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Abstract

We give a systematic construction of the symmetries, or observables in the vacuum sector,
of a full conformal field theory on an arbitrary real two-dimensional conformal manifold
3. Specifically, we construct a prefactorisation algebra on 3 which locally encodes the
full (non-chiral) version F*® = V& @ V% of a universal enveloping vertex algebra V&<,
where a is a finite-dimensional vector space labelling the set of fields and « is a 2-cocycle
controlling the central extension of their Lie brackets. Our construction provides a unified
treatment of the three canonical examples of (full) universal enveloping vertex algebras —
Kac-Moody, Virasoro and (7 system — using the notion of unital local Lie algebra. By
using the coordinate-invariant nature of prefactorisation algebras we derive an analogue
of Huang’s change of variable formula for full vertex algebras. We give a careful treatment
of (both Euclidean and Lorentzian) reality conditions in this formalism which allows us,
in the Kac-Moody and Virasoro cases, to construct a Hermitian sesquilinear form on these
full vertex algebras by using the factorisation product to the global observables on S2.
We also give an explicit derivation of Borcherds type identities and a construction of the
operator formalism for F®¢.
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1 Introduction

Two-dimensional conformal field theory [BPZ] has been extensively studied by physicists and
mathematicians alike over the past four decades. Its original applications in physics ranged
from the study of critical phenomena in two-dimensional statistical systems to string theory,
see for instance [DMS], but it has also found far-reaching applications in mathematics, from
the monstrous moonshine [Bor| to the geometric Langlands correspondence [Frel, Fre2].

An important distinction to be made is between chiral and full two-dimensional conformal
field theories. Indeed, in both the Euclidean and Lorentzian settings, the infinite dimensional
symmetry algebra of a two-dimensional conformal field theory involves a direct sum of two
copies of the Virasoro algebra, see e.g. [Sch]. The collection of fields which transform trivially
with respect to either of these two copies generates the so-called chiral and anti-chiral sectors
of the conformal field theory, respectively. By contrast, the full conformal field theory deals
with all of the fields, transforming under both copies of the Virasoro algebra.

The main purpose of this paper is to initiate the construction and study of full conformal
field theories within the modern framework of prefactorisation algebras [CG1, CG2| recently
introduced by Costello and Gwilliam. We focus on describing the full /non-chiral versions of a
broad class of vertex algebras, known as universal enveloping vertex algebras |Pri|, which are
defined as Verma modules over infinite-dimensional Lie algebras, including centrally extended
loop algebras, the Virasoro algebra and the infinite-dimensional Weyl algebra. These full vertex
algebras encode the vacuum sectors, or symmetry algebras, of many rational and logarithmic
conformal field theories, including the Wess-Zumino-Witten model [WZ, Wit1, Wit2, Nov| and
its more recent generalisations associated to non-semisimple Lie algebras [BR, Que|, minimal
models and the 8v system; see [DMS] for an extensive review.

The prefactorisation algebra perspective that we follow has several important advantages.
It provides a coordinate-invariant description of (full) vertex algebras; this will, in particular,
allow us to derive a generalisation of Huang’s change of variable formula [Hua| for full vertex
algebras which leads to a simple formulation of the operator formalism in full conformal field
theories. It also provides an elegant geometric formulation of (full) vertex algebras allowing
us to work on an arbitrary two-dimensional conformal manifold; for instance, by paying close
attention to reality conditions we will construct a canonical Hermitian sesquilinear form on
the full vertex algebra using the factorisation product to the global observables on S2.

In the remainder of the introduction we begin in §1.1 by providing a general overview of
different mathematical approaches to conformal field theory and their interconnections. In
§1.2 we explain the main idea for realising the notion of full vertex algebras in the framework
of prefactorisation algebras, based on an observation from [F'S|. In §1.3 we describe the class
of vertex algebras whose non-chiral versions we will formulate using prefactorisation algebras,
and in §1.4 we give an outline the content of the paper to help guide the reader.



1.1 Approaches to conformal field theory

There are various mathematical formulations of both chiral and full two-dimensional conformal
field theory, each of which is based on a different axiomatic framework for quantum field the-
ory. These include the Garding-Wightman axioms [GaWi, SW| or the Osterwalder—Schrader
axioms |OS1, OS2| related by analytic continuation, the Haag—Kastler axioms |[HaKa| or the
closely related Brunetti-Fredenhagen—Verch axioms [BFV] in the locally covariant case, and
the Atiyah—Segal-Witten axioms [Seg, Ati, Wi3| for functorial quantum field theory.

1.1.1 (Full) vertex operator algebras

A vertex (operator) algebra is a vector space V equipped with a state-field correspondence,
also known as a field map or a vertex operator map, Y : V@ V — V((()), valued in formal
Laurent series in the formal variable ¢ with coefficients in V| satisfying certain axioms [Bor,
FHL, Hua, Kac2, FB, LL|. The vertex operator map already encodes an ‘algebraic’ version of
the Wightman fields [SW] for a chiral two-dimensional conformal field theory, see [Kac2, §1].
If, moreover, V' is unitary in the sense of [DL], then under certain extra mild assumptions one
can use the vertex operator map to associate [CCHW, RTT| to each state a € V' an operator-
valued distribution on S*, i.e. a Wightman field on S*, acting on a dense open subset of the
Hilbert space completion Hy, of V' with respect to its positive-definite sesquilinear form. In the
very recent work [CRTT] a rigorous connection is also established in the broader non-unitary
context and without the need for any additional technical assumptions.

Vertex operator algebras only encode chiral two-dimensional conformal field theories, but
a number of closely related extensions describing full two-dimensional conformal field theories
have also been developed: a non-chiral version of vertex algebras was first introduced in [KO]
and further studied in [Ros| under the name OPE-algebras, the notion of a full field algebra was
defined in [HuKo, Kon]|, that of a full vertez algebra in [Morl, Mor2| and that of a non-chiral
vertex operator algebra in [SS|. All of these non-chiral versions of vertex (operator) algebras
are closely related and we refer the reader to the original articles for the various comparisons.
A notion of unitarity was also recently introduced in [AMT] to relate the algebraic approach
of [Morl, Mor2| with an analytic one based on the Osterwalder—Schrader axioms.

1.1.2 Conformal nets

A conformal net [FroG, FJ, KLL1|, by constrast, encodes the local observables of a chiral two-
dimensional conformal field theory as a conformal Haag-Kastler net [HaKa] on S, ie. as
a functor from the category of open intervals in S* to that of von Neumann subalgebras of
B(H) for a fixed Hilbert space H. There is also a ‘coordinate-free’ formulation of conformal
nets [BDH]| built instead on the axiomatic framework of Brunetti-Fredenhagen—Verch [BFV],
see also [F'V, BDRY, Rej, BSW], which rather than working on a fixed spacetime (S! in this
case) treats all contractible compact 1-dimensional manifolds on an equal footing.

Conformal nets on S' similarly only encode chiral two-dimensional conformal field theories,
whereas full two-dimensional conformal field theories are encoded instead in terms of conformal
Haag-Kastler nets on two-dimensional Minkowski space RU! or the Einstein cylinder €. The
relationship between a full two-dimensional conformal field theory and its chiral and anti-chiral
sectors was studied in the conformal nets setting in [Rehl, KL2, BKL], see also [Reh2| for a
review. This was also recently studied from a purely categorical perspective in [BGS| within
a general operadic reformulation [BSW] of the Brunetti-Fredenhagen—Verch framework.



1.1.3 Segal’s functorial approach

In the chiral setting, unitary vertex operator algebras and conformal nets are intimately related
[CKLW, Guil, see also [CGH] in the supersymmetric case. A more geometric perspective on
this relationship was also obtained in [Tenl, Ten2] based on ideas from [Henl], using Segal’s
functorial definition of a chiral conformal field theory [Seg| to interpolate between the two.
Although a similar comparison in the non-chiral case does not yet exist, note that Segal’s
axioms [Seg| can encode both chiral and full two-dimensional conformal field theories.

1.1.4 Factorisation algebras

In the present work we will, instead, be working in the modern formulation of quantum field
theory based on factorisation algebras due to Costello-Gwilliam [CG1, CG2|. It is known to
be closely related, at least on a heuristic level [CG1, §1.4], to all of the frameworks mentioned
above. The precise relationship between factorisation algebras in the Lorentzian setting and
the Brunetti-Fredenhagen—Verch framework was clarified in the recent series of works [GR1,
BPS, BMS, GR2]. In the setting of chiral two-dimensional conformal field theories, conformal
nets were also shown in [Hen2] to be a particular instance of factorisation algebras on S?.

The notion of (pre)factorisation algebra a la Costello-Gwilliam encapsulates, in a simple
and general axiomatic framework, the algebra of observables in general quantum field theories
[CG1, CG2|. Tts development was originally inspired by the theory of factorisation algebras a la
Beilinson-Drinfel’d [BD2], see also [FraG| and the book [FB]| for a nice review, which provides
a sheaf-theoretic coordinate-free formulation of vertex (operator) algebras, and hence of chiral
two-dimensional conformal field theory. Indeed, the axioms of a vertex algebra also admit a
very natural and elegant reformulation in terms of holomorphic prefactorisation algebras a la
Costello-Gwilliam on C, see |[CG1, §5] and [Brul]. There is also a close connection with the
theory of geometric vertex (operator) algebra first introduced in [Hual, see [Bru2|. Note that
the relation between the two different notions of factorisation algebras of Beilinson—Drinfel’d
and Costello-Gwilliam remains to be elucidated, see however [HeKa| for the comparison in
the locally constant setting corresponding to topological field theories [Lur|. From now on, we
shall always consider the notion of (pre)factorisation algebra in the sense of Costello-Gwilliam
and we will refer to these simply as (pre)factorisation algebras.

Even though the origins of factorisation algebras are deeply rooted in the theory of vertex
algebras, hence in chiral two-dimensional conformal field theory, their scope of applicability is
much broader, extending to general quantum field theories in arbitrary space-time dimensions.
This is very reminiscent of the axiomatic framework for quantum field theory in curved space-
time of Hollands-Wald [HW1, HW2, HW3|, see also [HO, HH|, in which the operator product
expansion takes centre stage, exactly as in a vertex (operator) algebra V' where it is given by
the state-field correspondence Y : V@ V' — V((¢)). Indeed, factorisation algebras can encode
operator product expansions of local observables in a general quantum field theory [CG2, §10].

1.2 The orientation double construction

Let ¥ be a real two-dimensional conformal manifold. The decomposition of a full conformal
field theory on 3 into its chiral and anti-chiral sectors is often motivated from a dynamical
point of view by the fact that the space of solutions of the classical field theory factorises into
left and right moving solutions in the Lorentzian setting, or holomorphic and anti-holomorphic
solutions in the Euclidean setting. We will instead adopt the more geometric perspective, as
first advocated in [F'S|, which relates the chiral and anti-chiral sectors of a full conformal field
theory to the two possible choices of orientations one can locally make on ¥. For concreteness
we will work with a Euclidean conformal manifold X, in which case the choice an orientation



corresponds to a choice of complex structure. However, we will also deal with the Lorentzian
case in §4 by working in the Hamiltonian formalism and restricting fields to a Cauchy surface.

The orientation bundle Or(X) — X is the principal Zgo-bundle whose fibre over any p € ¥
consists of two points corresponding to the two possible orientations at p. The double of X,
denoted 7 : & — Y, is defined as the quotient of Or(X) by the relation which identifies the
pair of points above any p € 93. By construction, S is a 2-dimensional conformal manifold
without boundary which is naturally oriented and thus carries a canonical complex structure.
Moreover, S comes naturally equipped with an orientation reversing involution 75 : P f],
such that 77z = 7, induced by the involution Or(¥) — Or(X) exchanging the pair of points
in each Zs fibre. In particular, the fixed point set of 7 corresponds to the boundary 9% <« 5.

Following [I'S], we can describe a full conformal field theory on ¥ using a chiral conformal
field theory on the oriented cover 5. For instance, the double of the 2-sphere ¥ = S? is given
by the disjoint union S = >4 U of two copies of X equipped with opposite orientations
and the chiral and anti-chiral sectors of the full conformal field theory then correspond to >
and Y _, respectively. We will later specialise to this particular case. The subscript ‘E’ on the
orientation reversing involution 75 : S — 3 refers to the fact that it then describes reality
conditions in Euclidean signature. In this case we shall also consider a different orientation
reversing involution 77, : S — 3 which acts individually on each of the two spheres Y, by
reflection through the equatorial plane, rather than exchanging them as 75 does:

We use the subscript ‘L’ here since this will correspond to reality conditions in the Lorentzian
setting (also in the Euclidean setting after Wick rotation from the Lorentzian setting), which
send the chiral and anti-chiral fields to themselves rather than exchanging them.

1.3 Universal enveloping vertex algebras

A general class of vertex algebras can be constructed using a vertex-algebraic analogue of the
universal enveloping algebra construction for Lie algebras, starting from the simpler notion
of a vertex Lie algebra, also known as a Lie conformal algebra, introduced in [Pri]; see also
[Kac2, FB|. Specifically, a vertex Lie algebra £ is determined by a vector space of fields
a(z) = Y ez amz " ! labelled by a € a for some finite-dimensional vector space a, which
together with all of their derivatives d¥a(z) for k € Z>1 is closed under taking the singular part
of their operator product expansions. Then the associated universal enveloping vertex algebra
[Pri] is the vertex algebra V(.Z) that is freely generated by the fields of the vertex Lie algebra
% under taking derivatives and normal ordered products, modulo the relations encoded in .Z.
More precisely, a general element of the vector space V(.Z) is given by a linear combination

of states of the form af_mr) A m1)|0) where a’ € a and m; € Z>y for i € {1,...,r}, with
associated fields
Y (a2l |00, 2) = BT () L gmlal () (L)
(e} 77 o) (my —1)! (my —1)!

The fact that this formula endows V(.Z’) with the structure of a vertex algebra is an immediate
application of the recontruction theorem, see for instance [Kac2, Theorem 4.5 or [FB, §2.3.11].
The proof of the latter, however, relies on various technical results including Dong’s lemma.



We will see that the formula (1.1) (and in particular its counterpart for full vertex algebras)
has a very simple and elegant geometric origin from the prefactorisation algebra perspective
on (full) vertex algebras. Therefore, rather than invoke the reconstruction theorem (for which
there does not appear to be a full vertex algebra analogue in the literature) to construct (full)
vertex algebras from holomorphic prefactorisation algebras, as is done for instance in [CG1,
§5| in the chiral setting, we will show directly that the formula (1.1) emerges very naturally
from the structure of the prefactorisation algebra itself.

1.3.1 Main examples
We will consider the following three canonical examples of vertex Lie algebras:
Kac-Moody: For any finite-dimensional complex Lie algebra g equipped with a symmetric

invariant bilinear form k = (-,-) : g®g — C, the Kac-Moody vertex Lie algebra .Z is generated
by fields X(z) for each X € g with operator product expansions given, for any X,Y € g, by

X YI(w) , (X.Y)

X(2)Y(w) ~ T w G w)e

When g is reductive the associated universal enveloping vertex algebra V(.Z) is known as the
affine (Kac-Moody) vertex algebra V,(g), see for instance [LL, Kac2, FB]. This includes the
Heisenberg vertex algebra as a special case for the trivial Lie algebra C with invariant bilinear
form given by multiplication. Note, however, that the Lie algebra g need not be reductive.
For instance, one may take g to be a Takiff algebra [Tak], i.e. g = T™f := {[t]/t"T1{[t] for some
reductive Lie algebra f and n € Z>g. This can be equipped with a non-degenerate symmetric
invariant bilinear form [Que| and the associated universal enveloping vertex algebra V()
gives rise to examples of (logarithmic) chiral conformal field theories first studied in [BR], see
also [RR1, RR2|, and related to generalised WZW models in [Que].

Virasoro: The Virasoro vertex Lie algebra .Z is generated by one field, often called T'(z),
whose operator product expansion with itself depends on the central charge ¢ € R and reads

N OpT(w)  2T(w) e

T()T(w) Z—w (z—w)?  (z—w)*

The associated universal enveloping vertex algebra V(.£) is the Virasoro vertex algebra Vir,.
B~ system: The Weyl vertex Lie algebra £ is generated by two free bosonic ghost fields
B(z) and ~y(z) with operator product expansion

1

z—w

Bz)y(w) ~

The associated universal enveloping vertex algebra V(.Z) is the 57 vertex algebra Vg, named
after the - bosonic ghost system in the physics literature.

1.3.2 Analytic Langlands correspondence

One important motivation for studying the affine vertex algebra V,(g) comes from the fact
that at the critical level k = k. it plays a central role in the study of the geometric Langlands
correspondence, as formulated by Beilinson and Drinfel’d in their seminal work [BD1] on the
quantisation of Hitchin’s integrable system. For an extensive review on the subject we refer
the reader to [Frel, Fre2| and references therein. Much more recently, an analytic version



of the geometric Langlands correspondence was formulated and studied by Etingof, Frenkel
and Kazhdan in the series of works [Fre3, EFKI1, EFK2, EFK3, EFK4|, implementing and
extending earlier ideas of Teschner [Tes|. The gauge theoretic interpretation of the geometric
Langlands correspondence as electric-magnetic duality in twisted N = 4 super Yang-Mills
theory in four dimensions [KKW] has also been recently extended in [GW] to the analytic
version. It is expected, see for instance [Tes, Fre3|, that the role of the vertex algebra V,_(g)
in the geometric Langlands correspondence should be replaced by that of the full affine vertex
algebra F,_(g) = V,.(g) ® V,_(g) at critical level K = k. in the analytic version.

1.4 Outline of the paper

In §2 we construct a local Lie algebra £2 over the complex curve i, which is an analogue of
the notion of vertex Lie algebra in the present prefactorisation algebra setting. Since we are
interested in describing a full vertex algebra on X, to forget about the orientation introduced
by passing from X to the orientation double i\], see §1.2, the main object of interest will be the
pushforward £ of the local Lie algebra along the projection 7 : 3 — %. We focus on the three
examples of vertex Lie algebras described in §1.3.1. Importantly, in all of these the identity
operator appears as one term in the operator product expansions. Correspondingly, the local
Lie algebra £ will be centrally extended and to keep track of its crucial central extension 1
we will work with the notion of unital local Lie algebras. The counterpart of the universal
enveloping vertex algebra construction is the prefactorisation envelope ULE which we adapt
from the case of local Lie algebras in [CG1, Definition 3.6.1] to the unital case. The technical
details are relegated to Appendix A. This allows us to deal with (full) vertex algebras over
C rather than over the base ring C[s1], as in [CG1, Definition 5.5.2]. Our construction thus
unifies three key examples of holomorphic prefactorisation algebras in a single framework: the
Kac-Moody case [CG1, §5.5], the Virasoro case [Wil] and the 7 system case [CG1, §5.4].

In §3 we consider the vector space F»® = V** ®@ V%@ where V¥ denotes the vector space
underlying the universal enveloping vertex algebra V() and V* its anti-chiral analogue. We
realise this vector space in the limit F,* of the prefactorisation algebra ULE over any point
p € ¥° in the interior %° of 3. In Proposition 3.9 we show that the state-field correspondence at
a point p € ¥° is determined by the factorisation product Fg® — ULE(Y) for some annulus
g € Y C X° around p. In particular, the formula for the state field correspondence of an
arbitrary state in F*® i.e. the analogue of (1.1), has a very elegant geometric origin from the
prefactorisation algebra perspective. We derive a number of properties satisfied by the modes
of the vertex operators of arbitrary states in F»“  including ‘Borcherds type’ identities when
one of the states involved is (anti-)chiral, i.e. belongs to V% or V&, In §3.4 we introduce the
(anti-)conformal states of F»® and use these to derive a non-chiral version of Huang’s “change
of variable” formula for the state-field correspondence of F*  see Theorem 3.19 and Corollary
3.20. In §3.5 we specialse to ¥ = S2 and use the factorisation product to ULE (S?) to define an
invariant bilinear form on F%“. We then use this to prove in Theorem 3.26 that F®“ satisfies
the axioms of a full vertex algebra in the sense of [Morl, Mor2|. Finally, in §3.6 we discuss
reality conditions on F%® and define a Hermitian sesquilinear form on F%.

In §4 we make use of the framework developed in §3 to describe the operator formalism
for F& cf. [DMS, §6]. In particular, we use the change of variable formula applied to the
conformal transformation from the plane to the cylinder in order to describe Fourier series
decompositions of quantum operators on S! associated to generic states in F*®. In §4.2 we
also derive ‘Borcherds type’ identities for the Fourier modes of states in F®“, again in the case
when one of the states involved is (anti-)chiral. Finally, in §4.3 we discuss reality conditions,
define a natural notion of Hermitian conjugate for quantum operators on S' and show that it
corresponds to the adjoint with respect to the Hermitian sesquilinear from on F®¢.
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2 Prefactorisation algebra ULZ

Throughout this section we let ¥ be an arbitrary connected 2-dimensional conformal manifold
but which could be non-orientable and possibly with boundary.

Let Vece denote the symmetric monoidal category of complex vector spaces with the tensor
product over C serving as the monoidal product. We shall also need the symmetric monoidal
category dgVece of DG vector spaces over C, also equipped with the tensor product over C as
the monoidal product. Let dgliec denote the symmetric monoidal category of DG Lie algebras
over C with the direct sum of DG Lie algebras serving as monoidal product.

2.1 Unital local Lie algebra L7

Let €22 denote the cosheaf of compactly supported sections of the de Rham complex on the
complex manifold 51, Let Q2° be the cosheaf of compactly supported sections of the Dolbeault
complex on f], equipped with the Dolbeault differential 9, namely the anti-holomorphic part
of the de Rham differential d = 9 + 0. These are cosheaves of commutative DG algebras.

2.1.1 General setup

Let L be a holomorphic vector bundle over $. We will make a number of assumptions about
L, motivated in part by the list of examples considered in §2.1.2 below, which will allow us to
define a unital local Lie algebra £ on ¥ that will form the basis for the rest of the paper.

Assumption 1 The compactly supported sections of the L-valued Dolbeault complex U —
QS”(U, L) define a precosheaf of DG Lie algebras on X, whose Lie bracket we denote by

[ : Q%%(U, L) @ Q2*(U, L) — Q%*(U, L). (2.1)

Assumption 2 The holomorphic vector bundle L is locally holomorphically trivial over any
coordinate chart on f], that is for any open subset U C 5 equipped with a local holomorphic
coordinate £ : U — C we have L|y = U x a¢ for some finite-dimensional vector space a¢ with
the Dolbeault operator Or, of L given locally by 0.

Although the vector space a¢ will typically depend on the choice of coordinate £, hence the
use of the subscript ¢ in the notation, there is a canonical isomomorphism a,, = a¢ between the
vectors spaces associated with different local holomorphic coordinates &, 7 : U — C determined
by the the change of coordinate from 7 to £&. We then have the isomorphism of DG vector spaces

Q0% (U, L) = ae © Q0 (V). (2.2)

It will be useful to also introduce a canonical copy a of the finite-dimensional vector spaces
a¢ with a corresponding isomorphism (-)¢ : @ = ag. However, it is important to note at this
stage that the induced map ()¢ == (-)e o ((:)5) "' : a; = a¢ will generally be different from
the canonical change of coordinate isomomorphism a, = a¢ described above.

Assumption 3 For each U € f), the DG Lie algebra Qg"(U, L) is equipped with a 2-cocycle
a: QU L) 2 Q% (U, L) — C. (2.3)



We use this 2-cocycle to introduce the twisted precosheaf of DG Lie algebras Li as a central
extension of the precosheaf of DG Lie algebras U — Y *(U, L) following [CG1]. Specifically,
for any open U C 5} we define the DG vector space

LH(U) = Q0 (U,L) & C1,

where 1 is a formal variable of cohomological degree 1 so that C1 is a 1-dimensional complex

DG vector space concentrated in degree 1, isomorphic to the inverse suspension C[—1] of C.
We have a morphism of DG vector spaces extyy : LE(U) — LE(V) defined as the extension

by zero on the first summand and as the identity on C1. We define the C-linear operation

ot L5 (U) © L5(U) — L5 () (2.42)
by declaring C1 to be central and for every a,b € Q%'(U, L) setting

[a,b]q = [a,b] + a(a,b) 1. (2.4Db)

It is straightforward to show that the above structure makes £ into a precosheaf of DG Lie
algebras on S. In fact, since the central extension will play a key role in what follows, it will be
important to keep track of it by introducing the notion of a unital DG Lie algebra'. A unital bG
Lie algebra can be described as a DG Lie algebra L equipped with a map n € Mapggvec,. (C, L)
of degree 1 whose image is both central and closed in L. In other words, a DG Lie algebra L
is unital if it has a central cocycle in degree 1, namely 7(1). We will refer to the degree 1 map
1 : C — L as the unit of the unital DG Lie algebra. See §A.1 for more details. Finally, a unital
local Lie algebra is a precosheaf of unital DG Lie algebras with the property that sections over
disjoint opens commute. Let uLocLiec(D) denote the category of unital local Lie algebras on
a manifold D, see §A.2 for more details. It is straightforward to check by direct computation
that LE is a unital local Lie algebra on 5.

In order to get rid of the dependence on the orientation which was introduced by going
from ¥ to its oriented cover f], from now on we will only consider the pushforward

LY = m.L7 € ulocliec(X) (2.5)
of the unital local Lie algebra £ on ¥ introduced above, along the projection 7 : S =Y. In
other words, the sections of (2.5) over any open U C ¥ are given by

L3(U) = L5 (nH(U)). (2.6)
Note that on a general 2-dimensional conformal manifold ¥, with possibly non-empty boundary
0% and interior region ¥° := ¥ \ 9%, there are two types of connected open subsets U C ¥
one may consider:

(i) U C $° in which case 7 1(U) C 3 consists of two connected components,
(ii) U C ¥ with U NI # ) for which 7~ 1(U) C £ has a single connected component.

Throughout this paper we will only consider bulk fields in the twisted prefactorisation envelope
of £2, to be introduced in §2.3.2, namely observables living on open subsets U C ¥° of type
(7). We leave the study of boundary fields associated with open subsets U C ¥ of type (i),
and their interplay with bulk fields, for future work.

