω↓] ∈ O∞(W c),

(ii) [ω↓] = 0 in O∞(W c) if and only if ω is ∂̄-exact.

Proof. Firstly, since ω has compact support the integral entering the deőnition of ω↓(λ) is
well deőned, in particular the integrand is locally integrable near the singularity at λ. And by
Lemma 2.1(b), this function provides a solution to the ∂̄-problem for ω. We then also deduce
from the support property of ω that ω↓ is holomorphic on an open neighbourhood ∆ω↓ of W c.
Moreover, since for every µ ∈ supp ω ⊂W we have |µ− λ| ≥ dist(λ, supp ω), it follows that

∣∣ω↓(λ)
∣∣ ≤

C supµ∈U |ω(µ)|

dist(λ, supp ω)

for some C > 0, and hence ω↓(λ)→ 0 as λ→∞. The statement (i) now follows.
If [ω↓] = 0 then ω↓ vanishes on an open neighbourhood of W c and so it has compact

support in the bounded open W ⊂ C, i.e. ω↓ ∈ Ω0,0
c (W ). The ‘only if’ part of (ii) now follows

as ω↓ solves the ∂̄-problem for ω.
Conversely, if ω = ∂̄η for some η ∈ Ω0,0

c (W ) then it is immediate from the Cauchy-Pompeiu
formula that ω↓ = η. The ‘if’ part of (ii) now follows since ω↓ ∈ Ω0,0

c (W ). □

Given any bounded open subset W ⊂ C, let us őx a basis of the space of germs O∞(W c)
and for each basis element [f ] ∈ O∞(W c) we pick a representative f ∈ OCP 1(∆f ) deőned on
an open neighbourhood ∆f of W c and we choose a smooth bump function ρf ∈ Ω0,0

c (W ) which
is equal to 1 on some open neighbourhood of (∆f )

c ⊂ W . Since f |∆f∩W ∈ Ω0,0(∆f ∩W ) is
deőned on supp ∂̄ρf ⊂ ∆f ∩W we can set

⌈f⌉ := −f ∂̄ρf ∈ Ω0,1
c (W ) (2.15)

for every basis element [f ] ∈ O∞(W c) and then extend by linearity to all of O∞(W c).

Lemma 2.3. Let W ⊂ C be a bounded open subset. For any germ [f ] ∈ O∞(W c), the 1-form
⌈f⌉ ∈ Ω0,1

c (W ) is independent of the choices made, up to ∂̄-exact terms. In particular, for any
representative f ∈ OCP 1(∆f ) of [f ] and any smooth bump function ρ ∈ Ω0,0

c (W ) equal to 1 on
some open neighbourhood of (∆f )

c ⊂W we have that ⌈f⌉+ f ∂̄ρ is ∂̄-exact.
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Proof. Let [f ] ∈ O∞(W c). In terms of the őxed basis of O∞(W c), we can write it as a őnite
linear combination [f ] =

∑
i αi[fi] of basis elements [fi] ∈ O∞(W c). Then f |V =

∑
i αifi|V for

some neighbourhood V ⊂ ∆f ∩
⋂

i∆fi of W c. Let ρ′ ∈ Ω0,0
c (W ) be a smooth bump function

equal to 1 on some neighbourhood of V c ⊂W . By deőnition ⌈f⌉ = −
∑

i αifi ∂̄ρfi so that

⌈f⌉+ f ∂̄ρ = −
∑

i

αifi ∂̄(ρfi − ρ
′)−

(∑

i

αifi − f

)
∂̄ρ′ + f ∂̄(ρ− ρ′).

The second term on the right hand side is equal to zero since supp ∂̄ρ′ ⊂ V ∩W and
∑

i αifi−f
vanishes on V . On the other hand, the őrst term on the right hand side is ∂̄-exact because
ρfi −ρ

′ vanishes on (∆fi)
c ⊂ V c so that fi is holomorphic on the support of ρfi −ρ

′. Likewise,
the last term is also ∂̄-exact, as required. □

Lemma 2.4. Let W ⊂ C be a bounded open subset. For [f ] ∈ O∞(W c) we have
[
⌈f⌉↓

]
= [f ].

Moreover, for ω ∈ Ω0,1
c (W ) we have ω − ⌈ω↓⌉ = ∂̄

(
(ω − ⌈ω↓⌉)↓

)
.

Proof. For any f ∈ OCP 1(∆f ) tending to zero at inőnity, we have

−(f ∂̄ρf )
↓ =

(
f∂̄
(
1− ρf

))↓
=
(
∂̄
(
(1− ρf )f

))↓
= (1− ρf )f,

where in the second step we used the fact that ∂̄f = 0 on supp(1−ρf ) ⊂ ∆f . In order to see the
last step, consider the Cauchy-Pompeiu formula applied to the function (1 − ρf )f ∈ Ω0(DR)
with DR ⊃W an open disc of radius R > 0, namely

1

2πi

∫

∂DR

fdµ

µ− λ
+

1

2πi

∫

W

dµ ∧ ∂̄
(
(1− ρf )f

)

µ− λ
=
(
1− ρf (λ)

)
f(λ) if λ ∈ DR,

where in the őrst integral on the left hand side we used the fact that (1 − ρf )f = f on ∂DR

and the domain of the second integral was restricted from DR to W using the fact that the
integrand has support in W . The őrst integral is bounded by supµ∈∂DR

|f(µ)| which tends to
zero as R→∞. And in this limit, the right hand side of the Cauchy-Pompieu formula tends to
(1− ρf (λ))f(λ) for all λ ∈ C. Finally, we note that (1− ρf )f = f on the open neighbourhood
(supp ρf )

c of W c from which the őrst claim now follows.
For the ‘moreover’ part, it follows using Lemma 2.2(i) and the above that ω↓ and ⌈ω↓⌉↓

deőne the same germ in O∞(W c). The desired result now follows by using Lemma 2.2(ii), see
in particular its proof. □

Let U ⊂ Σ◦ be a connected open subset of the interior Σ◦ ⊂ Σ, i.e. not intersecting the
boundary ∂Σ of Σ, with a bounded holomorphic coordinate on each connected component of
π−1(U) ⊂ Σ̂. That is, π−1(U) = ⊔mi=1Wi with m ∈ {1, 2}, where each Wi ⊂ Σ̂ is a connected
open subset equipped with a holomorphic coordinate ξi : Wi → C such that ξi(Wi) ⊂ C is
bounded. We will denote this set of holomorphic coordinates collectively as ξ : π−1(U)→ C.
Consider the DG vector space concentrated in degree 0 given by

L
ξ
O
(π−1(U)) :=

m⊕

i=1

a⊗ O∞

(
ξi(Wi)

c
)
⊕ C.

We deőne a morphism in the category of pointed vector spaces udgVecC, see ğA.1, as

iU : Lξ
O
(π−1(U))[−1] −→ LΣ

α(U) (2.16a)

s−1
(
ai ⊗ [fi]

)m
i=1
7−→

m∑

i=1

(ai)ξi ⊗ ξ
∗
i ⌈fi⌉

s−1a 7−→ a1
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for any ai ∈ a, a ∈ C and [fi] ∈ O∞

(
ξi(Wi)

c
)
. We also deőne another morphism in udgVecC,

going in the other direction, as

pU : LΣ
α(U) −→ L

ξ
O
(π−1(U))[−1] (2.16b)

m∑

i=1

(ai)ξi ⊗ ωi 7−→ s−1
(
ai ⊗

[(
(ξ−1

i )∗ωi

)↓])m
i=1

m∑

i=1

(bi)ξi ⊗ ηi 7−→ 0

a1 7−→ s−1a

for any ai, bi ∈ a, a ∈ C, ηi ∈ Ω0,0
c (Wi) and ωi ∈ Ω0,1

c (Wi). Finally, we deőne a degree −1
linear map

hU : LΣ
α(U) −→ LΣ

α(U) (2.16c)
m∑

i=1

(ai)ξi ⊗ ωi 7−→
m∑

i=1

(ai)ξi ⊗ ξ
∗
i

(
(ξ−1

i )∗ωi −
⌈(
(ξ−1

i )∗ωi

)↓⌉)↓

m∑

i=1

(bi)ξi ⊗ ηi 7−→ 0

a1 7−→ 0

for any ai, bi ∈ a, a ∈ C, ηi ∈ Ω0,0
c (Wi) and ωi ∈ Ω0,1

c (Wi).

Theorem 2.5. For any connected open subset U ⊂ Σ◦ equipped with holomorphic coordinates
ξ : π−1(U)→ C as above, we have a strong deformation retract

L
ξ
O
(π−1(U))[−1] LΣ

α(U)
iU

pU
hU

in udgVecC. In other words, the collection of linear maps in (2.16) deőne a deformation retract
in the sense that pU iU = id and iUpU − id = −(∂̄hU + hU ∂̄), and this deformation retract is
strong in the sense that pUhU = hU iU = hUhU = 0.

In particular, H0
(
LΣ
α(U)

)
= 0 and H1

(
LΣ
α(U)

)
∼= L

ξ
O
(π−1(U)).

Proof. Let ai, bi ∈ a, a ∈ C, ηi ∈ Ω0,0
c (Wi), ωi ∈ Ω0,1

c (Wi) and [fi] ∈ O∞

(
ξ(Wi)

c
)
. Then

pU iU

(
s−1
(
(ai ⊗ [fi])

m
i=1, a

))
= s−1

((
ai ⊗

[
⌈fi⌉

↓
])m

i=1
, a

)
,

so using Lemma 2.4 we deduce that pU iU = id. Next, we have

(iUpU − id)

( m∑

i=1

(
(ai)ξi ⊗ ωi + (bi)ξi ⊗ ηi

)
+ a1

)

= −
m∑

i=1

(ai)ξi ⊗
(
ωi − ξ

∗
i

⌈(
(ξ−1

i )∗ωi

)↓⌉)
−

m∑

i=1

(bi)ξi ⊗ ηi

= −∂̄

(
hU

( m∑

i=1

(
(ai)ξi ⊗ ωi + (bi)ξi ⊗ ηi

)
+ a1

))
−

m∑

i=1

hU
(
(bi)ξi ⊗ ∂̄ηi

)
,

where the őrst sum in last step has been rewritten using the ‘moreover’ part of Lemma 2.4
and the deőnition of hU . To rewrite the second sum, we note that by Lemma 2.2(ii), see in

14



particular its proof, we have ((ξ−1
i )∗∂̄ηi)

↓ = (ξ−1
i )∗ηi ∈ Ω0,0

c (C) which deőnes the trivial germ
in O∞

(
ξi(Wi)

c
)

and hence ⌈((ξ−1
i )∗∂̄ηi)

↓⌉ = 0. Therefore by deőnition of hU we have

m∑

i=1

hU
(
(bi)ξi ⊗ ∂̄ηi

)
= hU

( m∑

i=1

(bi)ξi ⊗ ∂̄ηi

)
=

m∑

i=1

(bi)ξi ⊗ ηi.

We have shown iUpU − id = −(∂̄hU + hU ∂̄) so that we have a deformation retract.
It remains to show that this deformation retract is strong. But it is immediate on degree

grounds that pUhU = 0 and hUhU = 0. On the other hand, we have

hU iU

(
s−1
(
(ai ⊗ [fi])

m
i=1, a

))
=

m∑

i=1

(ai)ξi ⊗ ξ
∗
i

(
⌈fi⌉ −

⌈
⌈fi⌉

↓
⌉)↓

.

Now by Lemma 2.4 we know that [fi] =
[
⌈fi⌉

↓
]

and hence the right hand side vanishes, so we
have a strong deformation retract. □

2.3 Twisted prefactorisation envelope of LΣ
α

We now introduce the prefactorisation algebra ULΣ
α , referred to as the twisted prefactorisation

envelope of the unital local Lie algebra LΣ
α , by adapting the general construction in [CG1].

To formulate the notion of prefactorisation algebra most succinctly it is convenient to use
the framework of multicategories, which are also known as coloured operads. These consist of
classes of objects and arrows, just like an ordinary category, but where the arrows describe
n-ary operations with an arbitrary number n ∈ Z≥0 of inputs but still just a single output.
We refer the reader to [Lei, ğ2] or [CG1, ğA.3.3] for an introduction to multicategories.

2.3.1 Prefactorisation algebras

Let Top(Σ) denote the category whose objects consist of Σ itself and all open subsets which
are homeomorphic to either C or C \ {0}, and whose morphisms are given by inclusions,
i.e. for all U, V ∈ Top(Σ) the set of morphisms HomTop(Σ)(U, V ) contains a single morphism
U → V if U ⊂ V and is empty otherwise. Note that we do not restricting attention to open
subsets homeomorphic to C, as is done for instance in the locally constant setting of [AF, Lur]
which describes topological quantum őeld theories. The reason for also allowing open subsets
homeomorphic to C \ {0} will become clear later in ğ3.2 below, see in particular Proposition
3.9 where the state-őeld correspondence will be constructed as a factorisation product from
a disc to an annulus. Likewise, the reason for including Σ itself as an open subset in Top(Σ)
will become clear in ğ3.5 when we introduce the notion of invariant bilinear form. Note that
our choice of category Top(Σ) also differs from the one used in [CG1, CG2] whose objects
consist of all open subsets of Σ. However, unlike [CG1, CG2], where the focus is on general
perturbative quantum őeld theories, here we restrict to conformal őeld theories, for which our
choice of category Top(Σ) is particularly well-adapted.

We deőne an associated multicategory Top(Σ)⊔ as follows. It has the same set of objects as
Top(Σ) and for any őnite collection of open subsets Ui with i ∈ {1, . . . , n} and V in Top(Σ)⊔,
with n ∈ Z≥0, its set of n-operations is

PTop(Σ)⊔

n

(
(Ui)

n
i=1, V

)
:=

{
HomTop(Σ)(⊔

n
i=1Ui, V ) if Ui ∩ Uj = ∅ for all i ̸= j,

∅ otherwise.

In other words, it contains the single element ⊔ni=1Ui → V if all the Ui are pairwise disjoint
and contained within V , and is empty otherwise. By convention, for any open V ⊂ Σ there is
a unique 0-operation ∅→ V from the empty collection of disjoint open subsets to V . Since the
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disjoint union is symmetric we have ⊔ni=1Ui = ⊔
n
i=1Uσ(i) for any σ ∈ Sn and the corresponding

action of the symmetric group on the n-operations

σ∗ : PTop(Σ)⊔

n

(
(Ui)

n
i=1, V

) ∼=
−→ PTop(Σ)⊔

n

(
(Uσ(i))

n
i=1, V

)

is simply the identity.
Given any symmetric monoidal category C with monoidal product denoted ⊗, we denote

the associated multicategory by C⊗. A C⊗-valued prefactorisation algebra F on Σ, is an object
in the category AlgTop(Σ)⊔(C

⊗) of Top(Σ)⊔-algebras in C⊗, i.e. it is a multifunctor

F : Top(Σ)⊔ −→ C⊗.

More explicitly, this is an assignment of:

• an object F(U) ∈ C to each open subset U ⊂ Σ in Top(Σ), and

• a morphism mF
(Ui),V

:
⊗n

i=1 F(Ui) → F(V ) in C, called a factorisation product, to each
inclusion of n ∈ Z≥0 disjoint open sets ⊔ni=1Ui ⊂ V in Top(Σ), such that the diagram

n⊗

i=1

mi⊗

j=1

F(Uij)

n⊗

i=1

F(Vi)

F(W )

⊗n
i=1 m

F

(Uij),Vi

mF

(Uij),W

mF

(Vi),W

(2.17)

in C commutes, for any inclusion of disjoint open subsets ⊔mi

j=1Uij ⊂ Vi for i = 1, . . . , n
and ⊔ni=1Vi ⊂W in Top(Σ)⊔. In particular, the unique 0-operation ∅→ V is assigned a
morphism u→ F(V ) from the identity object u of C, i.e. F(V ) is pointed.

When F is clear from the context we denote the factorisation products simply as m(Ui),V . We
also use the abbreviation mU,V := m(U),V for any inclusion of open subsets U ⊂ V in Top(Σ).
Note that a prefactorisation algebra F is, in particular, a precosheaf on Σ restricted to Top(Σ)
with extension morphisms mU,V for every inclusion of open subsets U ⊂ V in Top(Σ).

A morphism of prefactorisation algebras ϕ : F → G is a natural transformation

Top(Σ)⊔ C⊗

F

G

ϕ

of multifunctors F,G : Top(Σ)⊔ → C⊗. Let PFac(Σ,C⊗) := AlgTop(Σ)⊔(C
⊗) denote the category

of prefactorisation algebras on Σ valued in the multicategory C⊗. Given any morphisms of
prefactorisation algebras ϕ : F → G and ψ : G→ H with F,G,H ∈ PFac(Σ,C⊗) we denote by
ψ◦ϕ : F → H their composition, i.e. the vertical composition of these natural transformations
of multifunctors. The horizontal composition of natural transformations will be denoted by
concatenation.

2.3.2 Twisted prefactorisation envelope of LΣ
α

Any local Lie algebra on Σ deőnes, in a canonical way, a prefactorisation algebra on Σ valued
in dgLie⊕

C
. Similarly, any unital local Lie algebra on Σ deőnes a prefactorisation algebra on

Σ valued in udgLie⊕̄
C
, see Proposition A.3 for details. In [CG1, Deőnition 3.6.4], the notion

of twisted prefactorisation envelope is deőned by applying the Chevalley-Eilenberg functor
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CE• for Lie algebra homology to such a unital DG Lie algebra (or more generally to a DG

Lie algebra with a 1-dimensional central extension in any degree −k ∈ Z). This produces a
prefactorisation algebra over the base ring C[s1] and ultimately in the holomorphic setting of
[CG1, ğ5.5] to vertex algebra structures over the base ring C[s1]. In order to obtain vertex
algebras over C, we introduce a variant CE• of the homological Chevalley-Eilenberg functor in
ğA.1.2, in which we additionally quotient by the ideal generated by s1−1, see Proposition A.2.
Applying this functor to the unital local Lie algebra LΣ

α viewed as a prefactorisation algebra
on Σ valued in udgLie⊕̄

C
, and taking 0th cohomology to obtain a prefactorisation algebra valued

in vector spaces, leads to

ULΣ
α := H0CE•L

Σ
α ∈ PFac(Σ,Vec⊗

C
).

By a slight abuse of terminology, in this paper we will still refer to this construction as taking
the twisted prefactorisation envelope of the unital local Lie algebra LΣ

α . We refer the reader
to ğA for the full details of this construction, leading to the deőnition (A.6).

Since LΣ
α(U) is concentrated in degrees 0 and 1 for any open subset U in Top(Σ), it follows

that for every i > 0 we have CEi

(
LΣ
α(U)

)
= 0 and hence also CEi

(
LΣ
α(U)

)
= 0. In particular,

any A ∈ CE0(L
Σ
α(U)) is closed and we will denote by [A]U ∈ ULΣ

α(U) its 0th cohomology class.
The factorisation products m(Ui),V of ULΣ

α can be described explicitly as follows. For any
inclusion U ⊂ V of open subsets in Top(Σ), the factorisation product mU,V is induced by the
extension morphism LΣ

α(U)→ LΣ
α(V ) of the precosheaf LΣ

α . For any inclusion U ⊔ V ⊂W in
Top(Σ)⊔, the factorisation product m(U,V ),W is given by the composition

ULΣ
α(U)⊗ ULΣ

α(V )
∼=
−→ H0

(
CE•

(
LΣ
α(U)

)
⊗ CE•

(
LΣ
α(V )

))

∼=
−→ H0

(
CE•

(
LΣ
α(U) ⊕̄LΣ

α(V )
))
−→ ULΣ

α(W ), (2.18)

where we have őrst applied the canonical isomorphism given by [A]U ⊗ [B]V 7→ [A⊗B] for any
A ∈ CE0(L

Σ
α(U)) and B ∈ CE0(L

Σ
α(V )) where we denote by [A⊗B] the 0th cohomology class of

A⊗B ∈ CE0(L
Σ
α(U))⊗CE0(L

Σ
α(V )). The second isomorphism in (2.18) is induced by the Sym-

product A⊗ B→ AB. The őnal morphism in (2.18) is induced by the factorisation product
LΣ
α(U) ⊕̄LΣ

α(V ) → LΣ
α(W ) of the unital local Lie algebra LΣ

α regarded as a prefactorisation
algebra valued in udgLie⊕̄

C
, which is given explicitly by extending by zero elements of LΣ

α(U)
and LΣ

α(V ) to LΣ
α(W ) then taking their sum in LΣ

α(W ) and identifying their central extensions.
In summary, the above factorisation product is given by

m(U,V ),W : ULΣ
α(U)⊗ ULΣ

α(V ) −→ ULΣ
α(W ),

[A]U ⊗ [B]V 7−→ [AB]W .

W

U

V

The factorisation product m(Ui),V :
⊗n

i=1UL
Σ
α(Ui) → ULΣ

α(V ) for any inclusion ⊔ni=1Ui ⊂ V
in Top(Σ)⊔ with n ∈ Z≥3 is obtained recursively from the above factorisation product.

2.4 Reality conditions

To describe reality conditions on the prefactorisation algebra ULΣ
α , which will be needed later

in ğ3.6, we will show in Proposition 2.6 below that ULΣ
α is equivariant under a certain action of

the group Z2 = ⟨t⟩ in which t acts by an anti-linear isomorphism of prefactorisation algebras.
We begin by constructing a Z2-action on the unital local Lie algebra LΣ

α after making some
further assumptions on the holomorphic vector bundle L from ğ2.1.1. We will show in ğ2.4.2
that all these assumptions hold in each of the main examples from ğ2.1.2.
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In this section we take τ : Σ̂→ Σ̂ to be any orientation reversing involution of Σ̂ such that
there is an involution τ : Σ→ Σ of Σ with the property that πτ = τπ. The main examples are
the Euclidean involution τE : Σ̂→ Σ̂, introduced in ğ1.2, together with the identity involution
id : Σ→ Σ or the Lorentzian involution τL : Σ̂→ Σ̂ also introduced in ğ1.2, in the case Σ = S2

so that Σ̂ = Σ+ ⊔Σ−, together with the orientation reversing involution τ : Σ→ Σ deőned in
the same way as τL on each copy Σ±.

2.4.1 Z2-equivariance of ULΣ
α

Recall from ğ2.1.1 that we are assuming the anti-holomorphic vector bundle L on Σ̂ to be such
that Ω0,•

c (U,L) is a DG Lie algebra for every open U ⊂ Σ̂ with Lie bracket denoted by (2.1).
We will make two further assumptions on L below.

Assumption 4 The orientation reversing involution τ : Σ̂ → Σ̂ lifts to an anti-linear invo-
lutive holomorphic vector bundle automorphism

L L

Σ̂ Σ̂

τ̃

τ

(2.19)

over τ : Σ̂→ Σ̂ such that the induced isomorphism

τ̂ : Ω0,•
c (U,L)

∼=
−→ Ω0,•

c

(
τ(U), L

)
, σ ⊗ ω 7−→ τ̃σ ⊗ τ∗ω (2.20)

for any open subset U ⊂ Σ̂, with σ ∈ Γc(U,L) a smooth compactly supported section of L and
ω ∈ Ω0,•

c (U), is an anti-linear morphism of DG Lie algebras.

Note that since τ reverses the orientation we have τ∗I = −Iτ∗ where I : Ω1
c → Ω1

c denotes
the complex structure of Σ̂, and hence we obtain an anti-linear isomorphism of cosheaves
Ω0,•
c

∼=−→ τ∗Ω0,•
c , ω 7→ τ∗ω. The fact that (2.20) commutes with the differential ∂̄ follows

because τ̃ is a holomorphic vector bundle automorphism so that ∂̄Lτ̃ = τ̃ ∂̄L and for every
ω ∈ Ω0,•

c (U) with U ⊂ Σ̂ we have

τ∗∂̄ω = 1
2τ

∗dω + 1
2 iτ

∗I(dω) = 1
2dτ

∗ω + 1
2 iI
(
dτ∗ω

)
= ∂̄(τ∗ω), (2.21)

where in the third equality we have used the fact that τ∗I = −Iτ∗.
Recall from ğ2.1.1 that we are also assuming L to be locally trivial over coordinate charts

on Σ̂, i.e. for every open subset U ⊂ Σ̂ equipped with a holomorphic coordinate ξ : U → C

we have L|U ∼= U × aξ. Similarly, on the image open τ(U) ⊂ Σ̂ we have the holomorphic
coordinate τ̂ ξ := ξ ◦ τ : τ(U) → C with the induced local trivialisation L|τ(U)

∼= τ(U) × aτ̂ ξ.
Since the anti-linear vector bundle automorphism τ̃ : L→ L acts őbrewise, it induces an anti-
linear map τ : aξ → aτ̂ ξ and under the isomorphism (2.2) we can represent the isomorphism
(2.20) locally by

τ̂ : aξ ⊗ Ω0,•
c (U)

∼=
−→ aτ̂ ξ ⊗ Ω0,•

c

(
τ(U)

)
, a⊗ ω 7−→ τa⊗ τ∗ω. (2.22)

Using the isomorphisms (·)ξ : a
∼=−→ aξ and (·)τ̂ ξ : a

∼=−→ aτ̂ ξ with the canonical copy a introduced
in ğ2.1.1, we obtain an induced anti-linear involution τ : a→ a.

Recall őnally from ğ2.1.1 that we are also assuming L to be such that the DG Lie algebra
Ω0,•
c (U,L) is equipped with a 2-cocycle (2.3).

Assumption 5 The 2-cocycle (2.3) satisőes the reality condition

α(a, b) = α(τ̂ a, τ̂ b) (2.23)
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for all a, b ∈ Ω0,•
c (U,L).

It then follows that the anti-linear morphism of DG Lie algebras (2.20) extends to an
anti-linear isomorphism of unital local Lie algebras

τ̂ : LΣ̂
α

∼=
−→ τ∗LΣ̂

α ,

deőned by sending 1 7→ 1, which satisőes (τ∗τ̂) ◦ τ̂ = id. Note here that the pullback τ∗LΣ
α of

the precosheaf of unital DG Lie algebras LΣ
α also satisőes the local Lie algebra condition (A.5),

so that τ∗LΣ
α ∈ uLocLieC(Σ). Since πτ = τπ we have an induced anti-linear isomorphism

τ̂ : LΣ
α

∼=
−→ τ∗LΣ

α (2.24)

also satisfying (τ∗τ̂) ◦ τ̂ = id. We will say that LΣ
α ∈ uLocLieC(Σ) is Z2-equivariant.

Recall from ğ2.3 that we denote the composition of morphisms in PFac(Σ,C⊗) by ◦.

Proposition 2.6. We have an anti-linear isomorphism of prefactorisation algebras

τ̂ : ULΣ
α

∼=
−→ τ∗ULΣ

α

satisfying (τ∗τ̂) ◦ τ̂ = idULΣ
α
, i.e. the prefactorisation algebra ULΣ

α is Z2-equivariant.

Proof. Firstly, the anti-linear isomorphism (2.24) of unital local Lie algebras on Σ induces, by
Proposition A.3, an anti-linear isomorphism of PFac(Σ, udgLie⊕̄

C
), i.e. a natural isomorphism

of multifunctors Top(Σ)⊔ → udgLie⊕̄
C
. Abusing notation slightly, we denote it in the same way,

as τ̂ : LΣ
α

∼=−→ τ∗LΣ
α , but where now we view LΣ

α as a prefactorisation algebra on Σ valued in
udgLie⊕̄

C
and τ∗LΣ

α = LΣ
α τ as its pre-composition with (the identity natural transformation

of) the induced multifunctor τ : Top(Σ)⊔ → Top(Σ)⊔. The property (τ∗τ̂) ◦ τ̂ = id of the
morphism (2.24) of unital local Lie algebras on Σ then turns into the property (τ∗τ̂)◦ τ̂ = idLΣ

α

for the natural isomorphism τ̂ : LΣ
α

∼=−→ τ∗LΣ
α of multifunctors Top(Σ)⊔ → udgLie⊕̄

C
.

The horizontal post-composition of this natural isomorphism with (the identity natural
transformation of) the composite functor H0CE• yields a natural isomorphism

H0CE• τ̂ : ULΣ
α

∼=
−→ ULΣ

α ◦ τ (2.25)

of multifunctors Top(Σ)⊔ → Vec⊗
C
. Then by the interchange law for the vertical and horizontal

composition of natural transformations we have

(
H0CE• (τ

∗τ̂)
)
◦ (H0CE• τ̂) = H0CE•

(
(τ∗τ̂) ◦ τ̂

)
= H0CE• idLΣ

α
= idULΣ

α
. (2.26)

If by a slight abuse of notation we denote the morphism in (2.25) also by τ̂ , so that the őrst
morphism on the left hand side of (2.26) is the pre-composition of τ̂ with the identity natural
transformation of the multifunctor τ , i.e. τ∗τ̂ = τ̂ τ , then the relation (2.26) is then equivalent
to the desired identity (τ∗τ̂) ◦ τ̂ = idULΣ

α
. □

2.4.2 Examples

We now show how to construct, for each of the three main examples of holomorphic vector
bundles L over Σ̂ from ğ2.1.2, the vector bundle automorphism τ̃ : L→ L in (2.19) satisfying
the further conditions assumed in the general discussion of ğ2.4.1.
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Kac-Moody: We őx an anti-linear involution τ : g
∼=−→ g. This lifts the orientation reversing

involution τ : Σ̂ → Σ̂ to an anti-linear involutive automorphism of the trivial bundle (2.7).
The induced isomorphism (2.22) is clearly a morphism of DG Lie algebra since

τ̂
(
[X⊗ ω,Y ⊗ η]

)
= τ [X,Y]⊗ τ∗(ω ∧ η) = [τX, τY]⊗ τ∗ω ∧ τ∗η

=
[
τX⊗ τ∗ω, τY ⊗ τ∗η

]
=
[
τ̂(X⊗ ω), τ̂(Y ⊗ η)

]
.

