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Pulsed gravity currents are generated by the sequential release of dense material into a
lighter ambient. We investigate the dynamics of pulsed gravity currents using physical
scale experiments, two-dimensional depth-averaged shallow water equation (SWE) based
models and three-dimensional lattice Boltzmann method (LBM) simulations. Integrating
these results we show for the first time that short duration pulsed releases generate intrusive
layers, which accelerate front propagation relative to an instantaneously released current
of the same total volume. Conversely, a long delay time between pulses produces a
current that propagates slower than an equivalent instantaneous release. This finding is
supported by physical experiments and depth-resolving LBM simulations. The depth-
resolving simulations show that intrusions in pulsed flows experience less drag resistance
than those generated by instantaneous releases. The depth-averaged model considered
in the present study does not accurately capture the intrusive flow dynamics of pulsed
currents. However, the limitations of the finite-depth SWE model may be mitigated by
extensions to incorporate entrainment and density stratification. The results also motivate
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further research into the impact of buoyancy Reynolds number and channel slope on the
propagation of pulsed currents.

Key words: gravity currents, shallow water flows, multiphase flow

1. Introduction
Gravity currents are flows driven by natural convection, where gravity acts on a density
gradient within a fluid (Huppert 2006; Wells & Dorrell 2021). These buoyancy-driven
flows are ubiquitous in both industrial and environmental settings, where gradients in
fluid density may arise due to spatial variation in temperature, or in the concentration
of suspended particulate or solute material.

Environmental gravity currents are often large-scale events that may cause significant
hazards to both human life and structures. Naturally occurring examples include
pyroclastic flows, powder-snow avalanches and turbidity currents. Pyroclastic flows, dense
surface currents consisting of volcanic material and interstitial air, pose some of the
most significant geohazard risks following a volcanic eruption. This is due to the high
temperatures and speeds with which they propagate, often over 30 m s−1 and 500 ◦C, with
a current thickness typically of the order of hundreds of metres (Wilson 2008). Powder-
snow avalanches are a widely known form of gravity current on the Earth’s surface.
They are driven by the suspension of snow particles, with air forming the interstitial
fluid (Hopfinger 1983). Turbidity currents are ocean-floor sedimentary gravity currents
that can run-out for thousands of kilometres along the ocean floor. Their deposits can
host important natural resources (Reece, Dorrell & Straub 2024). They travel with depth-
averaged velocities of 0.1–6.6 m s−1, a current thickness of 95–135 m, and may pose
a threat to ocean floor infrastructure such as pipelines and telecommunication cables
(Meiburg & Kneller 2010; Peakall & Sumner 2015; Wells & Dorrell 2021).

The current and ambient fluid have initial densities of ρ0 and ρa , respectively. The
system has a reduced gravity g′ = g(ρ0 − ρa)/ρa , where g is the acceleration due to
gravity. When (ρ0 − ρa)/ρa � 1 the current can be modelled using the Boussinesq
approximation, where density variations within the fluid are neglected in the governing
equations unless they are acted on by gravity (Meiburg & Kneller 2010; Tritton 2012;
Fukuda et al. 2023). Non-Boussinesq flows are beyond the scope of the present study.

Environmental gravity currents are challenging to observe directly due to their large
scale, infrequent and destructive nature. The dynamics of dilute currents are studied
using theoretical, experimental and numerical modelling. Quantifying and predicting
front propagation speeds is of particular interest when studying the dynamics of gravity
currents. Canonical idealised models consider a ‘lock-gate’ release of a denser than
ambient fluid (Huppert & Simpson 1980; Rottman & Simpson 1983; Hogg 2006; Meiburg,
Radhakrishnan & Nasr-Azadani 2015). Such models consist of a straight channel with a
gate, separating a relatively dense fluid of concentration ρ0, from a lighter ambient fluid
of concentration ρa < ρ0. When the gate is removed a horizontal hydrostatic pressure
gradient is created, which induces a gravity current to propagate along the channel
(Huppert & Simpson 1980; Andrews & Manga 2012). The characteristic length scale in
the vertical and horizontal directions are taken to be the initial current depth h0, and lock
length x0, respectively. The buoyancy velocity, Ub =√

g′h0, is the characteristic velocity
scale. The non-dimensional parameters that govern the dynamics of the lock-exchange
gravity current are the buoyancy Reynolds number,
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Reb = (Ubh0)/(ν), (1.1)

and Schmidt number,
Sc = ν/D; (1.2)

where ν is the kinematic viscosity of the ambient fluid, and D is the diffusivity of the
scalar concentration field.

Following a brief acceleration phase, gravity currents transition through three distinct
phases: slumping, inertial and viscous (Huppert & Simpson 1980). In the slumping phase
the current propagates at a constant velocity referred to as the buoyancy Froude number,
Frb = uf /Ub, under a balance of pressure and drag forces. The inertial phase is governed
by a balance of inertial and buoyancy forces, where front location scales like xf ∝ t (2/3)

(Fay 1971; Hoult 1972; Huppert & Simpson 1980; Hogg 2006; Cantero et al. 2007). The
viscous phase is governed by a balance of viscous and buoyancy forces, where front
location scales like xf ∝ t (1/5) (Hoult 1972; Huppert 1982; Cantero et al. 2007).

Standard lock-exchange experiments model an environmental flow in which a finite
volume of dense fluid is instantaneously released. However, in naturally occurring currents
dense material is often released in successive stages, generating pulsed currents. Pulsed
flows have various potential causes, including temporal variation in seismic activity,
retrogressive slope failure and the confluence of two gravity current flows (Mulder &
Alexander 2001; Beeson, Johnson & Goldfinger 2017; Goldfinger et al. 2017; Johnson et al.
2017). The geological record at the Cascadia margin, Washington, USA, provides evidence
of deposits formed by the merging of turbidity currents at multiple channel confluences
(Goldfinger et al. 2017).