T thank Alex Schenkel for this suggestion which makes some of the later constructions more elegant.



2.1.2 Main examples

The three primary examples of the above general setup which we will consider throughout this
paper correspond to the three canonical examples of vertex Lie algebras discussed in §1.3.1.
Upon taking their twisted prefactorisation envelopes in §2.3 below, these will lead to the full
versions of the Kac-Moody, Virasoro and v vertex algebras, respectively. We now describe
the data underlying the unital local Lie algebra £Z in each of these cases.

Kac-Moody: Let g be any finite-dimensional complex Lie algebra and consider the trivial
vector bundle

L=%xg. (2.7)
This clearly satisfies the assumption of local triviality over any open U C b equipped with a
holomorphic coordinate £ : U — C, where a¢ = g is actually independent of the coordinate §
in this case. The Lie bracket (2.1) on Q&*(U, L) = ae® Q%*(U) is given by

Xeow,Yon =[XYwAn (2.8a)

for X,Y € g and w,n € Q2*(U).

We also define a = g and the isomorphism (-)¢ : a = ag is the identity.

We fix a symmetric invariant bilinear form x : g ® g — C on g. Using this we can define a
2-cocycle (2.3) on QS"(U, L) by the following formula, see [CG1, §5.5.1],

X, Y
aX@w,Y®n) = —R(z;ri)/U@w AN (2.8b)

for any X,Y € g and w,n € Q(C)’(U). The integral over U in (2.8b) is trivially zero on degree
grounds if |w| + || # 1. Indeed, if w € Q0" (U) and 5 € QU*(U) then dw An € Q" 5(U),
which can be integrated over U only if 7 + s = 1.

The unital local Lie algebra £ in this case corresponds to the affine Kac-Moody example
considered in [CG1, §5.5].

Virasoro: Consider the holomorphic tangent bundle
L =TS, (2.9)

Over any open U C 5 equipped with a holomorphic coordinate & : U — C we have the local
trivialisation L|y = U x a¢ with a¢g = spanc{0¢}. The induced isomorphism (2.2) then allows
us to represent an element of Q2°°(U, L) in the form Ot @u € ag ® Q%*(U) with u € Q2*(U)
and the Lie bracket (2.1) on Q%*(U, L) explicitly reads

[0 ® u, 0 @v] = 0 @ (u A Ogv — v A Ogu) (2.10a)

for any u,v € Qg’(U ). One can view 0¢ ® u as a compactly supported Dolbeault form valued
vector field on U, which would be more conventionally denoted ud¢. The Lie bracket (2.10a)
is then simply the commutator of vector fields combined with the wedge product on forms.

We let a = spanc{Q} and the isomorphism (-)¢ : @ = ag¢ is given by Q — —0¢.

Following |Wil], a formula for the 2-cocycle (2.3) on QS”(U, L) is obtained by generalising
the formula for the Gelfand-Fuchs 2-cocycle on the Lie algebra of vector fields on S'. First,
we suppose that U C S is covered by a local coordinate chart £ : U — C. A pair of elements
in Q2*(U, L) can then be represented as O¢ ® u and 0¢ ® v, whose coefficients u,v € Q2 ()
transform as components of (1,0) vector fields on U. We then define the 2-cocycle [Wil, §2.2.2]

(0 ®u, 0 @) = _C / 0(0cu) A Ogv, (2.10b)
24mi Jy
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where ¢ € R is fixed. As in the previous example, the integral over U in (2.10b) is trivially
zero on degree grounds if |u| 4 |v| # 1. The subscript € on the left hand side of (2.10b) is
used to indicate that this 2-cocycle explicitly depends on the chosen coordinate £. However,
it depends on the coordinate £ only up to a 2-coboundary. Indeed, given any other local
coordinate n : U — C on the open U C S and introducing the 1-cochain

. c
Be: (U L) —C, Oe@ur— o — /U (Sn)(£)dE Aw, (2.11)
agn 3 827] 2 . . . I .
where (S1)(&) = % 5(@) denotes the Schwarzian derivative, it is straightforward to

show that
oy (O @ @, 0y @ ) = g (9 @ u, O ® ) + By e ([0 @ u, O ® v))

for any pair of vector fields 0, ® & = 0 ® u and 0, ® 0 = 0 ® v in Qg"(U, L). In other words,
ay = ag + 03, ¢ so that we have an isomorphism of unital local Lie algebras

Byoe L5 (U) 5 L5 (U),  atal—sa+ (z— fyela))l. (2.12)

The 2-cocycle (2.10b) thus leads to a well-defined and coordinate independent central extension
(2.4). We refer to [Wil, §5.2| for further details.

The resulting unital local Lie algebra £ coincides with the local Lie algebra underlying
the Virasoro factorisation algebra in [Wil.

B~ system: Consider the direct sum of the trivial 1-dimensional line bundle on 5} with the
holomorphic cotangent bundle, namely

L=(2xC)oTOs. (2.13)

Over any open U C 5 equipped with a holomorphic coordinate £ : U — C we have the local
trivialisation L|y = U x ag where ag = spanc{1,d{}. The Lie bracket (2.1) on QY*(U, L) is
taken to be trivial. The isomorphism (2.2) here implies QF*(U, L) = Q2*(U) & Q&*(U).
We let a = spanc{3, v} and the isomorphism (-)¢ : @ = ag is given by 8 — 1, v — d&.
A 2-cocycle (2.3) on Q¥*(U, L) is given by
() = o [ wn (2.14)
aw,n) =— [ w .
= o Jy
for any w,n € QF*(U) & Q&*(U), where once again the integral is understood to vanish unless

wAn e QN U) so that if w € Q27 (U), say, then we should have n € Q*(U) with r + s = 1.
This corresponds to the 87 system example discussed in [CG1, §5.4].

2.2 Cohomology of £

In this section we compute the cohomology of the DG vector space L2 (U) for connected open
subsets U C X° in the interior 3° of 3, equipped with a local holomorphic coordinate, see
the last part of Theorem 2.5 below. Although this result is well known, see e.g. [LR, §9] or
[CG1, Theorem 5.4.7], we shall give the details of the proof in the present context since the
full statement of Theorem 2.5 will be crucial for us in §3.

Givenany U C Cor U C 5 we denote by U its closure. The following result is standard.

Lemma 2.1. Let U C C be a bounded open subset with C' boundary.

11



(a) For any f € Q°(U) we have the Cauchy-Pompeiu formula

1 fdu N 1 d/maf_{ f(A) ifxeU,

omi Joy =X 2w Jy p— A 0 ifAeC\TU.

(b) For any w € QXY (U), the d-problem df = w for f € QOO(C) on C is solved by

1 d
R = ey .

We denote the complement of any subset S C CP! := C U {oc} of the Riemann sphere
by S¢:= CP'\ S. For any S C C, let O (S¢) denote the algebra of germs of holomorphic
functions on S° vanishing at co. Explicitly, an element of O, (S€) is the equivalence class [f] of
a holomorphic function f € O¢pi(Ay) defined on an open neighbourhood Ay 5 S¢ 3 oo and
such that f(oco) = 0, where two such functions f and g are considered equivalent if f|y = g|v
for some open neighbourhood V-C Ay N A, of S°.

Lemma 2.2. Let W C C be a bounded open subset. For any w € Qg’l(W) we have:
(1) wt € QOY(C) defines a germ [w¥] € Qs (W),
(#1) [w*] =0 in Oue(WC) if and only if w is O-exact.

Proof. Firstly, since w has compact support the integral entering the definition of wt()\) is
well defined, in particular the integrand is locally integrable near the singularity at A. And by
Lemma 2.1(b), this function provides a solution to the d-problem for w. We then also deduce
from the support property of w that w* is holomorphic on an open neighbourhood A, of W¢.
Moreover, since for every u € supp w C W we have |u — A| > dist(\, supp w), it follows that

C
‘W‘L()\)l < ‘Sup/,LEU ‘W(/,L)’
dist(\, supp w)

for some C' > 0, and hence wh(\) — 0 as A — oo. The statement (i) now follows.

If [w}] = 0 then w' vanishes on an open neighbourhood of W€ and so it has compact
support in the bounded open W C C, i.e. wt € Qg’O(W). The ‘only if’ part of (i) now follows
as w* solves the d-problem for w.

Conversely, if w = On for some 1 € Q(C)’O(W) then it is immediate from the Cauchy-Pompeiu
formula that w' = 7. The ‘if’ part of (i) now follows since w* € QU2 (W). O

Given any bounded open subset W C C, let us fix a basis of the space of germs O, (W€)
and for each basis element [f] € O (W) we pick a representative f € Ocpi(Ay) defined on
an open neighbourhood A of W€ and we choose a smooth bump function py € QS’O(W) which
is equal to 1 on some open neighbourhood of (Ay)¢ C W. Since fla,nw € QWO (A N W) s
defined on suppdpy C Ay N W we can set

[f1:=—f0ps € Q' (W) (2.15)
for every basis element [f] € Os(W€) and then extend by linearity to all of O (W€).

Lemma 2.3. Let W C C be a bounded open subset. For any germ [f] € Ooo(W€), the 1-form
[f]e Qg’l(W) is independent of the choices made, up to 0-exact terms. In particular, for any
representative f € Ocpi(Af) of [f] and any smooth bump function p € QQ’O(W) equal to 1 on
some open neighbourhood of (Af)¢ C W we have that [f] + f Op is O-ezxact.

12



Proof. Let [f] € Oo0o(W€). In terms of the fixed basis of O (W), we can write it as a finite
linear combination [f] = ), a4 fi] of basis elements [f;] € Oo(W€). Then fly =", i fi|y for
some neighbourhood V' C Ay N[, Ay, of W¢. Let p/ € Q2 (W) be
equal to 1 on some neighbourhood of V¢ C W. By definition [f] =

e a smooth bump function
— > a;ifi Opy, so that

[f1+fop=— Zazfz (s, — 1) <Zazfz >8p’+fa(p—p’).

The second term on the right hand side is equal to zero since supp dp’ € VNW and Yaifi—f
vanishes on V. On the other hand, the first term on the right hand side is d-exact because
ps, —p' vanishes on (Ay,)¢ C V€ so that f; is holomorphic on the support of py, — p’. Likewise,
the last term is also J-exact, as required. U

Lemma 2.4. Let W C C be a bounded open subset. For [f] € Ooso(W®) we have [[f1*] = [f].
Moreover, for w € QY (W) we have w — [wh] = I((w = [w])¥).

Proof. For any f € O¢cp1(Ay) tending to zero at infinity, we have

~(FOpp)t = (FO(1 = pg))* = (B((1 = p)f))* = (1= pp) .

where in the second step we used the fact that df = 0 on supp(1—p ¢) C Ay. In order to see the
last step, consider the Cauchy-Pompeiu formula applied to the function (1 — ps)f € Q°(Dg)
with Dp D W an open disc of radius R > 0, namely

1 fdp 1 du A O((1—ps)f)

5 =(1—prN))f(N) ifreD
2ri oDp 1 — )\+2ﬂ'i W n— A (1=prN)f(N) ifX€ Dp,

where in the first integral on the left hand side we used the fact that (1 — pf)f = f on 0Dpg
and the domain of the second integral was restricted from Dpr to W using the fact that the
integrand has support in W. The first integral is bounded by sup,csp, |f(1)| which tends to
zero as R — oo. And in this limit, the right hand side of the Cauchy-Pompieu formula tends to
(1—=pf(X)f(A) for all X € C. Finally, we note that (1 —py)f = f on the open neighbourhood
(supp pg)¢ of W€ from which the first claim now follows.

For the ‘moreover’ part, it follows using Lemma 2.2(i) and the above that w* and [w]*
define the same germ in O (W¢). The desired result now follows by using Lemma 2.2(i7), see
in particular its proof. O

Let U C X° be a connected open subset of the interior ¥° C 3, i.e. not intersecting the
boundary 82 of 3, with a bounded holomorphic coordinate on each connected component of
7 YU) C £. That is, 7~1(U) = U™, Wi with m € {1,2}, where each W; C 5 is a connected
open subset equipped with a holomorphic coordinate & : W; — C such that &(W;) C C is
bounded. We will denote this set of holomorphic coordinates collectively as & : 7~ (U) — C.
Consider the DG vector space concentrated in degree 0 given by

L8 (m @a@@ (&(W)°) @

We define a morphism in the category of pointed vector spaces udgVecg, see §A.1, as

iy L5 (nHU))[-1] — LE(U) (2.16a)
s [fi])1, — D (@) ® [ fi]
=1

sta— al
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for any a; € a, a € C and [fi] € Ooo(&(W;)¢). We also define another morphism in udgVecg,
going in the other direction, as

pu s LE(U) — Ly (xH(U)[-1] (2.16D)

(ai)e; ® wi —> 8_1<3i ® [((ffl)*wi)i])

m

M

N
Il
—

i=1

(bi)e;, ®m; — 0

M

@
I
—

al —s s la

for any a;,b; € a,a € C, n; € Q(C)’O(Wi) and w; € QSI(WZ) Finally, we define a degree —1
linear map

hy : LE(U) — LE(U) (2.16¢)
(e ®wi > (a0 (167w — (67 w) )
i=1 =1
> (bi)g @1 =0
=1
al — 0

for any a;,b; €a,a € C, n; € Qg’o(Wi) and w; € le(T/Vz)

Theorem 2.5. For any connected open subset U C X° equipped with holomorphic coordinates
¢ : 7 Y(U) — C as above, we have a strong deformation retract

L O & £3U) T Dm

in udgVece. In other words, the collection of linear maps in (
in the sense that pyiy = id and iypy — id = —(Ohy + hyd
strong in the sense that pyhy = hyiy = hyhy = 0.

In particular, H°(L3(U)) = 0 and H' (L3(U)) = L5 (x1(U)).

2.16) define a deformation retract
), and this deformation retract is

Proof. Let a;,b; € a,a € C, n; € QS’O(VVi), w; € Qg’l(Wi) and [f;] € Ooo(f(Wi)C). Then

piv (57 (o D) =5 (e 161]) 0,

so using Lemma 2.4 we deduce that pyiy = id. Next, we have

m

(ivpv — id)<z ((ai)e; @ wi + (bi)g, @ mi) + al)

> (e ® (- €106 @) T) — S (bide @

=1 =1

=—8<hu(zm:((az‘)&®wz‘+(b)£ © ;) +a )) ZhU ie: @ Oni)

i=1

where the first sum in last step has been rewritten using the ‘moreover’ part of Lemma 2.4
and the definition of hyy. To rewrite the second sum, we note that by Lemma 2.2(i7), see in
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particular its proof, we have (& 1)*dn;)* = (&1 n; € Q2°(C) which defines the trivial germ
in Oce (& (W;)°) and hence [((&1)*On:)¥] = 0. Therefore by definition of hyy we have

> ho((bi)e, ® o) = hU(Z(bi)éi ® 37%‘) = (bi)e, @ mi.
i=1 ]

=1 =1

We have shown iypy —id = —(5hU + hU5) so that we have a deformation retract.
It remains to show that this deformation retract is strong. But it is immediate on degree
grounds that pyhy = 0 and hyhy = 0. On the other hand, we have

puio (571 (2@ )21, 0)) = S (e @ (11 - [1514)"

=1

Now by Lemma 2.4 we know that [f;] = [[f;]}] and hence the right hand side vanishes, so we
have a strong deformation retract. O

2.3 Twisted prefactorisation envelope of £*

We now introduce the prefactorisation algebra ULZ, referred to as the twisted prefactorisation
envelope of the unital local Lie algebra Lg, by adapting the general construction in [CG1].
To formulate the notion of prefactorisation algebra most succinctly it is convenient to use
the framework of multicategories, which are also known as coloured operads. These consist of
classes of objects and arrows, just like an ordinary category, but where the arrows describe
n-ary operations with an arbitrary number n € Z>( of inputs but still just a single output.
We refer the reader to |Lei, §2] or [CG1, §A.3.3] for an introduction to multicategories.

2.3.1 Prefactorisation algebras

Let Top(X) denote the category whose objects consist of ¥ itself and all open subsets which
are homeomorphic to either C or C \ {0}, and whose morphisms are given by inclusions,
i.e. for all U,V € Top(X) the set of morphisms Homops) (U, V') contains a single morphism
U — VifU CV and is empty otherwise. Note that we do not restricting attention to open
subsets homeomorphic to C, as is done for instance in the locally constant setting of [AF, Lur|
which describes topological quantum field theories. The reason for also allowing open subsets
homeomorphic to C \ {0} will become clear later in §3.2 below, see in particular Proposition
3.9 where the state-field correspondence will be constructed as a factorisation product from
a disc to an annulus. Likewise, the reason for including ¥ itself as an open subset in Top(X)
will become clear in §3.5 when we introduce the notion of invariant bilinear form. Note that
our choice of category Top(X) also differs from the one used in [CG1, CG2| whose objects
consist of all open subsets of ¥. However, unlike [CG1, CG2], where the focus is on general
perturbative quantum field theories, here we restrict to conformal field theories, for which our
choice of category Top(X) is particularly well-adapted.

We define an associated multicategory Top(X)" as follows. It has the same set of objects as
Top(X) and for any finite collection of open subsets U; with i € {1,...,n} and V in Top(X)",
with n € Z>, its set of n-operations is

Hompopsy (Ui Ui, V) if Uy N U; = 0 for all i # j,

TOP(E)U . TL =
P, ((Ul)z:bv) : { 0 otherwise.

In other words, it contains the single element L, U; — V if all the U; are pairwise disjoint

and contained within V', and is empty otherwise. By convention, for any open V' C 3 there is
a unique O-operation ) — V from the empty collection of disjoint open subsets to V. Since the
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disjoint union is symmetric we have U} ;U; = L Uy(;) for any o € S;, and the corresponding
action of the symmetric group on the n-operations

o*: IR (U, V) — PIPE) (U,0)1y, V)

is simply the identity.

Given any symmetric monoidal category C with monoidal product denoted ®, we denote
the associated multicategory by C®. A C®-valued prefactorisation algebra F on ¥, is an object
in the category Algronsu(C®) of Top(X)“-algebras in C®, i.e. it is a multifunctor

F: Top(%)- — C&.
More explicitly, this is an assignment of:
e an object F(U) € C to each open subset U C ¥ in Top(X), and

e a morphism m‘?Ui) v Qi F(U;) = F(V) in C, called a factorisation product, to each
inclusion of n € Z>q disjoint open sets LI ;U; C V in Top(X), such that the diagram

n m; nm7 n
KRR F(Uy) o T, QW)

mF
m7I l Vi),w
(U35),W
F(W)

in C commutes, for any inclusion of disjoint open subsets I_I;Z:ilUij cVifori=1,...,n
and U?_,V; C W in Top(X)“. In particular, the unique 0-operation @ — V is assigned a
morphism v — F(V) from the identity object u of C, i.e. F(V) is pointed.

When ¥ is clear from the context we denote the factorisation products simply as m ). We
also use the abbreviation myy = m gy for any inclusion of open subsets U C V' in Top(X).
Note that a prefactorisation algebra F is, in particular, a precosheaf on ¥ restricted to Top(X)
with extension morphisms myy for every inclusion of open subsets U C V' in Top(X).

A morphism of prefactorisation algebras ¢ : § — G is a natural transformation

F
Y

Top(X)- Jfb c®
—

of multifunctors F, G : Top(X)" — C®. Let PFac(X, C¥) := Algyy,(s)u(C¥) denote the category
of prefactorisation algebras on ¥ valued in the multicategory C®. Given any morphisms of
prefactorisation algebras ¢ : F — G and v : § — H with F, G, H € PFac(X, C®) we denote by
Pog : F — H their composition, i.e. the vertical composition of these natural transformations

of multifunctors. The horizontal composition of natural transformations will be denoted by
concatenation.

2.3.2 Twisted prefactorisation envelope of £

Any local Lie algebra on ¥ defines, in a canonical way, a prefactorisation algebra on ¥ valued
in dgLieg Similarly, any unital local Lie algebra on X defines a prefactorisation algebra on

> valued in udgLie%, see Proposition A.3 for details. In [CG1, Definition 3.6.4], the notion
of twisted prefactorisation envelope is defined by applying the Chevalley-FEilenberg functor
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CE, for Lie algebra homology to such a unital DG Lie algebra (or more generally to a DG
Lie algebra with a 1-dimensional central extension in any degree —k € Z). This produces a
prefactorisation algebra over the base ring C[s1] and ultimately in the holomorphic setting of
[CG1, §5.5] to vertex algebra structures over the base ring C[s1]. In order to obtain vertex
algebras over C, we introduce a variant CE, of the homological Chevalley- Eilenberg functor in
§A.1.2, in which we additionally quotient by the ideal generated by s1 —1, see Proposition A.2.
Applying this functor to the unital local Lie algebra L viewed as a prefactorisation algebra
on ¥ valued in udgLie%, and taking 0" cohomology to obtain a prefactorisation algebra valued
in vector spaces, leads to

ULE = H'CE, L € PFac(%, Vec?).

By a slight abuse of terminology, in this paper we will still refer to this construction as taking
the twisted prefactorisation envelope of the unital local Lie algebra £>. We refer the reader
to §A for the full details of this construction, leading to the definition (A.6).

Since £Z(U) is concentrated in degrees 0 and 1 for any open subset U in Top(X), it follows
that for every i > 0 we have CE; (£ (U)) = 0 and hence also CE;(£%(U)) = 0. In particular,
any A € CEq(LZ(U)) is closed and we will denote by [A]y € ULE (U) its 0™ cohomology class.

The factorisation products m g,y of UL can be described explicitly as follows. For any
inclusion U C V of open subsets in Top(X), the factorisation product my y is induced by the
extension morphism £%(U) — £ (V) of the precosheaf £3. For any inclusion U LUV C W in
Top(X)Y, the factorisation product m(y,vy,w is given by the composition

ULE (V) @ ULE(V) = H(CEL (£5(U) @ CE. (£3(V)))
—E+Eﬂ<@EJL§aDéBLEOO)>——>UL§OVL (2.18)

where we have first applied the canonical isomorphism given by [A]y ® [B]y +— [A® B] for any
A € CEo(LZ(U)) and B € CEo(£%(V)) where we denote by [A®B] the 0*! cohomology class of
A®B € CEo(LZ(U))®RCEy(LZ(V)). The second isomorphism in (2.18) is induced by the Sym-
product A ® B — A B. The final morphism in (2.18) is induced by the factorisation product
LEU)DLE(V) — LE(W) of the unital local Lie algebra £ regarded as a prefactorisation
algebra valued in udgLie%, which is given explicitly by extending by zero elements of £ (U)
and £LZ(V) to £LZ(W) then taking their sum in £Z (W) and identifying their central extensions.
In summary, the above factorisation product is given by

w
muyyw  ULL(U) @ UL (V) — ULZ (W),
[Aly @ [Bly — [A Blw.

The factorisation product m,) v : @iy ULE (U;) — ULE (V) for any inclusion L, U; C V
in Top(X)" with n € Z>3 is obtained recursively from the above factorisation product.

2.4 Reality conditions

To describe reality conditions on the prefactorisation algebra UL, which will be needed later
in §3.6, we will show in Proposition 2.6 below that ULZ is equivariant under a certain action of
the group Zo = (t) in which t acts by an anti-linear isomorphism of prefactorisation algebras.
We begin by constructing a Zs-action on the unital local Lie algebra L§ after making some
further assumptions on the holomorphic vector bundle L from §2.1.1. We will show in §2.4.2
that all these assumptions hold in each of the main examples from §2.1.2.
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In this section we take 7 : & — & to be any orientation reversing involution of S such that
there is an involution 7 : % — 3 of 3 with the property that 77 = 7. The main examples are
the Euclidean involution 7 : I i, introduced in §1.2, together with the identity involution
id : ¥ — ¥ or the Lorentzian involution 7y, : ¥ — 3 also introduced in §1.2, in the case ¥ = §?
so that & = Y4 UX_ together with the orientation reversing involution 7 : ¥ — ¥ defined in
the same way as 77, on each copy Y.

2.4.1 Zs-equivariance of ULZ

Recall from §2.1.1 that we are assuming the anti-holomorphic vector bundle L on S to be such
that Qg"(U, L) is a DG Lie algebra for every open U C ¥ with Lie bracket denoted by (2.1).
We will make two further assumptions on L below.

Assumption 4 The orientation reversing involution T : SIS lifts to an anti-linear invo-
lutive holomorphic vector bundle automorphism

J e §
l l (2.19)
SR
over T: % — 5 such that the induced 1somorphism
700U, L) = Q2 (7(U),L), 0®w— To®Tw (2.20)

for any open subset U C f], with o € T.(U, L) a smooth compactly supported section of L and
w € Q2’°(U), is an anti-linear morphism of DG Lie algebras.

Note that since 7 reverses the orientation we have 71 = —I7* where I : Q! — Q! denotes
the complex structure of f), and hence we obtain an anti-linear isomorphism of cosheaves
Q2* = 700 w — T'w. The fact that (2.20) commutes with the differential 8 follows
because 7 is a holomorphic vector bundle automorphism so that 9,7 = 70, and for every

w € Q¥*(U) with U C 5 we have

0w = $7*dw + 3iT*[(dw) = $dTFw + 3il (dT%w) = O(T*w), (2.21)

1
2
where in the third equality we have used the fact that 71 = —I7*.

Recall from §2.1.1 that we are also assuming L to be locally trivial over coordinate charts
on i, i.e. for every open subset U C S equipped with a holomorphic coordinate £ : U — C
we have L|y =2 U x ag. Similarly, on the image open 7(U) C S we have the holomorphic
coordinate 7¢ := { o7 : 7(U) — C with the induced local trivialisation L, = 7(U) X az.
Since the anti-linear vector bundle automorphism 7 : L — L acts fibrewise, it induces an anti-
linear map 7 : ag — az¢ and under the isomorphism (2.2) we can represent the isomorphism

(2.20) locally by
Fag @ Q(U) =, aze ® Q2*(7(U)), AQwr— Ta® THW. (2.22)

Using the isomorphisms ()¢ : @ = ag¢ and ()¢ : @ = az¢ with the canonical copy a introduced
in §2.1.1, we obtain an induced anti-linear involution 7 : a — a.