In the second equality we used the fact that τ : g
∼=−→ g is an (anti-linear) automorphism of g.

In order to show that the 2-cocycle in (2.8b) satisőes (2.23), we assume that the bilinear
form κ : g⊗ g→ C is such that

κ(τX, τY) = κ(X,Y) (2.27)

for every X,Y ∈ g. Note that, τ∗∂ω = ∂(τ∗ω) for every ω ∈ Ω0,•
c (U) by the same computation

as in (2.21) and so for any ω, η ∈ Ω0,•
c (U) we then have

−
1

2πi

∫

Σ̂
∂ω ∧ η = −

1

2πi

∫

Σ̂
τ∗
(
τ∗∂ω ∧ τ∗η

)
=

1

2πi

∫

Σ̂
∂
(
τ∗ω

)
∧ τ∗η (2.28)

where in the second equality we have also used the fact that τ : Σ̂→ Σ̂ is orientation reversing.
Note here that we have taken the integration over all of Σ̂ rather than just U by implicitly
using the extension morphism Ω0,•

c (U) → Ω0,•
c (Σ̂). It now follows from combining (2.27) and

(2.28) that the 2-cocycle in (2.8b) satisőes (2.23).
We observe for later that the bilinear form ⟨·, ·⟩ : g ⊗ g → C, ⟨X,Y⟩ := −κ(τX,Y) is a

Hermitian sesquilinear form on g, i.e. it is anti-linear in the őrst argument, linear in the
second and ⟨X,Y⟩ = ⟨Y,X⟩. It is non-degenerate if κ is. In particular, ⟨X,X⟩ ∈ R for all X ∈ g.

Virasoro: Since τ : Σ̂ → Σ̂ is orientation reversing, its differential deőnes a vector bundle
isomorphism dτ : T 1,0Σ̂

∼=−→ T 0,1Σ̂. Postcomposing this with complex conjugation we obtain
the desired anti-linear involutive vector bundle automorphism τ̃ := dτ(·) : L→ L in (2.19) of
the holomorphic tangent bundle L = T 1,0Σ̂ from (2.9).

Recalling that aξ = spanC{∂ξ}, and likewise aτ̂ ξ = spanC{∂τ̂ ξ}, the induced anti-linear
map τ : aξ → aτ̂ ξ along the őbres is given explicitly by ∂ξ 7→ ∂τ̂ ξ. The isomorphism (2.22)
then sends ∂ξ ⊗ u for any u ∈ Ω0,•

c (U) to ∂τ̂ ξ ⊗ τ∗u. To see that this is a morphism of DG Lie
algebras, with respect to the Lie bracket (2.10a), note that for u, v ∈ Ω0,•

c (U) we have

τ̂
(
[∂ξ ⊗ u, ∂ξ ⊗ v]

)
= τ̂

(
∂ξ ⊗ (u∂ξv − v∂ξu)

)
= ∂τ̂ ξ ⊗

(
τ∗u ∂τ̂ ξτ∗v − τ∗v ∂τ̂ ξτ∗u

)

=
[
∂τ̂ ξ ⊗ τ∗u, ∂τ̂ ξ ⊗ τ∗v

]
=
[
τ̂(∂ξ ⊗ u), τ̂(∂ξ ⊗ v)

]
.

The anti-linear involution τ : a → a induced on the canonical copy a = spanC{Ω} is simply
given by complex conjugation xΩ 7→ x̄Ω.

To see that the 2-cocycle (2.10b) satisőes the condition (2.23), we use the identity (2.28)
applied to ω = ∂ξu and η = ∂ξv, and noting that τ∗∂ξu = ∂τ̂ ξτ∗u and τ∗∂ξv = ∂τ̂ ξτ∗v we őnd

αξ(∂ξ ⊗ u, ∂ξ ⊗ v) = ατ̂ ξ

(
∂τ̂ ξ ⊗ τ∗u, ∂τ̂ ξ ⊗ τ∗v

)
= ατ̂ ξ

(
τ̂(∂ξ ⊗ u), τ̂(∂ξ ⊗ v)

)
.

The fact that c ∈ R was used in the őrst equality. We then recall from ğ2.1.2 that the 2-cocycle
(2.10b) depends on the coordinate ξ only up to a 2-coboundary, explicitly ατ̂ ξ = αξ + δβτ̂ ξ,ξ.
The 2-cocycle property (2.23) is therefore satisőed in this example only up to a 2-coboundary.
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βγ system: The pullback by the orientation reversing map τ : Σ̂→ Σ̂ deőnes a vector bundle
isomorphism τ∗ : T ∗1,0Σ̂

∼=−→ T ∗0,1Σ̂ so that its postcomposition with complex conjugation
yields an anti-linear involutive vector bundle automorphism τ̃ := τ∗(·) : T ∗1,0Σ̂ → T ∗1,0Σ̂
over τ : Σ̂ → Σ̂ of the holomorphic cotangent bundle T ∗1,0Σ̂. Notice that this vector bundle
automorphism naturally covers τ−1 : Σ̂→ Σ̂, however since τ is an involution we have τ−1 = τ
so that it also deőnes a vector bundle automorphism over τ : Σ̂ → Σ̂. Combining this with
the canonical anti-linear isomorphism of the trivial vector bundle Σ̂ × C → Σ̂ × C given by
τ on the base Σ̂ and complex conjugation on the őbre C, we obtain the desired anti-linear
involutive vector bundle automorphism τ̃ : L→ L of the holomorphic vector bundle (2.13).

Recalling that in the present case we have aξ = spanC{1, dξ} and aτ̂ ξ = spanC{1, d(τ̂ ξ)},
the induced anti-linear involution τ : aξ → aτ̂ ξ is given on the basis elements by 1 7→ 1 and
dξ 7→ d(τ̂ ξ). The induced anti-linear involution τ : a → a on a = spanC{β, γ} is again just
given by complex conjugation xβ + y γ 7→ x̄ β + ȳ γ.

Since the Lie bracket is trivial the only thing to check is that the 2-cocycle (2.14) satisőes
the condition (2.23). But under the canonical isomorphism Ω0,•

c (U,L) ∼= Ω0,•
c (U) ⊕ Ω1,•

c (U),
the isomorphism (2.22) acts simply as ω 7→ τ∗ω on any ω ∈ Ω0,•

c (U)⊕Ω1,•
c (U). It then follows,

exactly as in (2.28), that

α(ω, η) = −
1

2πi

∫

Σ̂
ω ∧ η =

1

2πi

∫

Σ̂
τ∗ω ∧ τ∗η = α(τ̂ω, τ̂η)

for any ω, η ∈ Ω0,•
c (U) ⊕ Ω1,•

c (U), where as before we implicitly use the extension morphism
Ω0,•
c (U)→ Ω0,•

c (Σ̂), as required.

3 Full vertex algebra Fa,α
p

As in ğ2, we will keep working with an arbitrary connected 2-dimensional conformal manifold
Σ which could be non-orientable and also with boundary. However, throughout this paper we
will not treat boundary conditions and therefore ignore points on the boundary ∂Σ by only
working locally arounds points in the interior Σ◦ ⊂ Σ. Later, towards the end of ğ3.4, we will
specialise to the case of the 2-sphere Σ = S2.

3.1 Underlying vector space

As mentioned in ğ1.3, we are interested in full vertex algebras whose underlying vector spaces
are built as induced modules of certain inőnite-dimensional Lie algebras. In what follows we
will focus on the three main examples of inőnite-dimensional Lie algebras given by centrally
extended loop algebras which includes affine Kac-Moody algebras, the Virasoro algebra and
the βγ system. These will closely correspond to the three examples of unital local Lie algebra
LΣ
α given in ğ2.1.2. It will be convenient to describe all these examples uniformly as follows.

Recall the őnite-dimensional vector space a introduced in ğ2.1.1, and consider the associ-
ated inőnite-dimensional vector spaces

â := a⊗ C[t, t−1]⊕ Ck, ̂̄a := a⊗ C[t̄, t̄−1]⊕ Ck̄ (3.1)

where t and t̄ are independent formal variables referred to as loop parameters. These vector
spaces come equipped with Lie algebra structures [·, ·] : â ⊗ â → â and [·, ·] : ̂̄a ⊗ ̂̄a → ̂̄a,
respectively, with respect to which k and k̄ are central. We will describe these explicitly below
in each of the three main examples in terms of the loop generators

a(n) := a⊗ tn ∈ â, ā(n) := a⊗ t̄n ∈ ̂̄a, (3.2)
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for a ∈ a and n ∈ Z. In all cases, the Lie algebras (3.1) admit a decomposition into a direct
sum â = â+ ⊕ â− and ̂̄a = ̂̄a+ ⊕ ̂̄a− of Lie subalgebras

â+ := a⊗ C[t]⊕ Ck, â− := a⊗ t−1
C[t−1]

̂̄a+ := a⊗ C[t̄]⊕ Ck̄, ̂̄a− := a⊗ t̄−1
C[t̄−1].

Let C|0⟩ be the 1-dimensional module over the direct sum Lie algebra â+ ⊕ ̂̄a+ on which
a⊗C[t] and a⊗C[t̄] act trivially and the central elements k and k̄ both act by multiplication
by 1. Deőne the full affine vertex algebra F

a,α as the induced module over the direct sum Lie
algebra â⊕ ̂̄a, namely

F
a,α := Indâ⊕

̂̄a
â+⊕̂̄a+

C|0⟩.

Note that we have included the 2-cocycle α from (2.3) in the notation. This is a slight abuse of
notation since α is not directly used in the deőnition but it will be closely related to the central
extension of the Lie algebra structures on (3.1) in each of the examples described below. We
therefore use the subscript α in the notation to emphasise this choice of central extension. In
each of the three cases we will have an isomorphism of vector spaces F

a,α ∼= U
(
â− ⊕ ̂̄a−

)
|0⟩ so

that a general element of Fa,α is given by a linear combination of expressions of the form

ar(−mr)
. . . a1(−m1)

b̄r̄(−nr̄)
. . . b̄1(−n1)

|0⟩ (3.3)

for any ai ∈ a, mi ∈ Z≥1 with i ∈ {1, . . . , r} and bj ∈ a, nj ∈ Z≥1 with j ∈ {1, . . . , r̄} where
r, r̄ ∈ Z≥0. The full affine vertex algebra F

a,α is canonically isomorphic to the tensor product
of two copies of the usual affine vertex algebra, namely we have an isomorphism of complex
vector spaces F

a,α ∼= V
a,α ⊗ V̄

a,α where

V
a,α := Indââ+ C|0⟩, V̄

a,α := Ind
̂̄a
̂̄a+ C|0⟩

are the affine vertex algebra and its ‘anti-chiral’ copy.
We now describe the Lie algebra structures on (3.1) in all three cases of interest, where

the őnite-dimensional vector space a was deőned in each case in ğ2.1.1.

Kac-Moody: We can endow (3.1) for a = g with Lie brackets described in terms of the loop
generators (3.2) by

[
X(m),Y(n)

]
= [X,Y](m+n) +mκ(X,Y)δm+n,0 k, (3.4a)

[
X̄(m), Ȳ(n)

]
= [X,Y](m+n) +mκ(X,Y)δm+n,0 k̄. (3.4b)

for every X,Y ∈ g and m,n ∈ Z. In this case â and ̂̄a are two copies of the centrally extended
loop algebra associated with g. Since the case when g is a simple Lie algebra corresponds to
a pair of untwisted affine Kac-Moody algebras, by a slight abuse of terminology we will keep
referring to the general case with g arbitrary as the ‘Kac-Moody’ case.

Virasoro: We endow (3.1) for a = spanC{Ω} with the Lie brackets given in terms of the
loop generators (3.2) of the őxed basis element Ω by

[
Ω(m),Ω(n)

]
= (m− n)Ω(m+n−1) +

m(m− 1)(m− 2)

12
c δm+n,2 k, (3.5a)

[
Ω̄(m), Ω̄(n)

]
= (m− n)Ω̄(m+n−1) +

m(m− 1)(m− 2)

12
c δm+n,2 k̄. (3.5b)

In this case â and ̂̄a are two copies of the Virasoro algebra, where the usual generators L(n)

and L̄(n) satisfying the more familiar looking Virasoro relations are given by a simple shift in
the indices, namely L(n) = Ω(n+1) and L̄(n) = Ω̄(n+1).
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βγ system: We endow (3.1) for a = spanC{β, γ} with the Lie brackets given in terms of the
loop generators (3.2) of the őxed basis elements β and γ by

[
β(m), γ(n)

]
= δm+n,−1 k, (3.6a)

[
β̄(m), γ̄(n)

]
= δm+n,−1 k̄. (3.6b)

In this case â and ̂̄a are two copies of the inőnite-dimensional Weyl algebra, also know as the
βγ system, whose generators are often denoted by a(n) and a∗(n) with the more standard Lie
algebra relations obtained from (3.6) by a simple shift of indices

a(n) = β(n), a∗(n) = γ(n−1), ā(n) = β̄(n), ā∗(n) = γ̄(n−1). (3.7)

3.1.1 Geometric realisation in ULΣ
α(U)

Let U ⊂ Σ◦ be a connected open subset of the interior Σ◦ ⊂ Σ. Its preimage under the
projection π : Σ̂→ Σ is a disjoint union of two copies of U which we denote π−1(U) = U+⊔U−.
Suppose that U+ is equipped with a holomorphic coordinate ξ : U+ → C such that ξ(U+) ⊂ C

is bounded. Since U− comes equipped with the opposite complex structure to U+, the same
map ξ viewed as a function on U− deőnes an anti-holomorphic coordinate ξ : U− → C on
U− ⊂ π

−1(U). In other words, the complex conjugate map ξ̄ : U− → C deőnes a holomorphic
coordinate on U−. We then refer to ξ : U → C as a local (holomorphic) coordinate on U ⊂ Σ◦.

Given any p ∈ U ⊂ Σ◦, we let p± ∈ U± denote its preimages under π : Σ̂ → Σ. We refer
to ξ(p) := ξ(p+), i.e. the value of ξ : U+ → C at p+ ∈ U+, as its holomorphic coordinate.
Similarly, we refer to ξ̄(p) := ξ̄(p−), i.e. the value of ξ̄ : U− → C at p− ∈ U−, as its anti-
holomorphic coordinate. We also deőne shifted local (anti-)holomorphic coordinates as

ξp := ξ − ξ(p) : U+ −→ C, ξ̄p := ξ̄ − ξ̄(p) : U− −→ C (3.8)

so that any q ∈ U ⊂ Σ has holomorphic coordinate ξp(q) = ξ(q)− ξ(p) and anti-holomorphic
coordinate ξ̄p(q) = ξ̄(q)− ξ̄(p).

In view of giving a geometric description of the vector space F
a,α using the prefactorisation

algebra ULΣ
α it is useful to őrst consider the level 1 subspace (â− ⊕ ̂̄a−)|0⟩ ⊂ F

a,α. We have
an injective linear map

(â− ⊕ ̂̄a−)|0⟩ −֒→ a⊗ O∞

(
ξp(U+)

c
)
⊕ a⊗ O∞

(
ξ̄p(U−)

c
)
, (3.9)

a(−m)|0⟩+ b̄(−n)|0⟩ 7−→
(
a⊗ [λ−m], b⊗ [λ̄−n]

)

for a, b ∈ a and m,n ∈ Z≥1, where [λ−m] ∈ O∞

(
ξp(U+)

c
)

denotes the germ of the holomorphic
function ξp(U+)

c ⊂ CP 1 \ {0} → C, λ 7→ λ−m and similarly [λ̄−n] ∈ O∞

(
ξp(U−)

c
)

denotes the
germ of the holomorphic function ξ̄p(U−)

c ⊂ CP 1 \ {0} → C, λ̄ 7→ λ̄−n.
Recall the (0, 1)-form ⌈f⌉ ∈ Ω0,1

c (W ) on a bounded open subset W ⊂ C associated with a
given germ [f ] ∈ O∞(W c) deőned in ğ2.2. In the case of the germ [λ−m] ∈ O∞

(
ξp(U+)

c
)

we
can pick the representative f : ∆f := CP 1\{0} → C, λ 7→ λ−m. By Lemma 2.3, the (0, 1)-form
⌈λ−m⌉ ∈ Ω0,1

c

(
ξp(U+)

)
is then given, up to ∂̄-exact terms, by −f ∂̄ρ where ρ ∈ Ω0,0

c

(
ξp(U+)

)

is a smooth bump function equal to 1 on some neighbourhood of {0} = (∆f )
c ⊂ ξp(U+). The

pullback of f |ξp(U+)\{0} along ξp : U+ → ξp(U+) is ξ∗pf : U+ \ {p+} → C, q 7→ ξp(q)
−m, i.e. the

function ξ−m
p : U+ \ {p+} → C. Then ξ∗p⌈λ

−m⌉ ∈ Ω0,1
c (U+), which for brevity we denote by

⌈ξ−m
p ⌉, is given by Lemma 2.3 up to ∂̄-exact terms by ξ−m

p ∂̄(ξ∗pρ) where ξ∗pρ ∈ Ω0,0
c (U+) is equal

to 1 in a neighbourhood of p+ ∈ U+. Similarly, we let ⌈ξ̄−n
p ⌉ stand for ξ̄∗p⌈λ̄

−n⌉ ∈ Ω0,1
c (U−)

which is given again by Lemma 2.3 up to ∂̄-exact terms by ξ̄−n
p ∂̄(ξ̄∗pρ

′) for some smooth bump

function ρ′ ∈ Ω0,0
c

(
ξ̄p(U−)

)
equal to 1 in some neighbourhood of 0 ∈ ξ̄p(U−).
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Combining (3.9) with the isomorphism from Theorem 2.5 deőned using the local holomor-
phic coordinate on π−1(U) = U+ ⊔ U− given by (3.8) we obtain an injective linear map

(
â− ⊕ ̂̄a−

)
|0⟩ −֒→ H1

(
LΣ
α(U)

)
= H0

(
LΣ
α(U)[1]

)
, (3.10)

a(−m)|0⟩+ b̄(−n)|0⟩ 7−→
[
aξp ⊗ ⌈ξ

−m
p ⌉+ bξ̄p ⊗ ⌈ξ̄

−n
p ⌉

]
U
.

Note, in particular, that although ⌈ξ−m
p ⌉ and ⌈ξ̄−n

p ⌉ were described above only up to ∂̄-exact
terms, this ambiguity drops out from taking the cohomology class [·]U in (3.10).

If we regard H0
(
LΣ
α(U)[1]

)
as a subspace of ULΣ

α(U) then (3.10) gives an embedding of the
subspace (â−⊕ ̂̄a−)|0⟩ ⊂ F

a,α into ULΣ
α(U) for any neighbourhood U ⊂ Σ◦ of p equipped with

the local coordinate ξ. A general element of Fa,α involves products of elements from â− and
̂̄a− in some order, and we can realise such an ordering geometrically in ULΣ

α(U) through the
choice of supports of the smooth bump functions entering the deőnitions of ⌈ξ−m

p ⌉ ∈ Ω0,1
c (U+)

and ⌈ξ̄−n
p ⌉ ∈ Ω0,1

c (U−). To describe this ordering explicitly we introduce the important notion
of nested open subsets that will be used repeatedly throughout the rest of the paper.

Deőnition 3.1. Given two open subsets V,W ⊂ U±, we say that V is nested in W if V is
relatively compact in W , i.e. if V ⊂W and V is compact, and we write this as V ⋐W .

Let Ω0,0
c (W )1V ⊂ Ω0,0

c (W ) denote the subset consisting of elements equal to 1 on V . Given
any nested neighbourhoods p+ ∈ V ⋐W ⊂ U+ we pick a ρVW ∈ Ω0,0

c (W )1V and deőne

⌈ξnp ⌉
V
W := −ξnp ∂̄ρ

V
W ∈ Ω0,1

c (W ) (3.11)

for all n ∈ Z. It follows from Lemma 2.3 that ⌈ξnp ⌉
V
W differs by ∂̄-exact terms from ⌈ξnp ⌉ deőned

above (3.10). We similarly deőne ⌈ξ̄np ⌉
V
W for nested neighbourhoods p− ∈ V ⋐W ⊂ U−.

Lemma 3.2. Let U ⊂ Σ◦ be a neighbourhood of p ∈ Σ◦ equipped with a holomorphic coordinate
ξ : U → C. For any n ∈ Z we have 1

2πi

∫
U+
⌈ξnp ⌉ ∧ dξp = δn,−1 and 1

2πi

∫
U−
⌈ξ̄np ⌉ ∧ dξ̄p = δn,−1.

Proof. Consider the integral over U+. Let p+ ∈ V ⋐ W ⊂ U+ be nested neighbourhoods and
pick a smooth bump function ρVW ∈ Ω0,0

c (W )1V . Since ⌈ξnp ⌉ − ⌈ξ
n
p ⌉

V
W is ∂̄-exact by Lemma 2.3,

we can replace ⌈ξnp ⌉ in the integrand by ⌈ξnp ⌉
V
W . The given integral over U+ thus evaluates to

1

2πi

∫

U+

⌈ξnp ⌉ ∧ dξp =
1

2πi

∫

U+

ξnp dξp ∧ ∂̄ρ
V
W =

1

2πi

∫

W\V
ξnp dξp ∧ ∂̄ρ

V
W

= −
1

2πi

∫

W\V
d
(
ρVW ξ

n
p dξp

)
=

1

2πi

∫

∂V

ξnp dξp = δn,−1,
p

W \V

where the second equality follows from the support property of ∂̄ρVW . The third equality uses
the fact that ξnp dξp is closed on W \ V and in the fourth equality we used Stokes’s theorem
together with the support properties of ρVW . The last integral is evaluated using the residue
theorem, noting that ∂V is oriented counterclockwise.

The evaluation of the integral over U− is completely analogous. □

We are now in a position to describe the geometric realisation of the vector space F
a,α in

ULΣ
α(U) around a point p ∈ U in any open subset U ⊂ Σ◦ of Top(Σ) equipped with a local

coordinate ξ : U → C such that ξ(U) ⊂ C is bounded. Speciőcally, we deőne a linear map

(·)
ξp
U : Fa,α −→ ULΣ

α(U), A 7−→ A
ξp
U (3.12a)

as follows. It sends the state of the form (3.3) to
[

r∏

i=1

s
(
aiξp ⊗ ⌈ξ

−mi
p ⌉

Ui−1

Ui

) r̄∏

j=1

s
(
b
j

ξ̄p
⊗ ⌈ξ̄

−nj
p ⌉

Vj−1

Vj

)]

U

, (3.12b)
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where p+ ∈ U0 ⋐ . . . ⋐ Ur ⊂ U+ and p− ∈ V0 ⋐ . . . ⋐ Vr̄ ⊂ U− are choices of nested sequences
of open subsets. In particular, the vacuum |0⟩ is sent to the class [1]U .

Proposition 3.3. The linear map (3.12) is well deőned. In particular, we have

. . .
(
a(m)b(n) − b(n)a(m)

)
. . . |0⟩

ξp
U = . . .

[
a(m), b(n)

]
. . . |0⟩

ξp
U , (3.13a)

. . .
(
a(m)b̄(n) − b̄(n)a(m)

)
. . . |0⟩

ξp
U = 0, (3.13b)

. . .
(
ā(m)b̄(n) − b̄(n)ā(m)

)
. . . |0⟩

ξp
U = . . .

[
ā(m), b̄(n)

]
. . . |0⟩

ξp
U (3.13c)

for all a, b ∈ a and m,n ∈ Z, where on the right hand sides of (3.13a) and (3.13c) we use the
Lie brackets on (3.1) and in each equation the ellipses on either side of each term represent
the same sum of product of elements from â⊕ ̂̄a. We also have, for any k ∈ Z≥0,

. . . a(k)|0⟩
ξp
U = 0, . . . ā(k)|0⟩

ξp
U = 0. (3.13d)

Proof. Focusing on the chiral part of the state, őrst note that the cohomology class in (3.12b)
is independent of the choice of smooth bump functions ρUi−1

Ui
∈ Ω0,0

c (Ui)
1
Ui−1

and of the nested
sequences of open subsets p+ ∈ U0 ⋐ . . . ⋐ Ur ⊂ U+. Indeed, Lemma 2.3 allows one to modify
the smooth bump functions ρUi−1

Ui
one by one while maintaining disjoint supports

supp
(
∂̄ρ

Ui−1

Ui

)
∩ supp

(
∂̄ρ

Uj−1

Uj

)
= ∅, (3.14)

for all i ̸= j, until we arrive at a desired set of new smooth bump functions ρ
U ′
i−1

U ′
i
∈ Ω0,0

c (U ′
i)

1
U ′
i−1

associated with another choice of nested sequence of open subsets p+ ∈ U ′
0 ⋐ . . . ⋐ U ′

r ⊂ U+ in
Top(Σ). Keeping the supports disjoint as in (3.14) ensures that there is never any contribution
from the differential d[·,·], as deőned in ğA.1, when working up to dCE-exact terms, so that we
can effectively work up to ∂̄-exact terms. The same applies to the anti-chiral part.

Next, we must check that the cohomology class Aξp
U ∈ ULΣ

α(U) as given in (3.12b) does
not dependent on the way in which the input state A ∈ F

a,α is written. It is enough to check
the identities (3.13). We will focus on (3.13a) and the őrst identity in (3.13d), the proof of
the other identities being completely analogous.

Choosing a nested sequence of open subsets p+ ∈ U0 ⋐ U1 ⋐ U2 ⋐ U3 ⊂ U+ we can write
the left hand side of (3.13a) as
[
. . . s

(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
s
(
bξp ⊗ ξ

n
p ∂̄ρ

U0
U1

)
. . .
]
U
−
[
. . . s

(
bξp ⊗ ξ

n
p ∂̄ρ

U2
U3

)
s
(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
. . .
]
U

=
[
. . . s

(
bξp ⊗ ∂̄

(
ξnp
(
ρU0
U1
− ρU2

U3

)))
s
(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
. . .
]
U
, (3.15)

where in the őrst term on the left hand side we chose to use the nested sequence of open subsets
p+ ∈ U0 ⋐ U1 ⋐ U2 ⊂ U+ in Top(Σ) and in the second term we used p+ ∈ U1 ⋐ U2 ⋐ U3 ⊂ U+

instead. In each of the three terms in (3.15), the ellipses on either side represent the same
sum of products of degree 0 elements from LΣ

α(U)[1], whose support is disjoint from U3 \ U0.
In the second line of (3.15) we have used the fact that ξnp is holomorphic on the support of

ρU0
U1
− ρU2

U3
since the latter vanishes in a neighbourhood of p.

By deőnition of the differential dCE in the Chevalley-Eilenberg complex, see ğA.1, we őnd

dCE

(
. . . s

(
bξp ⊗ ξ

n
p

(
ρU0
U1
− ρU2

U3

))
s
(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
. . .
)

= . . .

(
− s
(
bξp ⊗ ∂̄

(
ξnp
(
ρU0
U1
− ρU2

U3

)))
s
(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)

− s
[
bξp ⊗ ξ

n
p

(
ρU0
U1
− ρU2

U3

)
, aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

]
α

)
. . .
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where the minus sign in the last line comes from the deőnition of the differential d[·,·]α in ğA.1
and using the fact that the őrst argument in the Lie bracket has degree 0 in LΣ

α(U). Note also
that the action of dCE on the ellipses terms vanishes since these consist of sums of products
of degree 0 elements from LΣ

α(U)[1], so they are killed by ∂̄, and whose support is disjoint
from U3 \ U0, so they also do not contribute to the action of d[·,·]α . It now follows that the
cohomology class on the right hand side of (3.15) can be rewritten as
[
. . . s

(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
s
(
bξp ⊗ ξ

n
p ∂̄ρ

U0
U1

)
. . .
]
U
−
[
. . . s

(
bξp ⊗ ξ

n
p ∂̄ρ

U2
U3

)
s
(
aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

)
. . .
]
U

= −
[
. . . s

[
bξp ⊗ ξ

n
p

(
ρU0
U1
− ρU2

U3

)
, aξp ⊗ ξ

m
p ∂̄ρ

U1
U2

]
α
. . .
]
U
. (3.16)

In order to complete the proof, it remains to explicitly evaluate the Lie bracket in LΣ
α(U)

on the second line of the right hand side, using the formulae in ğ2.1.2, and relate it to the Lie
bracket in â on the right hand side of (3.13a). We proceed by separately considering the three
main examples of ğ2.1.2, namely the Kac-Moody, Virasoro and βγ system cases.