The pyroclastic flow generated by the Soufrière Hills Volcano eruption in 1997
contained three distinct current releases. However, hazard assessments assumed a single
release (Loughlin et al. 2002). Using the details documented by Loughlin et al. (2002) we
can estimate the non-dimensional delay time between the first and second pulse. Loughlin
et al. (2002) states that the current eruption was associated with three seismic events,
which occurred at times 12:57:15 (± 20 s), 12:59:55 (± 30 s) and 13:08:20 (± 30 s). The
first and second pulse were therefore separated by 110–210 s. Loughlin et al. (2002)
reports a reference density for the current of 1.6 kg m−3, and we assume ambient air
is at standard temperature and pressure (1.29 kg m−3). Given these values we have a
reduced gravity of g′ = 2.36 m s−2. Finally, we must assign a characteristic length scale
for the system as Loughlin et al. (2002) does not estimate the initial flow depth. We
take the length scale to be in the range [500, 1000] m, as this is the order of magnitude
of the flow depth of pyroclastic currents (Jones et al. 2023). A length scale of 500 m
results in a buoyancy velocity of Ub = 34.3 m s−1, and a non-dimensional time delay
between the first and second pulse in the range [7.55, 14.42], accounting for uncertainty in
the release times. Taking a length scale of 1000 m results in a buoyancy velocity scale
of Ub = 48.55 m s−1, and a non-dimensional time delay between the first and second
pulse in the range [5.34, 10.20]. We investigate the dynamics of pulsed currents using an
idealised experiment to allow careful study of the impact on front propagation relative
to an instantaneous release for a wide range of non-dimensional delay times between
pulses. Here, for simplicity, we use conservative flows as a proxy for non-conservative
depositional flows (Meiburg et al. 2015).

There have been limited studies on pulsed gravity currents. Ho et al. (2018a) conducted
lock-exchange experiments where two locks of length x0 were released successively, with
a non-dimensional delay time of t̃re = (treUb)/x0 separating the release of the first and
second lock, where tre is the dimensional delay time. The results showed the second current
propagated as an intrusion into the first and ultimately the pulses merged to form a unified
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Figure 1. Visualisation of a sequential lock-box gravity current release (Ho et al. 2018a). In the experiments the
lock-box length x0 = 0.125 m, the initial current depth h0 = 0.05 m, the second lock was released at tre = 4 s
and the buoyancy velocity scale Ub = 0.1566 m s−1. Time is non-dimensionalised as t̃ = (tUb)/x0, resulting in
a non-dimensional release time of t̃re = 5.

front, as can be observed in the visualisations of the experiments presented in figure 1.
Ho et al. (2018a) also considered the implications for sedimentary deposits in turbidity
currents, which was explored further by Ho et al. (2019). Ho et al. (2018b) conducted an
analysis of the length scales of pulse merging. The pulsed gravity problem has similarities
to the two-layer stratified locks, in that two gravity currents interact and mix over the
lifetime of the flow (Dai 2017; Zhu, He & Meiburg 2023).

Methods used to numerically model idealised lock-gate releases can broadly be divided
into two categories: depth-averaged models based on the shallow-water equations (SWEs)
(Dorrell et al. 2014), and depth-resolving models based on the Navier–Stokes equations
(Marshall et al. 2021). Numerical simulations of pulsed gravity currents were conducted
by Allen et al. (2020), where the authors applied a depth-averaged SWE model to simulate
the flow generated by a pulsed lock-exchange experiment, and explored pulsed flows for
different regimes of t̃re. Allen et al. (2020) showed that as t̃re → ∞ the pulses propagate
as separate currents, and for t̃re < 1 flow is equivalent to a single stage release of twice
the volume, as the backwards travelling wave has yet to impact the second lock. For
intermediate values of t̃re, the second pulse advanced more rapidly than the first and
ultimately merged with it, in agreement with the experimental findings. Allen et al. (2020)
also observed that the speed of the second current at the time of merging was positively
correlated with the delay time between releases. However, Allen et al. (2020) terminated
simulations at the time of pulse merging. The front propagation of pulsed gravity currents
after the currents merge, as a function of t̃re, has not been studied.

The present study aims to address this open research question using the results of
pulsed lock-exchange physical experiments, in combination with depth-averaged and
depth-resolving numerical models. The research objectives are to investigate the front
propagation of pulsed currents as a function of t̃re and elucidate the underlying dynamics.
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Figure 2. Schematic of dual-stage lock-exchange experiment.

2. Methods
The dynamics of pulsed gravity currents are investigated using physical experiments and
numerical simulations, where the simulations include both depth-averaging and depth-
resolving numerical models. We consider the dual-stage release lock-exchange problem.
A schematic of the problem set-up and key parameters are presented in figure 2. The set-up
consists of a straight channel of length L1, width L2 and height L3. The channel contains
two locks, each retaining a saline mixture of density ρ0, separated from ambient fluid of
density ρa . The density difference between the saline mixture and ambient fluid is small,
(ρ0 − ρa)/ρa � 1, hence the Boussinesq approximation can be applied. The initial depth
of dense fluid is h0, with the remaining channel depth (L3 − h0) containing ambient fluid.
Both locks have a length of x0. The gates are released successively, with a delay time of
t̃re = (treUb/x0) between the release of the first and second lock. The front location of the
pulses generated by the first and second release are x1

f and x2
f , respectively.

Thirty-three physical and numerical experiments quantifying dual-stage release flows
are considered, the parameters for each case are presented in table 1. The physical
experiments were conducted at a buoyancy Reynolds number of Reb ≈ 6000. The case list
includes fractional depths of release of h0/L3 ∈ {10−5, 0.1, 0.2, 0.5}. For each fractional
depth of release we vary the non-dimensional delay time between the release of the
first and second lock, t̃re. As indicated in table 1, depth-averaged SWE simulations were
conducted for Cases 1–27, physical experiments are run for Cases 13–18 and 25–27, and
depth-resolving lattice Boltzmann method (LBM) simulations were run for Cases 25–33.
The LBM simulations were run with a Reynolds number of Reb = 6000. This allows the
results of the physical experiments, SWE simulations and LBM simulations to be directly
compared for Cases 25–27, where h0/L3 = 0.5. We are able to explore a wider parameter
space with the SWE model due to its low computational cost relative to the depth-resolving
LBM simulations.