Recall finally from §2.1.1 that we are also assuming L to be such that the DG Lie algebra
Qg'(U, L) is equipped with a 2-cocycle (2.3).

Assumption 5 The 2-cocycle (2.3) satisfies the reality condition

ala,b) = a(Ta, 7b) (2.23)
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for all a,b € Q2*(U,L).

It then follows that the anti-linear morphism of DG Lie algebras (2.20) extends to an
anti-linear isomorphism of unital local Lie algebras

7: L

oM

TS
— 7L,

defined by sending 1 ~ 1, which satisfies (7*7) o # = id. Note here that the pullback 7*£2 of
the precosheaf of unital DG Lie algebras £ also satisfies the local Lie algebra condition (A.5),
so that 7*£2 € uLocLiec(X). Since 77 = 77 we have an induced anti-linear isomorphism

o

FoLE L (2.24)

also satisfying (7%7) o 7 = id. We will say that £Z € uLocLiec(3) is Zo-equivariant.
Recall from §2.3 that we denote the composition of morphisms in PFac(X, C®) by o.

Proposition 2.6. We have an anti-linear isomorphism of prefactorisation algebras

~

FLULY — TULY
satisfying (T*7) o 7 = idycs, t.e. the prefactorisation algebra UL is Zo-equivariant.

Proof. Firstly, the anti-linear isomorphism (2.24) of unital local Lie algebras on ¥ induces, by
Proposition A.3, an anti-linear isomorphism of PFac(X, udgLieE‘:9 ), i.e. a natural isomorphism
of multifunctors Top(X)” — udgLieg . Abusing notation slightly, we denote it in the same way;,
as 7 : LZ = 7*LY but where now we view £2 as a prefactorisation algebra on ¥ valued in
udgLie(%9 and LY = LZ T as its pre-composition with (the identity natural transformation
of) the induced multifunctor 7 : Top(X)” — Top(X)“. The property (7%7) o 7 = id of the
morphism (2.24) of unital local Lie algebras on ¥ then turns into the property (7%7)o7 = id»
for the natural isomorphism 7 : £ = 7*£2 of multifunctors Top(X)" — udgLie%.

The horizontal post-composition of this natural isomorphism with (the identity natural
transformation of) the composite functor H? CE, yields a natural isomorphism

H'CE,#: ULY S UL o7 (2.25)

of multifunctors Top(X)" — Vec%’. Then by the interchange law for the vertical and horizontal
composition of natural transformations we have

(H°CE, (7*%)) o (H'CE, #) = H° CE, ((7*#) 0 #) = H’ CE, idgs = idygs - (2.26)

If by a slight abuse of notation we denote the morphism in (2.25) also by 7, so that the first
morphism on the left hand side of (2.26) is the pre-composition of 7 with the identity natural
transformation of the multifunctor 7, i.e. 7%7 = 7 7, then the relation (2.26) is then equivalent
to the desired identity (7°7) o 7 = idys. O

2.4.2 Examples

We now show how to construct, for each of the three main examples of holomorphic vector
bundles L over ¥ from §2.1.2, the vector bundle automorphism 7 : L — L in (2.19) satisfying
the further conditions assumed in the general discussion of §2.4.1.
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Kac-Moody: We ﬁx an anti-linear involution 7 : g = g. This lifts the orientation reversing
involution 7 : & — % to an anti-lincar involutive automorphism of the trivial bundle (2.7).
The induced isomorphism (2.22) is clearly a morphism of DG Lie algebra since

F(X@w,Yon) =7XY] @7 (wAn) = [rX,7Y] @ 7w A TF7
= [TX @ T'w, 7Y @ T%n] = [F(X@w),7(Y @1n)].

In the second equality we used the fact that 7: g = g is an (anti-linear) automorphism of g.
In order to show that the 2-cocycle in (2.8b) satisfies (2.23), we assume that the bilinear

form x : g ® g — C is such that
r(TX,7Y) = k(X,Y) (2.27)

for every X,Y € g. Note that, 7*0w = 9(7*w) for every w € Qg'(U) by the same computation
as in (2.21) and so for any w,n € QF*(U) we then have

1 1 1 o
—~ owrn=—— | TOoAT) = — | d(T) AT 2.98
27ri/§ AT TN gT(T W AT) 27ri/§ (T7w) AT (2:28)

where in the second equality we have also used the fact that 7 : S — 3 is orientation reversing.
Note here that we have taken the integration over all of S rather than just U by implicitly
using the extension morphism Q2*(U) — Q%*(S). It now follows from combining (2.27) and
(2.28) that the 2-cocycle in (2.8b) satisfies (2.23).

We observe for later that the bilinear form (-,-) : g® g — C, (X,Y) = —s(7X,Y) is a
Hermitian sesquilinear form on g, i.e. it is anti-linear in the first argument, linear in the
second and (X,Y) = (Y, X). It is non-degenerate if £ is. In particular, (X, X) € R for all X € g.

Virasoro: Since 7: % — 3 is orientation reversing, its differential defines a vector bundle
isomorphism dr : TS = T01%, Postcomposing this with complex conjugation we obtain
the desired anti-linear involutive vector bundle automorphism 7 := d7(:) : L — L in (2.19) of
the holomorphic tangent bundle L = T from (2.9).

Recalling that a; = spanc{0;}, and likewise as¢ = spanc{0d;¢}, the induced anti-linear
map 7 : ag — az¢ along the fibres is given explicitly by 0¢ + 0z¢. The isomorphism (2.22)
then sends 0¢ ® u for any v € Q2*(U) to D3¢ @ T*u. To see that this is a morphism of bG Lie
algebras, with respect to the Lie bracket (2.10a), note that for u, v € Q2*(U) we have

72([85 X u, 35 & U]) = %(85 & (uagv — U@gu)) = ai—g & (W 3{-5% — W&;gm)
= [8% ® T*u, Oz¢ ® 7’*71)] = [%(85 ®u),7(0: @ U)]

The anti-linear involution 7 : @ — a induced on the canonical copy a = spanc{} is simply
given by complex conjugation x Q — T (.

To see that the 2-cocycle (2.10b) satisfies the condition (2.23), we use the identity (2.28)
applied to w = de¢u and 1 = J¢v, and noting that 7*9¢u = dz¢7*u and 7*9cv = dz¢7*v we find

045(85 X u, 85 Q) = Qzg (8725 ® T U, 67:5 ®W) = Q¢ (?(65 X u),’f(ag ® v))

The fact that ¢ € R was used in the first equality. We then recall from §2.1.2 that the 2-cocycle
(2.10b) depends on the coordinate £ only up to a 2-coboundary, explicitly az¢ = ag + 08¢ .
The 2-cocycle property (2.23) is therefore satisfied in this example only up to a 2-coboundary.
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B~ system: The pullback by the orientation reversing map 7 : S — 3 defines a vector bundle
isomorphism 7* : T*b 08 = 7*01% 5o that its postcomposition with complex conjugation
yields an anti-linear involutive vector bundle automorphism 7 := () . T 05 — T*10%
over 7: 5 — 3 of the holomorphlc cotangent bundle T*19%. Notice that this vector bundle
automorphism naturally covers 7~ DI E however since 7 is an involution we have 7 =7
so that it also defines a vector bundle automorphism over 7 : I3 Combining this with
the canonical anti-linear isomorphism of the trivial vector bundle SxC o ExC given by
T on the base ¥ and complex conjugation on the fibre C, we obtain the desired anti-linear
involutive vector bundle automorphism 7 : L — L of the holomorphic vector bundle (2.13).

Recalling that in the present case we have a¢ = spanc{1,d¢{} and az¢ = spanc{1,d(7¢)},
the induced anti-linear involution 7 : ag — az¢ is given on the basis elements by 1 +— 1 and
d¢ — d(7¢). The induced anti-linear involution 7 : a — a on a = spanc{S3,7} is again just
given by complex conjugation x 8 +yy+— T8+ Y.

Since the Lie bracket is trivial the only thing to check is that the 2-cocycle (2.14) satisfies
the condition (2.23). But under the canonical isomorphism QU*(U, L) = Q2*(U) & Q*(U),
the isomorphism (2.22) acts simply as w — 7w on any w € Q2*(U) @& Q&*(U). It then follows,
exactly as in (2.28), that

a(w,n) :—L WAN= 1 T*w A TN = a(Tw, Tn)
’ 2w Js 27 Js ’
) $

for any w,n € ch)\’.(U ) ® Q&*(U), where as before we implicitly use the extension morphism
Q(c)’.(U) — Qg’.(z), as required.

3 Full vertex algebra F)

As in §2, we will keep working with an arbitrary connected 2-dimensional conformal manifold
3. which could be non-orientable and also with boundary. However, throughout this paper we
will not treat boundary conditions and therefore ignore points on the boundary 9% by only
working locally arounds points in the interior %° C X. Later, towards the end of §3.4, we will
specialise to the case of the 2-sphere 3 = S2.

3.1 Underlying vector space

As mentioned in §1.3, we are interested in full vertex algebras whose underlying vector spaces
are built as induced modules of certain infinite-dimensional Lie algebras. In what follows we
will focus on the three main examples of infinite-dimensional Lie algebras given by centrally
extended loop algebras which includes affine Kac-Moody algebras, the Virasoro algebra and
the B~ system. These will closely correspond to the three examples of unital local Lie algebra
L given in §2.1.2. It will be convenient to describe all these examples uniformly as follows.

Recall the finite-dimensional vector space a introduced in §2.1.1, and consider the associ-
ated infinite-dimensional vector spaces

d=a®C[t,t @ Ck, a=ax®C[tt]eCk (3.1)

where t and t are independent formal variables referred to as loop parameters. These vector
spaces come equipped with Lie algebra structures [-,-] : a®d — dand [,-] : a®a — a,
respectively, with respect to which k and k are central. We will describe these explicitly below
in each of the three main examples in terms of the loop generators

~

Ap) = a ®t" € H, é(n) =a®t'ca (32)
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for a € a and n € Z. In all cases, the Lie algebras (3.1) admit a decomposition into a direct
sum a=a; ®a_ and a = ay ® a_ of Lie subalgebras

Gy =a@Ct]®Ck, a_=a®t 'C[t]
0, =a@CHeCk, a =axt!CFE.

Let C|0) be the 1-dimensional module over the direct sum Lie algebra @, ® a; on which
a® C[t] and a ® C[f] act trivially and the central elements k and k both act by multiplication
by 1. Define the full affine vertex algebra F»“ as the induced module over the direct sum Lie
algebra a @ E, namely ~

a,o . ada
Foe = Indafeaa C|0).
Note that we have included the 2-cocycle « from (2.3) in the notation. This is a slight abuse of
notation since « is not directly used in the definition but it will be closely related to the central
extension of the Lie algebra structures on (3.1) in each of the examples described below. We
therefore use the subscript « in the notation to emphasise this choice of central extension. In
each of the three cases we will have an isomorphism of vector spaces F“* = U(a_ 693_) |0) so

that a general element of F““ is given by a linear combination of expressions of the form

r 1 Lr el

a(_mr) e a(_ml)b(_m) e b(_nl)’0> (33)
for any a’ € a, m; € Z>y with i € {1,...,7} and b/ € a, nj € Z>; with j € {1,...,7} where
r,7 € Z>¢. The full affine vertex algebra F*“ is canonically isomorphic to the tensor product
of two copies of the usual affine vertex algebra, namely we have an isomorphism of complex
vector spaces F»® =2 V& @ VYV where

Vo = Indd C|0),  V**:=Ind® C|0)
+ a4

are the affine vertex algebra and its ‘anti-chiral’ copy.
We now describe the Lie algebra structures on (3.1) in all three cases of interest, where
the finite-dimensional vector space a was defined in each case in §2.1.1.

Kac-Moody: We can endow (3.1) for a = g with Lie brackets described in terms of the loop
generators (3.2) by

[Xemys Y] = X Ymny + 1m0 6K Y)0mn0k, (3.4a)

Xy Yyl = DYy + M 5K Y)Gmn 0 k. (3.4b)

(m+n)

for every X,Y € g and m,n € Z. In this case d and a are two copies of the centrally extended
loop algebra associated with g. Since the case when g is a simple Lie algebra corresponds to
a pair of untwisted affine Kac-Moody algebras, by a slight abuse of terminology we will keep
referring to the general case with g arbitrary as the ‘Kac-Moody’ case.

Virasoro: We endow (3.1) for a = spanc{€Q} with the Lie brackets given in terms of the
loop generators (3.2) of the fixed basis element by

m(m —1)(m —2)

[Q(m)7 Q(n)} = (m —n)Qmqn—1) + 2 COman,2 kK, (3.5a)
~ ~ = m(m—1)(m —2 _
[Q(m), Q(n)] = (m - n)Q(ern,l) + ( 1;( )C(Sm+n72 k. (35b)

In this case d and @ are two copies of the Virasoro algebra, where the usual generators Ly
and L, satisfying the more familiar looking Virasoro relations are given by a simple shift in
the indices, namely L,y = Q(,41) and L,y = Q(41)-
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B~ system: We endow (3.1) for a = spanc{f, v} with the Lie brackets given in terms of the
loop generators (3.2) of the fixed basis elements 5 and v by

[5(m)7’7(n)] = Om+n,—1 k, (36&)
[Bmy: V)] = Oman,—1 k. (3.6b)

In this case @ and @ are two copies of the infinite-dimensional Weyl algebra, also know as the
By system, whose generators are often denoted by a(,) and azkn) with the more standard Lie
algebra relations obtained from (3.6) by a simple shift of indices

A(n) = /B(n)a a)(kn) = Y(n-1) d(n) = B(n)a &E(n) = ﬁ(n—l)' (37)

3.1.1 Geometric realisation in UL (U)

Let U C X° be a connected open subset of the interior ¥° C X. Its preimage under the
projection 7 : Y5 Yisa disjoint union of two copies of U which we denote 7= *(U) = U, LU _.
Suppose that Uy is equipped with a holomorphic coordinate £ : Uy — C such that £(U;) € C
is bounded. Since U_ comes equipped with the opposite complex structure to U, the same
map & viewed as a function on U_ defines an anti-holomorphic coordinate £ : U_- — C on
U_ C 7~ }(U). In other words, the complex conjugate map ¢ : U_ — C defines a holomorphic
coordinate on U_. We then refer to £ : U — C as a local (holomorphic) coordinate on U C ¥°.
Given any p € U C X°, we let p+ € Uyt denote its preimages under = ;5 %, We refer
to &(p) == &(p+), i.e. the value of £ : Uy — C at py € Uy, as its holomorphic coordinate.
Similarly, we refer to &(p) = &(p_), i.e. the value of £ : U_ — C at p_ € U_, as its anti-
holomorphic coordinate. We also define shifted local (anti-)holomorphic coordinates as

=E6—€Ep): U —C,  §=E6-&@p):U-—C (3.8)

so that any ¢ € U C ¥ has holomorphic coordinate &,(¢q) = £(q) — &(p) and anti-holomorphic

coordinate &,(q) = £(q) — &(p).
In view of giving a geometric description of the vector space F*“ using the prefactorisation

algebra UL it is useful to first consider the level 1 subspace (a_ @ a_)|0) € F“*. We have
an injective linear map

(@-@a_)|0) = a® O (&(U1)°) @ a® oo (§,(U-)°), (3.9)
a(_m)|0> + B(_n)‘0> — (a &® [)\—m], b® [X—n])

for a,b € a and m,n € Zx1, where [A™™] € O (£,(U)¢) denotes the germ of the holomorphic
function &,(U1)® € CP*\ {0} — C, A = A™™ and similarly [A\™"] € Ooo (& (U-)) denotes the
germ of the holomorphic function &,(U-)¢ ¢ CP'\ {0} — C, A — A ™™

Recall the (0,1)-form [f] € Q2 (W) on a bounded open subset W C C associated with a
given germ [f] € O (W©) defined in §2.2. In the case of the germ [A™™] € Ouo(&,(U4)) we
can pick the representative f : Ay := CP*\ {0} — C, A — A™™. By Lemma 2.3, the (0, 1)-form
[A™™] € Qo1 (&(U4)) is then given, up to d-exact terms, by —f Op where p € QY 0(§p(U+))
is a smooth bump function equal to 1 on some neighbourhood of {0} = (Af)¢ C &,(U). The
pullback of fl¢ @, )\qoy along &, : Uy = &(Uy) is §f - Uy \ {p+} = C, ¢ = &(q) ™™, ie. the
function £;™ : Uy \ {p4+} — C. Then [A7"] € Q%Y (U,), which for brevity we denote by
[€, ™1, is given by Lemma 2.3 up to 0-exact terms by fp_mé(fg ) where {5p € Qg’O(U+) is equal
to 1 in a neighbourhood of p; € U,. Similarly, we let [gp "] stand for E; "] e QHU.)
which is given again by Lemma 2.3 up to d-exact terms by & ”8( p') for some smooth bump
function p’ € QO 0(§p( U-)) equal to 1 in some neighbourhood of 0 € &,(U-).
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Combining (3.9) with the isomorphism from Theorem 2.5 defined using the local holomor-
phic coordinate on 7~1(U) = U, U U_ given by (3.8) we obtain an injective linear map

(@_@a_)[0) — H' (LI(U)) = H*(£5(U)[1)), (3.10)
a(—m)|0) +b(_p)|0) — [ag, ® [§,] + bg, @ [£,"1]

Note, in particular, that although [, "] and [5; "] were described above only up to d-exact
terms, this ambiguity drops out from taking the cohomology class [-] in (3.10).

If we regard H° (L% (U)[1]) as a subspace of UL (U) then (3.10) gives an embedding of the
subspace (@_ & a_)[0) C F* into ULZ(U) for any neighbourhood U C ° of p equipped with
the local coordinate £. A general element of F®»® involves products of elements from a_ and
a_ in some order, and we can realise such an ordering geometrically in ULZ(U) through the
choice of supports of the smooth bump functions entering the definitions of [£, ] € Q2tUy)
and Ep_ " e 9271((]_). To describe this ordering explicitly we introduce the important notion
of nested open subsets that will be used repeatedly throughout the rest of the paper.

Definition 3.1. Given two open subsets VW C Uy, we say that V is nested in W if V is
relatively compact in W, i.e. if V.C W and V is compact, and we write this as V € W.

Let QS’O(W)%, c Q2°(W) denote the subset consisting of elements equal to 1 on V. Given
any nested neighbourhoods p; € V€ W C U, we pick a P‘V/V € QQ’O(W)%/ and define

[T = —&0ply € Q21 (W) (3.11)

for all n € Z. It follows from Lemma 2.3 that [¢]}, differs by d-exact terms from [¢] defined
above (3.10). We similarly define [£']};, for nested neighbourhoods p_ € V.€ W c U_.

Lemma 3.2. Let U C X° be a neighbourhood of p € X° equipped with a holomorphic coordinate
§:U — C. For any n € Z we have % fU+ (€51 NdEp = 6n,—1 and ﬁ Jr (€51 N dEp = 0n, 1.

Proof. Consider the integral over Uy. Let p;. € V€ W C U, be nested neighbourhoods and
pick a smooth bump function p}j, € Qg’O(W)%/. Since [§,] — K}ﬂ% is 0-exact by Lemma 2.3,
we can replace [£)] in the integrand by [fg]g/ The given integral over U, thus evaluates to

1 n n 1 n a3V
o |, 16176 = o /1§ﬂ@AOMV 2mj;wgm@AamV o0
| )
=i f GHG9G) = 5 | &ds = du.

where the second equality follows from the support property of épg,. The third equality uses
the fact that §)d¢, is closed on W\ V' and in the fourth equality we used Stokes’s theorem
together with the support properties of p%. The last integral is evaluated using the residue
theorem, noting that 9V is oriented counterclockwise.

The evaluation of the integral over U_ is completely analogous. O

We are now in a position to describe the geometric realisation of the vector space F® in
ULZE(U) around a point p € U in any open subset U C ° of Top(X) equipped with a local
coordinate £ : U — C such that £(U) C C is bounded. Specifically, we define a linear map

() FY — ULT(U), A A (3.12a)
as follows. It sends the state of the form (3.3) to
- % —m; Ui d j =—nj-Vj_
[Hs(agpmfp 107 ) TTs (b @ 16 ™, 1)] , (3.12b)
i1 j=1 U
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where pp € Up € ... €U, CU; and p_ € Vj € ... € V7 C U_ are choices of nested sequences
of open subsets. In particular, the vacuum |0) is sent to the class [1]y.

Proposition 3.3. The linear map (3.12) is well defined. In particular, we have

3 &p
.. (a(m)b(n) - b(n)a(m)) ce |O>U =... [a(m), b(n)] cee |O>U’ (3.13&)
. . (a(m)b(n) - b(n)a(m)) cee |0>§]p = 0, (3.13b)
R Eos 3 - r €
e (a(m)b(n) - b(n)a(m)) cee |O>(}9 = ... [a(m), b(n)] ce ‘0>Up (3.13C)

for all a,b € a and m,n € Z, where on the right hand sides of (3.13a) and (3.13¢) we use the
Lie brackets on (3.1) and in each equation the ellipses on either side of each term represent
the same sum of product of elements from @ ® a. We also have, for any k € Z>,

R a(k)IO)g” =0, R é(k)’(»fUp =0. (313d)

Proof. Focusing on the chiral part of the state, first note that the cohomology class in (3.12b)
is independent of the choice of smooth bump functions pgz’l € Qg’o(Ui)%]i_l and of the nested
sequences of open subsets py € Uy € ... € U, C U;. Indeed, Lemma 2.3 allows one to modify

Ui—1
U,

the smooth bump functions p ~ one by one while maintaining disjoint supports

supp (épgi’l) N supp (épg;_l) =0, (3.14)

. . . . . . Ul
for all ¢ # j, until we arrive at a desired set of new smooth bump functions pUZfl € QS’O(U{ )llj,
7 i—1

associated with another choice of nested sequence of open subsets p; € Uj € ... € U. C Uy in
Top(X). Keeping the supports disjoint as in (3.14) ensures that there is never any contribution
from the differential d|. , as defined in §A.1, when working up to dcg-exact terms, so that we
can effectively work up to d-exact terms. The same applies to the anti-chiral part.

Next, we must check that the cohomology class AgUp € ULZ(U) as given in (3.12b) does
not dependent on the way in which the input state A € F*% is written. It is enough to check
the identities (3.13). We will focus on (3.13a) and the first identity in (3.13d), the proof of
the other identities being completely analogous.

Choosing a nested sequence of open subsets py € Uy € Uy € Uy € Us C U4 we can write
the left hand side of (3.13a) as

[ 5(ag, @ &0pi) s (be, ® 1 0p()) ]U = [ s(be, ® §0p2) s (2, @ € O0) .}U
= [ -s(be, @ (& (ol = p2) ) )s(2e, © §7002) | (3.15)

where in the first term on the left hand side we chose to use the nested sequence of open subsets
py € Up € Uy € Uy C Uy in Top(X) and in the second term we used py € Uy € Uy € Us C Uy
instead. In each of the three terms in (3.15), the ellipses on either side represent the same
sum of products of degree 0 elements from £ (U)[1], whose support is disjoint from Us \ Up.
In the second line of (3.15) we have used the fact that £ is holomorphic on the support of
pg(l’ — pgg since the latter vanishes in a neighbourhood of p.

By definition of the differential dcg in the Chevalley-Eilenberg complex, see §A.1, we find

dos (- s(be, @ € (ohF = pf2))s (2, © §0pE1) - )
_ (— s(be, © (5 (o1 = #2) ) )5 a¢, © € 0p11)

~soe, 06l - o2)vg 0 PO0] ).
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where the minus sign in the last line comes from the definition of the differential d|. ;, in §A.1
and using the fact that the first argument in the Lie bracket has degree 0 in £Z(U). Note also
that the action of dcg on the ellipses terms vanishes since these consist of sums of products
of degree 0 elements from £X(U)[1], so they are killed by 9, and whose support is disjoint
from Us \ Uy, so they also do not contribute to the action of di. ].- It now follows that the

cohomology class on the right hand side of (3.15) can be rewritten as
s(ag, ® €0 Ul)s(b ® 1O UO) - s(bg, ® £20 UQ)s(a ® EM0 Ul)
&p P pU2 Ep ppUl Ty Ep PpUg &p 14 pUg o
_ _[. ..s[bgp © (P — pi),ag, ® gﬂépg;L N .}U. (3.16)

In order to complete the proof, it remains to explicitly evaluate the Lie bracket in £2(U)
on the second line of the right hand side, using the formulae in §2.1.2, and relate it to the Lie
bracket in @ on the right hand side of (3.13a). We proceed by separately considering the three
main examples of §2.1.2, namely the Kac-Moody, Virasoro and v system cases.
Kac-Moody: Recall from §2.1.1 that the map (-)¢, : a = ag
that witha=X e gand b=Y € g we find

. in this case is the identity so

—s|Y © & (o[} — p2). X @ 000

_ X, Y 5
= —sx v ogany) -5 [ o) o

= s(X,Y]® [&0) +m (X, Y)dmino0,

where in the first step we used the explicit form of the Lie bracket on £Z(U) given by (2.8)
and the fact that

(o, = pi2)0pu; = —Opy,. (3.17)

In the last term we also used the fact that apgg and 8pg§ have disjoint supports with 5pg;
The integral can be evaluated using Lemma 3.2 to give 27in 6,,4y,0. For the first term on the
last line we recall the minus sign in the definition (3.11). Using (3.4a) and the definition of
the map (3.12), the resulting expression on the right hand side of (3.16) is therefore precisely
the right hand side of (3.13a) in the case at hand.

Virasoro: Recall from §2.1.2 that in this case the 2-cocycle (2.10b) explicitly depends on
the coordinate used. Since we are working in the local coordinate £, we therefore use the
2-cocycle ag, relative to this coordinate, i.e. we work in the unital local Lie algebra ngp (U).