Kac-Moody: Recall from ğ2.1.1 that the map (·)ξp : a
∼=−→ aξp in this case is the identity so

that with a = X ∈ g and b = Y ∈ g we őnd

− s
[
Y ⊗ ξnp

(
ρU0
U1
− ρU2

U3

)
,X⊗ ξmp ∂̄ρ

U1
U2

]
α

= −s
(
[X,Y]⊗ ξm+n

p ∂̄ρU1
U2

)
−
κ(X,Y)

2πi

∫

U+

∂(ξnp ) ∧ ξ
m
p ∂̄ρ

U1
U2

= s
(
[X,Y]⊗ ⌈ξm+n

p ⌉U1
U2

)
+mκ(X,Y)δm+n,0,

where in the őrst step we used the explicit form of the Lie bracket on LΣ
α(U) given by (2.8)

and the fact that
(ρU0

U1
− ρU2

U3
)∂̄ρU1

U2
= −∂̄ρU1

U2
. (3.17)

In the last term we also used the fact that ∂ρU0
U1

and ∂ρU2
U3

have disjoint supports with ∂̄ρU1
U2

.
The integral can be evaluated using Lemma 3.2 to give 2πin δm+n,0. For the őrst term on the
last line we recall the minus sign in the deőnition (3.11). Using (3.4a) and the deőnition of
the map (3.12), the resulting expression on the right hand side of (3.16) is therefore precisely
the right hand side of (3.13a) in the case at hand.

Virasoro: Recall from ğ2.1.2 that in this case the 2-cocycle (2.10b) explicitly depends on
the coordinate used. Since we are working in the local coordinate ξp we therefore use the
2-cocycle αξp relative to this coordinate, i.e. we work in the unital local Lie algebra LΣ

αξp
(U).

Here (·)ξp : a
∼=−→ aξp is given by Ω 7→ −∂ξp so that with a = b = Ω ∈ a we őnd

− s
[
∂ξp ⊗ ξ

n
p

(
ρU0
U1
− ρU2

U3

)
, ∂ξp ⊗ ξ

m
p ∂̄ρ

U1
U2

]
αξp

= s
(
∂ξp ⊗ (m− n)ξm+n−1

p ∂̄ρU1
U2

)
− ∂̄

(
s
(
∂ξp ⊗ ξ

m+n
p ∂ξpρ

U1
U2

))

+
c

24πi

∫

U+

∂(nξn−1
p ) ∧mξm−1

p ∂̄ρU1
U2

= (m− n)s
(
− ∂ξp ⊗ ⌈ξ

m+n−1
p ⌉U1

U2

)
+
m(m− 1)(m− 2)

12
c δm+n,2 − ∂̄

(
s
(
∂ξp ⊗ ξ

m+n
p ∂ξpρ

U1
U2

))
,

where in the őrst step we used again the identity (3.17). Here, in the term coming from the
Lie bracket (2.10a) we note that the term involving ∂ξp(ρ

U0
U1
−ρU2

U3
) vanishes using the fact that

it disjoint support with ∂̄ρU1
U2

. The evaluation of the term coming from the 2-cocycle (2.10b) is
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similar to the above Kac-Moody case but for the terms involving ∂ξp(ρ
U0
U1
− ρU2

U3
) we used the

additional fact that this has disjoint support with ∂̄ρU1
U2

and for the term involving ∂̄(∂ξpρ
U1
U2
)

we note that this vanishes using Stokes’s theorem, cf. the proof of Lemma 3.2. In the second
step the integral is then evaluated using Lemma 3.2. The exact term on the last line drops
out in the cohomology class (3.16) since ∂ξpρ

U1
U2

has disjoint support with the remaining terms
in the ellipses. Comparing the above with (3.5a) using the deőnition of the map (3.12), the
resulting expression on the right hand side of (3.16) also agrees with the right hand side of
(3.13a) in the present case.

βγ system: Recall that here the map (·)ξp : a
∼=−→ aξp sends β 7→ 1 and γ 7→ dξp so that with

a = β and b = γ in a we őnd

−s
[
dξp ⊗ ξ

n
p

(
ρU0
U1
− ρU2

U3

)
, 1⊗ ξmp ∂̄ρ

U1
U2

]
α
=

1

2πi

∫

U+

ξm+n
p dξp ∧ ∂̄ρ

U1
U2

= δm+n,−1.

where in the őrst step we used the 2-cocycle (2.14) and again the identity (3.17). Comparing
this with (3.6a) using the deőnition of the map (3.12), the resulting expression on the right
hand side of (3.16) again agrees with the right hand side of (3.13a), as required.

Finally, in all three cases the őrst identity in (3.13d) similarly follows using the fact that
⌈ξkp⌉

V
W is ∂̄-exact when k ∈ Z≥0. □

Proposition 3.4. The linear map (3.12) is injective and for every inclusion of open subsets
p ∈ U ⊂ V ⊂ Σ◦ in Top(Σ) covered by the coordinate ξ, we have the commutative diagram

F
a,α

ULΣ
α(U) ULΣ

α(V )

(·)
ξp
U (·)

ξp
V

mU,V

(3.18)

Proof. To begin with, we note that the Poincaré-Birkhoff-Witt theorem yields an isomorphism
PBW : Fa,α ∼=−→ Sym(â− ⊕ ̂̄a−)|0⟩ which is given by the inverse of the total symmetrisation
map Sym(â− ⊕ ̂̄a−)|0⟩

∼=−→ U(â− ⊕ ̂̄a−)|0⟩, or more explicitly by writing a given element in
F
a,α as a linear combination of totally symmetrised monomials acting on |0⟩ which then maps

canonically to Sym(â−⊕ ̂̄a−)|0⟩. Applying the functor (A.4) to the strong deformation retract
in udgVecC from Theorem 2.5, where here ξ = (ξ, ξ̄), we obtain a strong deformation retract

Sym
(
a⊗ O∞

(
ξ(U+)

c
)
⊕ a⊗ O∞

(
ξ̄(U−)

c
))

Sym•

(
LΣ
κ (U)

)IU

PU

HU (3.19)

in dgVecC, where the left hand side is a DG vector space concentrated in degree 0. Here PU and
IU are morphisms of dgVecC whose components in Sym-degree n ∈ Z≥0 are given explicitly by
Pn
U := pU [1]

⊗n and InU := iU [1]
⊗n, respectively. An explicit expression for the homotopy HU

can be found, for instance, in [BSV, (4.11b)]. In order to perturb the differential on the right
hand side of (3.19) by d[·,·] we apply the homological perturbation lemma [Cra, LV], noting
that this perturbation is small since it lowers by 1 the Sym-degree which is bounded below by
0. We obtain the perturbed strong deformation retract

Sym
(
a⊗ O∞

(
ξ(U+)

c
)
⊕ a⊗ O∞

(
ξ̄(U−)

c
))

CE•

(
LΣ
κ (U)

)IU

P̂U

ĤU

where P̂U :=
∑

j≥0 PU (d[·,·]HU )
j and the expression for the homotopy ĤU will not be needed.

Notice that neither IU nor the differential on the left hand side are perturbed, for the same

27



reason as in the proof of [BSV, Proposition 4.4]. Since P̂U is a quasi-isomorphism, applying
the 0th-cohomology functor we obtain an isomorphism

H0P̂U : ULΣ
κ (U)

∼=
−→ Sym

(
a⊗ O∞

(
ξ(U+)

c
)
⊕ a⊗ O∞

(
ξ̄(U−)

c
))
. (3.20)

We will show that we have a commutative diagram

F
a,α ULΣ

κ (U)

Sym(â− ⊕ ̂̄a−)|0⟩ Sym
(
a⊗ O∞

(
ξ(U+)

c
)
⊕ a⊗ O∞

(
ξ̄(U−)

c
))

(·)
ξp
U

∼=PBW ∼= H0P̂U

ι

(3.21)

in VecC, where the bottom morphism is obtained by applying the Sym-functor to the injection
(3.9). Since this bottom morphism is injective, see Remark 3.5 below, it will then follow that
the linear map (3.12) is also injective. By the Poincaré-Birkhoff-Witt theorem any state in
F
a,α can be written as a linear combination of totally symmetrised monomials acting on |0⟩,

so it suffices to consider a single such monomial, say a totally symmetrised version of (3.3),
i.e.

1

r!r̄!

∑

σ∈Sr

∑

σ̄∈Sr̄

a
σ(r)
(−mσ(r))

. . . a
σ(1)
(−mσ(1))

b̄
σ̄(r̄)
(−nσ̄(r̄))

. . . b̄
σ̄(1)
(−nσ̄(1))

|0⟩ ∈ F
a,α. (3.22)

We can make a further important simpliőcation, similar to [BSV, ğ4.2]. Since we are focusing
on totally symmetrised monomials, it is sufficient to consider ones built out of a single pair of
elements in â− and ̂̄a−. Namely, we may focus on states in F

a,α of the form

A := ArBr̄|0⟩, A =
r∑

i=1

tia
i
(−mi)

∈ â−, B =
r̄∑

j=1

t̄j b̄
j

(−nj)
∈ ̂̄a−, (3.23)

where ti, t̄j ∈ C, ai, bj ∈ a and mi, nj ∈ Z≥1 for each i ∈ {1, . . . , r} and j ∈ {1, . . . , r̄} with
r, r̄ ∈ Z≥0. Indeed, the more general state (3.22) is recovered by polarization, i.e. it reads

1

r!r̄!

∂r

∂t1 · · · ∂tr

∣∣∣∣
t1,...,tr=0

∂ r̄

∂t̄1 · · · ∂t̄r̄

∣∣∣∣
t̄1,...,t̄r̄=0

( r∑

i=1

tia
i
(−mi)

)r( r̄∑

j=1

t̄j b̄
j

(−nj)

)r̄

|0⟩.

Applying the isomorphism on the left hand side of (3.21) to the special state (3.23) then gives
PBW(A) = ArBr̄|0⟩ ∈ Sym(â− ⊕ ̂̄a−)|0⟩. Subsequently applying the injection at the bottom
of the diagram (3.21) gives an element in the symmetric algebra on the bottom right corner,
given by realising A and B in terms of germs of holomorphic functions on ξ(U+)

c and ξ̄(U−)
c,

respectively, i.e. in terms of the notation after (3.9) we have

ι
(
PBW(A)

)
=

( r∑

i=1

tia
i ⊗ λ−mi

)r( r̄∑

j=1

t̄j b̄
j ⊗ µ−nj

)r̄

. (3.24)

Going instead along the top right of the diagram (3.21), applying the őrst map (3.12) we őnd

A
ξp
U =

[
s

( r∑

i=1

tia
i
ξp
⊗ ⌈ξ−mi

p ⌉
Ui−1

Ui

)r

s

( r̄∑

i=1

t̄jb
j

ξ̄p
⊗ ⌈ξ̄

−nj
p ⌉

Vj−1

Vj

)r̄
]

U

,

Finally, one checks that upon applying the isomorphism H0P̂U to the above, we obtain exactly
the same result as in (3.24). For this one needs to consider the explicit form of HU given in
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[BSV, (4.11b)]. One can make a further simpliőcation by choosing the smooth bump functions
ρf ∈ Ω0,0

c (U+) in (2.15), entering the deőnition of the strong deformation retract in Theorem
2.5, for every f ∈ O∞(CP 1 \ {0}) to coincide and to be equal to 1 on Ur, and likewise for the
smooth bump functions ρg ∈ Ω0,0

c (U−). We then observe that only the j = 0 term in the sum
deőning P̂U contributes, as a consequence of the very special form of the state A in (3.23).

The commutativity of the diagram (3.18) is immediate from the explicit description of the
morphisms (·)

ξp
U , (·)ξpV and of the factorisation products mU,V described in ğ2.3. □

Remark 3.5. In general, the symmetric algebra functor Sym : ModR → g≥0CAlgR from the
category ModR of modules over a commutative ring R to the category g≥0CAlgR of positively
graded commutative algebras over R is right exact and hence preserves surjections. However,
it is not left exact and so it does not, in general, preserve injections. In the present setting
we are working over R = C and in this case the Sym functor does preserve injections. Indeed,
every injective linear map i : V →֒W between complex vector spaces has a left inverse, i.e. a
linear map r : W → V such that ri = idV and so applying the functor Sym we deduce that
Sym(i) : SymV → SymW is also injective. ◁

3.1.2 Local copies of F
a,α

Let Top(Σ)p be the category of neighbourhoods U ⊂ Σ◦ of p ∈ Σ◦, with inclusions U ⊆ V as
morphisms U → V . It is a subcategory of the multicategory Top(Σ)⊔ from ğ2.3, so that we
may restrict the multifunctor ULΣ

α : Top(Σ)⊔ → Vec⊗
C

to this subcategory to form a diagram
(ULΣ

α)p : Top(Σ)p → VecC of shape Top(Σ)p. Since the category VecC is complete and Top(Σ)p
is small, we can form the limit lim (ULΣ

α)p in VecC, which for any open subset U in Top(Σ)p
comes with a canonical linear map mp,U : lim (ULΣ

α)p → ULΣ
α(U). We also have such a

map for any open subset U ⊂ Σ in Top(Σ) containing p by post-composing the latter with a
factorisation product.

By the universal property of limits there is a unique injective linear map

(·)ξp : F
a,α −֒→ lim (ULΣ

α)p, A 7−→ Aξ
p (3.25)

for p ∈ Σ◦ such that the following diagram

F
a,α

lim (ULΣ
α)p

ULΣ
α(U) ULΣ

α(V )

(·)
ξp
U

(·)
ξp
V

∃!(·)ξp

mp,U mp,V

mU,V

is commutative, for every inclusion of open neighbourhoods p ∈ U ⊂ V ⊂ Σ◦.

Proposition 3.6. The image of the linear map (3.25) does not depend on the local coordinate
ξ used on a neighbourhood of p ∈ Σ◦. We denote this image as F

a,α
p ∈ VecC.

Proof. Let ξ and η be two local coordinates on a neighbourhood U of p. It suffices to show
that for any A ∈ F

a,α, the vector Aξp
U also lies in the image of the linear map (3.25) deőned

relative to the local coordinate η. And by linearity it is enough to consider states of the form
(3.3). Its image Aξp

U is given by (3.12b). Writing ξ = ϱη→ξ ◦ η for some holomorphic function
ϱη→ξ : η(U) → ξ(U), so that also ξ̄ = ϱ̄η→ξ ◦ η̄, we have expansions (see (3.88) later for the
exact expressions)

ξ−mi
p =

∑

k≥0

αk,mi
η−mi+k
p , ξ̄

−nj
p =

∑

ℓ≥0

αℓ,nj
η̄
−nj+ℓ
p
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for all i ∈ {1, . . . , r}, j ∈ {1, . . . , r̄}. Here the coefficients αk,n are complex numbers for every
k ∈ Z≥0, n ∈ Z≥1 whose exact expressions will not be needed for the argument below, but
for instance we have α0,n = (ϱη→ξ)′(η(p))−n. Substituting these expansions into (3.12b) we
obtain the formal expression

A
ξp
U =

( ∑

kr≥0

αkr,mr a
r
(−mr+kr)

)
. . .

( ∑

k1≥0

αk1,m1 a
1
(−m1+k1)

)

×

(∑

ℓr̄≥0

αℓr̄,nr̄ b̄
r̄
(−nr̄+ℓr̄)

)
. . .

(∑

ℓ1≥0

αℓ1,n1 b̄
1
(−n1+ℓ1)

)
|0⟩

ηp
U , (3.26)

It remains to observe that the right hand side is of the form B
ηp
U for some well deőned state

B ∈ F
a,α since only őnitely many terms contribute from each of the inőnite sums. Indeed, this

follows from repeatedly applying the identities (3.13) from Proposition 3.3. □

For any point p ∈ Σ◦, we refer to F
a,α
p as the ‘local copy of Fa,α attached to p’, and for any

A ∈ F
a,α we will refer to Aξ

p ∈ F
a,α
p as the ‘state A prepared at p in the local coordinate ξ’.

Explicitly, the state (3.3) in F
a,α prepared at p in the local coordinate ξ will be denoted

ar(−mr)
. . . a1(−m1)

b̄r̄(−nr̄)
. . . b̄1(−n1)

|0⟩ξp.

For any neighbourhood U ⊂ Σ◦ of p with local coordinate ξ : U → C, we refer to Aξp
U ∈ ULΣ

α(U)
as the ‘state A prepared at p in the local chart (U, ξ)’.

Let ξ and η be two local holomorphic coordinates in the neighbourhood of a point p ∈ Σ◦.
Given a state A ∈ F

a,α, it can be prepared at p in either the local coordinate ξ to give the
element Aξ

p ∈ F
a,α
p , or in the local coordinate η to give the element Aη

p ∈ F
a,α
p . These will, in

general, describe different elements of Fa,α
p so we obtain a linear isomorphism

(·)η→ξ
p := (·)ξp ◦

(
(·)ηp
)−1

: Fa,α
p −→ Fa,α

p , Aη
p 7−→ Aξ

p (3.27)

which takes as input any element of Fa,α
p = im (·)ηp, identiőes the state A ∈ F

a,α corresponding
to it in the local coordinate η near p, which is unique by the injectivity of (3.25), and then
prepares the same state A at the same point p but in the different local coordinate ξ. We note
here that the isomorphism (3.27) plays a similar role for the local copy F

a,α
p of Fa,α as the map

(·)η→ξ : aη
∼=−→ aξ deőned in ğ2.1.1 does for the holomorphic vector bundle L.

3.1.3 Translation operators

In the vertex algebra setting it is customary to introduce the inőnitesimal translation operator
D acting as an endomorphism of the vertex algebra. In the present non-chiral setting we have
two such endomorphisms

D, D̄ : Fa,α −→ F
a,α (3.28a)

deőned as follows. For any A ∈ F
a,α of the form (3.3) we set

DA :=

r∑

i=1

mi a
r
(−mr)

. . . ai(−mi−1) . . . a
1
(−m1)

b̄r̄(−nr̄)
. . . b̄1(−n1)

|0⟩, (3.28b)

D̄A :=

r̄∑

j=1

nj a
r
(−mr)

. . . a1(−m1)
b̄r̄(−nr̄)

. . . b̄j(−nj−1) . . . b̄
1
(−n1)

|0⟩. (3.28c)

In particular, D|0⟩ = D̄|0⟩ = 0. We call a state A ∈ F
a,α chiral if D̄A = 0 and anti-chiral if

DA = 0. We let V
a,α denote the subspace of chiral states since it is isomorphic to the affine

vertex algebra and, correspondingly, we let V̄
a,α denote the subspace of anti-chiral states.
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Proposition 3.7. For any A ∈ F
a,α and any local coordinate ξ in the neighbourhood of a point

p ∈ Σ◦, we have the relations

(DA)ξp = ∂ξ(p)A
ξ
p, (D̄A)ξp = ∂ξ̄(p)A

ξ
p

in F
a,α
p . In particular, if A is (anti-)chiral then Aξ

p depends (anti-)holomorphically on p.

Proof. It is enough to prove the relations

(DA)
ξp
U = ∂ξ(p)A

ξp
U , (D̄A)

ξp
U = ∂ξ̄(p)A

ξp
U

in ULΣ
α(U) for an open neighbourhood U ⊂ Σ◦ of p. This is immediate from the deőnition

of the operators D, D̄ in (3.28) and of the map (·)
ξp
U in (3.12), noting that for any m ∈ Z we

have ∂ξ(p)ξ
−m
p = mξ−m−1

p and ∂ξ̄(p)ξ̄
−m
p = m ξ̄−m−1

p . □

3.2 Vertex modes and vertex operators

For any R ∈ R>0 we use the notation DR := {ζ ∈ C | |ζ| < R} ⊂ C for the open disc of radius
R around the origin in C. Similarly, for any R−, R+ ∈ R>0 with R− < R+ we denote by
AR−,R+ := {ζ ∈ C |R− < |ζ| < R+} ⊂ C the open annulus with radii R− and R+ around the
origin. Note that AR−,R+ = DR+ \DR− .

Given a local coordinate ξ : U → C on a neighbourhood U ⊂ Σ◦ of p ∈ Σ◦, we say that
V ⊂ U is a disc shaped open subset around p in the local coordinate ξ : U → C if V = ξ−1

p (DR)
for some R > 0. Likewise, we say that Y ⊂ U is an annulus shaped open subset around p in
the local coordinate ξ : U → C if Y = ξ−1

p (AR−,R+) for some 0 < R− < R+. We can then

deőne disc shaped open subsets V ± := ξ−1
p (DR±) so that Y = V + \ V −.

By deőnition of the category Top(Σ), see the start of ğ2.3, disc shaped open subsets and
annulus shaped open subsets around a given point p are both objects in Top(Σ) homeomorphic
to C and C \ {0}, respectively.

3.2.1 Vertex modes

To every a ∈ a, n, n̄ ∈ Z and any local coordinate ξ in the neighbourhood of p ∈ Σ◦, we
associate a pair of endomorphisms of the vector space F

a,α
p , called the chiral vertex nth-mode

and anti-chiral vertex n̄th-mode of a at p, deőned as follows. Given an annulus shaped open
subset Y ⊂ Σ◦ around p in the local coordinate ξ, we let V ± ⊂ Σ◦ denote the disc shaped
open subsets around p such that Y = V + \ V −. The preimages of V ± under the projection
π : Σ̂ → Σ is a disjoint union of disc shaped open subsets around p+ and p−, respectively,
which we denote as π−1(V ±) = V ±

+ ⊔ V
±
− , as in ğ3.1. We deőne the elements

a
ξp
(n)

:=
[
s
(
aξp ⊗ ⌈ξ

n
p ⌉

V −
+

V +
+

)]
Y
, ā

ξp
(n̄)

:=
[
s
(
aξ̄p ⊗ ⌈ξ̄

n̄
p ⌉

V −
−

V +
−

)]
Y

(3.29)

in ULΣ
α(Y ). We do not include the subset Y in the notation for the elements (3.29) of ULΣ

α(Y )
since the endomorphisms of Fa,α

p they deőne will be independent of Y . Explicitly, given any
state B ∈ F

a,α and any neighbourhood U ⊂ Σ◦ of p we may form the factorisation products

m(Y,p),U

(
a
ξp
(n) ⊗B

ξ
p

)
= (a(n)B)

ξp
U , m(Y,p),U

(
ā
ξp
(n̄) ⊗B

ξ
p

)
= (ā(n̄)B)

ξp
U

in ULΣ
α(U) for every a ∈ a, where Y ⊂ U is any annulus shaped open subset around p and the

map m(Y,p),U : ULΣ
α(Y )⊗ lim(ULΣ

α)p → ULΣ
α(U) is deőned as m(Y,p),U := m(Y,V ),U ◦(id⊗mp,V )
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for any open neighbourhood V ∋ p disjoint from Y . The above equalities both follow from the
deőnitions (3.12) and (3.29), see also Proposition 3.3. In particular, we obtain linear maps

a
ξp
(n) : F

a,α
p −→ Fa,α

p , Bξ
p 7−→ a

ξp
(n)B

ξ
p = (a(n)B)ξp, (3.30a)

ā
ξp
(n̄) : F

a,α
p −→ Fa,α

p , Bξ
p 7−→ ā

ξp
(n̄)B

ξ
p = (ā(n̄)B)ξp (3.30b)

for any a ∈ a, n, n̄ ∈ Z and any local coordinate ξ in a neighbourhood of p.

The inőnite sequences of chiral vertex nth-modes in (3.29) can be described collectively,
for n ≥ 0 and n < 0 respectively, as the coefficients in the expansion of single elements of
ULΣ

α(Y ) as follows. The same will be true of the anti-chiral vertex n̄th-modes, see below, but
focusing on the chiral vertex nth-modes a

ξp
(n) of a ∈ a we consider

[
s
(
aξq ⊗ ⌈ξ

−1
q ⌉

V −
+

V +
+

)]
Y
∈ ULΣ

α(Y ) (3.31)

for some other point q ∈ U in the local coordinate patch covered by ξ : U → C, where the
notation used is the same as in (3.29). Since ξ−1

q is singular at q, the latter should not lie in

the closure of the annulus shaped subset Y = V + \ V −, so there are two cases to consider:

(v<0) If q ∈ V − then |ξp(t)| > |ξp(q)| for any t ∈ Y so that the function ξ−1
q = (ξp − ξp(q))

−1

can be expanded in small ξp(q) and hence (3.31) has the following expansion

[
s
(
aξq ⊗ ⌈ξ

−1
q ⌉

V −
+

V +
+

)]
Y
=
∑

n<0

a
ξp
(n)ξp(q)

−n−1 =: a[ξp(q)]+. p

V −

V +

q

(v≥0) If q ̸∈ V + then instead |ξp(t)| < |ξp(q)| for any t ∈ Y so that ξ−1
q = (ξp − ξp(q))

−1 can
be expanded in small ξp, and hence (3.31) now has the following expansion

−
[
s
(
aξq ⊗ ⌈ξ

−1
q ⌉

V −
+

V +
+

)]
Y
=
∑

n≥0

a
ξp
(n)ξp(q)

−n−1 =: a[ξp(q)]−. p

V −

V +

q

Remark 3.8. When aξq explicitly depends on the coordinate ξq, as in the Virasoro or βγ system
cases, we should also re-express this in terms of the local coordinate ξp near p in both of the
above expansions in (v<0) and (v≥0). However, since the local coordinates ξq and ξp are related
simply by a constant shift ξq = ξp− ξp(q), in all three examples we consider it is the case that
aξq = aξp for every a ∈ a. Indeed, in the Virasoro case we have Ωξq = −∂ξq = −∂ξp = Ωξp and
likewise in the βγ system case we have γξq = dξq = dξp = γξp . ◁

It is convenient to gather the negative modes a
ξp
(n) for n < 0 and positive modes a

ξp
(n) for

n ≥ 0 together into a chiral vertex operator, the single doubly inőnite series

a[ξp(q)] := a[ξp(q)]+ + a[ξp(q)]−, (3.32)

with coefficients in EndFa,α
p . Strictly speaking, the nested sequence of open neighbourhoods

p+ ∈ V
−
+ ⋐ V +

+ ⊂ U+ used in deőning the modes a
ξp
(n) should be different here depending on

whether n < 0 or n ≥ 0 so that the point q ∈ U , which is őxed in (3.32), satisőes q ∈ V − in
the őrst term and q ̸∈ V + in the second. See the proof of Proposition 3.9 for details.

We can similarly assemble all the anti-chiral elements ā
ξp
(n̄) ∈ ULΣ

α(Y ) in (3.29) into series

ā[ξ̄p(q)]± for n̄ < 0 and n̄ ≥ 0, respectively, and formally set ā[ξ̄p(q)] := ā[ξ̄p(q)]+ + ā[ξ̄p(q)]−.
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3.2.2 Homogeneous vertex modes

Since the vertex modes (3.29) living in ULΣ
α(Y ) are supported on an annulus shaped open

subset Y ⊂ Σ◦ around p in the local coordinate ξ, i.e. the shifted local coordinate ξp provides
a bijection ξp : Y

∼=−→ AR−,R+ to an open annulus with radii 0 < R− < R+, we have an action of
the circle S1 = {λ ∈ C | |λ| = 1} on Y induced by the obvious S1-action on AR−,R+ ⊂ C given
by multiplication by λ ∈ S1. In other words, in the local coordinate ξp : Y → C this action
is given by ξp 7→ λξp. We will say that a ∈ a has conformal dimension ∆a if the behaviour of
the associated chiral vertex nth-modes in (3.29) under this S1-action on Y takes the form

a
λξp
(n) = λn−∆a+1a

ξp
(n)

for every n ∈ Z. Note that since |λ| = 1 we have ξ̄p 7→ λ−1ξ̄p so that the anti-chiral vertex
nth-modes associated with a ∈ a transform for any n ∈ Z as

ā
λξp
(n) = λ−n+∆b−1ā

ξp
(n).

For any a ∈ a of deőnite conformal dimension ∆a, it is convenient to deőne its associated
homogeneous chiral vertex nth-mode and homogeneous anti-chiral vertex nth-mode at p in the
local coordinate ξ, respectively, as

a
ξp
[n]

:= a
ξp
(n+∆a−1), ā

ξp
[n]

:= ā
ξp
(n+∆b−1). (3.33)

The reason that these (anti-)chiral vertex nth-modes are called ‘homogeneous’ comes from the
fact that their behaviour under the S1-action is just a rescaling by λ±n, which is independent
of a ∈ a. In terms of homogeneous chiral vertex nth-modes, the chiral vertex operator (3.32)
and its anti-chiral counterpart take the form

a[ξp(q)] =
∑

n∈Z

a
ξp
[n]ξp(q)

−n−∆a , ā[ξ̄p(q)] =
∑

n∈Z

ā
ξp
[n] ξ̄p(q)

−n−∆b . (3.34)

We also deőne the homogeneous loop generators of the Lie algebra â⊕ ̂̄a as, cf. (3.2),

a[n] := a⊗ tn+∆a−1 ∈ â, ā[n] := a⊗ t̄n+∆a−1 ∈ ̂̄a.
Given any monomial state A ∈ F

a,α as in (3.3) such that ai and bj have deőnite conformal
dimensions ∆ai and ∆bj for each i = 1, . . . , r and j = 1, . . . , r̄, we will say that A has chiral
conformal dimension ∆A :=

∑r
i=1(∆ai+mi−1) and that it has anti-chiral conformal dimension

∆̄A :=
∑r̄

j=1(∆bj+nj−1). In all cases we shall consider, every possible rewriting of the state A
is given by a linear combination of monomial states with the same chiral conformal dimension
∆A and anti-chiral conformal dimension ∆̄A so we have a well deőned Z

2-grading on F
a,α.

Rewriting the relations (3.33) as

a
ξp
(−n) = a

ξp
[−n−∆a+1], ā

ξp
(−n) = ā

ξp
[−n−∆a+1]

we see that the Z
2-grading on F

a,α is measured by the negative of the sums of the chiral and
anti-chiral mode numbers of a homogeneous state A, respectively, when written in terms of
homogeneous chiral and anti-chiral vertex modes.