2.1. Physical experiments
Physical experiments modelling pulsed-release lock-exchange gravity currents were
conducted in a 5 m-long flume. At one end of the flume, two saline fluid regions of the
same volume were contained in two lockboxes set up in series to model a pulsed current
with two releases. The experimental set-up follows that of Ho et al. (2018a, 2018b) and
Allen et al. (2020). Fluid in the two lockboxes were dyed yellow and blue to enable the
visualisation of current mixing. The timing between two lock gates was set to vary between
0 s and 21.2 s using a pneumatic lock control box that ensured repeatability of both the
timing and the speed of withdrawal of the lock. The density excess of the saline was 5 %.
The height of the initial saline fluids and the length of each lock box were 0.05 m and
0.125 m, respectively. Ambient heights were set at 0.1 m and 0.25 m. The evolution of
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Case run in
Case h0/L3 h0/x0 Reb t̃re Exp SWE LBM

1 10−5 0.4 6000 0.25 �
2 10−5 0.4 6000 5.13 �
3 10−5 0.4 6000 11.02 �
4 10−5 0.4 6000 14.41 �
5 10−5 0.4 6000 27.94 �
6 10−5 0.4 6000 42.61 �
7 0.1 0.4 6000 0.00 �
8 0.1 0.4 6000 5.13 �
9 0.1 0.4 6000 11.02 �
10 0.1 0.4 6000 14.41 �
11 0.1 0.4 6000 27.94 �
12 0.1 0.4 6000 42.61 �
13 0.2 0.4 5978 0.25 � �
14 0.2 0.4 6712 5.13 � �
15 0.2 0.4 6741 11.02 � �
16 0.2 0.4 5961 14.41 � �
17 0.2 0.4 5923 27.94 � �
18 0.2 0.4 6000 42.61 � �
19 0.5 0.4 6000 0.00 �
20 0.5 0.4 6000 5.13 �
21 0.5 0.4 6000 11.02 �
22 0.5 0.4 6000 14.41 �
23 0.5 0.4 6000 27.94 �
24 0.5 0.4 6000 42.61 �
25 0.5 0.4 6053 0.21 � � �
26 0.5 0.4 6806 5.14 � � �
27 0.5 0.4 6787 10.15 � � �
28 0.5 1.0 6000 0.00 �
29 0.5 1.0 6000 1.50 �
30 0.5 1.0 6000 2.50 �
31 0.5 1.0 6000 5.00 �
32 0.5 1.0 6000 10.00 �
33 0.5 1.0 6000 15.00 �

Table 1. Case parameters for the dual-stage release lock-exchange study. The parameter space was investigated
using a combination of physical experiments (Exp), depth-averaged SWE simulations and depth-resolving
LBM simulations as indicated in the table.

flows was captured using two rail mounted high-definition cameras, tracking individual
pulse fronts.

2.2. Numerical modelling
The macroscopic governing equations for a pulsed lock-exchange saline gravity current
flow are those of mass and momentum conservation for an incompressible flow coupled,
via the Boussinesq approximation, with an advection–diffusion equation for the scalar
concentration field. Fluid density is defined as

ρ(x, t) = ρa(1 + αχ(x, t)), (2.1)

where α = (ρs − ρa)/ρa , ρs is solute density and χ(x, t) is solute concentration. The body
force generated by the action of gravity is G,

G = −gρa(1 + αχ(x, t)) ẑ, (2.2)
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where ẑ is the unit vector in the upward vertical direction. G includes a constant term
that is the hydrostatic pressure term in the momentum equation, ∇P = ∇(pk(x, t)) −
gρaz, where pk is the kinematic pressure. The driving force is the Boussinesq forcing
term FB,

FB = −gρaαχ(x, t) ẑ. (2.3)

The governing equations are non-dimensionalised using the characteristic length scale
h0 = 0.05 m, and velocity scale Ub = 0.1566 m s−1, resulting in the non-dimensional
incompressible mass and momentum conservation equations,

∇ · ũ = 0, (2.4)
∂ ũ

∂ t̃
+ ũ · ∇̃ũ = −∇̃ P̃ + 1

Reb
∇̃2ũ − χ̃ ẑ (2.5)

and an advection–diffusion equation for the scalar concentration field χ̃ ,

∂χ̃

∂ t̃
+ ũ · ∇̃χ̃ = 1

Reb Sc
∇̃2χ̃ . (2.6)

In addition to the buoyancy Reynolds number (Reb) the governing equations are also
parameterised by the Schmidt number Sc = (ν/D), where D is the diffusivity of the
scalar field. All simulations are run with Sc = 1. The Schmidt number of real-world
flows may be orders of magnitude larger, but the structure and dynamics of Boussinesq
currents are relatively insensitive to Schmidt number for high Reynolds numbers of O(104)
(Bonometti & Balachandar 2008; Marshall et al. 2021).

The concentration field is scaled relative to the initial saline concentration in the lock χ0,
i.e. χ̃ , (x, t) = χ(x, t)/χ0. Fluid density is non-dimensionalised using the initial density
of the current and ambient, such that ρ̃(x, t) = (ρ(x, t) − ρa)/(ρ0 − ρa). Variables with
a ˜ accent are non-dimensionalised, and variables with a ¯ accent are the spanwise average
of a non-dimensionalised variable, i.e.

ρ̄(x̃, z̃, t̃) = 1

L̃2

L̃2∫
0

ρ̃(x̃, ỹ, z̃, t̃) dỹ. (2.7)

Here the macroscopic governing equations are not solved directly. We compare the use
of: a depth-averaged model, implemented using the shallow-water approximation (§ 2.2.1);
and a depth-resolving model, solving the governing equations at a mesoscopic scale, using
a LBM model (§ 2.2.2).