Here ()¢, 1 a = ag, is given by Q — —0, so that with a =b = Q € a we find
n (U U. ma U
- [3&7 © & (o0) = Pu3)» g, ® &) af"Uﬂ "
P
= 5(06, @ (m — n)g "1 Opt) — 9(s(0%, ® &9k, l1))
c n—1 m—13 U
+ 247ri/ o(n&y~") Am&y ™ dpy,
Uy
m(m —1)(m —2)
12

— (m— m)s(— 9, ® [ 1D 4

Cam—&-n,? — 6(8 (agp & fgl+n8§ppg;)) )

where in the first step we used again the identity (3.17). Here, in the term coming from the
Lie bracket (2.10a) we note that the term involving Ok, (pg(l) - pgi) vanishes using the fact that

it disjoint support with gpg; The evaluation of the term coming from the 2-cocycle (2.10b) is
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similar to the above Kac-Moody case but for the terms involving ﬁgp(pg(l) — pgg) we used the
additional fact that this has disjoint support with 8pU1 and for the term involving 5(85p pg;)
we note that this vanishes using Stokes’s theorem, cf. the proof of Lemma 3.2. In the second
step the integral is then evaluated using Lemma 3.2. The exact term on the last line drops
out in the cohomology class (3.16) since 0, pg; has disjoint support with the remaining terms
in the ellipses. Comparing the above with (3.5a) using the definition of the map (3.12), the
resulting expression on the right hand side of (3.16) also agrees with the right hand side of
(3.13a) in the present case.

By system: Recall that here the map (-)¢, : a = ag, sends B+ 1 and 7 > d§, so that with
a=/pand b= in a we find

—s|dg © & (ol — pi2). 1@ 0003 | GG A Dol = b

T om Ju
where in the first step we used the 2-cocycle (2.14) and again the identity (3.17). Comparing
this with (3.6a) using the definition of the map (3.12), the resulting expression on the right
hand side of (3.16) again agrees with the right hand side of (3.13a), as required.

Finally, in all three cases the first identity in (3.13d) similarly follows using the fact that
[¢E1Y, is D-exact when k € Zx. -

Proposition 3.4. The linear map (3.12) is injective and for every inclusion of open subsets
pelU CV CX°in Top(X) covered by the coordinate £, we have the commutative diagram

Ep/ \jp (3.18)

ULE(U) —ir ULE(V)

Proof. To begin with, we note that the Poincaré-Birkhoff-Witt theorem yields an isomorphism
PBW : F* = Sym( D @_)|0) which is given by the inverse of the total symmetrisation
map Sym(a_ @ a_)|0) = U(a_ @ a_)|0), or more explicitly by writing a given element in
F%% as a linear combination of totally symmetrised monomials acting on |0) which then maps
canonically to Sym(a_ @a_)|0). Applying the functor (A.4) to the strong deformation retract
in udgVec from Theorem 2.5, where here £ = (£, ), we obtain a strong deformation retract

Sym (8@ 0uo (E(U4)°) @ 0 8 0 (EU-)7)) 5 Sym, (L3(0)) DHU (3.19)

Py

in dgVece, where the left hand side is a DG vector space concentrated in degree 0. Here Py and
Iy are morphisms of dgVecr whose components in Sym-degree n € Z>q are given explicitly by
Pl = py[1]®™ and I} := iy[1]®", respectively. An explicit expression for the homotopy Hy
can be found, for instance, in [BSV, (4.11b)|. In order to perturb the differential on the right
hand side of (3.19) by d..; we apply the homological perturbation lemma [Cra, LV], noting
that this perturbation is small since it lowers by 1 the Sym-degree which is bounded below by
0. We obtain the perturbed strong deformation retract

Sym (8@ 0uo (£(U4)°) @ 0 ® 0w (E(U-))) — TE. (L3(U)) DﬁU

Py

where Py = >iso U (d.jHy)? and the expression for the homotopy Hy will not be needed.
Notice that neither Iy nor the differential on the left hand side are perturbed, for the same
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reason as in the proof of [BSV, Proposition 4.4]. Since ]3U is a quasi-isomorphism, applying
the 0*P-cohomology functor we obtain an isomorphism

HOPy - ULE(U) =5 Sym (a ® 0no (E(UL)) D@ om(é(U,)C)). (3.20)
We will show that we have a commutative diagram

- OF 5
F > ULZ(U)

PBWJ: lHOPU (3.21)
Sym(@_ & d_)[0) —— Sym <a® 0o (E(UL)) & a@@oo(g(U_)c))

in Vece, where the bottom morphism is obtained by applying the Sym-functor to the injection
(3.9). Since this bottom morphism is injective, see Remark 3.5 below, it will then follow that
the linear map (3.12) is also injective. By the Poincaré-Birkhoff-Witt theorem any state in
F%® can be written as a linear combination of totally symmetrised monomials acting on |0),
so it suffices to consider a single such monomial, say a totally symmetrised version of (3.3),

i.e.
o‘(l) o (T = 0
T‘fr' ZS; ZS; U(T‘) o ( m[,(l))b(—ng(F)) e b( |0> F . (322)
oESr OESF

We can make a further important simplification, similar to [BSV, §4.2|. Since we are focusing
on totally symmetrised monomials, it is sufficient to consider ones built out of a single pair of
elements in a_ and a_. Namely, we may focus on states in F% of the form

A=A"BT0), A=) ta[,,,€d, B= thb] yEa, (3.23)

where t;,t; € C, a',b’ € a and m;,n; € Z>; for each i € {1,...,r} and j € {1,...,7} with
r,7 € Z>o. Indeed, the more general state (3.22) is recovered by polarization, i.e. it reads

(St (it

Applying the isomorphism on the left hand side of (3.21) to the special state (3.23) then gives
PBW(A) = A™B7|0) € Sym(a_ @ a_)|0). Subsequently applying the injection at the bottom
of the diagram (3.21) gives an element in the symmetric algebra on the bottom right corner,
given by realising 2 and B in terms of germs of holomorphic functions on £(U, )¢ and £(U_)¢,
respectively, i.e. in terms of the notation after (3.9) we have

L(PBW(A)) = (;ta ® A—mi)r < ; tib ® ;r”j)F. (3.24)

U
g Ol1 - Oty

1 o
rir! Oty - - - Ot,

t1,. t1,e.t7=0

Going instead along the top right of the diagram (3.21), applying the first map (3.12) we find

TS

U

Finally, one checks that upon applying the isomorphism H OﬁU to the above, we obtain exactly
the same result as in (3.24). For this one needs to consider the explicit form of Hy given in
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[BSV, (4.11b)]. One can make a further simplification by choosing the smooth bump functions
prE QB’O(U+) in (2.15), entering the definition of the strong deformation retract in Theorem
2.5, for every f € Os(CP!\ {0}) to coincide and to be equal to 1 on U,, and likewise for the
smooth bump functions p, € Qg’O(U,). We then observe that only the 7 = 0 term in the sum
defining ]3U contributes, as a consequence of the very special form of the state A in (3.23).
The commutativity of the diagram (3.18) is immediate from the explicit description of the
morphisms ()gp, (-)g” and of the factorisation products my v described in §2.3. O

Remark 3.5. In general, the symmetric algebra functor Sym : Modp — g=CAlgy from the
category Modg of modules over a commutative ring R to the category g=°CAlgy of positively
graded commutative algebras over R is right exact and hence preserves surjections. However,
it is not left exact and so it does not, in general, preserve injections. In the present setting
we are working over R = C and in this case the Sym functor does preserve injections. Indeed,
every injective linear map i : V — W between complex vector spaces has a left inverse, i.e. a
linear map r : W — V such that ri = idy and so applying the functor Sym we deduce that
Sym(i) : SymV — Sym W is also injective. <

3.1.2 Local copies of F*“

Let Top(X), be the category of neighbourhoods U C X° of p € £°, with inclusions U C V as
morphisms U — V. It is a subcategory of the multicategory Top(X)" from §2.3, so that we
may restrict the multifunctor UL : Top(¥)- — Vec%) to this subcategory to form a diagram
(ULE), : Top(X), — Vecc of shape Top(X),. Since the category Vecc is complete and Top(Z),
is small, we can form the limit lim (ULY), in Vecc, which for any open subset U in Top(X),
comes with a canonical linear map m,y : lim (ULY), — ULZ(U). We also have such a
map for any open subset U C ¥ in Top(X) containing p by post-composing the latter with a
factorisation product.
By the universal property of limits there is a unique injective linear map

()5 : F —— lim (ULY),,  Ar— A (3.25)
for p € ¥° such that the following diagram
Foo
120§
lim (ULE),
MV %,V
v)

» ULE (V)

ULE

my,v
is commutative, for every inclusion of open neighbourhoods p € U C V C ¥°.

Proposition 3.6. The image of the linear map (3.25) does not depend on the local coordinate
€ used on a neighbourhood of p € ¥.°. We denote this image as Fp* € Vecc.

Proof. Let £ and i be two local coordinates on a neighbourhood U of p. It suffices to show
that for any A € F&% the vector A%” also lies in the image of the linear map (3.25) defined
relative to the local coordinate 1. And by linearity it is enough to consider states of the form
(3.3). Its image Agp is given by (3.12b). Writing & = "¢ o 5 for some holomorphic function
017 n(U) — £(U), so that also & = 9"7¢ o 7, we have expansions (see (3.88) later for the
exact expressions)

—m; _ —m;+k n; _—nj+/
‘fp - Z ak,mi np ¢ 9 §P T = Z O‘Z,nj "7p !
k>0 >0
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forall i € {1,...,r}, j € {1,...,7}. Here the coefficients oy, are complex numbers for every
k € Z>o, n € Z>1 whose exact expressions will not be needed for the argument below, but
for instance we have ap,, = (077%) (n(p))~™. Substituting these expansions into (3.12b) we
obtain the formal expression

3
A[}) = ( Z ak'r:mr mr+k‘7~ > ( Z ak17m1 m1+k’1)>

k>0 k1>0

< Z aér,”r b nTJr&« ) ( ael TL1 b n1+£1)> ‘O>Zp7 (326)
01>0

720

It remains to observe that the right hand side is of the form BZP for some well defined state
B € F%“ since only finitely many terms contribute from each of the infinite sums. Indeed, this
follows from repeatedly applying the identities (3.13) from Proposition 3.3. O

For any point p € 3°, we refer to F,* as the ‘local copy of F&“ attached to p’, and for any

A € F%* we will refer to Ag € Fp* as the ‘state A prepared at p in the local coordinate & .
Explicitly, the state (3.3) in F*® prepared at p in the local coordinate £ will be denoted

r 1 W Kl I3
a(_mr) e a(_ml) (—np) " b(_nl)‘0>p

For any neighbourhood U C X° of p with local coordinate £ : U — C, we refer to Agp € ULZ(U)
as the ‘state A prepared at p in the local chart (U,£) .

Let £ and 7 be two local holomorphic coordinates in the neighbourhood of a point p € ¥°.
Given a state A € F%“ it can be prepared at p in either the local coordinate £ to give the
element Af, € %, or in the local coordinate 1 to give the element A € F,*. These will, in
general, describe different elements of F"* so we obtain a linear isomorphism

()17 i= (D50 () H FBe — FBO AT AS (3.27)
which takes as input any element of F,°“ = im (-), identifies the state A € F** corresponding
to it in the local coordinate 7 near p, which is unique by the injectivity of (3.25), and then
prepares the same state A at the same point p but in the different local coordinate €. We note
here that the isomorphism (3.27) plays a similar role for the local copy Fp** of F*“ as the map
(‘)y—e : ay = ag defined in §2.1.1 does for the holomorphic vector bundle L.

3.1.3 Translation operators

In the vertex algebra setting it is customary to introduce the infinitesimal translation operator
D acting as an endomorphism of the vertex algebra. In the present non-chiral setting we have
two such endomorphisms

D,D :F%® — F** (3.28a)
defined as follows. For any A € F®® of the form (3.3) we set
— T i 1 or 1
.DA = Z m; a(*mr) . a(imiil) e a(iml)b(inf) 771,1) ’0>, (328b)
DA — a7 1 7 i
DA = Z n; a(_mr) e a(_m )b( nF) e b‘z—’nj—l) . ( n1) |0> (328C)

In particular, D|0) = D|0) = 0. We call a state A € F%® chiral if DA = 0 and anti-chiral if
DA =0. We let V% denote the subspace o_f chiral states since it is isomorphic to the affine
vertex algebra and, correspondingly, we let V&¢ denote the subspace of anti-chiral states.
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Proposition 3.7. For any A € F% and any local coordinate £ in the neighbourhood of a point
p € X°, we have the relations

(DAY = ey A, (DAY, = g A

in Fp*. In particular, if A is (anti-)chiral then Ag depends (anti-)holomorphically on p.

Proof. 1t is enough to prove the relations
(DAY = 0 A, (DAY = Oz A

in ULZ(U) for an open neighbourhood U C X° of p. This is immediate from the definition
of the operators D, D in (3.28) and of the map ()§Up in (3.12), noting that for any m € Z we
have O¢(,)§, " = mfp_m_l and ag(p)ggm = m‘fp_m_l. O

3.2 Vertex modes and vertex operators

For any R € R~ we use the notation D := {¢ € C||¢| < R} C C for the open disc of radius
R around the origin in C. Similarly, for any R~, R* € Ry with R~ < RT we denote by
Ap- g+ ={C€C|R™ <[{] < R"} C C the open annulus with radii R~ and R* around the
origin. Note that Ap- p+ = Dg+ \ Dg-.

Given a local coordinate £ : U — C on a neighbourhood U C ¥° of p € 3°, we say that
V C U is a disc shaped open subset around p in the local coordinate £ : U — Cif V = fp_l(DR)
for some R > 0. Likewise, we say that Y C U is an annulus shaped open subset around p in
the local coordinate £ : U — C if Y = &, 1 (Ap- p+) for some 0 < R~ < R*. We can then
define disc shaped open subsets V* = &, ' (Dpt) so that Y =V \V-.

By definition of the category Top(X), see the start of §2.3, disc shaped open subsets and
annulus shaped open subsets around a given point p are both objects in Top(X) homeomorphic
to C and C \ {0}, respectively.

3.2.1 Vertex modes

To every a € a, n,n € Z and any local coordinate ¢ in the neighbourhood of p € ¥°, we
associate a pair of endomorphisms of the vector space F*, called the chiral vertex n-mode
and anti-chiral vertex nt"-mode of a at p, defined as follows. Given an annulus shaped open
subset Y C ¥° around p in the local coordinate &, we let V* € %° denote the disc shaped
open subsets around p such that Y = V*+\ V. The preimages of V* under the projection
T:Y% > Yisa disjoint union of disc shaped open subsets around py and p_, respectively,

which we denote as 71 (VE) = Vf L VE as in §3.1. We define the elements

m bl @), sh=bleomi), e

in ULZ(Y). We do not include the subset Y in the notation for the elements (3.29) of ULZ(Y)
since the endomorphisms of ¥, they define will be independent of Y. Explicitly, given any
state B € F%* and any neighbourhood U C ¥° of p we may form the factorisation products

&p &p =& = D
myp o @) ©By) = @mB)f,  mypu(Eg ® By) = (3w By

in ULZ(U) for every a € a, where Y C U is any annulus shaped open subset around p and the
map m(y ) v : ULE(Y)@lLm(ULE), — ULE(U) is defined as myyp) ¢ = my,v),v o (id @my,v)
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for any open neighbourhood V' 5 p disjoint from Y. The above equalities both follow from the
definitions (3.12) and (3.29), see also Proposition 3.3. In particular, we obtain linear maps

& . qa, , 13 .
An) Tyt — I va A fz = (a(n)B)f” (3.30a)
ag Tt — Iy, Bf—a B = (amB); (3.30D)

for any a € a, n,n € Z and any local coordinate £ in a neighbourhood of p.

The infinite sequences of chiral vertex n*'-modes in (3.29) can be described collectively,
for n > 0 and n < 0 respectively, as the coefficients in the expansion of single elements of

ULE(Y) as follows. The same will be true of the anti-chiral vertex a'"-modes, see below, but

focusing on the chiral vertex nt'-modes a (Ef’) of a € a we consider

[s <a§q ® [5;11%)]}/ e ULE(Y) (3.31)

for some other point ¢ € U in the local coordinate patch covered by € : U — C, where the
notation used is the same as in (3.29). Since & 1 is singular at g, the latter should not lie in

the closure of the annulus shaped subset Y = VT \ﬁ, so there are two cases to consider:

(veo) If g € V™ then |&,(t)] > [£5(q)| for any ¢ € Y so that the function £, 1 = (£, — &y(¢)) "
can be expanded in small §,(¢) and hence (3.31) has the following expansion

(o0 2T, = Xame @ = sl
n<0

(vs0) If ¢ & VT then instead |&,(t)| < |¢,(q)| for any t € Y so that §1 = (& —&(g) ! can
be expanded in small §,, and hence (3.31) now has the following expansion

el )], = Xaieo ! =@l a
n>0

Remark 3.8. When a¢, explicitly depends on the coordinate &;, as in the Virasoro or 37 system
cases, we should also re-express this in terms of the local coordinate &, near p in both of the
above expansions in (v<g) and (v>g). However, since the local coordinates &, and &, are related
simply by a constant shift {, = &, —§,(¢), in all three examples we consider it is the case that
ag, = ag, for every a € a. Indeed, in the Virasoro case we have (¢, = —0¢, = —0¢, = ()¢, and

likewise in the B~ system case we have v¢, = d§; = d§, = 7, 4

It is convenient to gather the negative modes ai” for n < 0 and positive modes a (6:) for
n > 0 together into a chiral vertex operator, the single doubly infinite series

al&p(q)] = al&p(a)]+ +alép(a)]-, (3.32)

with coefficients in End F”. Strictly speaking, the nested sequence of open neighbourhoods
pr €V, E Vf C Uy used in defining the modes a (%’) should be different here depending on
whether n < 0 or n > 0 so that the point ¢ € U, which is fixed in (3.32), satisfies ¢ € V'~ in
the first term and ¢ € V+ in the second. See the proof of Proposition 3.9 for details.

We can similarly assemble all the anti-chiral elements é(%’) € ULZ(Y) in (3.29) into series

a[€y(q)]+ for < 0 and n > 0, respectively, and formally set a[¢,(q)] = a[&,(q)]+ + a[€p(q)] -
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3.2.2 Homogeneous vertex modes

Since the vertex modes (3.29) living in ULE(Y) are supported on an annulus shaped open
subset Y C X° around p in the local coordinate &, i.e. the shifted local coordinate &, provides
a bijection &, : Y = A k- r+ to an open annulus with radii 0 < R~ < R*, we have an action of
the circle S' = {\ € C||A\| = 1} on Y induced by the obvious S*-action on Az- z+ C C given
by multiplication by A € S!. In other words, in the local coordinate & Y — C this action
is given by &, — A§,. We will say that a € a has conformal dimension A, if the behaviour of
the associated chiral vertex n'"-modes in (3.29) under this S'-action on Y takes the form
any =N

for every n € Z. Note that since |A| = 1 we have f_p — )Flf_p so that the anti-chiral vertex
n*-modes associated with a € a transform for any n € Z as

3 Aép — )\—n—l—Ab—lé &p )
(n)

(n)
For any a € a of definite conformal dimension A,, it is convenient to define its associated
homogeneous chiral vertex n™-mode and homogeneous anti-chiral vertex n™-mode at p in the

local coordinate &, respectively, as

EP . EP —517 .

=&
A = A0 A, 1) ap = A Ap1): (3.33)

The reason that these (anti-)chiral vertex n'"-modes are called ‘homogeneous’ comes from the

fact that their behaviour under the S'-action is just a rescaling by A*™, which is independent
of a € a. In terms of homogeneous chiral vertex n*’-modes, the chiral vertex operator (3.32)
and its anti-chiral counterpart take the form

algp(@] =D ag (@), Al (a)] =Y a g (3.34)

ne”L nez
We also define the homogeneous loop generators of the Lie algebra a @ a as, cf. (3.2),
A =a® gaa—l ¢ a, Ap] =a® frtfal e g,

Given any monomial state A € F%® as in (3.3) such that a’ and b/ have definite conformal
dimensions A, and Ay, for each ¢ = 1,...,r and 5 = 1,...,7, we will say that A has chiral
conformal dimension A g =" ;_;(A,i+m;—1) and that it has anti-chiral conformal dimension
Ay = Z?Zl(Abj +nj—1). In all cases we shall consider, every possible rewriting of the state A
is given by a linear combination of monomial states with the same chiral conformal dimension
A4 and anti-chiral conformal dimension A4 so we have a well defined Z2-grading on F®.
Rewriting the relations (3.33) as

NS NI S
we see that the Z?-grading on F&® is measured by the negative of the sums of the chiral and
anti-chiral mode numbers of a homogeneous state A, respectively, when written in terms of
homogeneous chiral and anti-chiral vertex modes.

We say that Ag € F,“ is homogeneous in the coordinate £ and call Wt(Af)) = A4 the chiral
weight of Af; in the coordinate £ and R(Ag) = Ay its anti-chiral weight in the coordinate £.
Every choice of local coordinate ¢ in a neighbourhood of the point p € £° induces a Z?-grading
on the vector space . These Z>-gradings of F,°* depend on the coordinate used because
if Af, € F,* is homogeneous in the coordinate ¢ then it will generally not be homogeneous in
another local coordinate n near p. More precisely, if Ag = By for some B € F** as in the
proof of Proposition 3.6, then B will generally not be of definite bi-grade.

The conformal dimensions of basis elements in a and their corresponding homogeneous
vertex operators in the three main examples from §2.1.2 are as follows.
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Kac-Moody: Recall that a = g. Since X¢, = X is independent of the local coordinate for
any X € g, it follows that Ax = 1. In particular, homogeneous vertex n**-modes coincide with
the vertex n'"-modes, namely Xin] = X(n) for all n € Z and the Lie algebra relations of doa
in (3.4) take the exact same form

[X[m] ’ Y[n}] = [X7 Y] [m+n] +m /{(X, Y)5m+n,0 k, (3.35&)
Ximls Y] = BX Yl + 1m0 50K Y)8mm 0 k. (3.35b)

for every X,Y € g and m,n € Z. It is evident from these relations that the Z2-grading on F®
is well defined since each term has the same total homogeneous mode number.

Virasoro: We have a = spanc{€2} and because ¢, = —0¢, we deduce that Ag = 2. The
homogeneous chiral and anti-chiral vertex n'-modes of Q are then given Q) = Qng1) and
Q[n] = Q(n+1). The defining relations (3.5) of @@ @ then take the form

mgfm

TC 5m+n70 k, (336&)

3 — —
%c St K, (3.36b)

[Qpn), Q] = (M=) Q) +
[Qms Uy ] = (M= ) Q) +

which are the usual Virasoro algebra relations for L,) = ;] and E(n) = Q[n]. In particular,
it is again clear from these relations that the Z2-grading on F®“ is well defined.

By system: Here a = spanc{3,7} with B¢, = 1 and ¢, = d§;, so that Ag =1 and A, = 0.
The homogeneous (anti-)chiral vertex n**-modes are then Bin] = Bnys Bl = Bnys V] = Yin—1)
and Y] = Y(n—1), cf. (3.7). The defining relations (3.6) of a @ a then read

[Bim)> Yl = Omanok, (3.37a)
[ﬂ[m}ﬂ[nﬂ = Om+n,0 K, (3.37b)

which are the usual infinite-dimensional Weyl algebra relations. Again, it is immediate from
these relations that the Z2-grading on F*® is well defined.

3.2.3 Vertex operators

The vertex operator associated with a state A € F»® can be described geometrically in terms
of the prefactorisation algebra ULE by preparing this state at a point ¢ € U C X° in some local
coordinate £ : U — C, to obtain the element A§ € F7“, and then applying the factorisation
product mgqy : Fo¢ — ’L[LE(Y) to an annulus shaped open subset Y C U with ¢ € Y and
encircling another point p € U. The resulting element of ULZ (Y) then naturally acts on Fp*
via the factorisation products my,, r, cf. the action of vertex modes on Fp® described in
(3.30), and encodes the vertex operator of the state A € F“%, see the next proposition.

For any A € C we use the notation )\ as a shorthand for the pair (\, ). Similarly, we use
the notation ¢ for a pair of formal variables (¢, (). Recall that the normal ordered product of
1 € Z>9 operators O;(¢) for i € {1,...,r} with a decomposition O;(¢) = 9;(¢)4 4+ 0;(¢)_ into
creation and annihilation operators 0;(¢)+ is defined recursively by

10,(0) .. 01(0): = 0p(C) 4 :0r_1(C) .. O1(C): +:0r_1(C) ... O1(C): O4(C) .
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Proposition 3.9. Let g € Y C X° be an annulus shaped open subset around a point p € X°
in a local coordinate €. For any AS € F&*, the element mq,y(Ag) € ULZ(Y) expands as

Y

mq.y (A3) = Y(45.6(a)),

where the right hand side is the vertex operator defined as the usual normal ordered product

:(’rnrl—l)amr_l r[gp( )] (7n11_1)| g;1q)1 1[§p< )]

X (nrl—l)'agr 1br[§p( .. (11_1)' g; lbl[fp( ):

Y(AG 6(9) =

for any monomial state A € F** as in (3.3), and extended by linearity to all of F®<.

Proof. By linearity it is sufficient to consider a state A € F*® as in (3.3). In fact, we will focus
on proving the statement for a chiral state A = Ay a%iml)\0> since the treatment of the
anti-chiral part is completely analogous.