We say that Aξ
p ∈ F

a,α
p is homogeneous in the coordinate ξ and call wt(Aξ

p) := ∆A the chiral

weight of Aξ
p in the coordinate ξ and wt(Aξ

p) := ∆̄A its anti-chiral weight in the coordinate ξ.
Every choice of local coordinate ξ in a neighbourhood of the point p ∈ Σ◦ induces a Z

2-grading
on the vector space F

a,α
p . These Z

2-gradings of Fa,α
p depend on the coordinate used because

if Aξ
p ∈ F

a,α
p is homogeneous in the coordinate ξ then it will generally not be homogeneous in

another local coordinate η near p. More precisely, if Aξ
p = Bη

p for some B ∈ F
a,α as in the

proof of Proposition 3.6, then B will generally not be of deőnite bi-grade.
The conformal dimensions of basis elements in a and their corresponding homogeneous

vertex operators in the three main examples from ğ2.1.2 are as follows.
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Kac-Moody: Recall that a = g. Since Xξp = X is independent of the local coordinate for
any X ∈ g, it follows that ∆X = 1. In particular, homogeneous vertex nth-modes coincide with
the vertex nth-modes, namely X[n] = X(n) for all n ∈ Z and the Lie algebra relations of â⊕ ̂̄a
in (3.4) take the exact same form

[
X[m],Y[n]

]
= [X,Y][m+n] +mκ(X,Y)δm+n,0 k, (3.35a)

[
X̄[m], Ȳ[n]

]
= [X,Y][m+n] +mκ(X,Y)δm+n,0 k̄. (3.35b)

for every X,Y ∈ g and m,n ∈ Z. It is evident from these relations that the Z
2-grading on F

a,α

is well deőned since each term has the same total homogeneous mode number.

Virasoro: We have a = spanC{Ω} and because Ωξp = −∂ξp we deduce that ∆Ω = 2. The
homogeneous chiral and anti-chiral vertex nth-modes of Ω are then given Ω[n] = Ω(n+1) and
Ω̄[n] = Ω̄(n+1). The deőning relations (3.5) of â⊕ ̂̄a then take the form

[
Ω[m],Ω[n]

]
= (m− n)Ω[m+n] +

m3 −m

12
c δm+n,0 k, (3.36a)

[
Ω̄[m], Ω̄[n]

]
= (m− n)Ω̄[m+n] +

m3 −m

12
c δm+n,0 k̄, (3.36b)

which are the usual Virasoro algebra relations for L(n) = Ω[n] and L̄(n) = Ω̄[n]. In particular,
it is again clear from these relations that the Z

2-grading on F
a,α is well deőned.

βγ system: Here a = spanC{β, γ} with βξp = 1 and γξp = dξp so that ∆β = 1 and ∆γ = 0.
The homogeneous (anti-)chiral vertex nth-modes are then β[n] = β(n), β̄[n] = β̄(n), γ[n] = γ(n−1)

and γ̄[n] = γ̄(n−1), cf. (3.7). The deőning relations (3.6) of â⊕ ̂̄a then read

[
β[m], γ[n]

]
= δm+n,0 k, (3.37a)

[
β̄[m], γ̄[n]

]
= δm+n,0 k̄, (3.37b)

which are the usual inőnite-dimensional Weyl algebra relations. Again, it is immediate from
these relations that the Z

2-grading on F
a,α is well deőned.

3.2.3 Vertex operators

The vertex operator associated with a state A ∈ F
a,α can be described geometrically in terms

of the prefactorisation algebra ULΣ
α by preparing this state at a point q ∈ U ⊂ Σ◦ in some local

coordinate ξ : U → C, to obtain the element Aξ
q ∈ F

a,α
q , and then applying the factorisation

product mq,Y : Fa,α
q → ULΣ

α(Y ) to an annulus shaped open subset Y ⊂ U with q ∈ Y and
encircling another point p ∈ U . The resulting element of ULΣ

α(Y ) then naturally acts on F
a,α
p

via the factorisation products m(Y,p),U , cf. the action of vertex modes on F
a,α
p described in

(3.30), and encodes the vertex operator of the state A ∈ F
a,α, see the next proposition.

For any λ ∈ C we use the notation λ as a shorthand for the pair (λ, λ̄). Similarly, we use
the notation ζ for a pair of formal variables (ζ, ζ̄). Recall that the normal ordered product of
r ∈ Z≥2 operators Oi(ζ) for i ∈ {1, . . . , r} with a decomposition Oi(ζ) = Oi(ζ)+ +Oi(ζ)− into
creation and annihilation operators Oi(ζ)± is deőned recursively by

:Or(ζ) . . .O1(ζ): := Or(ζ)+ :Or−1(ζ) . . .O1(ζ): + :Or−1(ζ) . . .O1(ζ):Or(ζ)−.
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Proposition 3.9. Let q ∈ Y ⊂ Σ◦ be an annulus shaped open subset around a point p ∈ Σ◦

in a local coordinate ξ. For any Aξ
q ∈ F

a,α
q , the element mq,Y (A

ξ
q) ∈ ULΣ

α(Y ) expands as

mq,Y (A
ξ
q) = Y

(
Aξ

q, ξp(q)
)
,

p

Y

q

where the right hand side is the vertex operator deőned as the usual normal ordered product

Y
(
Aξ

q, ξp(q)
)
:= :

1

(mr − 1)!
∂mr−1
ξp(q)

ar[ξp(q)] . . .
1

(m1 − 1)!
∂m1−1
ξp(q)

a1[ξp(q)]:

× :
1

(nr̄ − 1)!
∂nr̄−1
ξ̄p(q)

b̄r̄[ξ̄p(q)] . . .
1

(n1 − 1)!
∂n1−1
ξ̄p(q)

b̄1[ξ̄p(q)]:

for any monomial state A ∈ F
a,α as in (3.3), and extended by linearity to all of Fa,α.

Proof. By linearity it is sufficient to consider a state A ∈ F
a,α as in (3.3). In fact, we will focus

on proving the statement for a chiral state A = ar(−mr)
. . . a1(−m1)

|0⟩ since the treatment of the
anti-chiral part is completely analogous.

Let q+ ∈ Y0 ⋐ . . . ⋐ Yr ⊂ Y+ be a nested sequence of annuli shaped open subsets around
the point p+. We have

mq,Y (A
ξ
q) =

[
r∏

i=1

s
(
aiξq ⊗ ⌈ξ

−mi
q ⌉

Yi−1

Yi

)]

Y

.

Each open subset Yj for j ∈ {0, . . . , r} can be written as a difference Yj = V +
j \ V

−
j for disc

shaped open subsets V ±
j around the point p+. We can thus write each ρYi−1

Yi
∈ Ω0,0

c (Yi)
1
Yi−1

for
i ∈ {1, . . . , r} as a difference of two smooth bump functions

ρ
Yi−1

Yi
= ρ

V +
i−1

V +
i

− ρ
V −
i

V −
i−1
, with ρ

V +
i−1

V +
i

∈ Ω0,0
c (V +

i )1
V +
i−1
, ρ

V −
i

V −
i−1
∈ Ω0,0

c (V −
i−1)

1
V −
i

where p+ ∈ V
−
i ⋐ V −

i−1 ⋐ V +
i−1 ⋐ V +

i is a nested sequence of disc shaped open subsets around
p+ in the local coordinate ξ such that q+ ∈ V

+
j and q+ ̸∈ V

−
j for all j ∈ {0, . . . , r}, which we

can depict schematically as

p

Yi−1

Yi

q
=

p

V +

i−1

V +

i

q
−

p

V −

i−1 V −

i

q

We may then write

mq,Y (A
ξ
q) =

[
r∏

i=1

s

(
aiξq ⊗

(
⌈ξ−mi

q ⌉
V +
i−1

V +
i

− ⌈ξ−mi
q ⌉

V −
i

V −
i−1

))]

Y

. (3.38)

Expanding this out we get a sum of 2r terms, each of which is the cohomology class of a r-fold
Sym-product of terms of the form

s
(
aiξq ⊗ ⌈ξ

−mi
q ⌉

V +
i−1

V +
i

)
or − s

(
aiξq ⊗ ⌈ξ

−mi
q ⌉

V −
i

V −
i−1

)
, (3.39)

for each i ∈ {1, . . . , r}. Due to the support properties of the different smooth bump functions
present, in each case we can expand ξ−mi

q = 1
(mi−1)!∂

mi−1
ξ(q) (ξp − ξp(q))

−1 in the region where
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|ξp(q)| < |ξp| or |ξp(q)| > |ξp|, respectively. Using also the fact that aiξq = aiξp by Remark 3.8,
we may write (3.39) as

1

(mi − 1)!
∂mi−1
ξ(q)

(
∑

n<0

ξp(q)
−n−1s

(
aiξp ⊗ ⌈ξ

n
p ⌉

V +
i−1

V +
i

))

or
1

(mi − 1)!
∂mi−1
ξ(q)

(
∑

n≥0

ξp(q)
−n−1s

(
aiξp ⊗ ⌈ξ

n
p ⌉

V −
i

V −
i−1

))
. (3.40)

Deőne the annulus shaped open subsets Y +
i := V +

i \V
+
i−1 and Y −

i := V −
i−1\V

−
i for i ∈ {1, . . . , r}.

Then taking the cohomology classes [·]Y +
i

or [·]Y −
i

of the expressions in (3.40) gives

1

(mi − 1)!
∂mi−1
ξ(q) a[ξp(q)]+ ∈ ULΣ

α(Y
+
i ) or

1

(mi − 1)!
∂mi−1
ξ(q) a[ξp(q)]− ∈ ULΣ

α(Y
−
i ). (3.41)

In summary, we can rewrite (3.38) explicitly as a sum of 2r terms

mq,Y (A
ξ
q) =

∑

(ε1,...,εr)∈{+,−}r

m(Y
ε1
1 ,...,Y

εr
r ),Y

( r⊗

i=1

1

(mi − 1)!
∂mi−1
ξ(q) a[ξp(q)]εi

)
(3.42)

where the support of the ith term in each of the above factorisation products is Y εi
i , namely

it is determined by the sign εi ∈ {+,−} according to (3.41). The desired result now follows
from observing that the relative ordering of the 2r annuli Y ±

i for i ∈ {1, . . . , r} appearing in
each of the 2r terms of the sum (3.42) coincides with the relative ordering of the 2r operators
appearing in each of the 2r terms of the desired normal ordered product. □

The coefficients in the expansion of the vertex operator from Proposition 3.9, namely

Y
(
Aξ

q, ξp(q)
)
=
∑

n,n̄∈Z

A
ξp
(n,n̄) ξp(q)

−n−1ξ̄p(q)
−n̄−1, (3.43)

deőne the vertex modes A
ξp
(n,n̄) ∈ ULΣ

α(Y ) of the state A ∈ F
a,α at p ∈ Σ◦ in the local coordinate

ξ for any n, n̄ ∈ Z. Just as the elements (3.29) of ULΣ
α(Y ) did, each vertex mode of any given

state A ∈ F
a,α also gives rise to an endomorphism

A
ξp
(n,n̄) : F

a,α
p −→ Fa,α

p , Bξ
p 7−→ A

ξp
(n,n̄)B

ξ
p

of Fa,α
p for each n, n̄ ∈ Z, deőned by forming the factorisation product m(Y,p),U

(
A

ξp
(n,n̄) ⊗ B

ξ
p

)

with the input state B ∈ F
a,α prepared at p in the local coordinate ξ. The fact that this

deőnes an element of Fa,α
p follows from the next lemma.

Lemma 3.10. In any local coordinate ξ in the neighbourhood of a point p ∈ Σ◦ and for any
A,B ∈ F

a,α we have

A
ξp
(n,n̄)B

ξ
p =

(
A(n,n̄)B

)ξ
p

for some unique A(n,n̄)B ∈ F
a,α. Moreover, we have A(n,n̄)B = 0 if either n or n̄ is sufficiently

large. In particular, we have A(n,n̄)|0⟩ = 0 if either n ≥ 0 or n̄ ≥ 0.

Proof. We use the same notation as in the proof of Proposition 3.9. And just as in the latter,
it is sufficient to consider only the chiral part of the state B ∈ F

a,α, i.e. we can suppose that
B = Ys

(−ns)
. . .Y1

(−n1)
|0⟩, since the anti-chiral part can be treated completely analogously.

Now for every n ∈ Z, the vertex mode A ξp
(n,−1) ∈ ULΣ

α(Y ) is the coefficient of ξp(q)−n−1 in
the operator (3.42) from the proof of Proposition 3.9, consisting of a sum of 2r terms. Aside
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from the two extremal terms with εi = ± for all i ∈ {1, . . . , r}, the remaining 2r − 2 terms
will all contribute an inőnite sum to the coefficient of ξp(q)−n−1. However, it can be seen by
repeatedly applying the identities (3.13) from Proposition 3.3 that only őnitely many terms
in these inőnite sums will contribute non-trivially to the factorisation product

m(Y,p),U

(
A

ξp
(n,−1) ⊗B

ξ
p

)
∈ ULΣ

α(U)

into a disc shaped open subset U ⊃ Y . It follows that this factorisation product can be written
as (A(n,−1)B)

ξp
U ∈ ULΣ

α(U) for some state A(n,−1)B ∈ F
a,α which is unique by the injectivity

of (3.12). If n ∈ Z≥0 is too large then A(n,−1)B = 0 since none of the 2r terms in the sum
(3.42) will contribute to the above factorisation product. Finally, for the ‘in particular’ part,
terms from the sum (3.42) which contribute to the coefficient of ξp(q)−n−1 for n ∈ Z≥0 must
have εi = − for some i ∈ {1, . . . , r} and all such terms annihilate the vacuum by (3.13d). □

In light of the mode expansion (3.43) and the deőnition of the states A(n,n̄)B ∈ F
a,α given

in Lemma 3.10, it will be convenient to deőne the formal vertex operator map which gathers
all these states into a formal sum deőned as

Y (A, ζ)B =
∑

n,n̄∈Z

A(n,n̄)B ζ
−n−1ζ̄−n̄−1, (3.44)

where ζ and ζ̄ are formal variables. This is related to the vertex operator in (3.43) by

Y
(
Aξ

q, ξp(q)
)
Bξ

p =
(
Y
(
A, ξp(q)

)
B
)ξ
p
. (3.45)

In other words, by preparing all the states A(n,n̄)B ∈ F
a,α for n, n̄ ∈ Z, appearing in (3.44),

at the point p ∈ U in the local coordinate chart (U, ξ) and replacing the formal variables ζ,
ζ̄ in (3.44) by the complex numbers ξp(q), ξ̄p(q) for some other point q ∈ U , we get back the
expansion of the factorisation product m(p,q),U (A

ξ
q ⊗B

ξ
p) in q near p.

3.2.4 Homogeneous vertex operators

Recall from ğ3.2.2 the notion of homogeneous (anti-)chiral vertex modes for an element a ∈ a of
deőnite conformal dimension ∆a. Given a monomial state A ∈ F

a,α, it is convenient to similarly
introduce a notion of homogeneous vertex modes of A by expanding the vertex operator from
Proposition 3.9 as

Y
(
Aξ

q, ξp(q)
)
=
∑

n,n̄∈Z

A
ξp
[n,n̄]ξp(q)

−n−∆A ξ̄p(q)
−n̄−∆̄A , (3.46)

which is to be compared with (3.43). The coefficients A ξp
[n,n̄] ∈ ULΣ

α(Y ) for n, n̄ ∈ Z are called
the homogenous vertex modes of the monomial state A ∈ F

a,α at p ∈ Σ in the local coordinate
ξ. They are related to the vertex modes by a simple shift, cf. (3.33),

A
ξp
[n,n̄] = A

ξp

(n+∆A−1,n̄+∆̄A−1)
. (3.47)

We also introduce the notation A[n,n̄] = A(n+∆A−1,n̄+∆̄A−1) ∈ EndFa,α, see Lemma 3.10.

Lemma 3.11. Let A ∈ F
a,α be any monomial state and n, n̄ ∈ Z. Its vertex modes at p ∈ Σ

in any local coordinate ξ are homogeneous elements of EndFa,α
p in the local coordinate ξ, of

chiral and anti-chiral weights

wt
(
A

ξp
(n,n̄)

)
= ∆A − n− 1, wt

(
A

ξp
(n,n̄)

)
= ∆̄A − n̄− 1.
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Likewise, the homogeneous vertex modes of A at p in the local coordinate ξ are homogeneous
elements of EndFa,α

p in the local coordinate ξ, of chiral and anti-chiral weights

wt
(
A

ξp
[n,n̄]

)
= −n, wt

(
A

ξp
[n,n̄]

)
= −n̄.

Proof. By deőnition of the Z
2-grading on F

a,α
p relative to the local coordinate ξ, it is clear that

the homogeneous chiral and anti-chiral vertex modes (3.30) are homogeneous with weights

wt
(
a
ξp
[n]

)
= −n, wt

(
a
ξp
[n]

)
= 0, wt

(
ā
ξp
[n̄]

)
= 0, wt

(
ā
ξp
[n̄]

)
= −n̄

for every n, n̄ ∈ Z. The last statement now follows using the explicit expression for the vertex
operator of the monomial state A ∈ F

a,α from Proposition 3.9 and the deőnition (3.46) of the
homogeneous vertex modes, recalling that ∆A =

∑r
i=1(∆ai +mi − 1) and noting using (3.34)

that the chiral factor ∂mi−1
ξp(q)

ai[ξp(q)] for i ∈ {1, . . . , r} consists of operators of the form

ai[k]ξp(q)
−k−∆

ai
−mi+1

with k ∈ Z and likewise for the anti-chiral factors. The őrst result then follows by (3.47). □

Given any monomial state A ∈ F
a,α, we will refer to

X
(
Aξ

q, ξp(q)
)
:= ξp(q)

∆A ξ̄p(q)
∆̄A Y

(
Aξ

q, ξp(q)
)
=
∑

n,n̄∈Z

A
ξp
[n,n̄]ξp(q)

−nξ̄p(q)
−n̄ (3.48)

as the homogeneous vertex operator of Aξ
q ∈ F

a,α
q at q in the coordinate ξ, see e.g. [LL, Remark

3.1.25] in the chiral case. We extend this notion by linearity to all states in F
a,α
q .

3.2.5 Translation operators

Recall the translation operators D, D̄ : Fa,α → F
a,α introduced in (3.28). Their action on F

a,α
p

was identiőed in Proposition 3.7 with that of the derivative operators ∂ξ(p), ∂̄ξ(p) : F
a,α
p → F

a,α
p ,

respectively. In terms of the vertex modes (3.43) of the vertex operator from Proposition 3.9
their actions is given by the usual formula.

Lemma 3.12. For any A ∈ F
a,α and n, n̄ ∈ Z we have

(DA)
ξp
(n,n̄) = −nA

ξp
(n−1,n̄), (D̄A)

ξp
(n,n̄) = −n̄A

ξp
(n,n̄−1).

in EndFa,α
p , for any local coordinate ξ in the neighbourhood of a point p ∈ Σ◦.

Proof. The őrst result follows from comparing the mode expansion of both sides of the relation

Y
(
(DA)ξq, ξp(q)

)
= mq,Y

(
(DA)ξq

)
= mq,Y (∂ξ(q)A

ξ
q) = ∂ξ(q)Y

(
Aξ

q, ξp(q)
)
,

where the őrst and last equalities make use of Proposition 3.9 and the second equality is by
Proposition 3.7. The proof of the second result is completely analogous. □

Lemma 3.13. We have Y (|0⟩, ζ) = idFa,α , and for any A ∈ F
a,α we have the Taylor expansion

Y (A, ζ)|0⟩ = eζDeζ̄D̄A. In particular, DA = A(−2,−1)|0⟩ and D̄A = A(−1,−2)|0⟩.

Proof. Since mq,Y

(
|0⟩ξq

)
= [1]Y acts as the identity in EndFa,α the őrst result is immediate

from the deőnition of Y in Proposition 3.9. In any chart ξ : U → C with p, q ∈ U we have

Y
(
Aξ

q, ξp(q)
)
|0⟩

ξp
U = m(Y,p),U

(
mq,Y (A

ξ
q)⊗ |0⟩

ξ
p

)
= mq,U (A

ξ
q) = A

ξq
U

= eξp(q)∂ξ(p)eξ̄p(q)∂ξ̄(p)A
ξp
U =

(
eξp(q)Deξ̄p(q)D̄A

)ξp
U
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where Y is an annulus shaped open subset containing q and encircling the point p. In the
second last equality we have Taylor expanded the expression Aξq

U in q near p and the őnal step
is by Proposition 3.7, see in particular its proof. The result now follows from (3.45) and the
injectivity of the linear map (3.12) by Proposition 3.4. □

Proposition 3.14. For any A,B ∈ F
a,α we have Y (B, ζ)A = eζDeζ̄D̄Y (A,−ζ)B.

Proof. By associativity (2.17) of the factorisation product we have

Y
(
Bξ

q , ξp(q)
)
Aξ

p = Y
(
Aξ

p, ξq(p)
)
Bξ

q

since both sides are given by m(p,q),U (A
ξ
p ⊗B

ξ
q ) in any local chart ξ : U → C containing p and

q. In other words, in terms of the map Y deőned in (3.44) we have

(
Y
(
B, ξp(q)

)
A
)ξ
p
=
(
Y
(
A, ξq(p)

)
B
)ξ
q
=
(
eξp(q)Deξ̄p(q)D̄Y

(
A, ξq(p)

)
B
)ξ
p

where the last step is by Lemma 3.13, see in particular its proof. □

3.2.6 (Anti-)chiral states

The chiral vertex operator (3.32) and its anti-chiral analogue for any a ∈ a correspond to the
states a(−1)|0⟩

ξ
q and ā(−1)|0⟩

ξ
q, respectively, namely

a[ξp(q)] = Y
(
a(−1)|0⟩

ξ
q, ξp(q)

)
, ā[ξ̄p(q)] = Y

(
ā(−1)|0⟩

ξ
q, ξ̄p(q)

)
(3.49)

and comparing the mode expansion of both sides it follows that for any n, n̄ ∈ Z we have

(
a(−1)|0⟩

) ξp

(n,n̄)
= a

ξp
(n)δn̄,−1,

(
ā(−1)|0⟩

) ξp

(n,n̄)
= ā

ξp
(n̄)δn,−1. (3.50)

Notice ∆a(−1)|0⟩ = ∆̄ā(−1)|0⟩ = ∆a and ∆ā(−1)|0⟩ = ∆̄a(−1)|0⟩ = 0 for any a ∈ a so that also

(
a(−1)|0⟩

) ξp

[n,n̄]
= a

ξp
[n]δn̄,0,

(
ā(−1)|0⟩

) ξp

[n,n̄]
= ā

ξp
[n̄]δn,0.

More generally, if A ∈ F
a,α is chiral then by Proposition 3.7 the expansion of mq,Y (A

ξ
q)

from Proposition 3.9 is holomorphic, i.e. of the form Y
(
Aξ

q, ξp(q)
)
=
∑

n∈ZA
ξp
(n)ξp(q)

−n−1, in
which case its modes can be extracted as contour integrals

A
ξp
(n)

:= A
ξp
(n,−1) =

1

2πi

∫

cp

mq,Y (A
ξ
q)ξp(q)

ndξ(q) (3.51a)

for every n ∈ Z, using any counterclockwise oriented contour cp in Y encircling the point p.

If instead A ∈ F
a,α is anti-chiral then we similarly have Y

(
Aξ

q, ξ̄p(q)
)
=
∑

n∈ZA
ξp
(n)ξ̄p(q)

−n−1

whose modes we can extract as contour integrals

A
ξp
(n)

:= A
ξp
(−1,n) = −

1

2πi

∫

cp

mq,Y (A
ξ
q)ξ̄p(q)

ndξ̄(q). (3.51b)

Although we have introduced the same abbreviated notation in both (3.51a) and (3.51b), this
should not lead to confusion since the full correct notation A ξp

(n,−1) or A ξp
(−1,n) can be restored

by noting that A is chiral or anti-chiral, respectively.
Recall that the vacuum |0⟩ is both chiral and anti-chiral. It follows from Lemma 3.13 that

its modes are |0⟩ ξp(n,n̄) = [1]Y δn,−1δn̄,−1 for all n, n̄ ∈ Z which is consistent with (3.51).
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3.3 Borcherds type identities

In an ordinary vertex algebra the modes of arbitrary states satisfy algebraic relations known
as the Borcherds identities [Bor, FHL, LL]. In the present setting, the vertex algebra modes
of both chiral and anti-chiral states (3.51) also satisfy the same standard Borcherds identities.
In fact, slightly more general ‘Borcherds type’ identities also hold, given below in Proposition
3.15, between the vertex modes of any (anti-)chiral state and those of a generic state. However,
there does not appear to be algebraic ‘Borcherds type’ identities relating the vertex modes of
two non-chiral states (see [Mor2, Remark 1.9]). This is the reason why the Borcherds identity
is replaced by a different axiom in the various existing frameworks for full vertex operator
algebras [HuKo, Mor2, SS]. See ğ3.5.3 for details.

3.3.1 Moving points

We can keep track of the dependence of the linear map (3.12) on the location of the point
p ∈ U where the state A is inserted as follows. Given any open subset U ⊂ Σ◦ in Top(Σ),
equipped with a local coordinate ξ : U → C, we deőne the map

Φ1,ξ
U : U × F

a,α −→ ULΣ
α(U), (p,A) 7−→ mp,U (A

ξ
p). (3.52)

The superscript ξ refers to the coordinate used to prepare the state A at the point p. We can
also generalise the linear map (3.12) to describe the insertion of n ∈ Z≥1 states from F

a,α at a
subset of n points in Σ◦ as follows. Given any open subset U ⊂ Σ◦ in Top(Σ) and a collection
of points pi ∈ U with i ∈ {1, . . . , n} for n ∈ Z≥1, we deőne morphisms

m(pi),U :
n⊗

i=1

lim (ULΣ
α)pi −→ ULΣ

α(U) (3.53)

as the composition m(pi),U := m(Ui),U ◦
(⊗n

i=1mpi,Ui

)
for any inclusion of n disjoint subsets

⊔ni=1Ui ⊂ U . Combining the linear map (3.53) with the local realisations (3.25) at each pi in
the local coordinate ξ, we then obtain a linear map

n⊗

i=1

F
a,α −→ ULΣ

α(U), (Ai)
n
i=1 7−→ m(pi),U

( n⊗

i=1

(Ai)
ξ
pi

)
. (3.54)

In fact, one could more generally consider different local coordinates ξi, i ∈ {1, . . . , n} around
each of the points pi to obtain a linear map

n⊗

i=1

F
a,α −→ ULΣ

α(U), (Ai)
n
i=1 7−→ m(pi),U

( n⊗

i=1

(Ai)
ξi
pi

)
. (3.55)

It is useful, as in (3.52), to keep track of the location of the points pi at which the individual
states Ai are prepared. For any open subset U ⊂ Σ◦ in Top(Σ) and any n ∈ Z≥1 we let

Confn(U) :=
{
(pi)

n
i=1 ∈ U

×n
∣∣ pi ̸= pj for all i ̸= j ∈ {1, . . . , n}

}

denote the conőguration space of n distinct points in U . In particular, for n = 1 this is just
Conf1(U) = U . We can now deőne the analogue of (3.52) for n points as

Φn,ξ
U : Confn(U)×

n⊗

i=1

F
a,α −→ ULΣ

α(U),
(
(pi)

n
i=1, (Ai)

n
i=1

)
7−→ m(pi),U

( n⊗

i=1

(Ai)
ξ
pi

)
,

(3.56)
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where again the superscript ξ refers to the coordinate used to prepare each state Ai at pi.
Again, more generally, we could use different local coordinates ξi, i ∈ {1, . . . , n} around each
of the points pi as in (3.55), in which case we may deőne a map

Φn,ξ
U : Confn(U)×

n⊗

i=1

F
a,α −→ ULΣ

α(U),
(
(pi)

n
i=1, (Ai)

n
i=1

)
7−→ m(pi),U

( n⊗

i=1

(Ai)
ξi
pi

)
,

(3.57)

which depends on the collection ξ = (ξi)
n
i=1 of local coordinates around each point pi.

3.3.2 ‘Borcherds type’ identities and consequences

Recall the state A(n,n̄)B ∈ F
a,α given by Lemma 3.10 for any A,B ∈ F

a,α and n, n̄ ∈ Z.

Proposition 3.15. Let A,B,C ∈ F
a,α and k, k̄,m, m̄, n ∈ Z. We have the identities in F

a,α:

(i) If A is chiral then

∑

j≥0

(
m

j

)(
A(n+j)B

)
(m+k−j,k̄)

C

=
∑

j≥0

(−1)j
(
n

j

)
A(m+n−j)B(k+j,k̄)C −

∑

j≥0

(−1)n+j

(
n

j

)
B(n+k−j,k̄)A(m+j)C.

(ii) If A is anti-chiral then

∑

j≥0

(
m̄

j

)(
A(n+j)B

)
(k,m̄+k̄−j)

C

=
∑

j≥0

(−1)j
(
n

j

)
A(m̄+n−j)B(k,k̄+j)C −

∑

j≥0

(−1)n+j

(
n

j

)
B(k,n+k̄−j)A(m̄+j)C.