2.2.1. Depth-averaged shallow-water equations model
In this section the methodology for an analytical SWE model is presented. Shallow-water
models have extensively been used to study the lock-exchange problem as they exploit the
small ratio between depth and length scales δ ∼ h f /x1

f . Consider a two-layered flow of
immiscible fluids of thicknesses h1(x, t) and h2(x, t) and of similar, but distinct densities
ρa and ρ0, respectively, with ρa < ρ0, figure 3. The flow is assumed to be symmetric
in the cross-stream (y-direction) and the flow properties only vary over the direction of
propagation x . Further, by assuming that the flows are inviscid, the depths hi and depth-
averaged velocities ui for each layer are functions of (x, t) only. Surface tension and
other intermolecular forces are assumed to be negligible. With the rigid-lid assumption
total depth is H(x, t) = h1 + h2 = L3 and the the two-layer shallow-water model that was
formulated by Rottman & Simpson (1983) can be applied. Using l0 as the length scale,
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ũ1
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Figure 3. Double lock-release configuration for the shallow-water model: before the second gate release,
(a) t̃ < t̃re, and after the second gate release, (b) t̃ > t̃re. The second release creates a shock in the solution which
propagates forwards towards the head of the current. Horizontal and vertical lengths are non-dimensionalised
by the lock-length llock and lock depth h0, respectively. The position of the head is labelled x̃1

f and the second
release that appears as a shock x̃2

f .

h0 as our depth scale,
√

h0g′ as the velocity scale and the convective time scale
√

h0/g′,
the dimensionless equations two-layer shallow-water equations are

∂ h̃

∂ t̃
+ ∂m̃

∂ x̃
= 0, (2.8)

∂m̃

∂ t̃
+ m̃

h̃
(2 − 2a)

∂m̃

∂ x̃
−
(

m̃2

h̃2
(1 − 2a) − h̃(1 − b)

)
∂ h̃

∂ x̃
= 0, (2.9)

where

a = h̃

L̃3 − h̃
, (2.10)

b = h̃

L̃3
+ m̃2

L̃3h̃2

(
1 − h̃

L̃3

)−2

. (2.11)

Note that in the infinitely deep ambient limit, L̃3 → ∞ and a, b → 0, the single-layer
equations are recovered (Ungarish & Zemach 2005; Ungarish 2009). For flows in relatively
deep L̃3 � 1, the standard shallow-water equations can still be used and flow in the
ambient neglected (Rottman & Simpson 1983; Hogg, Ungarish & Huppert 2000; Hogg
2006; Allen et al. 2020). However, as the ambient depth L̃3 decreases the propagation
speed of characteristic curves reduces, which leads to quantitative differences in the
solution for lock-exchange gravity currents. For example, the duration of the slumping
phase (where the head moves at constant speed) is increased (Rottman & Simpson 1983).
The influence on the flow dynamics of the finite ambient depth increases as L̃3 decreases
until L̃3 < 2, where the formation of a backwards propagating shock causes qualitative
differences in the solution (Klemp, Rotunno & Skamarock 1994; Ungarish & Zemach
2005). The changing dynamics as L̃3 decreases arise because of the increased work done
by current accelerating the ambient fluid as it moves.

The initial and boundary conditions reflect a double lock-release and are equivalent to
those used in Allen et al. (2020) to study dual-stage releases gravity currents in a infinitely
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deep ambient,

h̃(x̃, 0) =
{

1 if x̃ ∈ [0, 2],
0 otherwise,

(2.12)

ũ(x̃, 0) =0, (2.13)

∂ h̃

∂ x̃
(x̃0, t̃) =0 for

{
x̃0 = 0, 1 for 0 � t̃ < t̃re,
x̃0 = 0 for t̃ > t̃re,

(2.14)

where t̃re is the release time of the second lock box.
As discussed in the introduction, the moving head of the gravity current (right-hand

boundary in this configuration) requires supplementation with a Froude number condition
to accurately predict the propagation dynamics. The Froude number condition is expressed
as a relationship between the depth h̃ f and velocity ũ f at the head of the flow x̃ = x̃1

f (t).
At the head of the flow the dynamic boundary condition is also imposed giving

dx̃1
f

dt̃
≡ ˙̃x1

f = ũ
(

x̃ = x̃1
f , t
)

= Fr
√

h̃ f , (2.15)

where h̃ f (t̃) = h̃(x̃ = x̃1
f , t̃). In general the Froude number is a decreasing function of

h̃ f /L̃3 and many experimental or analytical expression exist for it (Benjamin (1968),
Huppert & Simpson (1980), Rottman & Simpson (1983)). As L̃3 → ∞, the Froude number
tends to a constant value and for deep ambient flows a constant value is taken (Hogg 2006;
Allen et al. 2020). Ungarish & Zemach (2005) present a semiempirical formulation,

Fr

(
h̃ f

L̃3

)
= Fruz

(
h̃ f

L̃3

)(
1 + 3

h̃ f

L̃3

)−1/2

, (2.16)

as a compromise between other correlations whilst maintaining a reasonable agreement
with a variety of experimental results. Crucially, the difference between these expressions
is not particularly large in the region of shallow-water solutions hf /L̃3 < 0.6 (Ungarish &
Zemach 2005). The present study is limited to the ranges L̃3 � 2, or h̃ f /L̃3 < 0.5. As
L̃3 → ∞, Fruz → 1. In addition to simulations conducted with Fr = Fruz , constant values
of the Froude number Fr are also used for simulations with an infinitely deep ambient
L̃3 → ∞.

To numerically solve the two-layer shallow-water model, ((2.8) and (2.9)) are mapped
onto the unit interval [0, 1] using the transformation (ζ, τ ) = (x̃/x̃1

f , t̃). These scaled
equations are solved using a Lax–Wendroff finite difference method similar to Bonnecaze,
Huppert & Lister (1993), Ungarish & Zemach (2005) and Allen et al. (2020). A small
artificial viscosity term is introduced using the formulation presented in Ungarish &
Zemach (2005) to remove spurious oscillations that arise near large gradients and prevent
the chequerboarding instability that arises with the Lax–Wendroff. For further details see
Appendix A.

2.2.2. Depth-resolving LBM model
Depth-resolving simulations are produced by solving the macroscopic governing equations
at the mesoscopic scale, i.e. between the macroscopic and microscopic scales, using the
LBM (Krüger et al. 2017). The LBM simulations are run in VirtualFluids, an open-source
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Figure 4. The D3Q27 lattice structure.

graphics processing unit accelerated code developed by the Institute for Computational
Modelling in Civil Engineering (iRMB) at TU Braunschweig. Adekanye et al. (2022)
validated VirtualFluids for the simulation of instantaneous release lock-exchange gravity
currents with Reynolds numbers up to Reb = 30 000, showing good agreement with high-
resolution simulations and physical experiments.