Let gy € Yg € ... € Y, C Y, be a nested sequence of annuli shaped open subsets around
the point p,. We have

r

) = | T, 0 1670)|

i=1

Each open subset Y; for j € {0,...,r} can be written as a difference Y; = VjJr \f for disc
shaped open subsets Vji around the point p;. We can thus write each pgfl € QS’O(Yi)%{Fl for

i€ {l,...,r} as a difference of two smooth bump functions
Yiow _ Vilh Vo ‘th e QOO+ v, € 00OV ))!
p}/l - pVZ+ pVi:17 W1 p ( 1 )VJr ’ sz: ( 1)V7

where py € V. € V,Z,| € V 1 € V+ is a nested sequence of disc shaped open subsets around
p+ in the local coordlnate 5 such that 4+ € VJJr and gy ¢ V; forall j e {0,...,r}, which we
can depict schematically as

+

We may then write

may (49) = [H(5 o (g™ = g™ ))] . (3.38)
=1 Y

Expanding this out we get a sum of 2" terms, each of which is the cohomology class of a r-fold
Sym-product of terms of the form

o mVit o remiVi

s(agq ® &™) ) o — s(agq ® 7™y ) (3.39)
for each i € {1,...,r}. Due to the support properties of the different smooth bump functions
present, in each case we can expand ™ = o _1) 8m _l(ﬁp ¢,(¢))~! in the region where
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q)| < or q)| > , respectively. Using also the fact that a¢ = a’ by Remark 3.8,
P P P y2 £q p
we may write (3.39) as

magg;—l ( 25l (agp 54 Zﬁ)

or (ml_llagm_l (Z &(q) ( ¢, @& “2_1)> : (3.40)

n>0

Define the annulus shaped open subsets Y;© :== V.I\V:', and Y, = V;ﬂf fori e {1,...,r}.
Then taking the cohomology classes [-]y+ or [-]y- of the expressions in (3.40) gives

Lo alg, (o)) € WLS(Y,).  (3.41)

! 8%_1 alép(g)]+ € ULZ(Y;T) or (i — 1)1 %@

(m; — 1)1 8l
In summary, we can rewrite (3.38) explicitly as a sum of 2" terms
. 1
i-1,
)= X e (@ g Sle@l) 64
(e1,.ser)E{+,—}" i=1

where the support of the i term in each of the above factorisation products is Y, namely
it is determined by the sign &; € {4, —} according to (3.41). The desired result now follows

from observing that the relative ordering of the 2r annuli Y;i for i € {1,...,r} appearing in
each of the 2" terms of the sum (3.42) coincides with the relative ordering of the 2r operators
appearing in each of the 2" terms of the desired normal ordered product. U

The coefficients in the expansion of the vertex operator from Proposition 3.9, namely

Y(A5,6(@) = Y AT &0 6@, (3.43)

n,n€”Z

define the vertex modes A(i”ﬁ) € ULZ(Y) of the state A € F* at p € X° in the local coordinate
¢ for any n,n € Z. Just as the elements (3.29) of ULZ(Y) did, each vertex mode of any given
state A € F»% also gives rise to an endomorphism
5 . bl ) £
AP T8 — T8, — Ao B

of Fp* for each n,n € Z, defined by forming the factorisation product M(y,p),U (A(%ﬁ) ® Bg)
with the input state B € F*® prepared at p in the local coordinate £&. The fact that this
defines an element of F, follows from the next lemma.

Lemma 3.10. In any local coordinate & in the neighbourhood of a point p € ¥° and for any
A, B € F&% we have

Al BS = (Awa B),

(n,n)
for some unique A, nyB € F»*. Moreover, we have A, 5yB = 0 if either n or ii is sufficiently
large. In particular, we have A, 7)|0) = 0 if either n > 0 or n > 0.

Proof. We use the same notation as in the proof of Proposition 3.9. And just as in the latter,
it is sufficient to consider only the chiral part of the state B € F%* i.e. we can suppose that

B = Y‘(ans) .. .Y(lim) |0), since the anti-chiral part can be treated completely analogously.

Now for every n € Z, the vertex mode A(ip,_l) € ULZ(Y) is the coefficient of &,(¢) ™"~ ! in

the operator (3.42) from the proof of Proposition 3.9, consisting of a sum of 2" terms. Aside
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from the two extremal terms with e; = & for all ¢ € {1,...,r}, the remaining 2" — 2 terms
will all contribute an infinite sum to the coefficient of £p(q)_”_1. However, it can be seen by
repeatedly applying the identities (3.13) from Proposition 3.3 that only finitely many terms
in these infinite sums will contribute non-trivially to the factorisation product
mp o (AZ 1) © BS) € ULE(U)

into a disc shaped open subset U D Y. It follows that this factorisation product can be written
as (A(n,,l)B)fjp € ULZ(U) for some state A(n,—1)B € F** which is unique by the injectivity
of (3.12). If n € Zx¢ is too large then A, _1)B = 0 since none of the 2" terms in the sum
(3.42) will contribute to the above factorisation product. Finally, for the ‘in particular’ part,
terms from the sum (3.42) which contribute to the coefficient of &,(¢)™""! for n € Z>¢ must
have g; = — for some i € {1,...,7} and all such terms annihilate the vacuum by (3.13d). O

In light of the mode expansion (3.43) and the definition of the states A, 5 B € F** given
in Lemma 3.10, it will be convenient to define the formal vertex operator map which gathers
all these states into a formal sum defined as

Y(A,OB= Y AunB( ", (3.44)

n,nNEL

where ¢ and ¢ are formal variables. This is related to the vertex operator in (3.43) by

Y (A5, &p(q)) Bs = (Y (4, fp(q))B)i- (3.45)

In other words, by preparing all the states A, 5B € F*® for n,n € Z, appearing in (3.44),
at the point p € U in the local coordinate chart (U, ) and replacing the formal variables (,
¢ in (3.44) by the complex numbers &,(q), £,(¢) for some other point ¢ € U, we get back the
expansion of the factorisation product m(p’q),U(Ag ® Bg) in ¢ near p.

3.2.4 Homogeneous vertex operators

Recall from §3.2.2 the notion of homogeneous (anti-)chiral vertex modes for an element a € a of
definite conformal dimension A,. Given a monomial state A € F®“, it is convenient to similarly
introduce a notion of homogeneous vertex modes of A by expanding the vertex operator from
Proposition 3.9 as

Y(A56(@) = DAY &@) TG (@) T, (3.46)

n,nEL

which is to be compared with (3.43). The coefficients A[flpﬁ] c ULZ(Y) for n,n € Z are called
the homogenous vertex modes of the monomial state A € F%“ at p € 3 in the local coordinate
¢. They are related to the vertex modes by a simple shift, cf. (3.33),

& _ 46
A[nzjﬁ} - A(?f—i—AA—l,ﬁ—&-AA—l)' (347)

We also introduce the notation A, z) = Apa,—1744,-1) € EndF>*, see Lemma 3.10.

Lemma 3.11. Let A € F®% be any monomial state and n,n € Z. Its vertex modes at p € X
in any local coordinate & are homogeneous elements of End F* in the local coordinate &, of
chiral and anti-chiral weights

wh(AT ) =Aa—-n—1,  WE(AZ)=As-7-1

(n, (n,m)
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Likewise, the homogeneous vertex modes of A at p in the local coordinate £ are homogeneous
elements of End 5" in the local coordinate €, of chiral and anti-chiral weights

wt (A &

[n,n

)= WHAD) = —n

Proof. By definition of the Z>-grading on F* relative to the local coordinate &, it is clear that
the homogeneous chiral and anti-chiral vertex modes (3.30) are homogeneous with weights

wt(agh) =-n, wi(a)=0, wt(3)=0, wi(a;)=-n

for every n,n € Z. The last statement now follows using the explicit expression for the vertex
operator of the monomial state A € F*® from Proposition 3.9 and the definition (3.46) of the
homogeneous vertex modes, recalling that Ay = > i (A, +m; — 1) and noting using (3.34)
that the chiral factor aml_l a'léy(q)] for i € {1,...,r} consists of operators of the form

afy&pq) BTt
with k € Z and likewise for the anti-chiral factors. The first result then follows by (3.47). O

Given any monomial state A € F%%, we will refer to

X(48,6(9)) = &(0)* & (@ 4 Y(45,6(0) = Y A &(@) &) " (3.48)

n,nel

as the homogeneous vertex operator of Ag € F5“ at q in the coordinate £, see e.g. [LL, Remark
3.1.25] in the chiral case. We extend this notion by linearity to all states in Fg“.

3.2.5 Translation operators

Recall the translation operators D, D : F»® — F%< introduced in (3.28). Their action on Fp*
was identified in Proposition 3.7 with that of the derivative operators d¢(y), O(p) : Fp* — I,
respectively. In terms of the vertex modes (3.43) of the vertex operator from Proposition 3.9
their actions is given by the usual formula.

Lemma 3.12. For any A € F** and n,n € Z we have

— _aAS

(DA) o (n,n—1)"

(DAY = —nA> =

(n,n) — (n—1,n)’
in End Fp*, for any local coordinate & in the neighbourhood of a point p € ¥°.
Proof. The first result follows from comparing the mode expansion of both sides of the relation

Y((DA)s, &p(a) = mgy (DA);) = myy (9e(q)A3) = ()Y (A5, 6(9)),

where the first and last equalities make use of Proposition 3.9 and the second equality is by
Proposition 3.7. The proof of the second result is completely analogous. O

Lemma 3.13. We have Y (|0), () = idga.«, and for any A € F*“ we have the Taylor expansion
Y (A,¢)[0) = eSPeSP A, In particular, DA = A(Zo_1)|0) and DA = A(_; _5)]0).

Proof. Since mqyy(|0>§) = [1]y acts as the identity in End ¥ the first result is immediate
from the definition of Y in Proposition 3.9. In any chart £ : U — C with p,q € U we have

Y(AS, &()) 10057 = myp) 0 (May (AS) ®[0)5) = myr(AS) = A
— (@D (p) egp(Q)ag’(p) A?JP — (efp( )Defp( )DA)EUP
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where Y is an annulus shaped open subset containing ¢ and encircling the point p. In the
second last equality we have Taylor expanded the expression Agz in ¢ near p and the final step
is by Proposition 3.7, see in particular its proof. The result now follows from (3.45) and the
injectivity of the linear map (3.12) by Proposition 3.4. O
Proposition 3.14. For any A, B € F** we have Y (B,()A = PPy (A, —(¢)B.

Proof. By associativity (2.17) of the factorisation product we have
Y(BS, 6p(a) A5 = Y(A5,&(p)) B

since both sides are given by 77’L(p7q),U(A]§J ® Bg ) in any local chart £ : U — C containing p and
g. In other words, in terms of the map Y defined in (3.44) we have

3

q

— (eEP(Q)DeEP(Q)DY(A’ q(p))B)g

p

(v (B.6@)A4)° = (V(4.5)B)

p

where the last step is by Lemma 3.13, see in particular its proof. O

3.2.6 (Anti-)chiral states

The chiral vertex operator (3 32) and its anti-chiral analogue for any a € a correspond to the
states a(_ |O> and a_ |0>q, respectively, namely

al&p(@)] = Y(a-)10)5.5(0)),  als(@)] =Y(a—1)|0)5, &(a)) (3.49)

and comparing the mode expansion of both sides it follows that for any n,n € Z we have

(a(_l)yo>) = aihon 1, (3 yo))nn) 30,1 (3.50)

a0y = Aé(_1>|0> A, and Ay A = 0 for any a € a so that also

a—1l0) = Sa_ylo)

( |0>)[nn _3[2]57107 ( |0>)[nn —5[%5%0.

More generally, if A € F»* is chiral then by Proposition 3.7 the expansion of mqy(Ag)
from Proposition 3.9 is holomorphic, i.e. of the form H(Ag,fp(q)) = ez Aé’;ﬁp(q)’”’l, in
which case its modes can be extracted as contour integrals

1
A8y = A8 = 5 | mar (495004 (3:510)

for every n € Z, using any counterclockwise oriented contour ¢, in Y encircling the point p.

If instead A € F* is anti-chiral then we similarly have H(Ag,f_p(q)) = ez A(%)f_p(q)_”_l
whose modes we can extract as contour integrals

1 .
AGy = ATy = o /cp ma,y (A3)Ep(0)"dé(q). (3.51b)
Although we have introduced the same abbreviated notation in both (3.51a) and (3.51b), this

should not lead to confusion since the full correct notation A(if _y or A(éfl
by noting that A is chiral or anti-chiral, respectively.
Recall that the vacuum |0) is both chiral and anti-chiral. It follows from Lemma 3.13 that

its modes are \O>( ) = = [1]y0n,—105,—1 for all n,n € Z which is consistent with (3.51).

can be restored
n)

)
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3.3 Borcherds type identities

In an ordinary vertex algebra the modes of arbitrary states satisfy algebraic relations known
as the Borcherds identities [Bor, FHIL, LL]. In the present setting, the vertex algebra modes
of both chiral and anti-chiral states (3.51) also satisfy the same standard Borcherds identities.
In fact, slightly more general ‘Borcherds type’ identities also hold, given below in Proposition
3.15, between the vertex modes of any (anti-)chiral state and those of a generic state. However,
there does not appear to be algebraic ‘Borcherds type’ identities relating the vertex modes of
two non-chiral states (see [Mor2, Remark 1.9]). This is the reason why the Borcherds identity
is replaced by a different axiom in the various existing frameworks for full vertex operator
algebras [HuKo, Mor2, SS|. See §3.5.3 for details.

3.3.1 Moving points

We can keep track of the dependence of the linear map (3.12) on the location of the point
p € U where the state A is inserted as follows. Given any open subset U C X° in Top(X),
equipped with a local coordinate ¢ : U — C, we define the map

Ot U XF* — ULL(U),  (p, A) — myu(AS). (3.52)

The superscript € refers to the coordinate used to prepare the state A at the point p. We can
also generalise the linear map (3.12) to describe the insertion of n € Z>; states from F*“ at a
subset of n points in 3° as follows. Given any open subset U C 3° in Top(X) and a collection
of points p; € U with i € {1,...,n} for n € Z>1, we define morphisms

n
Mpov - @ lim (ULY),, — UL () (3.53)
i=1
as the composition m, == m,) v © (®?:1 mpi,Ui) for any inclusion of n disjoint subsets
U ,U; C U. Combining the linear map (3.53) with the local realisations (3.25) at each p; in
the local coordinate £, we then obtain a linear map

QF — ULZU), (A > mg0 < ®(Ai)§i)- (3.54)

=1 =1
In fact, one could more generally consider different local coordinates &;, i € {1,...,n} around
each of the points p; to obtain a linear map

n

®Fa,a — ULE(U)’ (AZ):L:I — m(pi),U < ®(AZ)§Z> : (3'55)

i=1 =1

It is useful, as in (3.52), to keep track of the location of the points p; at which the individual
states A; are prepared. For any open subset U C £° in Top(X) and any n € Z>; we let

Conf,(U) = {(pi)j=y € U™ | pi # pj for alli # j € {1,...,n}}

denote the configuration space of n distinct points in U. In particular, for n = 1 this is just
Conf;(U) = U. We can now define the analogue of (3.52) for n points as

n

D€ - Conf(U) x QF — ULSU),  ((po)lrs (A)r) m@i),U(@(Ai)gi),
=1 =1

(3.56)
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where again the superscript & refers to the coordinate used to prepare each state A; at p;.
Again, more generally, we could use different local coordinates &;, ¢ € {1,...,n} around each
of the points p; as in (3.55), in which case we may define a map

O : Conf, (U) x QR)F* — ULT(U),  ((pi)i=y, (AD)iy) — ( XA >§z)

i=1 =1
(3.57)

which depends on the collection & = (&;)_; of local coordinates around each point p;.

3.3.2 ‘Borcherds type’ identities and consequences

Recall the state A, 5B € F** given by Lemma 3.10 for any A, B € F** and n,n € Z.
Proposition 3.15. Let A, B,C € F* and k, k,m,m,n € Z. We have the identities in F®:
(1) If A is chiral then

m

>0 \J

=> (-1 ( ) (man—) B jpyC — D_(=1)"" (])Bmk 3By Amai) C-

7>0 7>0

(13) If A is anti-chiral then

m
Z ( ‘)(A(nJrj)B)(k,erk;—j)C

7>0 J
=> (-1 ( ) (min—) B gayC — D (=1)"F <]>B(kn+k A+ C-
720 320

Proof. We prove only the chiral case (7). The proof of the anti-chiral case (i7) is completely
analogous. So let A, B € F* and suppose that DA = 0.

Let U C X° be an open subset equipped with a local coordinate £ : U — C. Recall the
map @3¢ in (3.56) and define Fi4 g o : Confs(U) — ULZ(U) by

Fapo(a.p.1) = 2 ((4.p.0), (4. B.0))&(0)"6(a) " (0) 6 ()"
= mpav (A5 ® BS @ C7)6,(0)"6u(9)"&(p) Eu(p)" (3.58)

for pairwise distinct points ¢, p,t € U. Since we are assuming that DA = 0, the above depends
holomorphically on ¢ by Proposition 3.7. By Cauchy’s theorem we then have the identity

ori | Fanclapd€@) = o [ Fancler0de@) - o | Faselap.0dlo) (3.59)

2mi /., i Je, i e,

using the standard deformation of contour argument

d — _ /
S ol
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where ¢; and ¢, are counterclockwise oriented contours around ¢, as depicted, and ¢, is a small
counterclockwise oriented contour around the point p.

On the left hand side of (3.59), since ¢ is closer to p than p is to ¢, we can expand the
factor &(q)™ = (&(p) + &(g))™ of (3.58) in small &,(g). Using also Proposition 3.9 gives

m n+j m+k—j & k
Fapclant) =Y (j)y(y(Ag,§p<q>)B§,ft<p>)c§ & ()" € (p) ™ IE ()
Jj=20
In the first integral on the right hand side of (3.59), since p is closer to ¢ than ¢ is, we can
expand the factor &,(q)" = (ft(q) —& (p))n of (3.58) in small & (p). Using also Proposition 3.9
we have the following expansion

Fapolapt) =Y (-1 (’;) Y(A5,6(0) Y (B &(0) CF & (0)* H & (@)™ " & (p) .

Jj=0

Likewise, in the second integral on the right hand side of (3.59) we can expand the same factor
&)™ = (=1)"(&(p) — &(g))" of (3.58) in small &(g). Using also Proposition 3.9 yields

. n . i T
Fapolgpt) =3 (—1) (j.)y(Bg,@(p»)y(Ag,a(q))cf &a)™ & ()" IE (p)F.
j=0
Upon integrating the above expansions in £(¢) along the contours ¢, ¢; and ¢, respectively,
and using the definition of the vertex modes in (3.43) we obtain the three terms of the desired
identity as the coefficient of & (p)°&(p)°. O

Remark 3.16. It is clear from the proof of Proposition 3.15 that ‘Borcherds type’ identities can
only be derived in the case when one of the two states involved is either chiral or anti-chiral.
If this is not the case then we cannot use Cauchy’s residue theorem as in (3.59) to relate the
three terms in the Borcherds identity (see [Mor2, Remark 1.9]). N

The following consequences of the ‘Borcherds type’ identities are equivalent to those in
[Mor2, Lemma 3.11], in the case of a chiral state A. We have also explicitly stated the version
for an anti-chiral state A for completeness.

Corollary 3.17. Let A, B,C € F&* and k,k,m,m € Z. We have the identities in F&
(i) If A is chiral then

m
[Am) B(k,E)]C = Z ( > (A B) (m+kfj,12)c’

20 N
(A B) 4y C = 2 A0 BirrsinC + 2 Buwiiy A1 C:
32>0 7<0

(13) If A is anti-chiral then

[A( C Z( > A B) (k,m+l€—j)0’

7>0
(A B) iy C = D Ai 0 BiekenC + 3 Bl A1 C-
>0 j<0

Proof. The commutator formulae both follow from taking n = 0 in the Borcherds type identi-
ties of Proposition 3.15. The second relation in (4) (resp. (ii)) follows from Proposition 3.15(%)
(resp. (77)) in the case n = —1 and m = 0 (resp. m = 0). O

It is instructive to see that we recover the Lie algebra relations of the generators of @ and
a from §3.1 as a special case of the commutation relations in Corollary 3.17. We consider the
three main examples from §2.1.2 separately.
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Kac-Moody: It follows from the action of the vertex modes of any X € g in (3.30) and using
Proposition 3.3 that for any Y € g, n € Z>¢ and p € X° we have

XY (pl0)s = X, Y)(0)[0)5 dno + £(X, Y)[0)50,,1, (3.602)

XY (|00 = DY 1005 80 + (X, Y)[0)50.1 (3.60b)

in ¥ for any local coordinate ¢ in the neighbourhood of p. Then as a simple application of
Corollary 3.17, recalling also (3.50), we recover (3.4) with k and k both set to 1.

Virasoro: Again, by definition of the vertex modes in (3.30) and using Proposition 3.3, for
any n € Z>o, p € X° and working in any local coordinate £ near p we have

Q1|08 = Q)[0)S 00 + 22(1)[0)S Gt + §10)50n.5, (3.61a)
Q0 01)10)S = 2|0} 000 + 22 1)[0)5 501 + 510)50m,5- (3.61b)

As a consequence of Corollary 3.17 we then recover the Virasoro algebra in the form (3.5) with
k and k both set to 1. To deal with the first term on the right hand sides of (3.61) we use the
fact that Q(_9)|0) = D(Q(_1)|0)) and Q(_4)|0) = D(€(_1)|0)) by definition of the translation
operators in (3.28) and then apply Lemma 3.12 and the identities (3.50).

B~ system: For any n € Z>o and any local coordinate ¢ near p € ¥° we find

B0} = 10)56n,0, (3.62a)
B A0 = 10)50n,0- (3.62b)
We then immediately recover the infinite-dimensional Weyl algebra relations (3.6), again with
k and k both set to 1, by applying Corollary 3.17.
3.4 Conformal and anti-conformal states

In this subsection we introduce the conformal and anti-conformal states 2, Q € F“®, which
are respectively chiral and anti-chiral, and whose vertex n**-modes generate infinitesimal local
coordinate transformations. An important use of the non-negative shifted vertex n**-modes of
the conformal and anti-conformal states, namely €2, ;1) and Q(n+1) for n > 0, is in establishing
a generalisation of Huang’s change of variable formula to the present case of full vertex operator
algebras. This is the content of Corollary 3.20 below. As an application we also show how to
define an invariant bilinear form on F% in the sense of Proposition 3.23.

3.4.1 (Anti-)conformal states

We call a chiral state 2 € V& C F** conformal if
c
Q(n)Q = DN 5n,0 + 282 5n,1 + §‘O> 5n,3 (3.63&)
for every n > 0 and, moreover, for any A € F%* of chiral conformal dimension A 4 we have
QA = DA, QA =AA. (3.63b)

In particular, it follows that Aq = 2.
Similarly, an anti-conformal state is an anti-chiral state Q € V©“ ¢ F&* such that

Q) = DD 0+ 206,15 + g\o> Ons (3.64a)
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for every n > 0, and for any A € F& of anti-chiral conformal dimension A4 we have
QuyA=DA,  QuA=ALA (3.64D)

In particular, Ag = 2. Because 2 is chiral and €2 is anti-chiral we also have that Q(n)Q =0
for all n > 0. The parameter ¢ € R entering (3.64a) and (3.64b) is the central charge.

Since the (anti-)chiral conformal dimensions of the states 2,2 € F** are different from 1,
it is convenient to work with their homogeneous vertex n**-modes introduced in §3.2.4 which
we will denote by

Ly = Q) = Qs L) = Q) = Qe (3.65)

for every n € Z. The notations L), E(n) € EndF*® are slightly misleading since L and L do
not represent states in F%: the states in question are Q,{) € F&* and (3.65) represent their
homogeneous vertex n'"-modes. On the other hand, the more standard notation L,, L, for
these endomorphisms will be reserved for the Fourier modes introduced in §4.1 below so we
will keep using the notation (3.65), hoping this will not cause any confusion. It will also be
useful to introduce the notation

LS = Qi = Qf L& = Qf = 0%

(n) (] = *(nt1) (n) ] = 1) (3.66)

for any local coordinate & : U — C in a neighbourhood of a point p € U.

It follows form the first equations in (3.63b) and (3.64b) that L_;y = D and L(_y) = D act
as the translation operators (3.28), and from the second equations in (3.63b) and (3.64b) that
Lgy and E(O) measure the chiral and anti-chiral conformal dimensions of a state. It follows
also from Lemma 3.10 that for any given state A € F“* there exists a N4 € Z>( such that
LA =0 and I_}(k)A =0 for all k > N4. Moreover, it follows from Lemma 3.11 that Ly and
L) lower the conformal dimension when k£ > 1 and hence both they act locally nilpotently
on F*“ in the sense that for every A € F*»“ there exists ra,74 € Z>; such that

(Lgy)™A=0, (L) "A=0. (3.67)

As an application of Corollary 3.17 using (3.63a), (3.64a) and Lemma 3.12, we deduce that
Ly, E(n) € End F%¢ generate a direct sum of two copies of the Virasoro algebra, i.e.

—m

[Limy> Lyl = (m —n) L) + COm+n,05

_ - - m® —m
[Lm)> Lyl = (m = 1) L yp) + 13 € Om+n,0

and [L ), E(n)} = 0 for any m,n € Z. More importantly for what follows, when m,n € Z>_;
we have a direct sum of two copies of the simpler Witt algebra

[L(mys L)) = (M = 1) Lnynys — [Limys Liny) = (M = 1) L) (3.68)

The (anti-)conformal states in each of the three main examples from §2.1.2 are as follows.

Kac-Moody: For simplicity we assume here that the Lie algebra g is simple. The extension
to the reductive case is straightforward, decomposing the Lie algebra g = €, g; ® 3 as a direct
sum of its simple components g; and its centre 3. The construction of (anti-)conformal states
in the more general case when g = T"f = §[t]/t"T1{[t] is a Takiff algebra [Tak]| for any reductive
Lie algebra f and any n € Z>( can be treated similarly along the lines of [Que].

Let {1,349 and {7*}%™9 be dual bases of g with respect to a non-degenerate symmetric
invariant bilinear form kg : g ® g — C. For any X € g we then have (X, I°)I, = X, where we
use summation convention for Lie algebra indices b = 1,...,dim g. Since every non-degenerate
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symmetric invariant bilinear form on the simple Lie algebra g is proportional to the Killing
form kg : g ® g — C, we denote by -7 the relative coefficient of proportionality between any
two non-degenerate symmetric invariant bilinear forms k,x’ : g ® g — C. The critical level
is defined as k. = —%Iig g ®g — C. We assume that the level k : g ® g — C entering the
definition of F®% is non-critical, i.e. kK # k.. We then define the conformal and anti-conformal
states of F»%, respectively, as

Ko A Ko
Qi=—"—I,_1I" 1|0}, Q=—
2k — ko) Y (-0l0) 2(k — Ke)
It is a standard fact that these satisfy the relations (3.63a) and (3.63b) with central charge
c =k dimg/(k — Ke).
It is straightforward to check, for instance using the commutation relations from Corollary
3.17 in the case where A = X(_1)|0) and B = Q along with the defining relations (3.4) in a,

that the homogeneous vertex n*'-modes (3.65) satisfy

Ly Xem] = 0 Xy [ Ly Xem] = 0 Xy, (3.70)

for every k,n € Z. It then immediately follows that (3.63b) and (3.64b) hold for any state
A € % of definite (anti-)chiral conformal dimension.