Proof. We prove only the chiral case (i). The proof of the anti-chiral case (ii) is completely
analogous. So let A,B ∈ F

a,α and suppose that D̄A = 0.
Let U ⊂ Σ◦ be an open subset equipped with a local coordinate ξ : U → C. Recall the

map Φ3,ξ
U in (3.56) and deőne FA,B,C : Conf3(U)→ ULΣ

α(U) by

FA,B,C(q, p, t) := Φ3,ξ
U

(
(q, p, t), (A,B,C)

)
ξp(q)

nξt(q)
mξt(p)

kξ̄t(p)
k̄

= m(q,p,t),U

(
Aξ

q ⊗B
ξ
p ⊗ C

ξ
t

)
ξp(q)

nξt(q)
mξt(p)

kξ̄t(p)
k̄ (3.58)

for pairwise distinct points q, p, t ∈ U . Since we are assuming that D̄A = 0, the above depends
holomorphically on q by Proposition 3.7. By Cauchy’s theorem we then have the identity

1

2πi

∫

cp

FA,B,C(q, p, t)dξ(q) =
1

2πi

∫

ct

FA,B,C(q, p, t)dξ(q)−
1

2πi

∫

c′t

FA,B,C(q, p, t)dξ(q) (3.59)

using the standard deformation of contour argument

t

q
p

cp
=

q

p

t
ct −

q
p

t
c′t
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where ct and c′t are counterclockwise oriented contours around t, as depicted, and cp is a small
counterclockwise oriented contour around the point p.

On the left hand side of (3.59), since q is closer to p than p is to t, we can expand the
factor ξt(q)m =

(
ξt(p) + ξp(q)

)m
of (3.58) in small ξp(q). Using also Proposition 3.9 gives

FA,B,C(q, p, t) =
∑

j≥0

(
m

j

)
Y

(
Y
(
Aξ

q, ξp(q)
)
Bξ

p, ξt(p)
)
Cξ
t ξp(q)

n+jξt(p)
m+k−j ξ̄t(p)

k̄.

In the őrst integral on the right hand side of (3.59), since p is closer to t than q is, we can
expand the factor ξp(q)n =

(
ξt(q)− ξt(p)

)n
of (3.58) in small ξt(p). Using also Proposition 3.9

we have the following expansion

FA,B,C(q, p, t) =
∑

j≥0

(−1)j
(
n

j

)
Y
(
Aξ

q, ξt(q)
)
Y
(
Bξ

p, ξt(p)
)
Cξ
t ξt(p)

k+jξt(q)
m+n−j ξ̄t(p)

k̄.

Likewise, in the second integral on the right hand side of (3.59) we can expand the same factor
ξp(q)

n = (−1)n
(
ξt(p)− ξt(q)

)n
of (3.58) in small ξt(q). Using also Proposition 3.9 yields

FA,B,C(q, p, t) =
∑

j≥0

(−1)n+j

(
n

j

)
Y
(
Bξ

p, ξt(p))
)
Y
(
Aξ

q, ξt(q)
)
Cξ
t ξt(q)

m+jξt(p)
n+k−j ξ̄t(p)

k̄.

Upon integrating the above expansions in ξ(q) along the contours cp, ct and c′t, respectively,
and using the deőnition of the vertex modes in (3.43) we obtain the three terms of the desired
identity as the coefficient of ξt(p)0ξ̄t(p)0. □

Remark 3.16. It is clear from the proof of Proposition 3.15 that ‘Borcherds type’ identities can
only be derived in the case when one of the two states involved is either chiral or anti-chiral.
If this is not the case then we cannot use Cauchy’s residue theorem as in (3.59) to relate the
three terms in the Borcherds identity (see [Mor2, Remark 1.9]). ◁

The following consequences of the ‘Borcherds type’ identities are equivalent to those in
[Mor2, Lemma 3.11], in the case of a chiral state A. We have also explicitly stated the version
for an anti-chiral state A for completeness.

Corollary 3.17. Let A,B,C ∈ F
a,α and k, k̄,m, m̄ ∈ Z. We have the identities in F

a,α:

(i) If A is chiral then

[
A(m), B(k,k̄)

]
C =

∑

j≥0

(
m

j

)(
A(j)B

)
(m+k−j,k̄)

C,

(
A(−1)B

)
(k,k̄)

C =
∑

j≥0

A(−j−1)B(k+j,k̄)C +
∑

j<0

B(k+j,k̄)A(−j−1)C.

(ii) If A is anti-chiral then

[
A(m̄), B(k,k̄)

]
C =

∑

j≥0

(
m̄

j

)(
A(j)B

)
(k,m̄+k̄−j)

C,

(
A(−1)B

)
(k,k̄)

C =
∑

j≥0

A(−j−1)B(k,k̄+j)C +
∑

j<0

B(k,k̄+j)A(−j−1)C.

Proof. The commutator formulae both follow from taking n = 0 in the Borcherds type identi-
ties of Proposition 3.15. The second relation in (i) (resp. (ii)) follows from Proposition 3.15(i)
(resp. (ii)) in the case n = −1 and m = 0 (resp. m̄ = 0). □

It is instructive to see that we recover the Lie algebra relations of the generators of â and
̂̄a from ğ3.1 as a special case of the commutation relations in Corollary 3.17. We consider the
three main examples from ğ2.1.2 separately.
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Kac-Moody: It follows from the action of the vertex modes of any X ∈ g in (3.30) and using
Proposition 3.3 that for any Y ∈ g, n ∈ Z≥0 and p ∈ Σ◦ we have

X
ξp
(n)Y(−1)|0⟩

ξ
p = [X,Y](−1)|0⟩

ξ
p δn,0 + κ(X,Y)|0⟩ξpδn,1, (3.60a)

X̄
ξp
(n)Ȳ(−1)|0⟩

ξ
p = [X,Y](−1)|0⟩

ξ
p δn,0 + κ(X,Y)|0⟩ξpδn,1 (3.60b)

in F
a,α
p for any local coordinate ξ in the neighbourhood of p. Then as a simple application of

Corollary 3.17, recalling also (3.50), we recover (3.4) with k and k̄ both set to 1.

Virasoro: Again, by deőnition of the vertex modes in (3.30) and using Proposition 3.3, for
any n ∈ Z≥0, p ∈ Σ◦ and working in any local coordinate ξ near p we have

Ω
ξp
(n)Ω(−1)|0⟩

ξ
p = Ω(−2)|0⟩

ξ
p δn,0 + 2Ω(−1)|0⟩

ξ
p δn,1 +

c
2 |0⟩

ξ
pδn,3, (3.61a)

Ω̄
ξp
(n)Ω̄(−1)|0⟩

ξ
p = Ω̄(−2)|0⟩

ξ
p δn,0 + 2Ω̄(−1)|0⟩

ξ
p δn,1 +

c
2 |0⟩

ξ
pδn,3. (3.61b)

As a consequence of Corollary 3.17 we then recover the Virasoro algebra in the form (3.5) with
k and k̄ both set to 1. To deal with the őrst term on the right hand sides of (3.61) we use the
fact that Ω(−2)|0⟩ = D(Ω(−1)|0⟩) and Ω̄(−2)|0⟩ = D̄(Ω̄(−1)|0⟩) by deőnition of the translation
operators in (3.28) and then apply Lemma 3.12 and the identities (3.50).

βγ system: For any n ∈ Z≥0 and any local coordinate ξ near p ∈ Σ◦ we őnd

β
ξp
(n)γ(−1)|0⟩

ξ
p = |0⟩

ξ
pδn,0, (3.62a)

β̄
ξp
(n)γ̄(−1)|0⟩

ξ
p = |0⟩

ξ
pδn,0. (3.62b)

We then immediately recover the inőnite-dimensional Weyl algebra relations (3.6), again with
k and k̄ both set to 1, by applying Corollary 3.17.

3.4 Conformal and anti-conformal states

In this subsection we introduce the conformal and anti-conformal states Ω, Ω̄ ∈ F
a,α, which

are respectively chiral and anti-chiral, and whose vertex nth-modes generate inőnitesimal local
coordinate transformations. An important use of the non-negative shifted vertex nth-modes of
the conformal and anti-conformal states, namely Ω(n+1) and Ω̄(n+1) for n ≥ 0, is in establishing
a generalisation of Huang’s change of variable formula to the present case of full vertex operator
algebras. This is the content of Corollary 3.20 below. As an application we also show how to
deőne an invariant bilinear form on F

a,α, in the sense of Proposition 3.23.

3.4.1 (Anti-)conformal states

We call a chiral state Ω ∈ V
a,α ⊂ F

a,α conformal if

Ω(n)Ω = DΩ δn,0 + 2Ω δn,1 +
c

2
|0⟩ δn,3 (3.63a)

for every n ≥ 0 and, moreover, for any A ∈ F
a,α of chiral conformal dimension ∆A we have

Ω(0)A = DA, Ω(1)A = ∆AA. (3.63b)

In particular, it follows that ∆Ω = 2.
Similarly, an anti-conformal state is an anti-chiral state Ω̄ ∈ V

a,α
⊂ F

a,α such that

Ω̄(n)Ω̄ = DΩ̄ δn,0 + 2Ω̄ δn,1 +
c

2
|0⟩ δn,3 (3.64a)
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for every n ≥ 0, and for any A ∈ F
a,α of anti-chiral conformal dimension ∆̄A we have

Ω̄(0)A = D̄A, Ω̄(1)A = ∆̄AA. (3.64b)

In particular, ∆̄Ω̄ = 2. Because Ω is chiral and Ω̄ is anti-chiral we also have that Ω(n)Ω̄ = 0
for all n ≥ 0. The parameter c ∈ R entering (3.64a) and (3.64b) is the central charge.

Since the (anti-)chiral conformal dimensions of the states Ω, Ω̄ ∈ F
a,α are different from 1,

it is convenient to work with their homogeneous vertex nth-modes introduced in ğ3.2.4 which
we will denote by

L(n) := Ω[n] = Ω(n+1), L̄(n) := Ω̄[n] = Ω̄(n+1) (3.65)

for every n ∈ Z. The notations L(n), L̄(n) ∈ EndFa,α are slightly misleading since L and L̄ do
not represent states in F

a,α: the states in question are Ω, Ω̄ ∈ F
a,α and (3.65) represent their

homogeneous vertex nth-modes. On the other hand, the more standard notation Ln, L̄n for
these endomorphisms will be reserved for the Fourier modes introduced in ğ4.1 below so we
will keep using the notation (3.65), hoping this will not cause any confusion. It will also be
useful to introduce the notation

L
ξp
(n)

:= Ω
ξp
[n] = Ω

ξp
(n+1), L̄

ξp
(n)

:= Ω̄
ξp
[n] = Ω̄

ξp
(n+1) (3.66)

for any local coordinate ξ : U → C in a neighbourhood of a point p ∈ U .
It follows form the őrst equations in (3.63b) and (3.64b) that L(−1) = D and L̄(−1) = D̄ act

as the translation operators (3.28), and from the second equations in (3.63b) and (3.64b) that
L(0) and L̄(0) measure the chiral and anti-chiral conformal dimensions of a state. It follows
also from Lemma 3.10 that for any given state A ∈ F

a,α there exists a NA ∈ Z≥0 such that
L(k)A = 0 and L̄(k)A = 0 for all k ≥ NA. Moreover, it follows from Lemma 3.11 that L(k) and
L̄(k) lower the conformal dimension when k ≥ 1 and hence both they act locally nilpotently
on F

a,α in the sense that for every A ∈ F
a,α there exists rA, r̄A ∈ Z≥1 such that

(
L(k)

)rAA = 0,
(
L̄(k)

)r̄AA = 0. (3.67)

As an application of Corollary 3.17 using (3.63a), (3.64a) and Lemma 3.12, we deduce that
L(n), L̄(n) ∈ EndFa,α generate a direct sum of two copies of the Virasoro algebra, i.e.

[L(m), L(n)] = (m− n)L(m+n) +
m3 −m

12
c δm+n,0,

[L̄(m), L̄(n)] = (m− n)L̄(m+n) +
m3 −m

12
c δm+n,0

and [L(m), L̄(n)] = 0 for any m,n ∈ Z. More importantly for what follows, when m,n ∈ Z≥−1

we have a direct sum of two copies of the simpler Witt algebra

[L(m), L(n)] = (m− n)L(m+n), [L̄(m), L̄(n)] = (m− n)L̄(m+n). (3.68)

The (anti-)conformal states in each of the three main examples from ğ2.1.2 are as follows.

Kac-Moody: For simplicity we assume here that the Lie algebra g is simple. The extension
to the reductive case is straightforward, decomposing the Lie algebra g =

⊕
i gi⊕ z as a direct

sum of its simple components gi and its centre z. The construction of (anti-)conformal states
in the more general case when g = Tnf := f[t]/tn+1f[t] is a Takiff algebra [Tak] for any reductive
Lie algebra f and any n ∈ Z≥0 can be treated similarly along the lines of [Que].

Let {Ia}
dim g
a=1 and {Ia}dim g

a=1 be dual bases of g with respect to a non-degenerate symmetric
invariant bilinear form κ0 : g⊗ g→ C. For any X ∈ g we then have κ0(X, Ib)Ib = X, where we
use summation convention for Lie algebra indices b = 1, . . . , dim g. Since every non-degenerate
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symmetric invariant bilinear form on the simple Lie algebra g is proportional to the Killing
form κg : g ⊗ g → C, we denote by κ

κ′ the relative coefficient of proportionality between any
two non-degenerate symmetric invariant bilinear forms κ, κ′ : g ⊗ g → C. The critical level
is deőned as κc := −1

2κg : g ⊗ g → C. We assume that the level κ : g ⊗ g → C entering the
deőnition of Fa,α is non-critical, i.e. κ ̸= κc. We then deőne the conformal and anti-conformal
states of Fa,α, respectively, as

Ω :=
κ0

2(κ− κc)
Ia(−1)I

a
(−1)|0⟩, Ω̄ :=

κ0
2(κ− κc)

Īa(−1)Ī
a
(−1)|0⟩. (3.69)

It is a standard fact that these satisfy the relations (3.63a) and (3.63b) with central charge
c := κ dim g/(κ− κc).

It is straightforward to check, for instance using the commutation relations from Corollary
3.17 in the case where A = X(−1)|0⟩ and B = Ω along with the deőning relations (3.4) in a,
that the homogeneous vertex nth-modes (3.65) satisfy

[
L(k),X(−n)

]
= nX(k−n),

[
L̄(k), X̄(−n)

]
= n X̄(k−n). (3.70)

for every k, n ∈ Z. It then immediately follows that (3.63b) and (3.64b) hold for any state
A ∈ F

a,α of deőnite (anti-)chiral conformal dimension.
Although the formulae (3.69) for the (anti-)conformal states of Fa,α take a different form in

the case when g is reductive, the resulting relations (3.70) remain true for arbirary reductive
g. We also expect (3.70) to hold more generally in the case of a Takiff algebra g = Tnf for any
reductive Lie algebra f and any n ∈ Z≥0.

Virasoro: We deőne the conformal and anti-conformal states of Fa,α as

Ω := Ω(−1)|0⟩, Ω̄ := Ω̄(−1)|0⟩. (3.71)

We are abusing notation slightly by using Ω to denote both the basis element of a = spanC{Ω}
and the above conformal state in F

a,α. Since these live in different spaces, it should be clear
from the context which we mean. This abuse of notation is also justiőed by the identity (3.50)
which implies that for any n ∈ Z we have Ω(n) =

(
Ω(−1)|0⟩

)
(n)

with Ω ∈ a, so that Ω(n) denotes
the same element of EndFa,α whether Ω ∈ a or Ω ∈ F

a,α.
It follows from the deőning relations (3.5) in a that (3.71) satisfy the relations (3.63a) and

(3.63b) for any central charge c. The relations (3.5), with the central elements k and k̄ set to
1 as in the deőnition of Fa,α from ğ3.1, can also be rewritten as

[
L(k),Ω(−n)

]
= (n+ k + 1)Ω(k−n) +

k3 − k

12
c δk−n,1, (3.72a)

[
L̄(k), Ω̄(−n)

]
= (n+ k + 1)Ω̄(k−n) +

k3 − k

12
c δk−n,1. (3.72b)

for every k, n ∈ Z. Since the terms proportional to c on the right hand sides vanish when
k = −1 or k = 0, it follows that (3.63b) and (3.64b) hold for any state A ∈ F

a,α of deőnite
(anti-)chiral conformal dimension.

βγ system: Here we deőne the conformal and anti-conformal states of Fa,α as

Ω = β(−1)γ(−2)|0⟩, Ω̄ = β̄(−1)γ̄(−2)|0⟩. (3.73)

It follows again from Corollary 3.17 and the deőning relations (3.6) in a, that the homogeneous
vertex nth-modes (3.65) satisfy

[
L(k), β(−n)

]
= nβ(k−n),

[
L(k), γ(−n)

]
= (n− k − 1)γ(k−n), (3.74a)

[
L̄(k), β̄(−n)

]
= nβ̄(k−n),

[
L̄(k), γ̄(−n)

]
= (n− k − 1)γ̄(k−n) (3.74b)
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for every k, n ∈ Z, and hence that (3.63b) and (3.64b) hold for any state A ∈ F
a,α of deőnite

(anti-)chiral conformal dimension.

3.4.2 Change of variable formula

Given two local coordinates ξ, η : U → C on an open subset U ⊂ Σ◦, we denote the change
of coordinate from η to ξ by ϱη→ξ : ξ ◦ η−1 : η(U) → ξ(U), or simply ϱ for short when the
coordinates η and ξ are clear from the context. Furthermore, given any point p ∈ U , we denote
the corresponding change of shifted local coordinate from ηp to ξp by ϱη→ξ

p : ηp(U) → ξp(U),
or simply by ϱp for short. Explicitly, we have

ξp = ϱp(ηp) = ϱ
(
ηp + η(p)

)
− ξ(p) = ϱ′

(
η(p)

)
(
ηp +

∑

n≥2

1

n!

ϱ(n)
(
η(p)

)

ϱ′
(
η(p)

) ηnp

)
(3.75a)

where we note that ϱ′
(
η(p)

)
̸= 0 because the coordinate transformation ϱp is invertible. Since

the set of local (holomorphic) coordinate transformations őxing the origin is generated by
holomorphic vector őelds vanishing at 0, i.e. ℓηpk := −ηk+1

p ∂ηp for k ≥ 0, following [Hua, ğ2.1],
see also [FB, ğ6.3.1], it is natural to rewrite the above power series in the form

ξp = exp

(
−
∑

k≥1

bkℓ
ηp
k

)
b
−ℓ

ηp
0

0 ηp. (3.75b)

By equating this power series term by term with the one in (3.75a) we őnd that the őrst few
coefficients are given explicitly by

b0 = ϱ′
(
η(p)

)
, b1 =

1

2
(Pϱ)

(
η(p)

)
, b2 =

1

3!
(Sϱ)

(
η(p)

)
,

b3 =
1

4!

(
(Sϱ)′

(
η(p)

)
− (Sϱ)

(
η(p)

)
(Pϱ)

(
η(p)

))
, . . . (3.75c)

where (Pf)(t) := f ′′(t)/f ′(t) is the pre-Schwarzian derivative of f at t, i.e. the logarithmic
derivative of f ′, and (Sf)(t) := (Pf)′(t)− 1

2(Pf)(t)
2 is the Schwarzian derivative of f at t.

Recall from ğ2.1.1 that in the shifted local (anti-)holomorphic coordinates ξp : U+ → C

and ξ̄p : U− → C around a point p ∈ U , see (3.8), we have the isomorphism of DG vector spaces
Ω0,•
c

(
π−1(U), L

)
∼= aξp ⊗ Ω0,•

c (U+) ⊕ aξ̄p ⊗ Ω0,•
c (U−). Letting LX denote the Lie derivative of

a vector őeld X on U , we obtain linear maps

L
ℓ
ξp
k

, L
ℓ̄
ξp
k

: LΣ
α(U) −→ LΣ

α(U) (3.76)

for k ≥ −1. These extend by the Leibniz rule to endomorphisms of ULΣ
α(U) and in turn by

taking limits over neighbourhoods U ∋ p to linear maps

L
ℓ
ξp
k

, L
ℓ̄
ξp
k

: Fa,α
p −→ Fa,α

p . (3.77)

The following proposition is a generalisation of Proposition 3.7, which concerned only the
translation operators L(−1) = D and L̄(−1) = D̄, to all operators L(k) and L̄(k) for k ≥ −1.

Proposition 3.18. For any A ∈ F
a,α and local coordinate ξ in the neighbourhood of p ∈ Σ◦,

we have the relations

(L(k)A)
ξ
p = L

ℓ
ξp
k

Aξ
p, (L̄(k)A)

ξ
p = L

ℓ̄
ξp
k

Aξ
p (3.78)

in F
a,α
p for every k ∈ Z≥−1.
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Proof. By linearity it is sufficient to consider a state A ∈ F
a,α of the form (3.3). And just as

in the proof of Proposition 3.9 we may focus on a chiral state A = ar(−mr)
. . . a1(−m1)

|0⟩ since
the treatment of the anti-chiral part is completely analogous. Since both sides of (3.78) are
deőned using the Leibniz rule it then suffices to show that

[
L
ξp
(k), a

i ξp
(−mi)

]
= L

ℓ
ξp
k

a
i ξp
(−mi)

= L
ℓ
ξp
k

[
s
(
aiξp ⊗

(
− ξ−mi

p ∂̄ρ
V −
+

V +
+

))]
Y
, (3.79)

where the second step is by deőnition of the vertex modes in (3.29). We now consider separately
the three main examples from ğ2.1.2.

Kac-Moody: Here ai = Xi ∈ g for all i = 1, . . . , r. And by (3.70) we have

[
L(k), a

i
(−mi)

]
=
[
L(k),X

i
(−mi)

]
= mi X

i
(k−mi)

(3.80)

for the left hand side of (3.79). As for the right hand side, by deőnition of the Lie derivative
we have L

ℓ
ξp
k

ξ−mi
p = ℓ

ξp
k (ξ−mi

p ) = miξ
k−mi
p so this reads

L
ℓ
ξp
k

X
i ξp
(−mi)

= mi

[
Xi ⊗

(
− ξk−mi

p ∂̄ρ
V −
+

V +
+

)]
Y
−
[
s
(
Xi ⊗

(
ξ−mi
p ∂̄

(
ℓ
ξp
k ρ

V −
+

V +
+

)))]
Y

= mi X
i ξp
(k−mi)

−
[
∂̄
(
s
(
Xi ⊗

(
ξ−mi
p ℓ

ξp
k ρ

V −
+

V +
+

)))]
Y
.

The őrst term on the right is exactly the vertex mode at p in the coordinate ξ associated with
the loop generator in â on the right hand side of (3.80). The second term on the right hand
side is the cohomology of a ∂̄-exact element of aξp ⊗ Ω0,1

c (Y+) which therefore vanishes.

Virasoro: Now ai = Ω for all i = 1, . . . , r and by (3.72), the left hand side of (3.79) reads

[
L(k), a

i
(−mi)

]
=
[
L(k),Ω(−mi)

]
= (mi + k + 1)Ω(k−mi) +

k3 − k

12
c δk−mi,1. (3.81)

For the right hand side of (3.79) we recall that Ωξp = −∂ξp on which the Lie derivative of ℓξpk
acts as −L

ℓ
ξp
k

∂ξp = −(k + 1)ξkp∂ξp . Using also L
ℓ
ξp
k

ξ−mi
p = miξ

k−mi
p as above we őnd

L
ℓ
ξp
k

Ω
ξp
(−mi)

= (mi + k + 1)
[
s
(
Ωξp ⊗

(
− ξk−mi

p ∂̄ρ
V −
+

V +
+

))]
Y
−
[
s
(
Ωξp ⊗

(
ξ−mi
p ∂̄

(
ℓ
ξp
k ρ

V −
+

V +
+

)))]
Y

+
k3 − k

24πi
c

∫

U

ξk−mi−2
p dξp ∧ ∂̄ρ

V −
+

V +
+
. (3.82)

To explain the origin of the last term, recall from ğ2.1.2 that in the Virasoro case the 2-cocycle
(2.10b) depends explicitly on the coordinate up to a 2-coboundary (2.11). And under a change
of coordinate η 7→ ξ this induces an isomorphism of unital local Lie algebras (2.12) given by a
shift along the central element. Here we are considering the Lie derivative action of the vector
őeld ℓξpk which corresponds to the inőnitesimal change of coordinate ξp 7→ ξ′p := ξp−ϵξ

k+1
p . But

for an inőnitesimal coordinate transformation η 7→ ξ = η+ ϵv(η), the Schwarzian derivative to
leading order in ϵ is (Sξ)(η) = ϵv′′′(η) which here takes the form −(k3−k)ξk−2

p . This explains
the last term on the right hand side of (3.82). Using Lemma 3.2 to evalute the integral we
obtain exactly the last term on the right hand side of (3.81). As in the Kac-Moody case, the
őrst term on the right hand side of (3.82) corresponds to that of (3.81) and the second term
on the right hand side of (3.81) vanishes.
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βγ system: Here we have either ai = β or ai = γ for each i = 1, . . . , r.
In the őrst case, since aiξp = βξp = 1 is constant, the computation works exactly as in the

Kac-Moody case and we őnd that (3.79) matches the őrst equation in (3.74).
In the second case, the left hand side of (3.79) reads

[
L(k), a

i
(−mi)

]
=
[
L(k), γ(−mi)

]
= (mi − k − 1)γ(k−mi) (3.83)

by virtue of the second equation in (3.74). Recalling from ğ2.1.2 that we have aiξp = dξp and

using the fact that L
ℓ
ξp
k

dξp = −(k + 1)ξkpdξp we deduce

L
ℓ
ξp
k

γ
ξp
(−mi)

= (mi − k − 1)
[
s
(
γξp ⊗

(
− ξk−mi

p ∂̄ρ
V −
+

V +
+

))]
Y
. (3.84)

This agrees exactly with vertex mode at p in the coordinate ξ of the loop generator in â on
the right hand side of (3.83). □

We deőne a linear map Rη→ξ
p : Fa,α → F

a,α by, cf. [FB, (6.3.3)],

Rη→ξ
p := exp

(
−
∑

k≥1

(
bkL(k) + b̄kL̄(k)

))
b
−L(0)

0 b̄
−L̄(0)

0 . (3.85)

This is well deőned since the last two factors act diagonally as b−∆A
0 b̄−∆̄A

0 on any monomial
state A as in (3.3), of chiral and anti-chiral conformal dimensions ∆A and ∆̄A respectively,
and the exponential is well deőned since L(k), L̄(k) : F

a,α → F
a,α are locally nilpotent for k ≥ 1.

It follows immediately from the deőnitions (3.65), (3.66) and from Lemma 3.10 that for
any state A ∈ F

a,α and any k ∈ Z we have

L
ξp
(k)A

ξ
p = (L(k)A)

ξ
p, L̄

ξp
(k)A

ξ
p = (L̄(k)A)

ξ
p. (3.86)

It is then also convenient to introduce the linear map R
η→ξ
p : Fa,α

p → F
a,α
p deőned by

Rη→ξ
p := exp

(
−
∑

k≥1

(
bkL

ηp
(k) + b̄kL̄

ηp
(k)

))
b
−L

ηp

(0)

0 b̄
−L̄

ηp

(0)

0 , (3.87)

with the property R
η→ξ
p Aη

p = (Rη→ξ
p A)ηp as a result of the identity (3.86). In particular, the

operator R
η→ξ
p : Fa,α

p → F
a,α
p naturally takes as input a state A ∈ F

a,α prepared at p in the
local coordinate η and returns another state Rη→ξ

p A ∈ F
a,α also prepared at p in the same

local coordinate η. This is to be contrasted with the linear map (·)η→ξ
p : Fa,α

p → F
a,α
p deőned

in (3.27) which given a state A ∈ F
a,α prepared at p in the local coordinate η returns the same

state A also prepared at p but now in the new coordinate ξ. These two maps, in fact, coincide.

Theorem 3.19. Let p ∈ U ⊂ Σ◦ be a point in a connected open subset equipped with two local
coordinates ξ, η : U → C. For any state A ∈ F

a,α we have Aξ
p = R

η→ξ
p Aη

p.

Proof. Consider the operator

ϱ̂η→ξ
p := exp

(
−
∑

k≥1

(
bkLℓ

ηp
k

+ b̄kLℓ̄
ηp
k

))
b
−L

ℓ
ηp
0

0 b̄
−L

ℓ̄
ηp
0

0 : Fa,α
p −→ Fa,α

p . (3.88)

Since the Lie derivatives along the vector őelds ℓηpk and ℓ̄ηpk generate local (anti-)holomorphic
coordinate transformations őxing the point p, it follows by deőnition of the coefficients bk and
b̄k in (3.75) that (3.88) implements the coordinate transformation ηp 7→ ξp in F

a,α
p . Therefore

Aξ
p = ϱ̂η→ξ

p Aη
p = (Rη→ξA)ηp = Rη→ξAη

p

where the second equality is by deőnition (3.85) and Proposition 3.18, while the last equality
is by deőnition (3.87). □
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The following gives an analogue of Huang’s łchange of variablež formula [Hua, p.176-177],
see also [FB, Lemma 6.5.6], in the present full vertex algebra setting.

Corollary 3.20. With the same setting as in Theorem 3.19, for any A,B ∈ F
a,α we have

Rη→ξ
p

((
Y
(
Aξ

q, ξp(q)
)
Bξ

p

)ξ→η

p

)
= Y

(
Rη→ξ
q Aη

q , ηp(q)
)
Rη→ξ
p Bη

p .