At the mesoscopic scale fluid motion is described by the particle distribution function
(PDF) f (x, ξ , t), where ξ is particle velocity. The PDF defines the density of particles
at location x, moving with velocity ξ , at time t . The evolution of f (x, ξ , t) is governed
by the Boltzmann equation, which when discretised in space and time produces the lattice
Boltzmann equation. In the present study we solve two two-way coupled lattice Boltzmann
equations, one for the conservation of mass and momentum in the fluid,

fijk(x + ξ ijk
t, t + 
t) = fijk(x, t) + Ω
f

ijk( fijk, Φijk), (2.17)

and a second for the advection and diffusion of the scalar concentration field,

Φijk(x + ξ ijk
t, t + 
t) = Φijk(x, t) + ΩΦ
ijk(Φijk, fijk). (2.18)

Solving the system of lattice Boltzmann equations for the PDFs fijk and Φijk is equivalent
to to solving the macroscopic governing equations, (2.4)–(2.6) (Junk, Klar & Luo 2004;
Dubois 2008). The equations are coupled via their respective collision operators, Ω

f
ijk and

ΩΦ
ijk.
The discretised PDF fijk(x, t), is defined at the nodes of a lattice structure in which

lattice nodes are connected by a discrete velocity set ξ ijk. The indices i, j, k are
permutations of the values {1, 0, −1}, and so ξ ijk is a set of vectors to neighbouring nodes,
which includes the zero vector. In the present study a D3Q27 lattice is used, which results
in the lattice structure presented in figure 4. In effect, distributions are constrained to
stream along the vectors ξ ijk in time 
t , where they collide and are redistributed according
to the collision operator Ωijk. The raw moments of a distribution, of order α + β + γ , are
defined as
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mαβγ (θijk) =
∑
i, j,k

iα jβkγ θijk. (2.19)

The macroscopic fluid density and momentum density are recovered from the zeroth
and first-order raw moments of fijk,

ρ = m000 =
∑
i, j,k

fijk, (2.20)

ρu = ρ(m100, m010, m001 =
⎛
⎝∑

i, j,k

i fijk + 
t

2
F x

B,
∑
i, j,k

j fijk + 
t

2
F y

B,
∑
i, j,k

k fijk + 
t

2
Fz

B

⎞
⎠.

(2.21)
The zeroth raw moment of the Φijk distribution gives the macroscopic concentration,

χ = m000 =
∑
i, j,k

Φijk. (2.22)

Collisions for the fijk distribution are performed in cumulant space (Geier et al. 2015).
Cumulants, Cnrs, are relaxed towards their equilibria Ceq

nrs, at a rate ωnrs,

C∗
nrs = (1 − ωnrs)Cnrs + ωnrsC

eq
nrs. (2.23)

The relaxation rate of the second-order cumulants determine the macroscopic fluid
viscosity,

ν = 1
3

(
1

ω110
− 1

2

)

x2


t
. (2.24)

Collisions for the Φijk distribution are conducted in central moment space, using the
method presented by Yang et al. (2016). The factorised central moments Mnrs are relaxed
towards zero at the rate ωnrs,

M∗
nrs = (1 − ωnrs)Mnrs. (2.25)

The diffusivity of the scalar field is determined by the relaxation rate of the first-order
factorised central moments,

D = 1
3

(
1

ω100
− 1

2

)

x2


t
. (2.26)

The dimensions of the computational domain are chosen to reflect the experimental
conditions, with L1 = 27x0, and L2 = h0, resulting in a non-dimensional domain size of
L̃1 = 27, L̃2 = 1, L̃3 = L3/h0. Simulations are run on uniform meshes, with a spatial
and time discretisation of 
x̃ = 
x/h0 = 0.01 and 
t̃ = 3 × 10−4, respectively. The grid
resolution is chosen such that the largest length scales of turbulent motion are directly
resolved, whilst stability is maintained by limiting the relaxation rate of the third-order
cumulant, as specified in the parameterised cumulant method of Geier, Pasquali &
Schönherr (2017).

No-slip boundary conditions for the velocity field, and no-flux boundary conditions for
the concentration field are applied to all external boundaries of the computational domain.
These boundary conditions model the experimental set-up of the standard lock-exchange
gravity current experiment, enabling direct validation against the observed front locations
in the experimental results of Ho et al. (2018a).
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The specific conditions for the x̃B boundary are defined as

ũ(x̃ = (x̃B, ỹ, z̃), t̃) = 0
∂χ̃

∂ x̃
(x̃ = (x̃B, ỹ, z̃), t̃) = 0

for

{
x̃B = 0 ∨ x̃0 ∨ L̃1 for 0 � t̃ < t̃re
x̃B = 0 ∨ L̃1 for t̃ � t̃re

. (2.27)

A dual-stage release is achieved by inserting a no-slip and no-flux boundary condition
on the yz-plane at x̃ = x̃0, which remains in effect until t̃ = t̃re, as shown in (2.27). The
removal of this internal wall simulates the release of the second lock gate.

The no-slip and no-flux conditions for the ỹB and z̃B boundaries are defined as

ũ(x̃ = (x̃, ỹB, z̃), t̃) = 0
∂χ̃

∂ ỹ
(x̃ = (x̃, ỹB, z̃), t̃) = 0

for ỹB = 0 ∨ L̃2, (2.28)

ũ(x̃ = (x̃, ỹ, z̃B), t̃) = 0
∂χ̃

∂ z̃
(x̃ = (x̃, ỹ, z̃B), t̃) = 0

for z̃B = 0 ∨ L̃3. (2.29)

No-slip and no-flux boundary conditions are implemented using the bounce-back method
(Krüger et al. 2017).

The initial conditions of the computational domain are

χ̃ (x̃, t̃ = 0) =
{

1 if x̃ � 2x̃0 ∧ z̃ � h̃0

0 otherwise
, (2.30)

ũ(x̃, t̃ = 0) =0. (2.31)

These conditions align with the schematic of the dual-stage release experiment shown in
figure 2. The initial and boundary conditions extend the methods used in Adekanye et al.
(2022) to multistage releases. Adekanye et al. (2022) validate LBM models of single-
stage releases against experimental data. Therefore, we expect that the initial and boundary
conditions will provide sufficient accuracy to capture the dynamics of pulsed flows.