Although the formulae (3.69) for the (anti-)conformal states of F*“ take a different form in
the case when g is reductive, the resulting relations (3.70) remain true for arbirary reductive
g. We also expect (3.70) to hold more generally in the case of a Takiff algebra g = T7"f for any
reductive Lie algebra f and any n € Zx.

Ly1yIty)o). (3.69)

Virasoro: We define the conformal and anti-conformal states of F»“ as
Q= Q(_1)|0>, Q = Q(_1)|0> (371)

We are abusing notation slightly by using €2 to denote both the basis element of a = span-{Q}
and the above conformal state in F*®. Since these live in different spaces, it should be clear
from the context which we mean. This abuse of notation is also justified by the identity (3.50)
which implies that for any n € Z we have {2,y = (Q(,l) |0>)(n) with € € a, so that 2,y denotes
the same element of End F%® whether 2 € a or 2 € F%®.

It follows from the defining relations (3.5) in a that (3.71) satisfy the relations (3.63a) and
(3.63b) for any central charge c¢. The relations (3.5), with the central elements k and k set to
1 as in the definition of F®% from §3.1, can also be rewritten as

k3 —k

[Lky Qmy] = (0 + K+ 1D)Qny + Ok ni, (3.72a)

k3 —k
TC 5]677171. (372]3)

for every k,n € Z. Since the terms proportional to ¢ on the right hand sides vanish when
k= —1or k =0, it follows that (3.63b) and (3.64b) hold for any state A € F®* of definite
(anti-)chiral conformal dimension.

(L), Q)] = (n 4k + 1)Qpy +

B~ system: Here we define the conformal and anti-conformal states of F®* as

Q=B -0,  Q=F_1T—2I0). (3.73)

It follows again from Corollary 3.17 and the defining relations (3.6) in a, that the homogeneous
vertex n'"-modes (3.65) satisfy

[Lky, B—n)] = nBre—n) [Lky: V=n)] = (n =k = 1)Yg—n), (3.74a)
Ly, Beny] = nBu—nys Ly Ven)] = (0 =k = 17— (3.74b)
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for every k,n € Z, and hence that (3.63b) and (3.64b) hold for any state A € F»® of definite
(anti-)chiral conformal dimension.

3.4.2 Change of variable formula

Given two local coordinates &,7 : U — C on an open subset U C 3°, we denote the change
of coordinate from 7 to & by "¢ : £on™ : n(U) — &(U), or simply o for short when the
coordinates 1 and & are clear from the context. Furthermore, given any point p € U, we denote
the corresponding change of shifted local coordinate from 7, to &, by Qgﬁg :np(U) = &(U),
or simply by g, for short. Explicitly, we have

(n)
& = op(mp) = 0(np + n(p)) — &(p) = ' (n(p)) (np +) 1'9("@)77”> (3.75a)

where we note that o’ (n(p)) # 0 because the coordinate transformation g, is invertible. Since
the set of local (holomorphic) coordinate transformations fixing the origin is generated by
holomorphic vector fields vanishing at 0, i.e. KZP = —775“(9% for k£ > 0, following [Hua, §2.1],
see also [FB, §6.3.1], it is natural to rewrite the above power series in the form

p
§p = exp <— Z bkfzp> bO*Zo Np- (3.75D)

k>1

By equating this power series term by term with the one in (3.75a) we find that the first few
coefficients are given explicitly by

=0 (). bi=5P0E), b= (So) (),

b= 5 (50 (1(0) — () (0P (PO (1)), - (3.750)

where (Pf)(t) == f"(t)/f'(t) is the pre-Schwarzian derivative of f at t, i.e. the logarithmic
derivative of f/, and (Sf)(t) == (Pf)'(t) — $(Pf)(t)? is the Schwarzian derivative of f at t.

Recall from §2.1.1 that in the shifted local (anti-)holomorphic coordinates &, : Uy — C
and f_p : U_ — C around a point p € U, see (3.8), we have the isomorphism of DG vector spaces
Q* (7Y (U), L) = ag, @ Q0°(U4) @ ag ® Q2*(U_). Letting Lx denote the Lie derivative of
a vector field X on U, we obtain linear maps

Loy Lygy LE(U) — LE(U) (3.76)

for k > —1. These extend by the Leibniz rule to endomorphisms of ULY(U) and in turn by
taking limits over neighbourhoods U 3 p to linear maps

Ly, L : T — Fo, (3.77)

[ip ’ Zip
The following proposition is a generalisation of Proposition 3.7, which concerned only the
translation operators L(_y = D and I_/(,l) = D, to all operators L) and Z_L(k) for k > —1.

Proposition 3.18. For any A € F** and local coordinate £ in the neighbourhood of p € 3°,
we have the relations

(Lt A5 = L e, AS (L A)s = inpAf

o A5, ¢ (3.78)

in Fp© for every k € Z>_1.
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Proof. By linearity it is sufficient to consider a state A € F&* of the form (3.3). And just as

in the proof of Proposition 3.9 we may focus on a chiral state A = a’("imr) . 3%,m1)|0> since

the treatment of the anti-chiral part is completely analogous. Since both sides of (3.78) are
defined using the Leibniz rule it then suffices to show that

[LfZ)’ zfpm = Lygpa Z(gp 0= L {S(aép © (_gp—migp“;g))]y, (3.79)

where the second step is by definition of the vertex modes in (3.29). We now consider separately
the three main examples from §2.1.2.

Kac-Moody: Here a® = X! € gforalli=1,...,r. And by (3.70) we have

[Lkysa(mn] = (L) X(mpy] = M X(g—my (3.80)

for the left hand side of (3.79). As for the right hand side, by definition of the Lie derivative
we have inp &M= 62” (&™) = miff,f_mi so this reads

9 =mlie (-], - (o (5m o),

S s ),

The first term on the right is exactly the vertex mode at p in the coordinate & associated with
the loop generator in @ on the right hand side of (3.80). The second term on the right hand
side is the cohomology of a d-exact element of a¢, ® Qg’l(Y+) which therefore vanishes.

L

Virasoro: Now a’ = Q for alli=1,...,r and by (3.72), the left hand side of (3.79) reads

k3 —k
12

[L(k), aé_mi)} = [L(k), Q(—ml)] =(m; +k+ 1)Q(k—mi) + COk—my.1- (3.81)

For the right hand side of (3.79) we recall that 0¢, = —0¢, on which the Lie derivative of Ei”
acts as —Lgip O, = —(k + 1)558&7. Using also Léip &M = mig}’;_mi as above we find

L@ = (ms+ T+ 1)[5(0, @ (€7 mzapw))] ~[s(0g, @ (5o )],

m;— 5 V&
/ ghmi 2d§p/\8pV}. (3.82)

24|

To explain the origin of the last term, recall from §2.1.2 that in the Virasoro case the 2-cocycle
(2.10b) depends explicitly on the coordinate up to a 2-coboundary (2.11). And under a change
of coordinate n — & this induces an isomorphism of unital local Lie algebras (2.12) given by a
shift along the central element. Here we are considering the Lie derivative action of the vector
field Eip which corresponds to the infinitesimal change of coordinate &, — fz’, =& —ef;f“. But
for an infinitesimal coordinate transformation 7 — & = n+ ev(n), the Schwarzian derivative to
leading order in € is (5¢)(n) = ev”(n) which here takes the form — (k% — k)¢~2. This explains
the last term on the right hand side of (3.82). Using Lemma 3.2 to evalute the integral we
obtain exactly the last term on the right hand side of (3.81). As in the Kac-Moody case, the
first term on the right hand side of (3.82) corresponds to that of (3.81) and the second term
on the right hand side of (3.81) vanishes.

47



B~ system: Here we have either a? = S or a’ = v foreach i =1,...,7.
In the first case, since aép = P, = 1 is constant, the computation works exactly as in the

Kac-Moody case and we find that (3.79) matches the first equation in (3.74).
In the second case, the left hand side of (3.79) reads

[Lky 3l = L) Yema] = (M5 = & = DY, (3.83)

by virtue of the second equation in (3.74). Recalling from §2.1.2 that we have aép = d¢, and
using the fact that L ¢, d&, = —(k+ 1)§5d§p we deduce
k

Léip’yffmi) =(m;—k—-1) [8 (7&7 ® (— 55_7”1'5;)“2;))}1/. (3.84)

This agrees exactly with vertex mode at p in the coordinate £ of the loop generator in @ on
the right hand side of (3.83). O

We define a linear map RZHS (B9 — F4* by, cf. [FB, (6.3.3)],

RI™E = exp <— 3" (kLo + bki(k))> by by . (3.85)
k>1

This is well defined since the last two factors act diagonally as by AAZ_)E A4 on any monomial
state A as in (3.3), of chiral and anti-chiral conformal dimensions A4 and A4 respectively,
and the exponential is well defined since Lz, E(k) : FYY — F%9 are locally nilpotent for k& > 1.

It follows immediately from the definitions (3.65), (3.66) and from Lemma 3.10 that for
any state A € F** and any k € Z we have

AS = (LA, L5EAS = (LA (3.86)

13
L P )

(k)

It is then also convenient to introduce the linear map R}~ : T4 — F3* defined by

- —L™®_—L™
RI7E = exp <— > (bkng) + bkLgf)))bO @y, (3.87)
E>1
with the property iRZ_%AZ = (RZQEA)Z as a result of the identity (3.86). In particular, the
operator 922_)5 : Y — Fp® naturally takes as input a state A € F“® prepared at p in the
local coordinate 1 and returns another state RgﬁfA € F%* also prepared at p in the same

local coordinate 7. This is to be contrasted with the linear map (-)p % : F5* — F5* defined
in (3.27) which given a state A € F*® prepared at p in the local coordinate 1 returns the same
state A also prepared at p but now in the new coordinate £. These two maps, in fact, coincide.

Theorem 3.19. Let p € U C X° be a point in a connected open subset equipped with two local
coordinates §,m : U — C. For any state A € F** we have Ag = RgﬁgAg.

Proof. Consider the operator
- —Lp _—Lgp
007 = exp <— > (OkLyme + bkL;kyp)>b0 by O T — TR (3.88)
k>1
Since the Lie derivatives along the vector fields EZ" and EZP generate local (anti-)holomorphic
coordinate transformations fixing the point p, it follows by definition of the coefficients by and
b in (3.75) that (3.88) implements the coordinate transformation 7, — &, in F,’*. Therefore

£ _ AN — 3 — 3
Ay = @Z* Al = (R A)Z =R A}
where the second equality is by definition (3.85) and Proposition 3.18, while the last equality
is by definition (3.87). O
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The following gives an analogue of Huang’s “change of variable” formula [Hua, p.176-177],
see also [FB, Lemma 6.5.6], in the present full vertex algebra setting.

Corollary 3.20. With the same setting as in Theorem 3.19, for any A, B € F»* we have
§—n
f}%g%((y(Ag,gp(q))Bg)p ) = Y(RI7CAD, ny(q)) RYE B

Remark 3.21. The slightly awkward use of the linear map (-)5 7" : F3* — F% on the left hand
side ensures that this is an equality between states prepared at p in the same local coordinate
7. Indeed, the left hand side above could also be written simply as ‘d(Ag, §p(q))B§ but then
the equality in Corollary 3.20 would be comparing a set of states prepared at p in the local
coordinate & with a set of states prepared at p in the local coordinate 1. In other words, in
terms of the formal vertex operator Y (A, ()B introduced in (3.44) for any A, B € F%% | the
identity in Corollary 3.20 takes the more recognisable form

R1¢ (Y(A, M)B) Y (RI7€A,m,(q)) RI74B. g

Proof of Corollary 3.20. By Theorem 3.19 and the definition of the linear map (- )g " for any
state C' € F& we have C5 = R 7 ((C5)57"). In particular, it follows that

E—
(45,600 55 - %< (4045, 50)55)" ).
On the other hand, we have
Y(AS, §(0) BS = miy .0 (may (A5) © BS) = mevpy (may (RI4)7) @ (8]7B)")
= Y((RI7CA) ] mpla)) (REEB) ) = Y(RI7E AT my(0)) Ry By,

where in the first and third equalities we used Proposition 3.9 and the second equality is by
Theorem 3.19 again. O

3.5 Invariant bilinear form
From now on we will specialise to the case of the 2-sphere
¥ =52 (3.89)

Since Y is orientable, in this case the double is a disjoint union S = YUY of two copies of ¥
equipped with opposite orientations. As a simple application of Theorem 3.19, in §3.5.2 below
we will construct a canonical invariant bilinear form on the vector space F*»®. In particular,
this will be used in §3.5.3 to show that F®“ satisfies the axioms of a full vertex algebra |[Mor2].
To define this invariant bilinear form, we first need to a notion of vacuum state.

3.5.1 Vacuum state

Recall from §2.3 that ¥ € Top(X). However, ¥ = S? cannot be covered by a single coordinate
patch, so Theorem 2.5 does not apply to the open subset U = ¥ and in particular ULE(Z) is
not given by the isomorphism in (3.20). Instead we have the following result which depends
on the choice of holomorphic vector bundle L among the three examples in §2.1.2.

Lemma 3.22. In the Kac-Moody and Virasoro cases we have an isomorphism
() ULE(E) = C (3.90)
such that ([1]x) = 1. In the By system case we have instead ULE (X) = 0.

Proof. We consider the three cases separately.
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Kac-Moody: We have H*(£%(X)) = g g and H'(L% (X)) = C since
H(g® QO”(fl)) =gdg, H'(g® QO”(fl)) =0.

Consider the unital DG Lie algebra g® g® C1 with 1 of degree 1 and equipped with the trivial
Lie bracket. We then have a quasi-isomorphism of unital ba Lie algebras

¢p:g@g®ClL — LI(N)

sending (X,Y) € g @ g to the constant function in g ® Qovo(ﬁ) =g® QO7O(EL)EB g 0%0(x )
equal to X on ¥4 and Y on ¥_, and 1 to 1 € £3(X). Since the functor CE, introduced in
§A.1 preserved quasi-isomorphisms by Proposition A.2 we obtain a quasi-isomorphism

CEL(6) : Sym (g @ g)[1]) > CE. (£3(2))

where the differential dcg on the domain is trivial. Taking the 0*'-cohomology then yields an
isomorphism C = ULZ(X) which sends 1 € C to [1]y € ULZ(X) and whose inverse then gives

the required isomorphism (3.90).

Virasoro: We have H(£%(3)) = C° and H'(£3(X)) = C since

HO(QO* (2, THO8)) =%, HY(Q"(E,T%)) =0
where the 0" cohomology is given by global (anti-)holomorphic vector fields on CP'. Consider
therefore the unital DG Lie algebra C6@C1, with 1 of degree 1, again equipped with the trivial

Lie bracket. We then have a quasi-isomorphism of unital ba Lie algebras
p:ClapC1 = LE(D)

which sends (a,b,c,a’,b,¢') € CO to the pair of global (anti-)holomorphic vector fields given
by 0 @ (a&* + b +¢) € a; @M (X,) and 9 ® (€2 +bVE+C) € az®Q%(X_) in any choice of
holomorphic coordinate ¢ : C = CP!\ {00} — C, and 1 to 1 € £Z(X). Applying the functor
CE, we obtain a quasi-isomorphism

CE.(¢) : Sym (C°[1]) = CE, (LZ(%)

where the differential dcg on the domain is again trivial so that taking the 0*" cohomology we
again obtain the inverse of the required isomorphism (3.90).

By system: We have H?(£%(X)) = C? and H! (L% (X)) = C? coming from the fact that
HY(Q (2, L)) =C?,  HY(Q™(S,L)) =C2

We then form the unital DG Lie algebra a @ a @ C1 with a = spanc{3,~} and where we set
a = spanc{3,7}. Here B and B of degree 0 and ~y, ¥ and 1 all of degree 1. The Lie bracket is
given by [8,7] =1 = [3,7] and [3,7] = 0 = [3,7]. We have a quasi-isomorphism of unital DG
Lie algebras

pra®adCl = LZ(X)

which sends 3 and B to the pair of constant functions 1 € Q%%(X,) and 1 € Q%9(¥_), and
sends 7 and 7 to the pair of (1,1)-forms d¢é A £~y € Qb2 1) and dé A E710X € QLH(Z)
where y € Q%0(3,) is constant equal to 1 in a neighbourhood of ¢ = 0 and constant equal to
0 in a neighbourhood of ¢ = oo, and likewise for x’ € Q%%(3_) in the holomorphic coordinate
€ on ¥_. Applying the functor CE, we obtain a quasi-isomorphism

CE.(¢) : Sym ((a @ a)[1]) — CE4(L3(X))
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where the differential on the domain is dog = d[.’,]. A degree 0 element in the domain is a
linear combination of elements of the form (sv)"(s%)" with n,n € Z>¢. But the latter is always
dcg-exact since we can write it, for instance, as —dCE(n%rl(sB)(S'y)”“(s”y)ﬁ) using the fact
that —dcg ((sB)(s7)) = s[B8,7] = s1 = 1 where the last step is from working in the quotient
in the definition of the functor CE, in (A.3). The result for the v system now follows from

taking the O*" cohomology of the above quasi-isomorphism. O

A linear map ULZ(X) — C, as in (3.90) but not necessarily an isomorphism, defines the
notion of a state for the prefactorisation algebra UL in the sense of [CC1, Definition 4.9.1].
We will use this below to define an invariant bilinear form on F*%.

Note that while Lemma 3.22 provides us with a state in both the Kac-Moody and Virasoro
cases, it fails to provide a suitable notion of state for the v system. It is clear form the
proof of Lemma 3.22 that the culprit for the vanishing of UL () are the global holomorphic
sections of Q%0(X4) and Q%!(X.) which pair non-trivially to 1 under the differential dcg.
Removing these zero modes can be achieved by adding a mass term which will have the
effect of modifying the global observables of the factorisation algebra UL over ¥ = S? while
preserving the observables over small open sets [Gwi, §6.1.2], see also [CG 1, Lemma 2.5.1]. We
will not pursue this idea further here and from now on, when discussing the invariant bilinear
form on F%* we will therefore only focus on the Kac-Moody and Virasoro cases.

3.5.2 Invariant bilinear form on F%%

Let us fix antipodal points 0,0’ on ¥ and a coordinate u : ¥\ {0’} — C with u(o) = 0. We
also let =t : X'\ {o} — C be its inverse defined by u~!(p) := u(p)~! so that, in particular,
u~1(0') = 0. Consider the linear map (3.55) in the case n = 2 and U = ¥, associated with the
points 0,0’ € ¥ and with the local coordinates u and v~! near these points, respectively. We
obtain a linear map

() : Fe @ Foe — C,
L (3.91)
(B,C) = (m(y o5 (B @ C2)).

™M

|4
o

Specifically, the state B € F%® is prepared at o/ € V' in the local chart (V’,u~!) while the
state C' € F&* is prepared at o € V in the local chart (V,u) with VNV’ = (). We then apply
the factorisation product my vy 5 : ULE (V) @ULE (V) — ULE () to the element B"‘ﬁ?l RCy
followed by the isomorphism (-) from Lemma 3.22 to obtain a complex number.

Proposition 3.23. In the Kac-Moody and Virasoro cases, the bilinear form (3.91) is invariant
in the sense that

(B,Y(A,¢)C) = (y(e@(lﬁfim(_1)L<0)+i<o>g*2L<o>§*2E<o>A7gl)B, C)

for any states A, B,C € F%?.

Remark 3.24. This identity coincides exactly with [Morl, §3.1] or [AMT, eq. (4)], except for
the fact that the operator (—1)L@ L here is replaced by (—1)L©~£© there. However, since
for us Lg) acts as an integer it follows that these two operators coincide in our case. N
Remark 3.25. In the S+ system case the identity is vacuous as both sides vanish identically. <«
Proof of Proposition 5.23. The change of coordinate u™! — u on U = ¥\ {0,0'} is given
simply by o(t) = t~!. Letting p € U and denoting its coordinate by w = u(p) € C* we find
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that by = —w? and b; = —w while b,, = 0 for all n > 2. In particular, using Theorem 3.19 and
definition (3.85), for any state A € F& we have

ul _ul
ap=exp (WL +w L) (—w?) 0 (—a?) o art = A (3.92)
where in the last step we have used (3.86) and introduced the state

A= exp (wLy + @Ly) (-1 o ow 2o g 2o 4 e oo,

Consider now the linear map (3.55) for n = 3 distinct points 0,0',p € ¥ with U = X. At
the points o and o’ we still use the local coordinates u and u ™!, respectively, and at the point
p we will also use u. The linear map (3.55) for U = 3 combined with the isomorphism from
Lemma 3.22 then gives

O/

Fe@FC@F —C,  (B,AC)— (muyon(By ©A450C)).

Using the associativity (2.17) of the factorisation product, we can compute the factorisation
product on the right hand side by first computing the factorisation product

Mpo)v (A @ Cg) =Y (A}, u0(p)) Cy = (Y (A,w)O)y,

for some open V' C ¥\ {0} containing p and o, where we have used the fact that u(o) = 0
so that u,(p) = w, followed by the factorisation product my v 5 (Bgfl ® M(p,0),v (Ay ® cy)).
By definition (3.91) of the bilinear form on F%%  the result of this computation can be written
simply as (B Y (A, M)C). On the other hand, we can compute the same factorisation product
by first using (3.92) to rewrite the state A prepared at p in the coordinate u in terms of states
prepared in the coordinate v~!. This allows us to first compute the factorisation product

-1

uy () By = (Y (Aw")B)Y,

for some choice of open subset V' C ¥\ {0} containing the points p and o/, where we have
used the fact that u=1(0o') = 0 and u~'(p) = w™!. By subsequently performing the remaining
factorisation product with C', namely my o) » (m(o/’p),V/(Bgfl ®A4;) ® C’Zj), and comparing
the result with the other computation described above we deduce the claim. O

-1

ut u Tu
m(O’,p),V’(BO’ ® Ap) = 1é(A;D

3.5.3 Full vertex algebra axioms

As recalled in §1.1.1, there are a number of mathematical formulations of the notion of full,
or non-chiral, vertex operator algebras capable of describing both chiral and anti-chiral states
in a full conformal field theory. Since the emphasis in each formulation is slightly different
they also go by distinct names: OPFE-algebras in [KO, Ros|, full field algebras in [HuKo, Kon],
full vertex algebras in [Morl, Mor2| and non-chiral vertex operator algebras in [SS]. We now
show that our geometric realisation (3.12) of the vector space F“* using the prefactorisation
algebra ULZ naturally endows it with the structure of a full vertex algebra in the sense of
[Mor1, Mor2], justifying the use of the name ‘full vertex algebra’ for the vector space .

Recall from [Morl, Mor2], see also [Mor3], that a full vertex algebra is an R?-graded vector
space F' = @y, pege I, j, over C equipped with a linear map

Y(—,z2): F—End(F)[[z* 25 2%, Ar—Y(A2)= > Aygz s=1
r,s€R
r—s€Z
where the space End(F)[[z*!, 2%, |2|¥]] consists of formal sums as above with A, ;) € End(F),
and a non-zero element |0) € Fp satisfying the following axioms:
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FV1) For any A,B € F,

(a) There exists N € R such that A, oyB =0 for any r > N or s > N, and
(b) For any H € R, the set {(r,s) € R*| A, yB # 0and r + s > H} is finite,

For any h, h € R, Fy, 7, # 0 implies h — h€Z,

)
FV3) For any A € F, Y(A4,2)[0) € F[[z,z]] and lim,,0 Y (4, 2)|0) = A_;,_1)[0) = 4,
) Y(|0),2) =idp € End(F),

)

For any A, B,C € F and u € F¥ := @, jcg F 7 with F¥; the dual of F}, j,, the formal

power series
u(Y(A,ﬁ)Y(B,Q)C), u(Y(B,Q)Y(A,Q)C), u(Y(Y(A,u)B,Q)C)
are the expansions of the same single-valued real analytic function on
Yo i={(21,22) € C? |21 # 0,29 # 0,21 # 22}

in the respective regions {(z1,22) € Ya||z1] > |22}, {(21,22) € Ya||z2| > |21} and
{(21,22) € Yé | |Z2| > |Zl — 22|} of YQ,

FVG) For any h, h,, B, ]_7//, r,Ss S R, (Fh,ﬁ)(T‘,S)Fh’,FL’ C Fh—l—h’—r—l,ﬁ—i—ﬁ’—s—l'

Recall the formal vertex operator Y (—, () defined in (3.44) using the geometric realisation

(3.12) of the vector space F® in terms of the prefactorisation algebra UL,

Theorem 3.26. In the Kac-Moody and Virasoro cases, the tuple (F*,Y (—,(),|0)) is a full
vertex algebra.

Remark 3.27. In the B system case our proof of axiom (FV5) does not apply since we make
explicit use of the isomorphism (3.90) from Lemma 3.22. <

Proof. Recall from §3.2.2 that in all cases we consider there is a natural Z?-grading on the
vector space F®* such that A € (F“va)hﬁ if A € F%* is a homogeneous state with chiral and
anti-chiral conformal dimensions A4 = h and A4 = h. Axiom (FV2) is then immediate.

Part (a) of axiom (FV1) follows from the ‘Moreover’ part of Lemma 3.10 and part (b) then
also follows since in our case we have A, 5B = 0 unless (n,n) € Z2.

Axioms (FV3) and (FV4) follow from the second and first statements in Lemma 3.13.

To see axiom (FV5), let p,q € X\ {0/, 0} be distinct points. Let uq :== u(q) and ug == u(p).
Let W, A, B,C € F%* and consider the expression

plug, ug) = <<1>?‘]’(u_1’u’u’u)((o/,q,p, 0),(W, A, B, C'))> eC
defined by using the map (3.57) for n = 4 and the tuple of coordinates & = (u~!, u,u,u), and
also the isomorphism (3.90) from Lemma 3.22. By Proposition 3.9 and the definition of the
bilinear form in (3.91), this has the three expansions

(WY (A, u1)Y (B, u2)C), (WY (B,u)Y (A,u1)C), (WY (Y (A, u1 — uz) B, u3)C)

in the respective regions of Confs(U) determined by |uy| > |ug|, |ua| > |u1| and |ua| > |u1—us|.