Remark 3.21. The slightly awkward use of the linear map (·)ξ→η
p : Fa,α

p → F
a,α
p on the left hand

side ensures that this is an equality between states prepared at p in the same local coordinate
η. Indeed, the left hand side above could also be written simply as Y

(
Aξ

q, ξp(q)
)
Bξ

p but then
the equality in Corollary 3.20 would be comparing a set of states prepared at p in the local
coordinate ξ with a set of states prepared at p in the local coordinate η. In other words, in
terms of the formal vertex operator Y (A, ζ)B introduced in (3.44) for any A,B ∈ F

a,α, the
identity in Corollary 3.20 takes the more recognisable form

Rη→ξ
p

(
Y
(
A, ξp(q)

)
B
)
= Y

(
Rη→ξ

q A, ηp(q)
)
Rη→ξ

p B. ◁

Proof of Corollary 3.20. By Theorem 3.19 and the deőnition of the linear map (·)ξ→η
p , for any

state C ∈ F
a,α we have Cξ

p = R
η→ξ
p

(
(Cξ

p)
ξ→η
p

)
. In particular, it follows that

Y
(
Aξ

q, ξp(q)
)
Bξ

p = Rη→ξ
p

((
Y
(
Aξ

q, ξp(q)
)
Bξ

p

)ξ→η

p

)
.

On the other hand, we have

Y
(
Aξ

q, ξp(q)
)
Bξ

p = m(Y,p),U

(
mq,Y (A

ξ
q)⊗B

ξ
p

)
= m(Y,p),U

(
mq,Y

((
Rη→ξ

q A
)η
q

)
⊗
(
Rη→ξ

p B
)η
p

)

= Y

((
Rη→ξ

q A
)η
q
, ηp(q)

)(
Rη→ξ

p B
)η
p
= Y

(
Rη→ξ
q Aη

q , ηp(q)
)
Rη→ξ
p Bη

p ,

where in the őrst and third equalities we used Proposition 3.9 and the second equality is by
Theorem 3.19 again. □

3.5 Invariant bilinear form

From now on we will specialise to the case of the 2-sphere

Σ = S2. (3.89)

Since Σ is orientable, in this case the double is a disjoint union Σ̂ = Σ+⊔Σ− of two copies of Σ
equipped with opposite orientations. As a simple application of Theorem 3.19, in ğ3.5.2 below
we will construct a canonical invariant bilinear form on the vector space F

a,α. In particular,
this will be used in ğ3.5.3 to show that Fa,α satisőes the axioms of a full vertex algebra [Mor2].
To deőne this invariant bilinear form, we őrst need to a notion of vacuum state.

3.5.1 Vacuum state

Recall from ğ2.3 that Σ ∈ Top(Σ). However, Σ = S2 cannot be covered by a single coordinate
patch, so Theorem 2.5 does not apply to the open subset U = Σ and in particular ULΣ

α(Σ) is
not given by the isomorphism in (3.20). Instead we have the following result which depends
on the choice of holomorphic vector bundle L among the three examples in ğ2.1.2.

Lemma 3.22. In the Kac-Moody and Virasoro cases we have an isomorphism

⟨·⟩ : ULΣ
α(Σ)

∼=
−→ C (3.90)

such that
〈
[1]Σ

〉
= 1. In the βγ system case we have instead ULΣ

α(Σ)
∼= 0.

Proof. We consider the three cases separately.
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Kac-Moody: We have H0
(
LΣ
α(Σ)

)
= g⊕ g and H1

(
LΣ
α(Σ)

)
= C since

H0
(
g⊗ Ω0,•(Σ̂)

)
= g⊕ g, H1

(
g⊗ Ω0,•(Σ̂)

)
= 0.

Consider the unital DG Lie algebra g⊕g⊕C1 with 1 of degree 1 and equipped with the trivial
Lie bracket. We then have a quasi-isomorphism of unital DG Lie algebras

ϕ : g⊕ g⊕ C1
≃
−→ LΣ

α(Σ)

sending (X,Y) ∈ g⊕ g to the constant function in g⊗Ω0,0(Σ̂) = g⊗Ω0,0(Σ+)⊕ g⊗Ω0,0(Σ−)
equal to X on Σ+ and Y on Σ−, and 1 to 1 ∈ LΣ

α(Σ). Since the functor CE• introduced in
ğA.1 preserved quasi-isomorphisms by Proposition A.2 we obtain a quasi-isomorphism

CE•(ϕ) : Sym
(
(g⊕ g)[1]

) ≃
−→ CE•

(
LΣ
α(Σ)

)

where the differential dCE on the domain is trivial. Taking the 0th-cohomology then yields an
isomorphism C

∼=−→ ULΣ
α(Σ) which sends 1 ∈ C to [1]Σ ∈ ULΣ

α(Σ) and whose inverse then gives
the required isomorphism (3.90).

Virasoro: We have H0
(
LΣ
α(Σ)

)
= C

6 and H1
(
LΣ
α(Σ)

)
= C since

H0
(
Ω0,•(Σ̂, T 1,0Σ̂)

)
= C

6, H1
(
Ω0,•(Σ̂, T 1,0Σ̂)

)
= 0

where the 0th cohomology is given by global (anti-)holomorphic vector őelds on CP 1. Consider
therefore the unital DG Lie algebra C

6⊕C1, with 1 of degree 1, again equipped with the trivial
Lie bracket. We then have a quasi-isomorphism of unital DG Lie algebras

ϕ : C6 ⊕ C1
≃
−→ LΣ

α(Σ)

which sends (a, b, c, a′, b′, c′) ∈ C
6 to the pair of global (anti-)holomorphic vector őelds given

by ∂ξ⊗ (aξ2+bξ+c) ∈ aξ⊗Ω0,0(Σ+) and ∂ξ̄⊗ (a′ξ̄2+b′ξ̄+c′) ∈ aξ̄⊗Ω0,0(Σ−) in any choice of
holomorphic coordinate ξ : C = CP 1 \ {∞} → C, and 1 to 1 ∈ LΣ

α(Σ). Applying the functor
CE• we obtain a quasi-isomorphism

CE•(ϕ) : Sym
(
C
6[1]
) ≃
−→ CE•

(
LΣ
α(Σ)

)

where the differential dCE on the domain is again trivial so that taking the 0th cohomology we
again obtain the inverse of the required isomorphism (3.90).

βγ system: We have H0
(
LΣ
α(Σ)

)
= C

2 and H1
(
LΣ
α(Σ)

)
= C

3 coming from the fact that

H0
(
Ω0,•(Σ̂, L)

)
= C

2, H1
(
Ω0,•(Σ̂, L)

)
= C

2.

We then form the unital DG Lie algebra a ⊕ ā ⊕ C1 with a = spanC{β, γ} and where we set
ā := spanC{β̄, γ̄}. Here β and β̄ of degree 0 and γ, γ̄ and 1 all of degree 1. The Lie bracket is
given by [β, γ] = 1 = [β̄, γ̄] and [β, γ̄] = 0 = [β̄, γ]. We have a quasi-isomorphism of unital DG

Lie algebras
ϕ : a⊕ ā⊕ C1

≃
−→ LΣ

α(Σ)

which sends β and β̄ to the pair of constant functions 1 ∈ Ω0,0(Σ+) and 1 ∈ Ω0,0(Σ−), and
sends γ and γ̄ to the pair of (1, 1)-forms dξ ∧ ξ−1∂̄χ ∈ Ω1,1(Σ+) and dξ̄ ∧ ξ̄−1∂̄χ′ ∈ Ω1,1(Σ−)
where χ ∈ Ω0,0(Σ+) is constant equal to 1 in a neighbourhood of ξ = 0 and constant equal to
0 in a neighbourhood of ξ =∞, and likewise for χ′ ∈ Ω0,0(Σ−) in the holomorphic coordinate
ξ̄ on Σ−. Applying the functor CE• we obtain a quasi-isomorphism

CE•(ϕ) : Sym
(
(a⊕ ā)[1]

) ≃
−→ CE•

(
LΣ
α(Σ)

)
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where the differential on the domain is dCE = d[·,·]. A degree 0 element in the domain is a
linear combination of elements of the form (sγ)n(sγ̄)n̄ with n, n̄ ∈ Z≥0. But the latter is always
dCE-exact since we can write it, for instance, as −dCE

(
1

n+1(sβ)(sγ)
n+1(sγ̄)n̄

)
using the fact

that −dCE

(
(sβ)(sγ)

)
= s[β, γ] = s1 = 1 where the last step is from working in the quotient

in the deőnition of the functor CE• in (A.3). The result for the βγ system now follows from
taking the 0th cohomology of the above quasi-isomorphism. □

A linear map ULΣ
α(Σ) → C, as in (3.90) but not necessarily an isomorphism, deőnes the

notion of a state for the prefactorisation algebra ULΣ
α in the sense of [CG1, Deőnition 4.9.1].

We will use this below to deőne an invariant bilinear form on F
a,α.

Note that while Lemma 3.22 provides us with a state in both the Kac-Moody and Virasoro
cases, it fails to provide a suitable notion of state for the βγ system. It is clear form the
proof of Lemma 3.22 that the culprit for the vanishing of ULΣ

α(Σ) are the global holomorphic
sections of Ω0,0(Σ±) and Ω1,1(Σ±) which pair non-trivially to 1 under the differential dCE.
Removing these zero modes can be achieved by adding a mass term which will have the
effect of modifying the global observables of the factorisation algebra ULΣ

α over Σ = S2 while
preserving the observables over small open sets [Gwi, ğ6.1.2], see also [CG1, Lemma 2.5.1]. We
will not pursue this idea further here and from now on, when discussing the invariant bilinear
form on F

a,α, we will therefore only focus on the Kac-Moody and Virasoro cases.

3.5.2 Invariant bilinear form on F
a,α

Let us őx antipodal points o, o′ on Σ and a coordinate u : Σ \ {o′} → C with u(o) = 0. We
also let u−1 : Σ \ {o} → C be its inverse deőned by u−1(p) := u(p)−1 so that, in particular,
u−1(o′) = 0. Consider the linear map (3.55) in the case n = 2 and U = Σ, associated with the
points o, o′ ∈ Σ and with the local coordinates u and u−1 near these points, respectively. We
obtain a linear map

(·, ·) : Fa,α ⊗ F
a,α −→ C,

(B,C) :=
〈
m(o′,o),Σ

(
Bu−1

o′ ⊗ C
u
o

)〉
.

V
Σ

V ′o′

o

(3.91)

Speciőcally, the state B ∈ F
a,α is prepared at o′ ∈ V ′ in the local chart (V ′, u−1) while the

state C ∈ F
a,α is prepared at o ∈ V in the local chart (V, u) with V ∩ V ′ = ∅. We then apply

the factorisation product m(V ′,V ),Σ : ULΣ
α(V

′)⊗ULΣ
α(V )→ ULΣ

α(Σ) to the element Bu−1

V ′ ⊗Cu
V

followed by the isomorphism ⟨·⟩ from Lemma 3.22 to obtain a complex number.

Proposition 3.23. In the Kac-Moody and Virasoro cases, the bilinear form (3.91) is invariant
in the sense that

(
B, Y (A, ζ)C

)
=
(
Y
(
eζL(1)+ζ̄L̄(1)(−1)L(0)+L̄(0)ζ−2L(0) ζ̄−2L̄(0)A, ζ−1

)
B,C

)

for any states A,B,C ∈ F
a,α.

Remark 3.24. This identity coincides exactly with [Mor1, ğ3.1] or [AMT, eq. (4)], except for
the fact that the operator (−1)L(0)+L̄(0) here is replaced by (−1)L(0)−L̄(0) there. However, since
for us L̄(0) acts as an integer it follows that these two operators coincide in our case. ◁

Remark 3.25. In the βγ system case the identity is vacuous as both sides vanish identically. ◁

Proof of Proposition 3.23. The change of coordinate u−1 → u on U = Σ \ {o, o′} is given
simply by ϱ(t) = t−1. Letting p ∈ U and denoting its coordinate by w := u(p) ∈ C

× we őnd
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that b0 = −w2 and b1 = −w while bn = 0 for all n ≥ 2. In particular, using Theorem 3.19 and
deőnition (3.85), for any state A ∈ F

a,α we have

Au
p = exp

(
wL

u−1
p

(1) + w̄ L̄
u−1
p

(1)

)(
− w2

)−L
u−1
p

(0)
(
− w̄2

)−L̄
u−1
p

(0) Au−1

p = Ãu−1

p , (3.92)

where in the last step we have used (3.86) and introduced the state

Ã := exp
(
wL(1) + w̄L̄(1)

)
(−1)L(0)+L̄(0)w−2L(0)w̄−2L̄(0)A ∈ F

a,α.

Consider now the linear map (3.55) for n = 3 distinct points o, o′, p ∈ Σ with U = Σ. At
the points o and o′ we still use the local coordinates u and u−1, respectively, and at the point
p we will also use u. The linear map (3.55) for U = Σ combined with the isomorphism from
Lemma 3.22 then gives

F
a,α ⊗ F

a,α ⊗ F
a,α −→ C, (B,A,C) 7−→

〈
m(o′,p,o),Σ

(
Bu−1

o′ ⊗A
u
p ⊗ C

u
o

)〉
.

Using the associativity (2.17) of the factorisation product, we can compute the factorisation
product on the right hand side by őrst computing the factorisation product

m(p,o),V (A
u
p ⊗ C

u
o ) = Y

(
Au

p , uo(p)
)
Cu
o =

(
Y (A,w)C

)u
V

for some open V ⊂ Σ \ {o′} containing p and o, where we have used the fact that u(o) = 0
so that uo(p) = w, followed by the factorisation product m(o′,V ),Σ

(
Bu−1

o′ ⊗m(p,o),V (A
u
p ⊗C

u
o )
)
.

By deőnition (3.91) of the bilinear form on F
a,α, the result of this computation can be written

simply as
(
B, Y (A,w)C

)
. On the other hand, we can compute the same factorisation product

by őrst using (3.92) to rewrite the state A prepared at p in the coordinate u in terms of states
prepared in the coordinate u−1. This allows us to őrst compute the factorisation product

m(o′,p),V ′(Bu−1

o′ ⊗A
u
p) = Y

(
Ãu−1

p , u−1
o′ (p)

)
Bu−1

o′ =
(
Y
(
Ã, w−1

)
B
)u−1

V ′

for some choice of open subset V ′ ⊂ Σ \ {o} containing the points p and o′, where we have
used the fact that u−1(o′) = 0 and u−1(p) = w−1. By subsequently performing the remaining
factorisation product with Cu

o , namely m(V ′,o),Σ

(
m(o′,p),V ′(Bu−1

o′ ⊗ A
u
p)⊗ C

u
o

)
, and comparing

the result with the other computation described above we deduce the claim. □

3.5.3 Full vertex algebra axioms

As recalled in ğ1.1.1, there are a number of mathematical formulations of the notion of full,
or non-chiral, vertex operator algebras capable of describing both chiral and anti-chiral states
in a full conformal őeld theory. Since the emphasis in each formulation is slightly different
they also go by distinct names: OPE-algebras in [KO, Ros], full őeld algebras in [HuKo, Kon],
full vertex algebras in [Mor1, Mor2] and non-chiral vertex operator algebras in [SS]. We now
show that our geometric realisation (3.12) of the vector space F

a,α using the prefactorisation
algebra ULΣ

α naturally endows it with the structure of a full vertex algebra in the sense of
[Mor1, Mor2], justifying the use of the name ‘full vertex algebra’ for the vector space F

a,α
p .

Recall from [Mor1, Mor2], see also [Mor3], that a full vertex algebra is an R
2-graded vector

space F =
⊕

h,h̄∈R2 Fh,h̄ over C equipped with a linear map

Y (−, z) : F −→ End(F )[[z±1, z̄±1, |z|R]], A 7−→ Y (A, z) =
∑

r,s∈R
r−s∈Z

A(r,s)z
−r−1z̄−s−1,

where the space End(F )[[z±1, z̄±1, |z|R]] consists of formal sums as above with A(r,s) ∈ End(F ),
and a non-zero element |0⟩ ∈ F0,0 satisfying the following axioms:

52



FV1) For any A,B ∈ F ,

(a) There exists N ∈ R such that A(r,s)B = 0 for any r ≥ N or s ≥ N , and

(b) For any H ∈ R, the set
{
(r, s) ∈ R

2 |A(r,s)B ̸= 0 and r + s ≥ H
}

is őnite,

FV2) For any h, h̄ ∈ R, Fh,h̄ ̸= 0 implies h− h̄ ∈ Z,

FV3) For any A ∈ F , Y (A, z)|0⟩ ∈ F [[z, z̄]] and limz→0 Y (A, z)|0⟩ = A(−1,−1)|0⟩ = A,

FV4) Y (|0⟩, z) = idF ∈ End(F ),

FV5) For any A,B,C ∈ F and u ∈ F∨ :=
⊕

h,h̄∈R F
∗
h,h̄

with F ∗
h,h̄

the dual of Fh,h̄, the formal
power series

u
(
Y (A, z1)Y (B, z2)C

)
, u

(
Y (B, z2)Y (A, z1)C

)
, u

(
Y
(
Y (A, z1 − z2)B, z2

)
C
)

are the expansions of the same single-valued real analytic function on

Y2 := {(z1, z2) ∈ C
2 | z1 ̸= 0, z2 ̸= 0, z1 ̸= z2}

in the respective regions {(z1, z2) ∈ Y2 | |z1| > |z2|}, {(z1, z2) ∈ Y2 | |z2| > |z1|} and
{(z1, z2) ∈ Y2 | |z2| > |z1 − z2|} of Y2,

FV6) For any h, h′, h̄, h̄′, r, s ∈ R, (Fh,h̄)(r,s)Fh′,h̄′ ⊂ Fh+h′−r−1,h̄+h̄′−s−1.

Recall the formal vertex operator Y (−, ζ) deőned in (3.44) using the geometric realisation
(3.12) of the vector space F

a,α in terms of the prefactorisation algebra ULΣ
α .

Theorem 3.26. In the Kac-Moody and Virasoro cases, the tuple
(
F
a,α, Y (−, ζ), |0⟩

)
is a full

vertex algebra.

Remark 3.27. In the βγ system case our proof of axiom (FV5) does not apply since we make
explicit use of the isomorphism (3.90) from Lemma 3.22. ◁

Proof. Recall from ğ3.2.2 that in all cases we consider there is a natural Z2-grading on the
vector space F

a,α such that A ∈ (Fa,α)h,h̄ if A ∈ F
a,α is a homogeneous state with chiral and

anti-chiral conformal dimensions ∆A = h and ∆̄A = h̄. Axiom (FV2) is then immediate.
Part (a) of axiom (FV1) follows from the ‘Moreover’ part of Lemma 3.10 and part (b) then

also follows since in our case we have A(n,n̄)B = 0 unless (n, n̄) ∈ Z
2.

Axioms (FV3) and (FV4) follow from the second and őrst statements in Lemma 3.13.
To see axiom (FV5), let p, q ∈ Σ \ {o′, o} be distinct points. Let u1 := u(q) and u2 := u(p).

Let W,A,B,C ∈ F
a,α and consider the expression

µ(u1, u2) :=
〈
Φ
4,(u−1,u,u,u)
U

(
(o′, q, p, o), (W,A,B,C)

)〉
∈ C

deőned by using the map (3.57) for n = 4 and the tuple of coordinates ξ = (u−1, u, u, u), and
also the isomorphism (3.90) from Lemma 3.22. By Proposition 3.9 and the deőnition of the
bilinear form in (3.91), this has the three expansions

(
W,Y (A, u1)Y (B, u2)C

)
,

(
W,Y (B, u2)Y (A, u1)C

)
,

(
W,Y

(
Y (A, u1 − u2)B, u2

)
C
)

in the respective regions of Conf3(U) determined by |u1| > |u2|, |u2| > |u1| and |u2| > |u1−u2|.
Finally, Lemma 3.11 implies that for any homogeneous states A,B ∈ F

a,α and any n, n̄ ∈ Z,
the state A(n,n̄)B ∈ F

a,α is homogeneous with chiral conformal dimension ∆A + ∆B − n − 1
and anti-chiral conformal dimension ∆̄A + ∆̄B − n̄− 1, from which axiom (FV6) follows. □
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3.6 Reality conditions

In this subsection we construct an anti-linear involution on F
a,α and describe its action on the

vertex operator products. We then combine it with the invariant bilinear form (3.91) to deőne
a Hermitian sesquilinear form ⟨·, ·⟩ on F

a,α.
We let τ : Σ̂ → Σ̂ be an orientation reversing involution of Σ̂ with respect to which the

coordinate u used at the end of ğ3.4 has the property that

u ◦ τ = u−1. (3.93)

A concrete example will be described at the start of ğ4 below, where τ will correspond to the
Lorentzian involution τL : Σ̂→ Σ̂ from ğ1.

3.6.1 Anti-linear involution on F
a,α

Recall from ğ2.4 that we have an anti-linear involution τ : a
∼=−→ a. We extend it to an anti-

linear involution of the untwisted Kac-Moody algebras â and ̂̄a deőned in ğ3.1 by letting it act
by complex conjugation on the coefficients of the Laurent polynomials in the second tensor
factor, i.e. x tn 7→ x̄ tn and x t̄n 7→ x̄ t̄n for any x ∈ C and n ∈ Z>0, where x̄ denotes the
complex conjugate of x, and őxing the central extensions k 7→ k and k̄ 7→ k̄. In turn, this
induces an anti-linear involution τ̂ : Fa,α ∼=−→ F

a,α on the full affine vertex algebra deőned by
the Leibniz rule, namely it is given on a monomial state A ∈ F

a,α as in (3.3) by

τ̂A := (τar)(−mr) . . . (τa
1)(−m1)(τb

r̄)(−nr̄)
. . . (τb1)(−n1)

|0⟩ (3.94)

and extended by anti-linearity to all of Fa,α.
Recall also the anti-linear isomorphism of prefactorisation algebras τ̂ : ULΣ

α
∼=−→ τ∗ULΣ

α

from Proposition 2.6. It induces an anti-linear isomorphism τ̂ : (ULΣ
α)p

∼=−→ (τ∗ULΣ
α)p, i.e. a

natural isomorphism of diagrams Top(Σ)p → VecC of shape the category Top(Σ)p deőned in
ğ3.1, whose components are all anti-linear maps. By the universal property of limits we obtain
a unique anti-linear isomorphism

τ̂ : lim(ULΣ
α)p

∼=
−→ lim(τ∗ULΣ

α)p (3.95)

such that for every neighbourhood U ∈ Top(Σ)p of p ∈ Σ we have the commutative diagram

lim(ULΣ
α)p ULΣ

α(U)

lim(τ∗ULΣ
α)p ULΣ

α

(
τ(U)

)

mp,U

τ̂ τ̂

mτ(p),τ(U)

(3.96)

We denote by mτ(p),τ(U) the canonical linear map lim(τ∗ULΣ
α)p → ULΣ

α(τ(U)) in the bottom
of this diagram since, for any inclusion of open subsets U ⊂ V ⊂ Σ, the factorisation product
ULΣ

α(τ(U)) → ULΣ
α(τ(V )) of the prefactorisation algebra τ∗ULΣ

α is given by mτ(U),τ(V ) in
terms of the factorisation products of the prefactorisation algebra ULΣ

α , in other words

m
τ∗ULΣ

α

U,V = m
ULΣ

α

τ(U),τ(V ).

Since τ : Σ± → Σ± is an anti-holomorphic map, given any local holomorphic coordinate
ξ : U → C on an open subset U ⊂ Σ, the coordinate τ̂ ξ = ξ ◦ τ : τ(U)→ C is also holomorphic.

Lemma 3.28. For any A ∈ F
a,α and a local coordinate ξ in a neighbourood of p ∈ Σ we have

τ̂
(
Aξ

p

)
= (τ̂A)τ̂ ξ

τ(p). In particular, (3.95) induces an anti-linear isomorphism τ̂ : Fa,α
p

∼=−→ F
a,α
τ(p).
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Proof. By linearity we can assume that A ∈ F
a,α is a monomial state and we will only consider

the chiral case A = ar(−mr)
. . . a1(−m1)

|0⟩ for some ai ∈ a and mi ∈ Z≥1 with i ∈ {1, . . . , r}
and r ∈ Z≥0, since the treatment of the anti-chiral part is completely analogous. For any
neighbourhood U of the point p equipped with the local coordinate ξ : U → C we then have

mτ(p),τ(U)

(
τ̂
(
Aξ

p

))
= τ̂(Aξ

U ) =

[
r∏

i=1

s
(
τ
(
aiξp

)
⊗ τ̂
(
⌈ξ−mi

p ⌉
Ui−1

Ui

))]

τ(U)

=

[
r∏

i=1

s
(
(τa)i(τ̂ ξ)τ(p) ⊗

⌈
(τ̂ ξ)−mi

τ(p)

⌉τ(Ui−1)

τ(Ui)

)]

τ(U)

= (τ̂A)τ̂ ξ
τ(U) = mτ(p),τ(U)

(
(τ̂A)τ̂ ξ

τ(p)

)

where in the őrst step we have used the commutativity of the diagram (3.96). The second
step is by deőnition of the anti-linear isomorphism τ̂ : ULΣ

α
∼=−→ τ∗ULΣ

α in Proposition 2.6. In
the third step we have used the fact that τ̂ : Ω0,•

c
∼=−→ τ∗Ω0,•

c is an anti-linear isomorphism of
cosheaves of commutative DG algebras, which in particular commutes with ∂̄, and

τ̂(ξ−mi
p ) =

(
τ̂ ξ − (τ̂ ξ)(τ(p))

)−mi =
(
(τ̂ ξ)τ(p)

)−mi .

We have also used the fact that τ̂
(
ρ
Ui−1

Ui

)
∈ Ω0,0

c (τ(Ui))
1
τ(Ui−1)

. In the second last step we have

used the deőnition of τ̂ : Fa,α ∼=−→ F
a,α in (3.94). □

Proposition 3.29. For any A,B ∈ F
a,α and n, n̄ ∈ Z, we have

τ̂
(
A(n,n̄)B

)
= (τ̂A)(n,n̄)τ̂B.

In other words, τ̂ : Fa,α ∼=−→ F
a,α is an anti-linear automorphism of the full vertex algebra F

a,α.

Proof. Let p, q ∈ U be two points in an open subset U ⊂ Σ equipped with a local coordinate
ξ : U → C. Using Proposition 3.9 and the deőnition (3.43) of the vertex modes, we have

τ̂
(
m(q,p),U (A

ξ
q ⊗B

ξ
p)
)
= τ̂

(
Y
(
Aξ

q, ξp(q)
)
Bξ

p

)
= τ̂

( ∑

n,n̄∈Z

A
ξp
(n,n̄)B

ξ
p ξp(q)

−n−1ξ̄p(q)
−n̄−1

)

=
∑

n,n̄∈Z

τ̂
(
A

ξp
(n,n̄)B

ξ
p

)
(τ̂ ξ)τ(p)(τ(q))

−n−1(τ̂ ξ)τ(p)(τ(q))
−n̄−1

=
∑

n,n̄∈Z

τ̂
((
A(n,n̄)B

)ξ
p

)
(τ̂ ξ)τ(p)(τ(q))

−n−1(τ̂ ξ)τ(p)(τ(q))
−n̄−1

=
∑

n,n̄∈Z

(
τ̂
(
A(n,n̄)B

))τ̂ ξ
τ(p)

(τ̂ ξ)τ(p)(τ(q))
−n−1(τ̂ ξ)τ(p)(τ(q))

−n̄−1

where in the third step we used ξp(q) = ξ(q)− ξ(p) = (τ̂ ξ)(τ(q))− (τ̂ ξ)(τ(p)) = (τ̂ ξ)τ(p)(τ(q)),
in the fourth step we used Lemma 3.10 and in the last step we used Lemma 3.28. On the
other hand, we can also compute this as follows

τ̂
(
m(q,p),U (A

ξ
q ⊗B

ξ
p)
)
= m(τ(q),τ(p)),τ(U)

(
(τ̂A)τ̂ ξ

τ(q) ⊗ (τ̂B)τ̂ ξ
τ(p)

)

= Y

(
(τ̂A)τ̂ ξ

τ(q), (τ̂ ξ)τ(p)(τ(q))
)
(τ̂B)τ̂ ξ

τ(p)

=
∑

n,n̄∈Z

(τ̂A)
(τ̂ ξ)τ(p)
(n,n̄) (τ̂B)τ̂ ξ

τ(p) (τ̂ ξ)τ(p)(τ(q))
−n−1(τ̂ ξ)τ(p)(τ(q))

−n̄−1

=
∑

n,n̄∈Z

(
(τ̂A)(n,n̄)τ̂B

)τ̂ ξ
τ(p)

(τ̂ ξ)τ(p)(τ(q))
−n−1(τ̂ ξ)τ(p)(τ(q))

−n̄−1

where in the őrst step we used Proposition 2.6 and Lemma 3.28, in the second step Proposition
3.9, in the third step the deőnition (3.43) and in the őnal step we used Lemma 3.10. □
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3.6.2 Hermitian sesquilinear form on F
a,α

Using the bilinear map (3.91) and the anti-linear involution τ̂ : Fa,α ∼=−→ F
a,α we introduce the

sesquilinear form

⟨·, ·⟩ :=
(
τ̂(·), ·

)
: Fa,α ⊗ F

a,α −→ C, ⟨B,C⟩ :=
〈
m(o′,o),Σ

(
(τ̂B)u

−1

o′ ⊗ C
u
o

)〉
(3.97)

which is anti-linear in the őrst argument and linear in the second. The vertex algebra F
a,α

equipped with the anti-linear involution τ̂ : Fa,α ∼=−→ F
a,α is said to be unitary if the sesquilinear

form (3.97) is positive deőnite [Mor1, AMT].