For the simulations of Cases 28–33 two passive scalars distributions are added to the
simulation, Φ P1

ijk and Φ P2
ijk , which simulate the advection–diffusion of two scalar fields

χ̃ P1 and χ̃ P2. The passive scalars are used to track the propagation and mixing of each
release of dense material separately. The boundary conditions applied to the advection–
diffusion simulations for χ̃ P1 and χ̃ P2 are the same as those applied to the χ̃ scalar field
in (2.27)–(2.29). The initial conditions for the passive scalar fields are defined such that
χ̃ P1 = 1 in the first lock and is zero elsewhere, while χ̃ P2 = 1 in the second lock and is
zero elsewhere,

χ̃ P1(x̃, t̃ = 0) =
{

1 if x̃ � 2x̃0 ∧ x̃ > x̃0 ∧ z̃ � h̃0

0 otherwise
, (2.32)

χ̃ P2(x̃, t̃ = 0) =
{

1 if x̃ � x̃0 ∧ z̃ � h̃0

0 otherwise
. (2.33)

The passive scalars track the mixing of both pulses and can be used to determine the
provenance of dense material at any time after the release of the lock gates.

Both the Φ P1
ijk and Φ P2

ijk are one-way coupled to the fijk distribution, so they are advected
by the numerically calculated flow. The passive scalar distributions are solved for in an
identical fashion to the two-way coupled distribution Φijk, using (2.18). As the Peclet
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Figure 5. (a) Plots of front location of first pulse (x1
f ) in physical experiments (Exp) for h0/L3 = 0.2, Cases

13–18. (b) Plots of front location of first pulse (x1
f ) in physical experiments for h0/L3 = 0.5 Cases 25–27.

(c) Plots of front location in physical experiments of Cases 13–18 relative to Case 13 (
x̃1
f ). (d) Plots of front

location in physical experiments of Cases 25–27 relative to Case 25 (
x̃1
f ). The solid curves correspond to the

front location of the current produced by the release of the first lock-gate, while the dashed lines track the front
of the second pulse.

number (Pe = Reb Sc) is large (Pe ≈ 6000), we assume the impact of the diffusion term
in (2.6) is negligible, hence χ̃ (x, t) ≈ χ̃ P1(x, t) + χ̃ P2(x, t).

3. Results

3.1. Physical experiments
The front location of the gravity currents in Cases 13–18 and Cases 25–27 are presented in
figure 5(a) and figure 5(b), respectively. The lock-exchange currents in Cases 13–18 have a
fractional depth of release of h0/L3 = 0.2 and delay times t̃re ∈ [0.25, 42.61]. Cases 25–27
have a fractional depth of release of h0/L3 = 0.5 and delay times t̃re ∈ [0.21, 10.15]. The
solid curves in figure 5 correspond to the front location of the current produced by the
release of the first lock-gate, while the dashed lines track the front of the second pulse.
When the pulses merge the dashed curve merges with the solid curve from the merge time
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t̃M onwards. We observe a maximum variance in measured front location of σ 2 = 0.19x0
across four repeats of physical experiments of Case 13.

The results for Cases 13 and 25, where t̃re ≈ 0, provide baselines against which to
measure the impact of varying t̃re. Cases 13 and 25 are single stage releases of a lock with
dimensions 2x̃0 × h̃0. Within the slumping phase, where x̃ f ∝ t̃ , the current propagates
with a buoyancy Froude number (Frb = uf /Ub) of Frb = 0.51 in Case 13, and Frb = 0.55
in Case 25. This value is calculated by taking the mean velocity of the front for t̃ � 8. After
exiting the slumping phase the single stage release currents transition through the inertial
phase and into the viscous phase. This is demonstrated in figure 5(a,b), where we observe
the the current front locations briefly scaling like x̄ f ∝ t̃2/3, before scaling like x̄ f ∝ t̃1/5

at later times.
In Cases 14–18, where there is a delay between the release of the first and second lock,

the current initially propagates as a single release of a lock with dimensions x̃0 × h̃0.
The release of the second lock gate generates a dense intrusion into the leading gravity
current. The pulses ultimately merge to form a unified front, as seen in figure 1. The
merging time corresponds to an inflection point in the solid curve tracking the front
location of the leading current. This is due to the acceleration of the front relative to its
velocity immediately prior to the time of merging. The same trends are observed in Cases
25–27, where Case 25 is the baseline case (t̃re = 0.25) against which Cases 26 and 27 are
compared. Although both lock gates in Cases 13 and 25 are released simultaneously, there
is still a non-zero merging time due to the transit time for the downstream buoyancy-flux
in the inner region of the body to transport dense material to the head of the current.

The findings here are best illustrated through plots of the relative front location of each
pulsed current (t̃re > 0) compared with a single release of an equal volume of dense fluid,
i.e. the t̃re ≈ 0 case with equivalent parameters. The relative displacement between the
front of a single and pulsed release is defined as


x̃1
f (t̃, t̃re) = x̃1

f (t̃, t̃re) − x̃1
f (t̃, t̃re = 0). (3.1)

Plots of relative front location (
x̃1
f ) against time are presented in figures 5(c) and 5(d)

for Cases 13–18 and Cases 25–27, respectively. These are plots of front location in a frame
of reference moving with the front of the single release currents.

The same trends are observed in both sets of results. For the benchmark cases, Cases 13
and 25 where t̃re ≈ 0, the 
x̃1

f curve is identically zero for all t̃ by definition. Several
clear trends emerge when comparing the front position of pulsed currents with their
respective benchmarks. At early times the relative front location is negative, 
x̃1

f < 0.
This distance continues to grow until the merge time of each pulsed current. At the merge
time there is an inflection point in the 
x̃1

f curves, and the unified fronts of the pulsed
gravity currents accelerate relative to the front of the single release current. The relative
acceleration of the pulsed flows does not continue indefinitely, ultimately the acceleration
slows and the relative front position plateaus at a constant value. At late times the unified
front propagates under the viscous scaling law, x̄ f ∝ t̃1/5.

The key result is that for pulsed currents with relatively short delay times – specifically
t̃re ∈ {5.26, 11.02} in figure 5(c), and t̃re = 5.14 in figure 5(d) – the front of the pulsed
current accelerates beyond the velocity of a single release current and plateaus at a value

x̃1

f > 0. This in contrast to the pulsed currents with longer delay times, where the phase
of relative acceleration ends before the current velocity exceeds that of the single release
current, and relative front location plateaus at a value 
x̃1

f < 0.
In summary, the physical scale experiments show that when varying the delay time

between the release of two lock-gates in a pulsed gravity current experiment, there
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exists a range of short delay times that generate a current that propagates faster than an
instantaneous release of an equivalent volume of dense material. Additionally, relatively
long delay times between releases results in a current that propagates slower than
an equivalent instantaneous release. We are unaware of this result being published
previously in the gravity current literature, yet the findings could impact the conventional
understanding of how gravity currents propagate in a range of environmental contexts.