Finally, Lemma 3.11 implies that for any homogeneous states A, B € F&“ and any n,n € Z,
the state A, 5)B € F¥* is homogeneous with chiral conformal dimension Ay +Ap —n — 1
and anti-chiral conformal dimension A4 + Ap — 7 — 1, from which axiom (FV6) follows. O
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3.6 Reality conditions

In this subsection we construct an anti-linear involution on F*® and describe its action on the
vertex operator products. We then combine it with the invariant bilinear form (3.91) to define
a Hermitian sesquilinear form (-,-) on F&,

We let 7 : & — 5 be an orientation reversing involution of ¥ with respect to which the
coordinate u used at the end of §3.4 has the property that

uoT =u L. (3.93)

A concrete example will be described at the start of §4 below, where 7 will correspond to the
Lorentzian involution 77, : ¥ — ¥ from §1.

3.6.1 Anti-linear involution on F%¢

Recall from §2.4 that we have an anti-linear involution 7 : @ = a. We extend it to an anti-
linear involution of the untwisted Kac-Moody algebras @ and a defined in §3.1 by letting it act
by complex conjugation on the coefficients of the Laurent polynomials in the second tensor
factor, i.e. zt" — Zt" and xt" — Zt" for any x € C and n € Z~q, where T denotes the
complex conjugate of z, and fixing the central extensions k — k and k — k. In turn, this
induces an anti-linear involution 7 : F%® = F®% on the full affine vertex algebra defined by
the Leibniz rule, namely it is given on a monomial state A € F&% as in (3.3) by

FA = (1a") () - - (Tal)(—m1)(7'bf)(—nf) e (Tbl) (—nn)0) (3.94)

and extended by anti-linearity to all of F®%<.

Recall also the anti-linear isomorphism of prefactorisation algebras 7 : ULY = 7*ULY
from Proposition 2.6. It induces an anti-linear isomorphism 7 : (ULZ), = (T*ULY),, ie. a
natural isomorphism of diagrams Top(X), — Vecc of shape the category Top(X), defined in
§3.1, whose components are all anti-linear maps. By the universal property of limits we obtain
a unique anti-linear isomorphism

#: Hm(ULY), — lim(T*ULY), (3.95)

such that for every neighbourhood U € Top(X), of p € ¥ we have the commutative diagram

Hm(ULE), — 2% ULE(U)
. |+ (3.96)

We denote by m.(,) -7y the canonical linear map lim(7*ULE), — ULZ(7(U)) in the bottom
of this diagram since, for any inclusion of open subsets U C V' C ¥, the factorisation product
ULE(T(U)) — ULZ(7(V)) of the prefactorisation algebra 7*ULY is given by My (U),~(v) In
terms of the factorisation products of the prefactorisation algebra UL, in other words
T*ULE UL
Moy = M) (v

Since 7 : ¥4+ — X is an anti-holomorphic map, given any local holomorphic coordinate

¢ : U — Con an open subset U C X, the coordinate 7§ = { o 7 : 7(U) — C is also holomorphic.

Lemma 3.28. For any A € F%* and a local coordinate & in a neighbourood of p € ¥ we have

o

?(Ag) = (%A)ifp). In particular, (3.95) induces an anti-linear isomorphism 7 : Fp* = 9’3’((;).
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Proof. By linearity we can assume that A € F»® is a monomial state and we will only consider
the chiral case A = CH .a%fml)|0> for some a' € a and m; € Z>y with i € {1,...,r}
and r € Zx>(, since the treatment of the anti-chiral part is completely analogous. For any
neighbourhood U of the point p equipped with the local coordinate £ : U — C we then have

Mer(p),7(U) (%(Azt;)) =T Ag [HS( ®T((§p " : 1))

T

- 7 AE\—My T(Uiil) ~ T N T
[Ts(Caliren,, @ |G )] =AYy, = ey o0 (GA),)
=1 Z (V)

where in the first step we have used the commutativity of the diagram (3.96). The second
step is by definition of the anti-linear isomorphism 7 : ULE = 7*ULE in Proposition 2.6. In

o

the third step we have used the fact that 7 : Qg" = 7*Q¢° is an anti-linear isomorphism of
cosheaves of commutative DG algebras, which in particular commutes with 0, and

F&™) = (76— (7)) ()™ = ((7E)r()) ™

We have also used the fact that %(pgz’l) € QQ’O(T(Ui))i(UH). In the second last step we have
used the definition of 7 : F&* = F** in (3.94). O

Proposition 3.29. For any A, B € F%% and n,n € Z, we have
In other words, 7 : F%* = F%® is an anti-linear automorphism of the full vertexr algebra F®<.

Proof. Let p,q € U be two points in an open subset U C ¥ equipped with a local coordinate
¢ : U — C. Using Proposition 3.9 and the definition (3.43) of the vertex modes, we have

9(45,6(0)55) = 7 X AL, B 60" 60

n,nEL

= Y AT BE) (7)) (T(@)) " FE) iy (7(0) T

#(mgp v (45 @ B))

\]>
S

= %((A(n,ﬁ)B)f)> (FO) 7 (1(@) " (FE ) 7y (1)) ™!

() (1(@) " FE) g (r(0)

7(p)

N

n,ne

where in the third step we used &,(q) = £(q) —&(p) = (7€)(7(q)) — (FE)(T(p)) = () r(p) (7(2)),

in the fourth step we used Lemma 3.10 and in the last step we used Lemma 3.28. On the
other hand, we can also compute this as follows

# (g0 (A§® BE) = s ri).rien (AT © FB)T,)
=Y((FAT,), (7)) (@) ) (FB)S
= 3 GATIOGBYE (7)) (r(@) " 7y (@)

n,neL

= > (A, )TB) )

n,nEZ

D)

where in the first step we used Proposition 2.6 and Lemma, 3.28, in the second step Proposition
3.9, in the third step the definition (3.43) and in the final step we used Lemma 3.10. U
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3.6.2 Hermitian sesquilinear form on F*¢

Using the bilinear map (3.91) and the anti-linear involution 7 : F»® = F%® we introduce the
sesquilinear form

()= (F(),) (F@F — €, (B,C) = (mos((FB)y ©CL))  (3.97)

which is anti-linear in the first argument and linear in the second. The vertex algebra F®®
equipped with the anti-linear involution 7 : F»® = F%® is said to be unitary if the sesquilinear
form (3.97) is positive definite [Morl, AMT].

Lemma 3.30. The isomorphism (-) : ULZ(X) = C from Lemma 3.22, in the Kac-Moody and
Virasoro cases, is such that for any A € ULY(X) we have (A) = (F.A).

Proof. Recall that the isomorphism from Lemma 3.22 is the inverse of C = ULZ(X), a — [a]x
which is clearly Zo-equivariant, with the action of t € Zy given by complex conjugation on C
and by the anti-linear isomorphism 7 : UL (X) = ULZ(X) from Proposition 2.6. O

Proposition 3.31. The sesquilinear form (3.97) is Hermitian, in the Kac-Moody and Virasoro
cases.

Proof. Let B,C € F**. Using Lemma 3.28 with p = 0 and £ = u, recalling that 7(0) = o’ and
7u=wu""' by (3.93), we can rewrite (3.97) as (B,C) = (m(y o) = (7(BY) ® C%)). Then

(B,C) = (.0 s (F(B) @ C2) ) ) = (mio 2 (BE @ 7(C) ) = (C, B)

where the first step is by definition (3.97) and Lemma 3.30, the second step is by Proposition
2.6 and the last step is again by definition (3.97). O

In the remainder of this section we focus only on the Kac-Moody case since the statement
of Proposition (3.32) relates to a similar formula, in the chiral setting, for a Hermitian form
on a Kac-Moody algebra module, see for instance [Kacl, §9.4] or [Kacl, (11.5.1)].

Recall from §3.1 that any state A € F» can be written as A = g|0) for a unique element
g € U(@_ @®a_). The negative of the anti-linear involution 7 : g = g defines an anti-linear
anti-involution —7 : g = g. We extend this to an anti-linear anti-involution (-)! : a®a = ada
of @ a defined by (cf. [Kacl, §§2.7, 7.6] and [DL, §4.2] in the chiral case, where wy denotes
the compact anti-linear involution)

(X(_m) + V(_n) +ak+ bR)Jr = (—TX)(m) + (—TY)(n) +ak —|—ER (3.98)

for any X,Y € g, m,n € Z and a,b € C. We then extend this to an anti-linear anti-involution
of U(G_ @ a_) by letting (g¢')T = ¢'Tg" for any ¢g,¢' € U(a_ @a_), cf. [Kacl, §11.5].

Proposition 3.32. For any g,¢' € U(@® a) we have (g[0), ¢'|0)) = (mo 5 (g'g’|0)%)).

Proof. By anti-linearity in g € U(@@ @), it is enough to consider monomial g. Let A = g[0) €
F%% be the monomial state in (3.3) so that g = Xy -+ X%_ml)YZ"_m) .. .Y(l_m) eU(ada),
and let C' = ¢'|0) € F** be aribtrary.

Now by definition of (3.97) we have (g|0),¢’|0)) = (74,C). To compute the right hand
side, note that for any open subset o' € V/ C ¥ we have

(FAYL = [f[s(Txi ® (umﬂg;—l) H S(Tw' ® (mg;l)] , (3.99)
=1

j:l \d
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where recall that o/, e Up € ... €U, C V. C X ando_eVye...eV;C V. C3_
choice of nested sequence of open subsets. In simplifying the above expression we have used
the fact that uil( '} = 0 so that the shifted coordinate uo_,1 is the same as the unshifted one,
namely u /1 = u~ . Note that each factor in the above cohomology now has a positive power
of u since (u=1)™™ = ™ and similarly for the anti-chiral part.

For i € {0,...,r} we define the open subset U/ := (U;)¢ as the complement in ¥ of the
closure of U; and similarly for each j € {0,..., 7} we define V/ := (V;)¢. These are open subsets
of some open neighbourhoods Wi € X1\ {0/, } of o4 € ¥1. In fact, they form nested sequences
of open subsets o4 € UL € ... U, C Wy CXiando_eVie...eVjCcW_cCX_. We
can then introduce smooth bump functions

P =1t e QUL Dy =1 p) € Q0O

i—1 j—1 J

for each i € {1,...,r} and j € {1,...,7}. We may now rewrite (3.99) as

[HS< ™' ® mWZ 1>ﬁ8<—TYj®[a"ﬂg )] (3.100)
| y

-1
Jj=1 !

where we note, crucially, that an extra minus sign appeared in each term through the replace-
ment of smooth bump functions in (3.11) since

5 Ui_ 5 Ul 5 Vi- 5 Vi

Iy ==0pyi » Oy ==0py

Recalling the definition of the vertex modes in (3.29), the cohomology class (3.100) represents
the product of vertex modes (—TXi)E‘mi) and (— TYJ)( ) but in the reverse order compared to

(3.99) due to the reversal of the nested sequences of open subsets U/ and V’ compared to U;
and Vj. By associativity (2.17) of the factorisation product and definition (3.98) we now have

Moy ((FA)Y © CY) = mpr 2 ((FAY @ CY)
=myv)s((ghy @ C) = (470)5,

where in the second step Y C W \ V is an annulus shaped open subset which encircles the
open subset V' 3 0. The result follows by applying the isomorphism (-) from Lemma 3.22. O

4 Operator formalism for F*¢

In this section we use the prefactorisation algebra ULY € PFac(, Vec%) from §2.3 to describe
the operator formalism [DMS, §6] for F&*. That is, we describe quantum operators associated
with states in F%® on the cylinder ¥/ := R x S! = C/27Z, where R corresponds to the time
direction and S! = R/27Z to the compactified space direction. It will be convenient to extend
¥/ to a 2-sphere 3 = S? by adding the points at ‘infinity’ on both ends of the cylinder. Recall
that in (3.89) we had specialised to the real 2-dimensional manifold ¥ = $? and we will thus
keep doing so throughout this section. We make the identification ¥’ = 3\ {0, 0}, where o
and o' are the points added to the ‘bottom’ and ‘top’ of the infinite cylinder, respectively.

4.1 Fourier modes and quantum operators
4.1.1 From the cylinder to the plane
On a simply connected open subset U C Y’ we define a local holomorphic coordinate ¥ : U — C

by choosing a representative of the coset C/27Z continuously over U. For later convenience,
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we choose the orientation on ¥/, such that ¥ — ico as we approach the bottom of the cylinder,
i.e. the point o € X. This coordinate satisfies

J=4>9or, (4.1)

where 7 : ¥/ — ¥’ denotes the orientation reversing involution given by complex conjugation
on X =C/ 2nZ, extended to an orientation reversing involution 7 : X — X as 7(0) = o. We
also define 7: & — 5 by letting it act as 7 : ¥ — ¥ on each copy X4 of ¥. This orientation
reversing involution corresponds to the Lorentzian involution 7, : S > 3 from §1.

It is crucial to note that while the coordinate ¥ : U — C on any simply connected open
subset U C X is defined only up to an additive multiple of 27, the shifted local coordinate
Uy =10 —9Y(p) : U — C, introduced in (3.8), is unambiguously defined. This will mean that
we can use the geometric realisation linear maps (3.12) or (3.25) to prepare states in F* at
any p € ¥ using the local coordinate 1.

However, on any open subset W C Y/ wrapping around the cylinder, a continuous repre-
sentative ¥ : W — C of the coset C/27Z over W is necessarily multi-valued, and hence does
not provide a well defined coordinate on W. Moreover, 19 is not defined at 0,0 € ¥.. We thus
introduce two other holomorphic coordinates

u:3\ {d} —C, w2\ {o} —C (4.2)

related to the above local coordinate 1 : U — C on a simply connected open subset U C ¥/ by
the holomorphic changes of coordinate u = e and u~' = e~". Note, in particular, that the
multi-valuedness of the local coordinate ¥ drops out from the local coordinates (4.2). These
coordinates satisfy all the properties of the charts with the same name from §3.4 and §3.6. For
instance, u(o) = 0 and u~!(0’) = 0, and the property (3.93) is a consequence of (4.1).

We summarise the above setup in the following picture

Proposition 4.1. Let A € F*, g € ¥ and let W > q be an annulus shaped open subset
around o € ¥ in the coordinate u. The expansion of mq7W(A'qq9) in the coordinate u(q), namely

—
Z A, —'7119(11)€i7’u§((1)7
n,n€” ! |

>/

A(¥(q)) =Y (AY, u(q)

is a homogeneous vertex operator at o € ¥ in the coordinate u. That is, its Fourier coefficients
Apn are the homogeneous vertex modes A[ 7l of some state A € T4 at o € . We will refer

to this as the quantum operator on X/ associated with the state A € F%.

Proof. Let A € F™ be any state of definite (anti-)chiral conformal dimensions A4 and A 4.
Using Theorem 3.19 to change from the local coordinate u to i = logu we have
A:Iﬁ _ :Rg—m?AZ _ (Ru_ﬁﬁA)Z = u(p)AAﬂ(p)AA (exp <— Z (bkL(k) + l_)kL(k))>A> (4.3)
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where in the last step we used the explicit expression for the operator R*7" from (3.85) and
the facts that bg = u(p) ", LgyA = AgA and Lig)A = A A.

Now notice that L) and L) lower the (anti-)chiral conformal dimension of a state by k
since [L gy, L(r)] = —kL(j) by (3.68) and similarly for L(j). Also observe that by, is proportional
to u(p) " for all k > 1 since

u(p) ' exp <Z bkulgﬂaup)up = i, = log (up + u(p)) — log (u(p))

k>1
k k+1
_ (uﬁZ ;m )

where the first equality is by definition of the by for £ > 1 in (3.75b) and using the fact that
bo = u(p)~!. We then immediately deduce from (4.3) that we can write A'qﬁ as a finite sum

A7 =3 S ulp)>ma(p) e (B

for some states B; € F*® of definite (anti-)chiral conformal dimensions Ap, and Ap,. Then

YA u(@) = D ul) = ae)> Y (B, u(@) = X(A], u()

i

with A == >, Bi, where in the last equality we used the definition of the homogeneous vertex
operator in (3.48). The result now follows. O

4.1.2 (Anti-)chiral states

Recall from §3.2.6 that the chiral vertex operators (3.32) and its anti-chiral analogue for any
a € a correspond to the states a(_1)|0>§ and 5(_1)\O>g, respectively, see (3.49). Similarly, we
introduce the quantum operators associated to any a € a as

a(¥(q)) =Y(a1)l0), u Zane_'mg ,

nez

3(9(a)) = Y(3 0|07, (q) = 3 apen?@

neL

In other words, comparing with the general mode expansion from (4.1), the Fourier modes a,
and a,, are defined as, cf. (3.50),

an = (a1))0), 00 3= (31))0),,

We can describe these Fourier modes more explicitly in each of the three examples from §2.1.2.

Kac-Moody: We note using (3.70) that for any X € g we have
Ly X=1)|0) = X—1y|0)dn0,  LinyX(=1)0) = X(~1)[0)dn0 (4.4)

for all n > 0. Using this we may apply the formula (4.3) for the change coordinates u — i¥ to
the states X(_1)|0) and X(_1|0) to obtain

X-pyl0) = u(p) Xp)0)%,  Xp|0) = a(p) X(_1)|0)s.
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It then follows from (3.46) that tlze quantum operators from Proposition 4.1, associated to the
(anti-)chiral states X(_1)|0) and X(_1)|0), are respectively given by

X)) = Xne ™M@ X(I(p)) =Y Kne™®), (4.5)
nez ne”L

where the Fourier modes are related to the homogeneous vertex modes in the coordinate u as

nJ’

for every n € Z.

Virasoro: Using the formula (4.3) for changing coordinates u — it, we find

Qf = u(p)? (exp <— Z (bkL(k) + l_)kL(k))>Q> = u(p)QQ;‘ - i|0>;, (4.6)

k>1 p

and similarly for the anti-chiral state 2. To see the last step note that by the defining property
(3.63a) of a conformal state Q we have LyQ = §[0)dy 2 for all £ > 1 and also by = Lu(p)~2.
Expanding both sides of (4.6) in u(p) we obtain

Z Lne—inﬂ(p) _ Z QFn]e—inﬂ(p) _ i
nez neL

where on the left hand side we used the definition of the Fourier coefficients in Proposition
4.1, which are conventionally denoted as L,, := §2,, and L,, := €,,, and on the right hand side,
for the first term we used the definition of the homogeneous vertex n'-modes, see (3.46),
in the coordinate u on the plane and for the second term the fact that Y(|0)%, u(p)) is the
identity operator. The above is the well known relation between the stress energy tensor on
the cylinder and on the plane, see e.g. [DMS, (5.138)]. In particular, we have

U c T _ Ou C
Ln = Q[n] - ﬂén,ﬂv Ln = Q[ ] ﬂén,o

for every n € Z.

B~ system: Using (3.74) we find
L) B—1y10) = B(~1)]0)dn .0, ?(n)g(—1)|0> = B(-1)10)dn.0,
Lnyv-1)l0) =0, Liny¥(-1)l0) =0

and therefore apply the formula (4.3) for the change coordinates u + i¥) to the states 3(_1)|0),
B-1)10), ¥(~1)|0) and ¥(_1)|0) we find

B0 = ulp) Bp)|0)s,  B1y|0) = a(p) B_1)0)"
YO =y 1)[0)%, Y100 = 51| 0)%.

It then follows from (3.46) that the quantum operators from Proposition 4.1 associated to
these (anti-)chiral states are given by

BOP) =D Bre ™ B(0(p)) =) Bne™®), (4.7a)
ne” ne”z

Y@OP) =Y peT™® 5(I(p)) =Y Fpe™®) (4.7b)
nez ne”L
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where the Fourier modes are related to the homogeneous vertex modes in the coordinate u as
Bn = 5[:?], By = B[:@L]a Yn = ’V[;,L]u Yn = ’7[2]

for every n € Z.

More generally, if A € F% is a chiral monomial state then its associated quantum operator
from Proposition 4.1 is holomorphic in this case so that

AW(9) = Y(A) u(q) = D Ape ™,

neL

i.e. A has Fourier modes A, 5 = A, 05,0. Moreover, since mq7W(Ai}9) depends holomorphically
on ¥(q) by Proposition 3.7, we can extract the Fourier modes using a contour integral

1 o
An= o / g (A)e @D di (g) (4.8)
T Jy

along any contour vy wrapping once around the cylinder Y’. Likewise, if A € F*® is anti-chiral
then the quantum operator from Proposition 4.1 is anti-holomorphic and we have

A(9) =Y(AY a(q)) = Y An @,

neL

i.e. A has Fourier modes A,, 5 = A70y,0. Since in this case mqyw(Aiqﬂ) depends holomorphically
on ¥(q) by Proposition 3.7, we can extract these Fourier modes using a similar contour integral

| L
Ay = 5 [ myaw (A)e D0,
v

As in the case of vertex modes discussed in §3.2, we use the same notation for Fourier modes of
chiral and anti-chiral states. This should not lead to confusion for the same reason as before,
namely the type of Fourier mode in question is determined by the chirality of the state.

The vacuum state |0) € F*® is both chiral and anti-chiral, with Fourier modes given by
|0} 7 = 0n.00m0 for n, 7 € Z. Here we are omitting the factor of [1]y € ULE (W) for brevity
since it corresponds to the identity operator.

4.1.3 Translation operators

Recall the endomorphisms D, D : F** — F®% in (3.28) and Proposition 3.7. The following is
the analogue of Lemma 3.12 for Fourier modes.

Lemma 4.2. For any A € F** and n,n € Z we have
(DA),—LJ—L = —nA,w—L, (DA)nﬁ = —ﬁAnﬁ.

Proof. This is very similar to the proof of Lemma 3.12. We have

YDA ulg)) = mew (DAY) = maaw (05 AY) = 10504 (AP, u(q))

1f’((D‘él)ifﬂu(q)) = mq,W((DA)lzﬁ) = mq,W(_iaﬁ(q)Aiqﬁ) = _iaﬂ(q)y(Alzﬁ’M)v

where the first and last steps in both cases use Proposition 3.9 and the second steps are by
Proposition 3.7. The result follows from the definition of Fourier modes in Proposition 4.1. [J
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4.2 Borcherds type identities

In Proposition 3.15 we showed that the vertex modes of states in F*“ satisfy the Borcherds
type identities when one of the states involved is (anti-)chiral. In Theorem 4.3 below we derive
similar identities for Fourier modes.

Recall from §3.1 that the relative ordering of the (anti-)chiral vertex modes in a state in F»“
prepared at a point p € X2° in a local coordinate £ is encoded in terms of the prefactorisation
algebra ULZ by associating each factor with disjoint concentric annuli shaped open subsets
around p. In the case of Fourier modes, the annuli shaped open subsets around o € ¥ in the
local coordinate u correspond to open strips around the cylinder ', as depicted below. In
particular, the centre of these annuli is 0 € X so the product of Fourier modes is from left to
right if their corresponding open strips are ordered from top to bottom along Y'. In pictures,

AB?TZT;: w - B n,ﬁA’m,,ﬁz,

¢ 5 =

The Ngrlund polynomials ‘Bgf) (x), for any n € Z>¢ and a € Z, are defined by

xt (a)
-y B (%) n—a. (4.9)

(=1~ &l

They generalise the Bernoulli polynomials B,,(z) for n € Z>o which correspond to the special

case a = 1,1i.e. B, (x) = %S)(x). The values 9B,,(1) are the Bernoulli numbers. An alternative
definition of these numbers that We shall also use is 9B8,,(0), which differ from the first definition
only in its first term: B1(0) = —3 and B1(1) = 3 while B,,(0) = B,,(1) for all n > 2.

In Theorem 4.3 and Prop0s1t10n 4.4 below we use the convention that 0° = 1.

Theorem 4.3. Let A, B € F** and k, m,n,n € Z. We have the following identities:
(i) If A is chiral then
1) k A B - — _1)kti k B A A
Z( ) . m—jPn+j,n Z( ) . n+k—j,ndm—k+j
>0 J >0 J

- Z |7,.[ (A(j"rk"rr)B)ern,ﬁ'

7,r>0

(ii) If A is anti-chiral then
i(* ki (F
S (=17 (" )Am— Bt — Z(—l) ) Bratk—j Am—k+;
320 J 720 J
—k)m”

- Z '7”' (A(j+k+7’) B) nm+n’

7,r>0

Proof. Suppose first that DA = 0. Let W C ¥’ be an open subset in Top(X) wrapping around
¥'. Recall the map in (3.56) and define Fy g : Confy(W) — ULZ (W) by

Fap(a,p) = 03 (4, 0), (A, B))uy(q)*u(p)"u(g)™ *a(p)"
= m(gp.w (A7 @ B )uy(q) u(p) u(@)™ *a(p)”.
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This depends holomorphically on ¢ € W by Proposition 3.7. By the standard deformation of
contour argument

-
S

we then have the identity

;ﬂ( /7 _ /7 )FA,B(q,p)dﬁ(q) — 2% / Fap(q,p)d(i9(q)), (4.10)

Cp
where 4 and 4 are contours wrapping the cylinder which pass, respectively, above and below
the point p and ¢, is a small clockwise oriented contour around p.
On the right hand side of (4.10), since ¢ € ¢, is close to p we have the expansion

(—k) "
B, (—k)m

i Y (A7, 0) BY ) (0,(0) " )™ )

Fap(q,p) = Z

Jr20

where we used the definition (4.9) of the Ngrlund polynomials. We can perform the integral on
the right hand side of (4.10) using (3.51a). For this, note that the orientation of the integration
variable i9(q), see the choice of orientation on X/, we made at the start of §4.1, matches the
clockwise orientation of the contour ¢,. By definition of Fourier modes in Proposition 4.1, the
right hand side of the desired identity then corresponds to the coefficient of u(p)°u(p)°.