Lemma 3.30. The isomorphism ⟨·⟩ : ULΣ
α(Σ)

∼=−→ C from Lemma 3.22, in the Kac-Moody and
Virasoro cases, is such that for any A ∈ ULΣ

α(Σ) we have ⟨A⟩ = ⟨τ̂A⟩.

Proof. Recall that the isomorphism from Lemma 3.22 is the inverse of C
∼=−→ ULΣ

α(Σ), a 7→ [a]Σ
which is clearly Z2-equivariant, with the action of t ∈ Z2 given by complex conjugation on C

and by the anti-linear isomorphism τ̂ : ULΣ
α(Σ)

∼=−→ ULΣ
α(Σ) from Proposition 2.6. □

Proposition 3.31. The sesquilinear form (3.97) is Hermitian, in the Kac-Moody and Virasoro
cases.

Proof. Let B,C ∈ F
a,α. Using Lemma 3.28 with p = o and ξ = u, recalling that τ(o) = o′ and

τ̂u = u−1 by (3.93), we can rewrite (3.97) as ⟨B,C⟩ =
〈
m(o′,o),Σ

(
τ̂(Bu

o )⊗ C
u
o

)〉
. Then

⟨B,C⟩ =
〈
τ̂
(
m(o′,o),Σ

(
τ̂(Bu

o )⊗ C
u
o

))〉
=
〈
m(o,o′),Σ

(
Bu

o ⊗ τ̂(C
u
o )
)〉

= ⟨C,B⟩

where the őrst step is by deőnition (3.97) and Lemma 3.30, the second step is by Proposition
2.6 and the last step is again by deőnition (3.97). □

In the remainder of this section we focus only on the Kac-Moody case since the statement
of Proposition (3.32) relates to a similar formula, in the chiral setting, for a Hermitian form
on a Kac-Moody algebra module, see for instance [Kac1, ğ9.4] or [Kac1, (11.5.1)].

Recall from ğ3.1 that any state A ∈ F
a,α can be written as A = g|0⟩ for a unique element

g ∈ U(â− ⊕ ̂̄a−). The negative of the anti-linear involution τ : g
∼=−→ g deőnes an anti-linear

anti-involution −τ : g
∼=−→ g. We extend this to an anti-linear anti-involution (·)† : â⊕̂̄a ∼=−→ â⊕̂̄a

of â ⊕ ̂̄a deőned by (cf. [Kac1, ğğ2.7, 7.6] and [DL, ğ4.2] in the chiral case, where ω0 denotes
the compact anti-linear involution)

(
X(−m) + Ȳ(−n) + a k+ b k̄

)†
:= (−τX)(m) + (−τY)(n) + ā k+ b̄ k̄ (3.98)

for any X,Y ∈ g, m,n ∈ Z and a, b ∈ C. We then extend this to an anti-linear anti-involution
of U(â− ⊕ ̂̄a−) by letting (gg′)† = g′†g† for any g, g′ ∈ U(â− ⊕ ̂̄a−), cf. [Kac1, ğ11.5].

Proposition 3.32. For any g, g′ ∈ U(â⊕ ̂̄a) we have
〈
g|0⟩, g′|0⟩

〉
=
〈
mo,Σ

(
g†g′|0⟩uo

)〉
.

Proof. By anti-linearity in g ∈ U(â⊕ ̂̄a), it is enough to consider monomial g. Let A = g|0⟩ ∈
F
a,α be the monomial state in (3.3) so that g = Xr

(−mr)
. . .X1

(−m1)
Ȳr
(−nr̄)

. . . Ȳ1
(−n1)

∈ U(â⊕ ̂̄a),
and let C = g′|0⟩ ∈ F

a,α be aribtrary.
Now by deőnition of (3.97) we have

〈
g|0⟩, g′|0⟩

〉
= (τ̂A, C). To compute the right hand

side, note that for any open subset o′ ∈ V ′ ⊂ Σ we have

(τ̂A)u
−1

V ′ =

[
r∏

i=1

s
(
τXi ⊗ ⌈umi⌉

Ui−1

Ui

) r̄∏

j=1

s
(
τYj ⊗ ⌈ūnj⌉

Vj−1

Vj

)]

V ′

, (3.99)
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where recall that o′+ ∈ U0 ⋐ . . . ⋐ Ur ⊂ V ′
+ ⊂ Σ+ and o′− ∈ V0 ⋐ . . . ⋐ Vr̄ ⊂ V ′

− ⊂ Σ− is a
choice of nested sequence of open subsets. In simplifying the above expression we have used
the fact that u−1(o′) = 0 so that the shifted coordinate u−1

o′ is the same as the unshifted one,
namely u−1

o′ = u−1. Note that each factor in the above cohomology now has a positive power
of u since (u−1)−mi = umi and similarly for the anti-chiral part.

For i ∈ {0, . . . , r} we deőne the open subset U ′
i := (Ui)

c as the complement in Σ of the
closure of Ui and similarly for each j ∈ {0, . . . , r̄} we deőne V ′

j := (Vj)
c. These are open subsets

of some open neighbourhoods W± ⊂ Σ±\{o
′
±} of o± ∈ Σ±. In fact, they form nested sequences

of open subsets o+ ∈ U ′
r ⋐ . . . ⋐ U ′

0 ⊂ W+ ⊂ Σ+ and o− ∈ V
′
r̄ ⋐ . . . ⋐ V ′

0 ⊂ W− ⊂ Σ−. We
can then introduce smooth bump functions

ρ
U ′
i

U ′
i−1

:= 1− ρ
Ui−1

Ui
∈ Ω0,0

c (U ′
i−1)

1
U ′
i
, ρ

V ′
j

V ′
j−1

:= 1− ρ
Vj−1

Vj
∈ Ω0,0

c (V ′
j−1)

1
V ′
j

for each i ∈ {1, . . . , r} and j ∈ {1, . . . , r̄}. We may now rewrite (3.99) as

(τ̂A)u
−1

V ′ =

[
r∏

i=1

s
(
− τXi ⊗ ⌈umi⌉

U ′
i

U ′
i−1

) r̄∏

j=1

s
(
− τYj ⊗ ⌈ūnj⌉

V ′
j

V ′
j−1

)]

V ′

(3.100)

where we note, crucially, that an extra minus sign appeared in each term through the replace-
ment of smooth bump functions in (3.11) since

∂̄ρ
Ui−1

Ui
= −∂̄ρ

U ′
i

U ′
i−1
, ∂̄ρ

Vj−1

Vj
= −∂̄ρ

V ′
j

V ′
j−1
.

Recalling the deőnition of the vertex modes in (3.29), the cohomology class (3.100) represents
the product of vertex modes (−τXi)u(mi)

and (−τYj)u(nj)
but in the reverse order compared to

(3.99) due to the reversal of the nested sequences of open subsets U ′
i and V ′

j compared to Ui

and Vj . By associativity (2.17) of the factorisation product and deőnition (3.98) we now have

m(o′,o),Σ

(
(τ̂A)u

−1

o′ ⊗ C
u
o

)
= m(V ′,V ),Σ

(
(τ̂A)u

−1

V ′ ⊗ Cu
V

)

= m(Y,V ),Σ

(
(g†)uY ⊗ C

u
V

)
=
(
g†C

)u
Σ

where in the second step Y ⊂ W \ V is an annulus shaped open subset which encircles the
open subset V ∋ o. The result follows by applying the isomorphism ⟨·⟩ from Lemma 3.22. □

4 Operator formalism for F
a,α

In this section we use the prefactorisation algebra ULΣ
α ∈ PFac(Σ,Vec⊗

C
) from ğ2.3 to describe

the operator formalism [DMS, ğ6] for Fa,α. That is, we describe quantum operators associated
with states in F

a,α on the cylinder Σ′ := R × S1 ∼= C/2πZ, where R corresponds to the time
direction and S1 = R/2πZ to the compactiőed space direction. It will be convenient to extend
Σ′ to a 2-sphere Σ = S2 by adding the points at ‘inőnity’ on both ends of the cylinder. Recall
that in (3.89) we had specialised to the real 2-dimensional manifold Σ = S2 and we will thus
keep doing so throughout this section. We make the identiőcation Σ′ = Σ \ {o, o′}, where o
and o′ are the points added to the ‘bottom’ and ‘top’ of the inőnite cylinder, respectively.

4.1 Fourier modes and quantum operators

4.1.1 From the cylinder to the plane

On a simply connected open subset U ⊂ Σ′ we deőne a local holomorphic coordinate ϑ : U → C

by choosing a representative of the coset C/2πZ continuously over U . For later convenience,
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we choose the orientation on Σ′
+ such that ϑ→ i∞ as we approach the bottom of the cylinder,

i.e. the point o ∈ Σ. This coordinate satisőes

ϑ̄ = ϑ ◦ τ, (4.1)

where τ : Σ′ → Σ′ denotes the orientation reversing involution given by complex conjugation
on Σ′ = C/2πZ, extended to an orientation reversing involution τ : Σ → Σ as τ(o) = o′. We
also deőne τ : Σ̂ → Σ̂ by letting it act as τ : Σ → Σ on each copy Σ± of Σ. This orientation
reversing involution corresponds to the Lorentzian involution τL : Σ̂→ Σ̂ from ğ1.

It is crucial to note that while the coordinate ϑ : U → C on any simply connected open
subset U ⊂ Σ is deőned only up to an additive multiple of 2π, the shifted local coordinate
ϑp := ϑ − ϑ(p) : U → C, introduced in (3.8), is unambiguously deőned. This will mean that
we can use the geometric realisation linear maps (3.12) or (3.25) to prepare states in F

a,α at
any p ∈ Σ′ using the local coordinate ϑ.

However, on any open subset W ⊂ Σ′ wrapping around the cylinder, a continuous repre-
sentative ϑ : W → C of the coset C/2πZ over W is necessarily multi-valued, and hence does
not provide a well deőned coordinate on W . Moreover, ϑ is not deőned at o, o′ ∈ Σ. We thus
introduce two other holomorphic coordinates

u : Σ \ {o′} −→ C, u−1 : Σ \ {o} −→ C (4.2)

related to the above local coordinate ϑ : U → C on a simply connected open subset U ⊂ Σ′ by
the holomorphic changes of coordinate u = eiϑ and u−1 = e−iϑ. Note, in particular, that the
multi-valuedness of the local coordinate ϑ drops out from the local coordinates (4.2). These
coordinates satisfy all the properties of the charts with the same name from ğ3.4 and ğ3.6. For
instance, u(o) = 0 and u−1(o′) = 0, and the property (3.93) is a consequence of (4.1).

We summarise the above setup in the following picture

S1

Σ

o′

o

iϑ = log u

u = eiϑ S1

Σ′

ϑ → i∞

Proposition 4.1. Let A ∈ F
a,α, q ∈ Σ′ and let W ∋ q be an annulus shaped open subset

around o ∈ Σ in the coordinate u. The expansion of mq,W (Aiϑ
q ) in the coordinate u(q), namely

A
(
ϑ(q)

)
:= Y

(
Aiϑ

q , u(q)
)
=
∑

n,n̄∈Z

An,n̄ e
−inϑ(q)ein̄ϑ̄(q),

W
q

Σ′

is a homogeneous vertex operator at o ∈ Σ in the coordinate u. That is, its Fourier coefficients
An,n̄ are the homogeneous vertex modes Ã u

[n,n̄] of some state Ã ∈ F
a,α at o ∈ Σ. We will refer

to this as the quantum operator on Σ′ associated with the state A ∈ F
a,α.

Proof. Let A ∈ F
a,α be any state of deőnite (anti-)chiral conformal dimensions ∆A and ∆̄A.

Using Theorem 3.19 to change from the local coordinate u to iϑ = log u we have

Aiϑ
q = Ru→iϑ

q Au
q =

(
Ru→iϑA

)u
q
= u(p)∆A ū(p)∆̄A

(
exp

(
−
∑

k≥1

(
bkL(k) + b̄kL̄(k)

))
A

)u

q

(4.3)
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where in the last step we used the explicit expression for the operator Ru→iϑ from (3.85) and
the facts that b0 = u(p)−1, L(0)A = ∆AA and L̄(0)A = ∆̄AA.

Now notice that L(k) and L̄(k) lower the (anti-)chiral conformal dimension of a state by k
since [L(0), L(k)] = −kL(k) by (3.68) and similarly for L̄(k). Also observe that bk is proportional
to u(p)−k for all k ≥ 1 since

u(p)−1 exp

(∑

k≥1

bku
k+1
p ∂up

)
up = iϑp = log

(
up + u(p)

)
− log

(
u(p)

)

= u(p)−1

(
up +

∑

k≥1

(−1)kuk+1
p

(k + 1)u(p)k

)
,

where the őrst equality is by deőnition of the bk for k ≥ 1 in (3.75b) and using the fact that
b0 = u(p)−1. We then immediately deduce from (4.3) that we can write Aiϑ

q as a őnite sum

Aiϑ
q =

∑

i

u(p)∆Bi ū(p)∆̄Bi (Bi)
u
q

for some states Bi ∈ F
a,α of deőnite (anti-)chiral conformal dimensions ∆Bi

and ∆̄Bi
. Then

Y
(
Aiϑ

q , u(q)
)
=
∑

i

u(p)∆Bi ū(p)∆̄BiY
(
(Bi)

u
q , u(q)

)
= X

(
Ãu

q , u(q)
)

with Ã :=
∑

iBi, where in the last equality we used the deőnition of the homogeneous vertex
operator in (3.48). The result now follows. □

4.1.2 (Anti-)chiral states

Recall from ğ3.2.6 that the chiral vertex operators (3.32) and its anti-chiral analogue for any
a ∈ a correspond to the states a(−1)|0⟩

ξ
q and ā(−1)|0⟩

ξ
q, respectively, see (3.49). Similarly, we

introduce the quantum operators associated to any a ∈ a as

a
(
ϑ(q)

)
= Y

(
a(−1)|0⟩

iϑ
q , u(q)

)
=
∑

n∈Z

ane
−inϑ(q),

ā
(
ϑ̄(q)

)
= Y

(
ā(−1)|0⟩

iϑ
q , ū(q)

)
=
∑

n∈Z

āne
inϑ̄(q).

In other words, comparing with the general mode expansion from (4.1), the Fourier modes an
and ān are deőned as, cf. (3.50),

an :=
(
a(−1)|0⟩

)
n,0
, ān :=

(
ā(−1)|0⟩

)
0,n
.

We can describe these Fourier modes more explicitly in each of the three examples from ğ2.1.2.

Kac-Moody: We note using (3.70) that for any X ∈ g we have

L(n)X(−1)|0⟩ = X(−1)|0⟩δn,0, L̄(n)X̄(−1)|0⟩ = X̄(−1)|0⟩δn,0 (4.4)

for all n ≥ 0. Using this we may apply the formula (4.3) for the change coordinates u 7→ iϑ to
the states X(−1)|0⟩ and X̄(−1)|0⟩ to obtain

X(−1)|0⟩
iϑ
p = u(p)X(−1)|0⟩

u
p , X̄(−1)|0⟩

iϑ
p = ū(p) X̄(−1)|0⟩

u
p .
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It then follows from (3.46) that the quantum operators from Proposition 4.1, associated to the
(anti-)chiral states X(−1)|0⟩ and X̄(−1)|0⟩, are respectively given by

X
(
ϑ(p)

)
=
∑

n∈Z

Xne
−inϑ(p), X̄

(
ϑ̄(p)

)
=
∑

n∈Z

X̄ne
inϑ̄(p), (4.5)

where the Fourier modes are related to the homogeneous vertex modes in the coordinate u as

Xn = X u
[n], X̄n = X̄ u

[n]

for every n ∈ Z.

Virasoro: Using the formula (4.3) for changing coordinates u 7→ iϑ, we őnd

Ωiϑ
p = u(p)2

(
exp

(
−
∑

k≥1

(
bkL(k) + b̄kL̄(k)

))
Ω

)u

p

= u(p)2Ωu
p −

c

24
|0⟩up , (4.6)

and similarly for the anti-chiral state Ω̄. To see the last step note that by the deőning property
(3.63a) of a conformal state Ω we have L(k)Ω = c

2 |0⟩δk,2 for all k ≥ 1 and also b2 = 1
12u(p)

−2.
Expanding both sides of (4.6) in u(p) we obtain

∑

n∈Z

Lne
−inϑ(p) =

∑

n∈Z

Ωu
[n]e

−inϑ(p) −
c

24

where on the left hand side we used the deőnition of the Fourier coefficients in Proposition
4.1, which are conventionally denoted as Ln := Ωn and L̄n := Ω̄n, and on the right hand side,
for the őrst term we used the deőnition of the homogeneous vertex nth-modes, see (3.46),
in the coordinate u on the plane and for the second term the fact that Y

(
|0⟩up , u(p)

)
is the

identity operator. The above is the well known relation between the stress energy tensor on
the cylinder and on the plane, see e.g. [DMS, (5.138)]. In particular, we have

Ln = Ωu
[n] −

c

24
δn,0, L̄n = Ω̄u

[n] −
c

24
δn,0

for every n ∈ Z.

βγ system: Using (3.74) we őnd

L(n)β(−1)|0⟩ = β(−1)|0⟩δn,0, L̄(n)β̄(−1)|0⟩ = β̄(−1)|0⟩δn,0,

L(n)γ(−1)|0⟩ = 0, L̄(n)γ̄(−1)|0⟩ = 0

and therefore apply the formula (4.3) for the change coordinates u 7→ iϑ to the states β(−1)|0⟩,
β̄(−1)|0⟩, γ(−1)|0⟩ and γ̄(−1)|0⟩ we őnd

β(−1)|0⟩
iϑ
p = u(p)β(−1)|0⟩

u
p , β̄(−1)|0⟩

iϑ
p = ū(p) β̄(−1)|0⟩

u
p

γ(−1)|0⟩
iϑ
p = γ(−1)|0⟩

u
p , γ̄(−1)|0⟩

iϑ
p = γ̄(−1)|0⟩

u
p .

It then follows from (3.46) that the quantum operators from Proposition 4.1 associated to
these (anti-)chiral states are given by

β
(
ϑ(p)

)
=
∑

n∈Z

βne
−inϑ(p), β̄

(
ϑ̄(p)

)
=
∑

n∈Z

β̄ne
inϑ̄(p), (4.7a)

γ
(
ϑ(p)

)
=
∑

n∈Z

γne
−inϑ(p), γ̄

(
ϑ̄(p)

)
=
∑

n∈Z

γ̄ne
inϑ̄(p) (4.7b)
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where the Fourier modes are related to the homogeneous vertex modes in the coordinate u as

βn = β u
[n], β̄n = β̄ u

[n], γn = γ u
[n], γ̄n = γ̄ u

[n]

for every n ∈ Z.

More generally, if A ∈ F
a,α is a chiral monomial state then its associated quantum operator

from Proposition 4.1 is holomorphic in this case so that

A
(
ϑ(q)

)
:= Y

(
Aiϑ

q , u(q)
)
=
∑

n∈Z

An e
−inϑ(q),

i.e. A has Fourier modes An,n̄ = Anδn̄,0. Moreover, since mq,W (Aiϑ
q ) depends holomorphically

on ϑ(q) by Proposition 3.7, we can extract the Fourier modes using a contour integral

An =
1

2π

∫

γ

mq,W (Aiϑ
q )e

inϑ(q)dϑ(q) (4.8)

along any contour γ wrapping once around the cylinder Σ′. Likewise, if A ∈ F
a,α is anti-chiral

then the quantum operator from Proposition 4.1 is anti-holomorphic and we have

A
(
ϑ̄(q)

)
:= Y

(
Aiϑ

q , ū(q)
)
=
∑

n∈Z

An e
inϑ̄(q),

i.e. A has Fourier modes An,n̄ = An̄δn,0. Since in this case mq,W (Aiϑ
q ) depends holomorphically

on ϑ̄(q) by Proposition 3.7, we can extract these Fourier modes using a similar contour integral

An =
1

2π

∫

γ

mq,W (Aiϑ
q )e

−inϑ̄(q)dϑ̄(q).

As in the case of vertex modes discussed in ğ3.2, we use the same notation for Fourier modes of
chiral and anti-chiral states. This should not lead to confusion for the same reason as before,
namely the type of Fourier mode in question is determined by the chirality of the state.

The vacuum state |0⟩ ∈ F
a,α is both chiral and anti-chiral, with Fourier modes given by

|0⟩n,n̄ = δn,0δn̄,0 for n, n̄ ∈ Z. Here we are omitting the factor of [1]W ∈ ULΣ
α(W ) for brevity

since it corresponds to the identity operator.

4.1.3 Translation operators

Recall the endomorphisms D, D̄ : Fa,α → F
a,α in (3.28) and Proposition 3.7. The following is

the analogue of Lemma 3.12 for Fourier modes.

Lemma 4.2. For any A ∈ F
a,α and n, n̄ ∈ Z we have

(DA)n,n̄ = −nAn,n̄, (D̄A)n,n̄ = −n̄An,n̄.

Proof. This is very similar to the proof of Lemma 3.12. We have

Y
(
(DA)iϑq , u(q)

)
= mq,W

(
(DA)iϑq

)
= mq,W (−i∂ϑ(q)A

iϑ
q ) = −i∂ϑ(q)Y

(
Aiϑ

q , u(q)
)
,

Y
(
(D̄A)iϑq , u(q)

)
= mq,W

(
(D̄A)iϑq

)
= mq,W (i∂ϑ̄(q)A

iϑ
q ) = i∂ϑ̄(q)Y

(
Aiϑ

q , u(q)
)

where the őrst and last steps in both cases use Proposition 3.9 and the second steps are by
Proposition 3.7. The result follows from the deőnition of Fourier modes in Proposition 4.1. □
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4.2 Borcherds type identities

In Proposition 3.15 we showed that the vertex modes of states in F
a,α satisfy the Borcherds

type identities when one of the states involved is (anti-)chiral. In Theorem 4.3 below we derive
similar identities for Fourier modes.

Recall from ğ3.1 that the relative ordering of the (anti-)chiral vertex modes in a state in F
a,α

prepared at a point p ∈ Σ◦ in a local coordinate ξ is encoded in terms of the prefactorisation
algebra ULΣ

α by associating each factor with disjoint concentric annuli shaped open subsets
around p. In the case of Fourier modes, the annuli shaped open subsets around o ∈ Σ in the
local coordinate u correspond to open strips around the cylinder Σ′, as depicted below. In
particular, the centre of these annuli is o ∈ Σ so the product of Fourier modes is from left to
right if their corresponding open strips are ordered from top to bottom along Σ′. In pictures,

Am,m̄

Bn,n̄
−→ Bn,n̄Am,m̄

The Nùrlund polynomials B
(a)
n (x), for any n ∈ Z≥0 and a ∈ Z, are deőned by

ext

(et − 1)a
=
∑

n≥0

B
(a)
n (x)

n!
tn−a. (4.9)

They generalise the Bernoulli polynomials Bn(x) for n ∈ Z≥0 which correspond to the special

case a = 1, i.e. Bn(x) = B
(1)
n (x). The values Bn(1) are the Bernoulli numbers. An alternative

deőnition of these numbers that we shall also use is Bn(0), which differ from the őrst deőnition
only in its őrst term: B1(0) = −

1
2 and B1(1) =

1
2 while Bn(0) = Bn(1) for all n ≥ 2.

In Theorem 4.3 and Proposition 4.4 below we use the convention that 00 = 1.

Theorem 4.3. Let A,B ∈ F
a,α and k,m, n, n̄ ∈ Z. We have the following identities:

(i) If A is chiral then

∑

j≥0

(−1)j
(
k

j

)
Am−jBn+j,n̄ −

∑

j≥0

(−1)k+j

(
k

j

)
Bn+k−j,n̄Am−k+j

=
∑

j,r≥0

B
(−k)
j (−k)mr

j!r!

(
A(j+k+r)B

)
m+n,n̄

.

(ii) If A is anti-chiral then

∑

j≥0

(−1)j
(
k

j

)
Am−jBn,n̄+j −

∑

j≥0

(−1)k+j

(
k

j

)
Bn,n̄+k−jAm−k+j

=
∑

j,r≥0

B
(−k)
j (−k)mr

j!r!

(
A(j+k+r)B

)
n,m+n̄

.

Proof. Suppose őrst that D̄A = 0. Let W ⊂ Σ′ be an open subset in Top(Σ) wrapping around
Σ′. Recall the map in (3.56) and deőne FA,B : Conf2(W )→ ULΣ

α(W ) by

FA,B(q, p) := Φ2,iϑ
W

(
(q, p), (A,B)

)
up(q)

ku(p)nu(q)m−kū(p)n̄

= m(q,p),W

(
Aiϑ

q ⊗B
iϑ
p

)
up(q)

ku(p)nu(q)m−kū(p)n̄.
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This depends holomorphically on q ∈ W by Proposition 3.7. By the standard deformation of
contour argument

γ̂

p

−
γ̌p

=

p

cp

we then have the identity

1

2π

(∫

γ̂

−

∫

γ̌

)
FA,B(q, p)dϑ(q) =

1

2πi

∫

cp

FA,B(q, p)d
(
iϑ(q)

)
, (4.10)

where γ̂ and γ̌ are contours wrapping the cylinder which pass, respectively, above and below
the point p and cp is a small clockwise oriented contour around p.

On the right hand side of (4.10), since q ∈ cp is close to p we have the expansion

FA,B(q, p) =
∑

j,r≥0

B
(−k)
j (−k)mr

j!r!
Y

(
Y
(
Aiϑ

q , iϑp(q)
)
Biϑ

p , u(p)
)(

iϑp(q)
)j+r+k

u(p)m+nū(p)n̄,

where we used the deőnition (4.9) of the Nùrlund polynomials. We can perform the integral on
the right hand side of (4.10) using (3.51a). For this, note that the orientation of the integration
variable iϑ(q), see the choice of orientation on Σ′

+ we made at the start of ğ4.1, matches the
clockwise orientation of the contour cp. By deőnition of Fourier modes in Proposition 4.1, the
right hand side of the desired identity then corresponds to the coefficient of u(p)0ū(p)0.

In the őrst integral on the left hand side of (4.10), by the relative positioning of q ∈ γ̂ and
the point p as depicted in the above picture, we have |u(p)| < |u(q)| and hence the expansion

FA,B(q, p) =
∑

j≥0

(−1)j
(
k

j

)
Y
(
Aiϑ

q , u(q)
)
Y
(
Biϑ

p , u(p)
)
u(q)m−ju(p)n+j ū(p)n̄.

Performing the integral over γ̂ using the property (4.8) and using the deőnition of the Fourier
modes in Proposition 4.1, the őrst term on the left hand side of the desired identity is given
again by the coefficient of u(p)0ū(p)0.

Likewise, in the second integral on the left hand side of (4.10) we have q ∈ γ̌ which lies
below p so that |u(p)| > |u(q)| and hence we have the expansion

FA,B(q, p) =
∑

j≥0

(−1)k+j

(
k

j

)
Y
(
Biϑ

p , u(p)
)
Y
(
Aiϑ

q , u(q)
)
u(q)m−k+ju(p)n+k−j ū(p)n̄.

Upon integrating over γ̌ and extracting the coefficient of u(p)0ū(p)0 this then gives the second
term on the left hand side of the desired identity, using again (4.8) and Proposition 4.1.

The proof in the anti-chiral case DA = 0 is very similar. □

As with vertex modes, cf. Corollary 3.17, the ‘Borcherds type’ identities for Fourier modes
lead to commutator and normal ordering formulae for Fourier modes of composite states.

Proposition 4.4. Let A,B ∈ F
a,α and m,n, n̄ ∈ Z. We have the following identities:

(i) If A is chiral then

[Am, Bn,n̄] =
∑

r≥0

mr

r!

(
A(r)B

)
m+n,n̄

,

(
A(−1)B

)
n,n̄

=
∑

j≤0

AjBn−j,n̄ +
∑

j>0

Bn−j,n̄Aj +
∑

r≥0

ζ(−r)

r!

(
A(r)B

)
n,n̄
.
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(ii) If A is anti-chiral then

[Am, Bn,n̄] =
∑

r≥0

mr

r!

(
A(r)B

)
n,m+n̄

,

(
A(−1)B

)
n,n̄

=
∑

j≤0

AjBn,n̄−j +
∑

j>0

Bn,n̄−jAj +
∑

r≥0

ζ(−r)

r!

(
A(r)B

)
n,n̄
.

Proof. Taking k = 0 in the identities from Theorem 4.3 (i) and (ii) we obtain the őrst desired
relations in (i) and (ii), respectively. Taking instead m = 0 and k = −1 in the identities from
Theorem 4.3(i) and (ii) gives the second desired relations in (i) and (ii) upon noting the fact
that ζ(−r) = −Br+1(1)

r+1 for every r ∈ Z≥0. □

Remark 4.5. The combination of the commutator and normal ordering formulae for Fourier
modes in F

a,α from Proposition 4.4 have the following interesting heuristic interpretation.
Replacing n in the őrst relation of Proposition 4.4(i) by n−m, we can rewrite it as

AmBn−m,n̄ = Bn−m,n̄Am +
∑

r≥0

mr

r!