The experimental results give rise to a series of research questions that will be addressed
in the remainder of this study. Firstly, are depth-averaging models, typically used for
geohazard assessment, capable of capturing the observed phenomena, and how do they
perform relative to depth-resolving models? Secondly, what are the physical mechanisms
that result in pulsed releases, with short delay times, generating faster currents than an
equivalent instantaneous release?

3.2. Validation of numerical simulations against physical experiments
Front propagation results from physical experiments, depth-averaged SWE model
simulations and depth-resolving LBM simulations of Cases 25–27 are presented in
figure 6. The results for the benchmark single release case, Case 25 where t̃re = 0.1, are
presented in figure 6(a). Here we quantify the error in numerical predictions relative to
experimental data through the mean absolute percentage error (MAPE),

MAPE = 100
n

n∑
i=1

∣∣∣∣∣
x̄1

f,ex (t̃i ) − x̄1
f,num(t̃i )

x̄1
f,ex (t̃i )

∣∣∣∣∣, (3.2)

where n in the number data points in an experimental time series consisting of the discrete
times t̃i , x̄1

f,ex is the experimentally observed spanwise averaged current front location and
x̄1

f,num is the numerically predicted spanwise averaged front location.
Good agreement between the LBM predictions and the experimental results is observed

for Case 25, throughout the slumping, inertial and viscous phases. The LBM model
achieves an MAPE of 6.6 % in predictions of x̄1

f in the time range t̃ ∈ [0, 90], and a relative
error of 5.1 % for observation at t̃ = 88. The capability of the LBM model to simulate the
front propagation of single release currents is thoroughly validated by Adekanye et al.
(2022).

The depth-averaged SWE model shows good agreement with the physical experiment
in the slumping phase, but diverges at later times when the current produced by the
physical experiment enters the viscous phase. This is due to the assumption of inviscid
flow in the shallow-water equations, which means that viscous forces are not captured
in the simulations. Therefore, the depth-averaged model never enters the viscous phase.
This can be observed in figure 6(a), where the evolution of front location with respect to
time remains close to the inviscid scaling law of x̄ f ∝ t̃ 2/3 at late times. The SWE model
achieves an MAPE of 14.9 % in predictions of x̄1

f in the time range t̃ ∈ [0, 90], more than
twice the LBM model’s MAPE. Additionally, the SWE model has an error of 34.7 %
relative to the experimental observation at t̃ = 88, which is significantly larger than the
LBM error.

The results for the pulsed currents are presented in figures 6(b) and 6(c) for Case 26 and
Case 27, respectively. As in Case 25, the LBM simulations, SWE model and experiments
are in very close agreement in the slumping phase of the flow.

The merge times for the physical experiments of Cases 26 and 27 were measured and
determined to be t̃M = 16.10 and t̃M = 29.34, respectively. The merge times predicted
by the LBM and SWE models are in good agreement with the experimental results.
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Figure 6. Plots of head location in the experiments, depth-averaged SWE model and depth-resolving LBM
simulations of (a) Case 25, t̃re = 0.2, (b) Case 26, t̃re = 5.1, (c) Case 27, t̃re = 10.1. (d) Plots of head location
of the leading currents relative to their respective baseline single stage release case (
x̃1

f ) in experiments,
depth-averaging and depth-resolving simulations of Cases 25–27.

The merge times in the numerical simulations can be effectively approximated as the time
corresponding to the inflection point in the front location curve. The inflection point is
caused by the second pulse transferring energy to the first, causing a relative acceleration
in front velocity. The LBM model predicts merge times for Cases 26 and 27 of t̃M = 20.0
and t̃M = 32.0, respectively, while the SWE model predicts merge times of t̃M = 19.5 and
t̃M = 30, respectively.

Prior to the experimentally measured merge times for Case 26 and 27, the LBM model
achieves MAPE metrics of 12.2 % and 8.1 %, demonstrating good quantitative agreement
with the experimental data. After the currents merge, the LBM simulations continue to
accurately simulate front propagation, maintaining close agreement with the experiments
into the viscous phase. The LBM model achieves an MAPE of 1.9 % and 4.3 % in
predictions of x̄1

f , for the time period t̃ ∈ [t̃M , 90], in Cases 26 and 27, respectively.
The LBM model also demonstrates close agreement with the experimental front location
observation at t̃ = 88; with relative errors of 0.4 % and 6.1 % in Cases 26 and 27. The LBM
MAPE score for the full time series, t̃ ∈ [0, 90], is 5.7 % and 5.9 % for Cases 26 and 27.
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The SWE model shows close agreement with the experimental data prior to current
merging, achieving MAPE scores of 6.0 % and 4.1 % for the period t̃ ∈ [0, t̃M ] in Cases 26
and 27, respectively. However, as initially observed in Case 25, the predictions of the SWE
model diverge from the LBM model and experiments at later times due to the absence of
viscous effects. Basal drag could be included in the model to capture some of the viscous
effects felt by the current during the slumping and inertial phases of the flow, for example
Hogg & Pritchard (2004). However, Johnson & Hogg (2013) show that the overall effect
of basal drag is often limited for turbulent flows. Once the current has transitioned to the
viscous phase, the constant velocity profile over the depth of the current breaks down
and the depth-averaged model is no longer applicable. Furthermore, the SWE model does
not include the entrainment of ambient flow. Shallow-water models have been extended
to include entrainment by Johnson & Hogg (2013) who demonstrate that entrainment
becomes increasingly important over time for inertial gravity currents, and an entraining
regime exists inbetween the inertial and viscous phases if the current is not small and does
not transition immediately from the inertial to viscous regime. In this entraining regime
x̄ f ∝ t̃0.447. The head position in figure 6(a) demonstrates when the SWE is travelling too
fast, the current is already in the viscous regime. Johnson & Hogg (2013) indicate that
the entraining regime may be difficult to observe at laboratory scale, but a three-equation
model would be more suitable to large-scale flows if entrainment is important. As a result
of these limitations the SWE model predictions of x̄1

f have an MAPE of 13.7 % and 27.9 %,
for the time period t̃ ∈ [t̃M , 90], in Cases 26 and 27, respectively. Additionally, the viscous
phase divergence results in large errors for the SWE model at t̃ = 88; with relative errors
of 28.9 % and 46.0 % in Cases 26 and 27, respectively. The SWE MAPE score for the full
time series, t̃ ∈ [0, 90], are 11.2 % and 17.8 % for Cases 26 and 27.