In the first integral on the left hand side of (4.10), by the relative positioning of ¢ € 4 and

the point p as depicted in the above picture, we have |u(p)| < |u(g)| and hence the expansion

(K , : » o
Fap(g,p) =) (-1) <j>‘é(Al§9, w(@))Y(By s u(p))u(g)™ u(p)" Fa(p)".
Jj=0
Performing the integral over 4 using the property (4.8) and using the definition of the Fourier
modes in Proposition 4.1, the first term on the left hand side of the desired identity is given
again by the coefficient of u(p)°u(p)°.
Likewise, in the second integral on the left hand side of (4.10) we have g € 4 which lies

below p so that |u(p)| > |u(q)| and hence we have the expansion

(kK i i m—k+j n+k—j~ n
Fanla.n) = X089 (8905 w9 (47 @)y o)
Jj=0
Upon integrating over 4 and extracting the coefficient of u(p)°@(p)? this then gives the second
(

term on the left hand side of the desired identity, using again (4.8) and Proposition 4.1.
The proof in the anti-chiral case DA = 0 is very similar. (|

As with vertex modes, cf. Corollary 3.17, the ‘Borcherds type’ identities for Fourier modes
lead to commutator and normal ordering formulae for Fourier modes of composite states.
Proposition 4.4. Let A, B € F** and m,n,n € Z. We have the following identities:

(i) If A is chiral then

r

m
[Am, Bnal = Z T (A(T)B)m+n,ﬁ’

r>0
C(—r
(A(—l)B)n,ﬁ = ZAjanj,ﬁ + Z anj,ﬁAj + Z (7"‘ ) (A(T)B)nﬁl
<0 7>0 r>0 ’
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(ii) If A is anti-chiral then

r

m
[Am’ B”Z,ﬁ] = Z 7 (A(T)B)n,m—f—ﬁ’
r>0
C(—r
(A)B), 5= > AiBua—j+ ) Bun-jAj+ ) (r' ) (401 B),, 5
j7<0 3>0 r>0 ’

Proof. Taking k = 0 in the identities from Theorem 4.3 (i) and (i) we obtain the first desired

relations in (i) and (i7), respectively. Taking instead m = 0 and k = —1 in the identities from
Theorem 4.3(7) and (i7) gives the second desired relations in (z) and (i¢) upon noting the fact
that {(—r) = —%11(1) for every r € Z>. O

Remark 4.5. The combination of the commutator and normal ordering formulae for Fourier
modes in F&“ from Proposition 4.4 have the following interesting heuristic interpretation.
Replacing n in the first relation of Proposition 4.4(i) by n — m, we can rewrite it as

AmBn—m,ﬁ = Bn—m,ﬁAm + Z % (A(T‘)B)
r>0

n,n’

Taking the formal sum of the latter over m € Z~o and formally ‘“replacing” the infinite sum
Y mso M’ by the (-value ((—r), we see that the right hand side coincides exactly with the last
two terms on the right hand side of the second relation in Proposition 4.4(i). Therefore, by
virtue of the first relation in Proposition 4.4(i), the right hand side of the second relation in
Proposition 4.4(i) can be interpreted as a (-function regularisation of the formal infinite sum
Y mez AmBn—mz- In other words, we have the formal equality

(A(fl)B)n,ﬁ Y= Z AmBn—m,ﬁ

meZ

where the non-sensical infinite sum on the right hand side, which corresponds to the Fourier
(n,7)"-mode of the naive product A(d(q))B(9¥(q)), is given meaning by bringing all its terms
into normal ordered form and using (-function regularisation on the resulting divergent sum.
The same reasoning applies to the relations in Proposition 4.4(ii). N

We have the following immediate applications of Proposition 4.4.

Corollary 4.6. The Fourier modes of the (anti-)conformal states satisfy

3 3

m = m
[Lm; Ln:| = (m — n)Lm+n + EC 6m+n70, [Lm, Lni| = (m — ’I’L)Lm+n —|— EC 5m+n,0

and [Ly, L) = 0 for m,n € Z. In the Kac-Moody case we have the non-trivial commutators

[Lmaxn] = —n Xm+n, [meYn] = [XaY]m—i-n + mH(X7Y)6m+n,Oa

[Lma Xn] = _nxquna [>_(Wh YTLj| = [Xa Y] +m H(X7 Y)5m+n,0

m-+n

for any X)Y € g and m,n € Z. In the By system case we have

(L, Bn] = =1 Brmtn, [Lins Yn] = —(m + 1) Yman, [6771)771] = dm+n,0,

[Ema/én] =N Bm+m [Lma’_Yn] = _(m + n) Ym4n; [Bma'_Yn] = 5m+n,0
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Proof. These all follow immediately from Proposition 4.4. For the first set of equations we use
in particular the defining property (3.63a) of the (anti-)conformal states and Lemma 4.2. For
the second set of equations we use the identities (3.60) and the fact that

QuyX(~1)|0) = D(X(~1)10))dn,0 + X(~1)[0)dn 1

for all n > 0, and similarly for the anti-chiral version, cf. (4.4). For the third set of equations
we use the identities (3.62) and the fact that

Qn)B(=1)10) = D(B(-1)|0))dn,0 + B—1)[0)dn.1,
Q) v(-1)10) = D(v(=1)|0))dn,0

for all n > 0, and similarly for the anti-chiral versions. O

4.3 Reality conditions

In this section we discuss reality conditions on quantum operators defined in Proposition 4.1.
Specifically, we introduce a natural notion of adjoint operator, defined by the action of the
anti-linear isomorphism 7 of ULZ from Proposition 2.6 and show in Proposition 4.9 that it
matches the usual adjoint with respect to the Hermitian sesquilinear form introduced in §3.6.

Lemma 4.7. For any A € F&% and p € ¥’ we have %(A;?) = (—1)AA+AA (?A)i;g(p)'

Proof. Using Lemma 3.28 and the fact that 7(i¢) = —i¢} which follows from (4.1), we deduce

%(A;?) = (%A);(ig). By the explicit expression (3.12b) for A;(iz), using the fact that

7 . —mg; Ui, m;—A, 7 . —my; Ui,
(Ta)fiﬁf(p) ® {(_”97(;0)) -|Ui ! (_1) A +1(Ta)i19.r<p) ® [(”97'(]))) -|Ui 17

= Vi - ; = N na Vi
(Tb)‘%ﬂp) &® |7(|’197_(p)) 'fl]—|Vj Lp— (_1)71] Ab+1(7.b)]_h§7—(p> ® ’((_”97_(1))) ]WVj 1
forie{1,...,r} and j € {1,...,7}, the result now follows. O

Given any O € ULZ (W) on an annulus shaped open subset W C ¥’ around o € ¥ in the
coordinate u, we say that it acts on Fg'“ if it induces an endomorphism

O:F% L, gma BU L (QB)Y

where the state O B € F*® is defined by the factorisation product muy,q) (0 ® By) = (0 B)f
into a larger open subset U C X of 0 € 3. We then obtain an endomorphism O : F&¢ — F%<.
For instance, the vertex modes Aq(‘n 7) for n,n € Z of any state A € F%* act on 55 by Lemma

3.10. We define the adjoint of O € ULZ (W) as
O = #(0) € ULE (1(W)), (4.11)

where we can also view 7(W) C ¥/ as an annulus shaped open subset around o € X in the
coordinate u. In particular, O then also acts on F5'“.

Recall the quantum operator A(9(p)) € ULY (W) associated to a state A € F*“, as defined
in Proposition 4.1. Its adjoint is given by the following.

Proposition 4.8. For a monomial state A € F** we have

AW(p)" = (~1)2aFB4(24)(D(p)) € ULE (r(W)), (4.12)

or equivalently, for any n,n € Z we have Aim = (—1)AA+AA (TA)—n.—7-

)
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Proof. By definition (4.11) of the adjoint we have

A@E)" = #(A0E)) = #(Y(4}, up) ) = #(mpw(4))
= M) rw) (F4)) = (= 1)AA+AAm<),T(W>((fA)39<p))

= (“1)MTRAY((FA)T) ul(r(p) = (=124 (74) (9(7(9)))

where the fourth step we uses Propositlon 2.6 and the fifth step is by Lemma 4.7. The result
(4.12) now follows by using the property (4.1). Using the definition of the Fourier modes in
Proposition 4.1 to rewrite both sides of the last expression we find

Z AT |m9(q o i0(q) _ (_1)AA+AA Z (%A)n,ﬁ e%m?(T(Q))eiﬁﬁ(ﬂ'(q»7

n,nEZ n,n€”Z

where on the left hand side we applied the anti-linear map ()t defined in (4.11) to each term of
the Fourier series from Proposition 4.1. The final result about the Fourier modes now follows
from comparing both sides of the above using the property (4.1). O

The above notation (-) for the adjoint of Fourier modes is consistent with the anti-linear
anti-involution (-)! on the modes of @ @ @ introduced in the Kac-Moody case in (3.98).

Indeed, recall from after (4.5) that the Fourier modes X,, and X,, coincide with the vertex
modes (3.29) at o € ¥ in the u coordinate for all n € Z, which in turn have the same action as
modes in @ and a, respectively, when acting on states prepared at o € ¥ in the u coordinate by
(3.30). Also, the commutation relations of the Fourier modes in Corollary 4.6 coincide with the
Lie algebra relations (3.4) in @@, with the central elements k and k both replaced by 1. Now
the definition (3.98) implies that (X,)T = —(7X)_,, and (Y )T = —(7Y)_s, which are equivalent
to the statement of Proposition 4.8 for the states X(_1)|0) and Y(_1)|0). Furthermore, the

property from Proposition 3.32 of the Hermitian sesquilinear form on F** = U(a & a)|0)
defined in (3.97) follows from the next two propositions.

Proposition 4.9. Suppose O € UL (W), for an annulus shaped open subset W C ¥/ around
0 € X in the coordinate u, acts on F5*. Then for any B,C € F** we have

(B,0C) = (0B, C).

In particular, for all states A, B,C € F%“ we have <B,A(§)C> = <A(£)TB, C’> or, equivalently,
we have (B, Ap 7C) = <AL7,—LB, C) for any n,n € Z.

Proof. This is very similar to the proof of Proposition 3.23. For any B, C' € F*%, we compute
R -1
<m(0/,W,o)’E((TB)Z/ ® O ® Cg)> S C

in two different ways using the associativity (2.17) of the factorisation product.
On the one hand, by definition of the action of O on F5'* we have

(me 0= ((FBYy @ muwgu(0©CH))) = (mns(FB) ©©00)))

for some open subset 0 € U C ¥\ {0'}. By definition (3.97) of the Hermitian sesquilinear form
on % the above is simply (B, 0 C).
On the other hand, since O = 7(O") we can compute the same factorisation product as

<m(o’,W,o),E (%(Bg) ® 7A—(OT) b2 CZ,‘)> = <m(U’,o),E (( (OTB))U, X CU>>

where in the second expression we introduced an open o' € U’ C ¥\ {o}. By definition (3.97)
of the Hermitian sesquilinear form on F®, the above is just (9B, C), hence the result. [
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Proposition 4.10. For any A, B € F** and m,m,n,n € Z we have
(AmmBnn)t = Bl LAl

n,n < m,m:

In other words, taking the adjoint (4.11) is an anti-linear anti-involution on Fourier modes.

Proof. Recall that the product of Fourier modes, described explicitly at the start of §4.2, is
induced by the factorisation product of UL%. By Proposition 2.6, for any inclusion ULV € W
of disjoint annuli shaped open subsets around o € ¥ in the u coordinate into another larger
such annuli shaped open subset W C ¥/, we have the commutative diagram

mw,v),w

ULE(U) @ ULE(V) y ULE (W)

o] J»

UL (r(1) @ UL ((V)) UL (r(W)

M (U),7(V)),m(W) @

The result now follows since 7 reverses the ordering along the cylinder ¥’ of annuli shaped
open subsets around o € ¥ in the u coordinate. O

A Twisted prefactorisation envelopes

A.1 Unital pc Lie algebras

Following [BS, Example 2.9], let uLie be the DG operad generated by an element b € ulie(2)
in degree 0 and an element u € uLie(0) in degree 1, which we represent graphically as trees

b<—>/i\, u<—>i,

such that db = 0, du = 0 and subject to three relations which we can represent most easily in
graphical form as

1 2 2 1 1 2 3 2 3 1 3 1 2

where the numbers below the trees indicate input permutations. We shall refer to an algebra in
dgVecc over the DG operad ulie as a unital DG Lie algebra. We let udgliec == Alg,;.(dgVecc)
denote the category of unital DG Lie algebras. Explicitly, a unital DG Lie algebra L is described
by a multifunctor uLie — dgVec%). More explicitly, such a multifunctor singles out an object
L € dgVecc as the image of the single object of ulie and closed linear maps [-,:] : L& L — L
and 7 : C — L, of degrees 0 and 1 respectively, as the images of b € uLie(2) and u € uLie(0).
In particular, the first two relations in (A.1) make L into a DG Lie algebra and the last relation
says that the image of the unit n: C — L, which is closed in L, is also central in L.

A.1.1 Monoidal structure

For any unital DG Lie algebras L, L’ € udgliec, with respective units : C — L and n/ : C —
L', we define the unital DG Lie algebra

L&l = (Lal)/imn—n)

where the quotient is by the image of the linear map n — 7' : C — L & L', which is a bG Lie
ideal of L @ L’. The unit in L@ L’ is the map induced by n : C — L @ L', or equivalently
by ' : C — L @ L'. The identity object for the monoidal product @ on udgliec is the trivial
unital DG Lie algebra C[—1].

We will use the following universal property of the direct sum of unital ba Lie algebras.
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Lemma A.1. Let f; : Ly — L fori € I be any collection of morphisms of unital DG Lie
algebras, with indexing set I, such that [im f;,im f;] = 0 for every i # j € I. There exists a
unique morphism of unital DG Lie algebras EBjGILj — L such that the diagram

L

AN

fi El

LZ‘ T) @jEILj

is commutative for each i € I, where v; : Ly — @je]l’j 1s the canonical embedding.

Moreover, suppose f! : L, — L' fori € I is another collection of morphisms of unital DG Lie
algebras such that [im f],im fi] = 0 for every i # j € I and suppose we are given morphisms
of unital DG Lie algebras ¢ : L — L' and ¢; : L; — L, for each i € I such that ¢ o f; = f! o ¢;.

Then there exists a unique morphism of unital DG Lie algebras ;¢ rdj : @;erli — Djerl
making the following diagram

i—1

commute for each i € I, where the vertical morphisms are defined as above.

Proof. We first define h : @,c; Lj — L by (Xi)ier = ;e fi(xi). This is well defined since
the sum over i € I is finite by virtue of x; being zero for all but finitely many ¢ € I. And
since f; are morphisms of unital DG Lie algebras we have f; on; = 1 where n; denotes the unit
in each L; and 7 the unity in L. It follows that h factors through a map h : @je L — L,
defined by [(xi)ier] = ;s fi(xi) where [(x;)ier] € e L; is the class of (x)ier € @,er Lj-
In other words, h([(x;)icr]) = h((xi)icr). But we also have

[M((xi)ien), h((yi)ier)] = Z [fi(xi), fi(y;)] = Z[fi(xi)afi(y'i)]

ijel iel
= Z fil[%is i) = h(([xis vil)ier) = h([(xi)ict, (yi)ier))
iel

where the second step is by the assumption that [im f;,im f;] = 0 for ¢ # j € I. The third
step follows since each f; is a morphism of unital DG Lie algebras and the last step uses the
DG Lie algebra structure on @,.;L;. So h is a morphism of DG Lie algebras and hence h is a
morphism of unital DG Lie algebras. By construction, the latter is unique such that hot; = f;.

Let us consider now the second claim. Since im(¢;0¢;) C im ¢} for each i € I it follows that
[im(¢] o @), im(s) o ¢;)] = 0 for each i # j € I. By the first part of the lemma applied to the
morphisms of unital DG Lie algebras ¢} o ¢; : L; — @?ZIL;- we thus have a unique morphism
of unital DG Lie algebras @jelgﬁj : @jell’j — @jell’;’ which makes the bottom square of the
second diagram in the statement commute. It remains to show that it also makes the square
on the right of the diagram commute, i.e. that b’ o (@jel¢j) = ¢ o h where h and b’ are the
two vertical morphisms defined as above.

Now ¢ o fi = fj o ¢; and [im f],im f}] = O for every i # j € I from which it follows that
[im(¢ o f;),im(¢o f;)] = 0 for every i # j € I. Therefore, applying the first part of the lemma
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to the collection of morphisms of unital bc Lie algebras ¢ o f; : L; — L’ we obtain a unique
- n

mophism of unital DG Lie algebras g : @jzle — L' such that got; = ¢ o f; for each i € I.

Yet we have

FL,O<@jel¢j)Obz‘:B/OL;OQSZ':fz‘lo¢i:¢°fi:¢oﬁobi

from which we deduce that A’ o (@ je I(Z)j) = g = ¢ o h by uniqueness of g, as required. O

A.1.2 Chevalley-Eilenberg functor for udgliec
The homological Chevalley-Eilenberg functor is the symmetric monoidal functor
CE, : (dgLiec, ®) — (dgVecc, ®)
L — CE(L) = ((Sym(L[1])))".dcr ). (A.2)

where (SymV)*® := @,,~,Sym" V is the free commutative graded algebra on a graded vector
space V and Sym" V is its component of word length n. Here L[1] := C[1]®L € dgVece denotes
the suspension of the DG vector space L where C[1] is the DG vector space with C placed in
degree —1. For any element v € V of a DG vector space V we let sv :=1® v € V][1] denote its
suspension, and we use the notation s™1v = 1®v € V[~1] :== C[-1] ® V to denote its inverse
suspension. The product in (Sym V')*® is denoted by concatenation. The differential on CE4(L)
isdcg = dppj+d.j where dpyy) : L[1] — L[1] is induced by the differential d, : L — L of the G
Lie algebra L and d[. ; : (Sym(L[1]))* — (Sym(L[1]))® is the unique coderivation of the graded
coalgebra (Sym(L[1]))* extending the degree 1 map Sym?(L[1]) — L[1], where Sym?(L[1])
is the graded symmetric tensor square, induced by the Lie bracket [-,:] : L ® L — L, see for
instance [FHT, Lemma 22.2|. Explicitly, Sym?(L[1]) — L[1] is given by sx sy + (—1)**1s[x,y]
for any homogeneous x,y € L. This is well defined since sx sy = (—1)XIYI+X+lyl+1gsy ox is sent
to (—1)MIVHXHYHL (1) YI+1g[y 5] = (—=1)X*1s]x, y] using the graded skew-symmetry of the
Lie bracket, namely [y,x] = —(—1)|X||y‘[x, y]. Note that dpyyd}. .} = —d}. jdpp) and d[2.7.} =0.

We shall need a variant of the functor (A.2) for unital bG Lie algebras defined in the next
proposition. Let It = {As(n(1)) — A|A € CE;(L)} for every i € Z. This is a subspace of
CE;(L) since n(1) is of degree 1. Moreover, since n(1) is a cocycle, i.e. drn(l) = 0, and is
central in L, it follows that I} is a DG vector subspace of CE4(L).

Proposition A.2. We have a symmetric monoidal functor
CE, : (udgLiec, ®) — (dgVece, ®)
L+ CEl(L) == CE.(L)/I} (A.3)
which preserves quasi-isomorphisms.

Proof. For any morphism of unital ba Lie algebras f : L — L', the morphism of DG vector
spaces CE4(f) : CE4(L) — CE4(L') is given in degree i € Z by CE;(f) = (Sym f[1])", where
the morphism of DG vector spaces f[1] : L[1] — L'[1] is the suspension of f : L — L’. Since
f(n(1)) =n'(1) it follows that CE4(f)(I}) C I}, and therefore CE,(f) induces a morphism of
DG vector spaces CEq(f) : CE¢(L) — CEo(L').

Since the functor (A.2) preserves quasi-isomorphisms, if f : L = L' is a quasi-isomorphism
then so is CE4(f) : CEe(L) = CE4(L’). Now the morphism CE4(f) : CE¢(L) — CE4(L') is a
retract of the latter since we have a commutative diagram

CE(L) —* CE.(L) —— CE.(L)
R |emn) [[c2
CE4(L') —— CE4(L') —— CE4(L)

ZL/
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where g7, : CE4(L) — CE4(L) is the canonical map and iy, : CE4(L) — CE4(L) is given by
taking the representative with no factors of s(n(1)) so that we clearly have qr, oiy, = ideg, (1)
and similarly gz oiy = idgg, (). Hence CEq(f) : CEo(L) = CE,(L’) is a quasi-isomorphism.

It remains to show that the functor CE, is symmetric monoidal. In particular, we must
show that given any unital DG Lie algebras L, L' € udglies we have a canonical isomorphism

of DG vector spaces
CE. (L& I') = CEW (L) @ CE (L),

To see this, let J* := {A s(n(1)) —As(n(1)) | A € CE;(L® L")} for every i € Z. Since n(1) and
7'(1), thought of as elements in L & L', are both central cocycles of degree 1, it follows that
J*® is a DG vector subspace of CE4(L @ L'). Moreover, we have a canonical isomorphism of DG
vector spaces CEo(L® L') = CE.(L® L")/ J*®. Also, introducing the DG vector subspace K*® of
CE.(L® L) with components K* := {A s(n(1))—A+A"s(n'(1))—A’ | A, A" € CE;(LO L")} for
every i € Z, of which J*® is an obvious DG vector subspace, we have a canonical isomorphism
IZ@L/ =~ K*/J*. We therefore have

CEe(L&L') =CE (L& L)/} 5, = (CE(L& L')/J*)/(K*/J*) 2 CE,(L& L')/K*

>~ (CEl(L) @ CE4(L'))/ (I} ® CE4(L') + CEq(L) ® I},) = CE4(L) ® CE4(L"),

where in the first isomorphism we made use of the two isomorphisms stated above. The next
isomorphism is by the third isomorphism theorem and the last isomorphism uses the fact that
the homological Chevalley-FEilenberg functor CE, is symmetric monoidal.

Also, the result of applying the functor CE, to the identity object C[—1] of the symmetric
monoidal product @ on udgliec is isomorphic to C[0], i.e. the identity object of the symmetric
monoidal product ® on dgVece. Hence CE, is a symmetric monoidal functor. U

It will be useful to also introduce, mainly for the purpose of proving part of Proposition 3.4,
the category of pointed DG vector spaces, denoted udgVece, whose objects are vector spaces V'
equipped with a degree 1 map 1 : C — V and whose morphisms preserve this structure. We
also introduce the symmetric monoidal functor

Sym, : (udgVec, ®) — (dgVece, ®)
Vs Syma (V) = (Sym(V[1]))* /T8 (A4)

where the differential on (Sym(V/[1]))* is the one induced from dyp : V[1] = V[1] and we set
Ji = {As(n(1)) —A|A e (Sym(V[1]))*} for each i € Z, which is a subpsace of (Sym(V[1]))"
since 7(1) has degree 1. Moreover, since (1) is a cocycle, namely dyn(1) = 0, these form
a DG vector subspace Jy of (Sym(V/[1]))°. The proof that (A.4) is symmetric monoidal is
completely analogous to that of Proposition A.2.

A.2 Unital local Lie algebras

Let £ be a precosheaf of unital DG Lie algebras on a manifold D, with extension morphisms
denoted by extyy : L(U) — L(V) for any inclusion of subsets U C V in D. We say that £
is a unital local Lie algebra on D if for any finite collection {U;}}' ; of disjoint open subsets
U; C V of an open subset V C D we have

[im (eXtUi7v) ,im (eXtijv)] =0, (A5)

for every i # j. We denote by ulLocLiec(D) the category of unital local Lie algebras on D,
where a morphism of unital local Lie algebras is defined as a morphism of the underlying
precosheaves of unital DG Lie algebras.
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Proposition A.3. We have a canonical functor
uLocLiec(D) — PFac(D, udgLieZ).

More explicitly, any £ € uLocLiec(D) defines an object in PFac(D, udgLie%) which by a slight
abuse of notation we also denote by L. Moreover, every morphism L — L' of ulLocLiec(D)
induces a morphism of PFac(D, udgLie%) which we also denote L — L.

Proof. Let £ € uLocLiec(D). Given any open subsets L7 U; C V, by Lemma A.1 we obtain
a unique morphism of DG Lie algebras m v D i=1£(Uj) = £(V) such that the diagram

L(V)

ext®
U,V
/ JELT N
|

LU;) — @j:l’/“‘ (U;)

commutes. The composition property of these morphisms, required in order for £ to define a
prefactorisation algebra, then follows from their uniqueness property. Explicitly, we have the
following commutative diagram

LV) o

£
ext
Vi W \H'm h £
(Vo)W EI!m<

L(Vz’) —— B L) \

ext®
Uii»Vi | Mn
/ lﬂm(U 3V \@Z m (U”)V
/

L(Usj) —— B, L(Us) — @?:1@3:1 (Uij) -

where the two small commutative triangles are given by the universal property in Lemma A.1.
The square on the bottom right of the diagram is commutative by definition of the morphism of
unital DG Lie algebras ®?:1meij),w , in the second part of Lemma A.1. The extra morphism
from the bottom right to the top right is given by the universal property from Lemma A.l
applied to the big outside triangle. Its uniqueness implies the required composition property.
It follows that £ defines an element of PFac(D, udgLie), as required.

Let ¢ : L — L' be a morphlsm of uLocLle(C(D) By using the second part of Lemma A.1
we have a morphism @j 19U, @J L(Uj) — @J £’ (U;) making the following diagram

} / Tm(UN

LU - (Ug) L'(V)

Pu, me »v
L) —— @3:1 "U;)

commutative. In particular, the commutativity of the right hand square is equivalent to the
statement that ¢ : L — £’ is a morphism of PFac(D, udgLie%), as required. O

Viewing any £ € ulLocLiec(D) as a multifunctor Top(D)"” — udgLieg, by Proposition A.3,
we can consider its post-composition with the symmetric monoidal functor (A.3) from Propo-
sition A.2 to obtain a prefactorisation algebra CE, £ € PFac(D, dgVec(%Q ). Post-composing the
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latter with the lax monoidal 0" cohomology functor H® : dgVecs — Vecc then yields the

twisted prefactorisation envelope of the unital local Lie algebra £, denoted

UL = H°CE, £ € PFac(D, Vec). (A.6)
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