(
A(r)B

)
n,n̄
.

Taking the formal sum of the latter over m ∈ Z>0 and formally łreplacingž the inőnite sum∑
m>0m

r by the ζ-value ζ(−r), we see that the right hand side coincides exactly with the last
two terms on the right hand side of the second relation in Proposition 4.4(i). Therefore, by
virtue of the őrst relation in Proposition 4.4(i), the right hand side of the second relation in
Proposition 4.4(i) can be interpreted as a ζ-function regularisation of the formal inőnite sum∑

m∈ZAmBn−m,n̄. In other words, we have the formal equality

(
A(−1)B

)
n,n̄

ł= ž
∑

m∈Z

AmBn−m,n̄

where the non-sensical inőnite sum on the right hand side, which corresponds to the Fourier
(n, n̄)th-mode of the naive product A

(
ϑ(q)

)
B
(
ϑ(q)

)
, is given meaning by bringing all its terms

into normal ordered form and using ζ-function regularisation on the resulting divergent sum.
The same reasoning applies to the relations in Proposition 4.4(ii). ◁

We have the following immediate applications of Proposition 4.4.

Corollary 4.6. The Fourier modes of the (anti-)conformal states satisfy

[
Lm, Ln

]
= (m− n)Lm+n +

m3

12
c δm+n,0,

[
L̄m, L̄n

]
= (m− n)L̄m+n +

m3

12
c δm+n,0

and [Lm, L̄n] = 0 for m,n ∈ Z. In the Kac-Moody case we have the non-trivial commutators

[Lm,Xn] = −nXm+n,
[
Xm,Yn

]
= [X,Y]m+n +mκ(X,Y)δm+n,0,

[L̄m, X̄n] = −n X̄m+n,
[
X̄m, Ȳn

]
= [X,Y]m+n +mκ(X,Y)δm+n,0

for any X,Y ∈ g and m,n ∈ Z. In the βγ system case we have

[Lm, βn] = −nβm+n, [Lm, γn] = −(m+ n) γm+n,
[
βm, γn

]
= δm+n,0,

[L̄m, β̄n] = −n β̄m+n, [L̄m, γ̄n] = −(m+ n) γ̄m+n,
[
β̄m, γ̄n

]
= δm+n,0
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Proof. These all follow immediately from Proposition 4.4. For the őrst set of equations we use
in particular the deőning property (3.63a) of the (anti-)conformal states and Lemma 4.2. For
the second set of equations we use the identities (3.60) and the fact that

Ω(n)X(−1)|0⟩ = D(X(−1)|0⟩)δn,0 + X(−1)|0⟩δn,1

for all n ≥ 0, and similarly for the anti-chiral version, cf. (4.4). For the third set of equations
we use the identities (3.62) and the fact that

Ω(n)β(−1)|0⟩ = D(β(−1)|0⟩)δn,0 + β(−1)|0⟩δn,1,

Ω(n)γ(−1)|0⟩ = D(γ(−1)|0⟩)δn,0

for all n ≥ 0, and similarly for the anti-chiral versions. □

4.3 Reality conditions

In this section we discuss reality conditions on quantum operators deőned in Proposition 4.1.
Speciőcally, we introduce a natural notion of adjoint operator, deőned by the action of the
anti-linear isomorphism τ̂ of ULΣ

α from Proposition 2.6 and show in Proposition 4.9 that it
matches the usual adjoint with respect to the Hermitian sesquilinear form introduced in ğ3.6.

Lemma 4.7. For any A ∈ F
a,α and p ∈ Σ′ we have τ̂

(
Aiϑ

p

)
= (−1)∆A+∆̄A(τ̂A)iϑ

τ(p).

Proof. Using Lemma 3.28 and the fact that τ̂(iϑ) = −iϑ which follows from (4.1), we deduce
τ̂
(
Aiϑ

p

)
= (τ̂A)−iϑ

τ(p). By the explicit expression (3.12b) for A−iϑ
τ(p), using the fact that

(τa)i−iϑτ(p)
⊗
⌈
(−iϑτ(p))

−mi
⌉Ui−1

Ui
= (−1)mi−∆a+1(τa)iiϑτ(p)

⊗
⌈
(iϑτ(p))

−mi
⌉Ui−1

Ui
,

(τb)j
iϑ̄τ(p)

⊗
⌈
(iϑ̄τ(p))

−nj
⌉Vj−1

Vj
= (−1)nj−∆b+1(τb)j

−iϑ̄τ(p)
⊗
⌈
(−iϑ̄τ(p))

−nj
⌉Vj−1

Vj

for i ∈ {1, . . . , r} and j ∈ {1, . . . , r̄}, the result now follows. □

Given any O ∈ ULΣ
α(W ) on an annulus shaped open subset W ⊂ Σ′ around o ∈ Σ in the

coordinate u, we say that it acts on F
a,α
o if it induces an endomorphism

O : Fa,α
o −→ Fa,α

o , Bu
o 7−→ (OB)uo

where the state OB ∈ F
a,α is deőned by the factorisation product m(W,o),U (O⊗B

u
o ) = (OB)uU

into a larger open subset U ⊂ Σ of o ∈ Σ. We then obtain an endomorphism O : Fa,α → F
a,α.

For instance, the vertex modes Au
(n,n̄) for n, n̄ ∈ Z of any state A ∈ F

a,α act on F
a,α
o by Lemma

3.10. We deőne the adjoint of O ∈ ULΣ
α(W ) as

O† := τ̂(O) ∈ ULΣ
α

(
τ(W )

)
, (4.11)

where we can also view τ(W ) ⊂ Σ′ as an annulus shaped open subset around o ∈ Σ in the
coordinate u. In particular, O† then also acts on F

a,α
o .

Recall the quantum operator A
(
ϑ(p)

)
∈ ULΣ

α(W ) associated to a state A ∈ F
a,α, as deőned

in Proposition 4.1. Its adjoint is given by the following.

Proposition 4.8. For a monomial state A ∈ F
a,α we have

A
(
ϑ(p)

)†
= (−1)∆A+∆̄A(τ̂A)

(
ϑ̄(p)

)
∈ ULΣ

α

(
τ(W )

)
, (4.12)

or equivalently, for any n, n̄ ∈ Z we have A†
n,n̄ = (−1)∆A+∆̄A(τ̂A)−n,−n̄.
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Proof. By deőnition (4.11) of the adjoint we have

A
(
ϑ(p)

)†
= τ̂

(
A
(
ϑ(p)

))
= τ̂

(
Y
(
Aiϑ

p , u(p)
))

= τ̂
(
mp,W (Aiϑ

p )
)

= mτ(p),τ(W )

(
τ̂Aiϑ

p

)
= (−1)∆A+∆̄Amτ(p),τ(W )

(
(τ̂A)iϑτ(p)

)

= (−1)∆A+∆̄AY
(
(τ̂A)iϑτ(p), u(τ(p))

)
= (−1)∆A+∆̄A(τ̂A)

(
ϑ(τ(q))

)

where the fourth step we uses Proposition 2.6 and the őfth step is by Lemma 4.7. The result
(4.12) now follows by using the property (4.1). Using the deőnition of the Fourier modes in
Proposition 4.1 to rewrite both sides of the last expression we őnd

∑

n,n̄∈Z

A†
n,n̄ e

inϑ̄(q)e−in̄ϑ(q) = (−1)∆A+∆̄A

∑

n,n̄∈Z

(τ̂A)n,n̄ e
−inϑ(τ(q))ein̄ϑ̄(τ(q)),

where on the left hand side we applied the anti-linear map (·)† deőned in (4.11) to each term of
the Fourier series from Proposition 4.1. The őnal result about the Fourier modes now follows
from comparing both sides of the above using the property (4.1). □

The above notation (·)† for the adjoint of Fourier modes is consistent with the anti-linear
anti-involution (·)† on the modes of â⊕ ̂̄a introduced in the Kac-Moody case in (3.98).

Indeed, recall from after (4.5) that the Fourier modes Xn and X̄n coincide with the vertex
modes (3.29) at o ∈ Σ in the u coordinate for all n ∈ Z, which in turn have the same action as
modes in â and ̂̄a, respectively, when acting on states prepared at o ∈ Σ in the u coordinate by
(3.30). Also, the commutation relations of the Fourier modes in Corollary 4.6 coincide with the
Lie algebra relations (3.4) in â⊕ ̂̄a, with the central elements k and k̄ both replaced by 1. Now
the deőnition (3.98) implies that (Xn)

† = −(τX)−n and (Ȳn̄)
† = −(τY)−n̄, which are equivalent

to the statement of Proposition 4.8 for the states X(−1)|0⟩ and Ȳ(−1)|0⟩. Furthermore, the
property from Proposition 3.32 of the Hermitian sesquilinear form on F

a,α ∼= U(â ⊕ ̂̄a)|0⟩
deőned in (3.97) follows from the next two propositions.

Proposition 4.9. Suppose O ∈ ULΣ
α(W ), for an annulus shaped open subset W ⊂ Σ′ around

o ∈ Σ in the coordinate u, acts on F
a,α
o . Then for any B,C ∈ F

a,α we have

⟨B,OC⟩ = ⟨O†B,C⟩.

In particular, for all states A,B,C ∈ F
a,α we have

〈
B,A(ζ)C

〉
=
〈
A(ζ)†B,C

〉
or, equivalently,

we have ⟨B,An,n̄C⟩ = ⟨A
†
n,n̄B,C⟩ for any n, n̄ ∈ Z.

Proof. This is very similar to the proof of Proposition 3.23. For any B,C ∈ F
a,α, we compute

〈
m(o′,W,o),Σ

(
(τ̂B)u

−1

o′ ⊗ O⊗ Cu
o

)〉
∈ C

in two different ways using the associativity (2.17) of the factorisation product.
On the one hand, by deőnition of the action of O on F

a,α
o we have

〈
m(o′,U),Σ

(
(τ̂B)u

−1

o′ ⊗m(W,o),U

(
O⊗ Cu

o

))〉
=
〈
m(o′,U),Σ

(
(τ̂B)u

−1

o′ ⊗ (OC)uU

)〉

for some open subset o ∈ U ⊂ Σ\{o′}. By deőnition (3.97) of the Hermitian sesquilinear form
on F

a,α, the above is simply ⟨B,OC⟩.
On the other hand, since O = τ̂(O†) we can compute the same factorisation product as

〈
m(o′,W,o),Σ

(
τ̂(Bu

o )⊗ τ̂(O
†)⊗ Cu

o

)〉
=
〈
m(U ′,o),Σ

((
τ̂(O†B)

)u−1

U ′ ⊗ C
u
o

)〉

where in the second expression we introduced an open o′ ∈ U ′ ⊂ Σ \ {o}. By deőnition (3.97)
of the Hermitian sesquilinear form on F

a,α, the above is just ⟨O†B,C⟩, hence the result. □
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Proposition 4.10. For any A,B ∈ F
a,α and m, m̄, n, n̄ ∈ Z we have

(Am,m̄Bn,n̄)
† = B†

n,n̄A
†
m,m̄.

In other words, taking the adjoint (4.11) is an anti-linear anti-involution on Fourier modes.

Proof. Recall that the product of Fourier modes, described explicitly at the start of ğ4.2, is
induced by the factorisation product of ULΣ

α . By Proposition 2.6, for any inclusion U ⊔V ⊂W
of disjoint annuli shaped open subsets around o ∈ Σ in the u coordinate into another larger
such annuli shaped open subset W ⊂ Σ′, we have the commutative diagram

ULΣ
α(U)⊗ ULΣ

α(V ) ULΣ
α(W )

ULΣ
α

(
τ(U)

)
⊗ ULΣ

α

(
τ(V )

)
ULΣ

α

(
τ(W )

)

m(U,V ),W

τ̂ ⊗ τ̂ τ̂

m(τ(U),τ(V )),τ(W )

The result now follows since τ reverses the ordering along the cylinder Σ′ of annuli shaped
open subsets around o ∈ Σ in the u coordinate. □

A Twisted prefactorisation envelopes

A.1 Unital DG Lie algebras

Following [BS, Example 2.9], let uLie be the DG operad generated by an element b ∈ uLie(2)
in degree 0 and an element u ∈ uLie(0) in degree 1, which we represent graphically as trees

b ←→ , u ←→ ,

such that db = 0, du = 0 and subject to three relations which we can represent most easily in
graphical form as

1 2

+

2 1

= 0,

1 32

+

2 13

+

3 21

= 0, = 0, (A.1)

where the numbers below the trees indicate input permutations. We shall refer to an algebra in
dgVecC over the DG operad uLie as a unital DG Lie algebra. We let udgLieC := AlguLie(dgVecC)
denote the category of unital DG Lie algebras. Explicitly, a unital DG Lie algebra L is described
by a multifunctor uLie → dgVec⊗

C
. More explicitly, such a multifunctor singles out an object

L ∈ dgVecC as the image of the single object of uLie and closed linear maps [·, ·] : L⊗ L→ L
and η : C → L, of degrees 0 and 1 respectively, as the images of b ∈ uLie(2) and u ∈ uLie(0).
In particular, the őrst two relations in (A.1) make L into a DG Lie algebra and the last relation
says that the image of the unit η : C→ L, which is closed in L, is also central in L.

A.1.1 Monoidal structure

For any unital DG Lie algebras L,L′ ∈ udgLieC, with respective units η : C→ L and η′ : C→
L′, we deőne the unital DG Lie algebra

L ⊕̄L′ := (L⊕ L′)
/
im(η − η′)

where the quotient is by the image of the linear map η − η′ : C → L ⊕ L′, which is a DG Lie
ideal of L ⊕ L′. The unit in L ⊕̄L′ is the map induced by η : C → L ⊕ L′, or equivalently
by η′ : C→ L⊕ L′. The identity object for the monoidal product ⊕̄ on udgLieC is the trivial
unital DG Lie algebra C[−1].

We will use the following universal property of the direct sum of unital DG Lie algebras.
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Lemma A.1. Let fi : Li → L for i ∈ I be any collection of morphisms of unital DG Lie
algebras, with indexing set I, such that [im fi, im fj ] = 0 for every i ̸= j ∈ I. There exists a

unique morphism of unital DG Lie algebras
⊕

j∈ILj → L such that the diagram

L

Li

⊕
j∈ILj

fi

ιi

∃!

is commutative for each i ∈ I, where ιi : Li →
⊕

j∈ILj is the canonical embedding.
Moreover, suppose f ′i : L

′
i → L′ for i ∈ I is another collection of morphisms of unital DG Lie

algebras such that [im f ′i , im f ′j ] = 0 for every i ̸= j ∈ I and suppose we are given morphisms
of unital DG Lie algebras ϕ : L→ L′ and ϕi : Li → L′

i for each i ∈ I such that ϕ ◦ fi = f ′i ◦ ϕi.
Then there exists a unique morphism of unital DG Lie algebras

⊕
j∈Iϕj :

⊕
j∈ILj →

⊕
j∈IL

′
j

making the following diagram

L

Li

⊕n

j=1Lj L′

L′
i

⊕n

j=1L
′
j

ϕ

ϕi

ιi

fi

∃!

ι′i

f ′
i

commute for each i ∈ I, where the vertical morphisms are deőned as above.

Proof. We őrst deőne h :
⊕

j∈I Lj → L by (xi)i∈I 7→
∑

i∈I fi(xi). This is well deőned since
the sum over i ∈ I is őnite by virtue of xi being zero for all but őnitely many i ∈ I. And
since fi are morphisms of unital DG Lie algebras we have fi ◦ ηi = η where ηi denotes the unit
in each Li and η the unity in L. It follows that h factors through a map h̄ :

⊕
j∈ILj → L,

deőned by [(xi)i∈I ] 7→
∑

i∈I fi(xi) where [(xi)i∈I ] ∈
⊕

j∈ILj is the class of (xi)i∈I ∈
⊕

j∈I Lj .
In other words, h̄

(
[(xi)i∈I ]

)
= h

(
(xi)i∈I

)
. But we also have

[
h((xi)i∈I), h((yi)i∈I)

]
=
∑

i,j∈I

[fi(xi), fj(yj)] =
∑

i∈I

[fi(xi), fi(yi)]

=
∑

i∈I

fi([xi, yi]) = h
(
([xi, yi])i∈I

)
= h

(
[(xi)i∈I , (yi)i∈I ]

)

where the second step is by the assumption that [im fi, im fj ] = 0 for i ̸= j ∈ I. The third
step follows since each fi is a morphism of unital DG Lie algebras and the last step uses the
DG Lie algebra structure on

⊕
i∈ILi. So h is a morphism of DG Lie algebras and hence h̄ is a

morphism of unital DG Lie algebras. By construction, the latter is unique such that h◦ ιi = fi.

Let us consider now the second claim. Since im(ι′i ◦ϕi) ⊂ im ι′i for each i ∈ I it follows that
[im(ι′i ◦ ϕi), im(ι′j ◦ ϕj)] = 0 for each i ̸= j ∈ I. By the őrst part of the lemma applied to the

morphisms of unital DG Lie algebras ι′i ◦ ϕi : Li →
⊕n

j=1L
′
j we thus have a unique morphism

of unital DG Lie algebras
⊕

j∈Iϕj :
⊕

j∈ILj →
⊕

j∈IL
′
j which makes the bottom square of the

second diagram in the statement commute. It remains to show that it also makes the square
on the right of the diagram commute, i.e. that h̄′ ◦

(⊕
j∈Iϕj

)
= ϕ ◦ h̄ where h̄ and h̄′ are the

two vertical morphisms deőned as above.
Now ϕ ◦ fi = f ′i ◦ ϕi and [im f ′i , im f ′j ] = 0 for every i ̸= j ∈ I from which it follows that

[im(ϕ ◦ fi), im(ϕ ◦ fj)] = 0 for every i ̸= j ∈ I. Therefore, applying the őrst part of the lemma
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to the collection of morphisms of unital DG Lie algebras ϕ ◦ fi : Li → L′ we obtain a unique
mophism of unital DG Lie algebras g :

⊕n

j=1Lj → L′ such that g ◦ ιi = ϕ ◦ fi for each i ∈ I.
Yet we have

h̄′ ◦

(⊕
j∈I

ϕj

)
◦ ιi = h̄′ ◦ ι′i ◦ ϕi = f ′i ◦ ϕi = ϕ ◦ fi = ϕ ◦ h̄ ◦ ιi

from which we deduce that h̄′ ◦
(⊕

j∈Iϕj
)
= g = ϕ ◦ h̄ by uniqueness of g, as required. □

A.1.2 Chevalley-Eilenberg functor for udgLieC

The homological Chevalley-Eilenberg functor is the symmetric monoidal functor

CE• : (dgLieC,⊕) −→ (dgVecC,⊗)

L 7−→ CE•(L) :=
((

Sym(L[1])
)•
, dCE

)
, (A.2)

where (SymV )• :=
⊕

n≥0 Sym
n V is the free commutative graded algebra on a graded vector

space V and Symn V is its component of word length n. Here L[1] := C[1]⊗L ∈ dgVecC denotes
the suspension of the DG vector space L where C[1] is the DG vector space with C placed in
degree −1. For any element v ∈ V of a DG vector space V we let sv := 1⊗ v ∈ V [1] denote its
suspension, and we use the notation s−1v := 1⊗ v ∈ V [−1] := C[−1]⊗ V to denote its inverse
suspension. The product in (SymV )• is denoted by concatenation. The differential on CE•(L)
is dCE := dL[1]+d[·,·] where dL[1] : L[1]→ L[1] is induced by the differential dL : L→ L of the DG

Lie algebra L and d[·,·] : (Sym(L[1]))• → (Sym(L[1]))• is the unique coderivation of the graded
coalgebra (Sym(L[1]))• extending the degree 1 map Sym2(L[1]) → L[1], where Sym2(L[1])
is the graded symmetric tensor square, induced by the Lie bracket [·, ·] : L ⊗ L → L, see for
instance [FHT, Lemma 22.2]. Explicitly, Sym2(L[1])→ L[1] is given by sx sy 7→ (−1)|x|+1s[x, y]
for any homogeneous x, y ∈ L. This is well deőned since sx sy = (−1)|x||y|+|x|+|y|+1sy sx is sent
to (−1)|x||y|+|x|+|y|+1(−1)|y|+1s[y, x] = (−1)|x|+1s[x, y] using the graded skew -symmetry of the
Lie bracket, namely [y, x] = −(−1)|x||y|[x, y]. Note that dL[1]d[·,·] = −d[·,·]dL[1] and d2[·,·] = 0.

We shall need a variant of the functor (A.2) for unital DG Lie algebras deőned in the next
proposition. Let IiL := {A s(η(1)) − A |A ∈ CEi(L)} for every i ∈ Z. This is a subspace of
CEi(L) since η(1) is of degree 1. Moreover, since η(1) is a cocycle, i.e. dLη(1) = 0, and is
central in L, it follows that I•L is a DG vector subspace of CE•(L).

Proposition A.2. We have a symmetric monoidal functor

CE• : (udgLieC, ⊕̄) −→ (dgVecC,⊗)

L 7−→ CE•(L) := CE•(L)
/
I•L (A.3)

which preserves quasi-isomorphisms.

Proof. For any morphism of unital DG Lie algebras f : L → L′, the morphism of DG vector
spaces CE•(f) : CE•(L)→ CE•(L

′) is given in degree i ∈ Z by CEi(f) =
(
Sym f [1]

)i
, where

the morphism of DG vector spaces f [1] : L[1] → L′[1] is the suspension of f : L → L′. Since
f(η(1)) = η′(1) it follows that CE•(f)(I

•
L) ⊂ I

•
L′ and therefore CE•(f) induces a morphism of

DG vector spaces CE•(f) : CE•(L)→ CE•(L
′).

Since the functor (A.2) preserves quasi-isomorphisms, if f : L ≃−→ L′ is a quasi-isomorphism
then so is CE•(f) : CE•(L)

≃−→ CE•(L
′). Now the morphism CE•(f) : CE•(L)→ CE•(L

′) is a
retract of the latter since we have a commutative diagram

CE•(L) CE•(L) CE•(L)

CE•(L
′) CE•(L

′) CE•(L
′)

iL

CE•(f)

qL

CE•(f) CE•(f)

iL′ qL′
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where qL : CE•(L) → CE•(L) is the canonical map and iL : CE•(L) → CE•(L) is given by
taking the representative with no factors of s(η(1)) so that we clearly have qL ◦ iL = idCE•(L)

and similarly qL′ ◦iL′ = idCE•(L′). Hence CE•(f) : CE•(L)
≃−→ CE•(L

′) is a quasi-isomorphism.

It remains to show that the functor CE• is symmetric monoidal. In particular, we must
show that given any unital DG Lie algebras L,L′ ∈ udgLieC we have a canonical isomorphism
of DG vector spaces

CE•(L ⊕̄L
′) ∼= CE•(L)⊗ CE•(L

′).

To see this, let J i := {A s(η(1))−A s(η′(1)) |A ∈ CEi(L⊕L
′)} for every i ∈ Z. Since η(1) and

η′(1), thought of as elements in L ⊕ L′, are both central cocycles of degree 1, it follows that
J• is a DG vector subspace of CE•(L⊕L

′). Moreover, we have a canonical isomorphism of DG

vector spaces CE•(L ⊕̄L
′) ∼= CE•(L⊕L

′)/J•. Also, introducing the DG vector subspace K• of
CE•(L⊕L

′) with components Ki := {A s(η(1))−A+A′ s(η′(1))−A′ |A,A′ ∈ CEi(L⊕L
′)} for

every i ∈ Z, of which J• is an obvious DG vector subspace, we have a canonical isomorphism
I•
L ⊕̄L′

∼= K•/J•. We therefore have

CE•(L ⊕̄L
′) = CE•(L ⊕̄L

′)/I•L ⊕̄L′
∼=
(
CE•(L⊕ L

′)/J•
)/(

K•/J•
)
∼= CE•(L⊕ L

′)/K•

∼=
(
CE•(L)⊗ CE•(L

′)
)
/
(
I•L ⊗ CE•(L

′) + CE•(L)⊗ I
•
L′

)
= CE•(L)⊗ CE•(L

′),

where in the őrst isomorphism we made use of the two isomorphisms stated above. The next
isomorphism is by the third isomorphism theorem and the last isomorphism uses the fact that
the homological Chevalley-Eilenberg functor CE• is symmetric monoidal.

Also, the result of applying the functor CE• to the identity object C[−1] of the symmetric
monoidal product ⊕̄ on udgLieC is isomorphic to C[0], i.e. the identity object of the symmetric
monoidal product ⊗ on dgVecC. Hence CE• is a symmetric monoidal functor. □

It will be useful to also introduce, mainly for the purpose of proving part of Proposition 3.4,
the category of pointed DG vector spaces, denoted udgVecC, whose objects are vector spaces V
equipped with a degree 1 map η : C → V and whose morphisms preserve this structure. We
also introduce the symmetric monoidal functor

Sym• : (udgVecC, ⊕̄) −→ (dgVecC,⊗)

V 7−→ Sym•(V ) :=
(
Sym(V [1])

)•/
J•
V (A.4)

where the differential on
(
Sym(V [1])

)•
is the one induced from dV [1] : V [1]→ V [1] and we set

J i
V := {A s(η(1))−A |A ∈ (Sym(V [1]))i} for each i ∈ Z, which is a subpsace of (Sym(V [1]))i

since η(1) has degree 1. Moreover, since η(1) is a cocycle, namely dV η(1) = 0, these form
a DG vector subspace J•

V of
(
Sym(V [1])

)•
. The proof that (A.4) is symmetric monoidal is

completely analogous to that of Proposition A.2.

A.2 Unital local Lie algebras

Let L be a precosheaf of unital DG Lie algebras on a manifold D, with extension morphisms
denoted by extU,V : L(U) → L(V ) for any inclusion of subsets U ⊂ V in D. We say that L

is a unital local Lie algebra on D if for any őnite collection {Ui}
n
i=1 of disjoint open subsets

Ui ⊂ V of an open subset V ⊂ D we have

[
im
(
extUi,V

)
, im

(
extUj ,V

)]
= 0, (A.5)

for every i ̸= j. We denote by uLocLieC(D) the category of unital local Lie algebras on D,
where a morphism of unital local Lie algebras is deőned as a morphism of the underlying
precosheaves of unital DG Lie algebras.
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Proposition A.3. We have a canonical functor

uLocLieC(D) −→ PFac(D, udgLie⊕̄
C
).

More explicitly, any L ∈ uLocLieC(D) deőnes an object in PFac(D, udgLie⊕̄
C
) which by a slight

abuse of notation we also denote by L. Moreover, every morphism L → L′ of uLocLieC(D)
induces a morphism of PFac(D, udgLie⊕̄

C
) which we also denote L→ L′.

Proof. Let L ∈ uLocLieC(D). Given any open subsets ⊔ni=1Ui ⊂ V , by Lemma A.1 we obtain
a unique morphism of DG Lie algebras mL

(Ui),V
:
⊕n

j=1L(Uj)→ L(V ) such that the diagram

L(V )

L(Ui)
⊕n

j=1L(Uj)

extLUi,V ∃!mL

(Ui),V

commutes. The composition property of these morphisms, required in order for L to deőne a
prefactorisation algebra, then follows from their uniqueness property. Explicitly, we have the
following commutative diagram

L(W )

L(Vi)
⊕n

i=1L(Vi)

L(Uij)
⊕mi

j=1L(Uij)
⊕n

i=1

⊕mi

j=1L(Uij)

extLVi,W ∃!mL

(Vi),W

extLUij,Vi ∃!mL

(Uij),Vi

⊕n

i=1m
L

(Uij),Vi

∃!mL

(Uij),W

where the two small commutative triangles are given by the universal property in Lemma A.1.
The square on the bottom right of the diagram is commutative by deőnition of the morphism of
unital DG Lie algebras

⊕n

i=1m
L
(Uij),Vi

, in the second part of Lemma A.1. The extra morphism
from the bottom right to the top right is given by the universal property from Lemma A.1
applied to the big outside triangle. Its uniqueness implies the required composition property.
It follows that L deőnes an element of PFac(D, udgLie⊕̄

C
), as required.

Let ϕ : L → L′ be a morphism of uLocLieC(D). By using the second part of Lemma A.1
we have a morphism

⊕n

j=1ϕUj
:
⊕n

j=1L(Uj)→
⊕n

j=1L
′(Uj) making the following diagram

L(V )

L(Ui)
⊕n

j=1L(Uj) L′(V )

L′(Ui)
⊕n

j=1L
′(Uj)

ϕV

ϕUi

mL

(Ui),V

∃! mL
′

(Ui),V

commutative. In particular, the commutativity of the right hand square is equivalent to the
statement that ϕ : L→ L′ is a morphism of PFac(D, udgLie⊕̄

C
), as required. □

Viewing any L ∈ uLocLieC(D) as a multifunctor Top(D)⊔ → udgLie⊕̄
C
, by Proposition A.3,

we can consider its post-composition with the symmetric monoidal functor (A.3) from Propo-
sition A.2 to obtain a prefactorisation algebra CE•L ∈ PFac(D, dgVec⊗

C
). Post-composing the
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latter with the lax monoidal 0th cohomology functor H0 : dgVecC → VecC then yields the
twisted prefactorisation envelope of the unital local Lie algebra L, denoted

UL := H0CE•L ∈ PFac(D,Vec⊗
C
). (A.6)
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