The key finding in the results of the physical experiments was that a delay time of
t̃re = 5.1 (Case 26) resulted in a current that propagated faster than an instantaneous release
(Case 25) after the fronts merged, while a delay time of t̃re = 10.1 (Case 27) resulted in
a slower current after the fronts merged. Plots of relative front location 
x̃1

f for Cases
25–27 taken from results of the physical experiments, depth-averaged SWE simulations,
and depth-averaged LBM simulations are shown in figure 5(d). The results show that the
LBM simulations successfully reproduce the trends observed in the physical experiments.
Prior to the merge time (t̃M ) the front location of the pulsed currents falls behind the single
release current, i.e. 
x̃1

f < 0. At t̃ = t̃M there is an inflection in the relative front location
curve, and both pulsed currents accelerate relative the single release current. In the LBM
simulation of Case 27, the model correctly predicts that relative front location plateaus
at a negative value, 
x̃1

f < 0. The model accurately captures the relative acceleration of
Case 26, with relative front location increasing and ultimately plateauing at a positive
value, 
x̃1

f > 0. The SWE model does not predict that short delay times between releases
generate faster currents than in instantaneous release, while longer delays result in slower
currents. Instead, the SWE model predicts that both the t̃re = 5.1 and t̃re = 10.1 currents
accelerate beyond the baseline current after the fronts have merged. Additionally, the SWE
model predicts that the relative acceleration of pulsed current increases with larger delay
times.

3.3. Depth-averaged model
The two-dimensional depth-averaged SWE model was used to simulate the conditions
recorded for the physical scale experiments. The SWE model is used to capture both the
front position and the variation in flow velocity and depth along the length of the flows.
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Figure 7. Depth and horizontal velocity profiles from the depth-averaged shallow-water model. The ambient
depth is L̃3 = 2, the second gate release time is t̃re = 5.13 and the Fr = Fruz(hf /L3) condition is imposed at the
head of the flow. Panel (a) corresponds to the initial conditions (t̃ = 0). Subsequent panels increase in uniform
time intervals and from (b) to ( f ) correspond to t̃ = 5, 10, 15, 20, 25. Small oscillations can be observed behind
the shock as it propagates forwards to the head of the current but these dissipate once the shock reflects from
the head.

3.3.1. Visualisation of results
Example flow dynamics are presented for Case 20 at six different times in figure 7. These
simulations have a finite ambient depth of L̃3 = 2 and a dimensionless release time of
t̃re = 5.13. The Froude number condition proposed by Ungarish & Zemach (2005), Fr =
Fruz(h̃ f /L3), is used at the front boundary condition. The first release propagates forward
as gravity current. Between the t̃ = 5 and t̃ = 10 plots, the second gate is released. Because
the fluids are of equal density releasing the second lock gate generates a shock, recognised
as a forward propagating wave, that propagates towards the head of the flow. Numerical
instabilities result in small oscillations behind the shock. These instabilities are suppressed
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Figure 8. Depth-averaged shallow-water model predictions of head displacement for dual-stage release flows
relative to a single release of the same volume of material as the ambient depth increases: (a) Cases 19–24
(L̃3 = 2); (b) Cases 13–18 (L̃3 = 5); (c) Cases 7–12 (L̃3 = 10); (d) Cases 1–6 (L̃3 = 105). The depth dependent
Froude number Fruz(hf /L̃3) is used to determine the head speed of the current.

by an artificial viscosity, as detailed in Appendix A. The shock arrives at the head after
t̃ = 15 and a backwards travelling shock is then observed in the t̃ = 20 plot.

3.3.2. Head position relative to a single release for finite depth ambient
In this section the SWE model head position predictions for an instantaneous release and
pulsed currents are compared. For a given Froude number condition, the position of the
head of a dual-stage release is a function of time and dependent on the parameter t̃re,
i.e. x̃1

f = x̃1
f (t̃, t̃re). The instantaneous release simulations (of twice the material) is run

as a sequential release simulation with tre = 0. Theoretically, any value of t̃re less than 1
will work for all L̃3 in a shallow-water type model as this is the time for the backwards
travelling wave to reach the back of the first lock box.

The relative displacement between instantaneous and pulsed current head positions

x1

f is displayed in figure 8 for Cases 1–24, which span four different ambient depths,
L̃3 = 2, 5, 10 and 100 000, and different second gate release times. The values L̃3 = 2
and L̃3 = 5 are chosen to match the experimental results. Here L̃3 = 100 000 is chosen
to approximate an infinite ambient depth release for verification with the single-layer
shallow-water equations model of Allen (2018). Finally, the value L̃3 = 10 enables us to
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see the transitional behaviour as L̃3 becomes large. Until the reflection of the backwards
travelling wave reaches the head of the flow, all currents travel at the same speed. After this
time, t̃ ≈ 5, the double release head speed reduces and 
x̃1

f decreases for all phased release
cases. The arrival of the shock at the head of the current signifies a rapid acceleration of
the head of current and hence 
x̃1

f increases. Critically, in contrast to the experiments and
the LBM, 
x̃1

f reaches a maximum value, which is greater than zero, after this point for
phased releases. This means that the phased-released flows have travelled further at the
point in time.

3.3.3. Characteristic diagrams for infinite depth release
If the infinite depth limit, L̃3 → ∞, is considered, then the two-layer shallow-water
equations reduce to the single-layer equations, where Riemann invariants exist (Hogg
2006; Allen et al. 2020). Further, the Froude number tends to a constant value. The
correlation proposed by Ungarish & Zemach (2005) Fruz and used in this study tends
to 1 as L̃3 → ∞. However, different correlations have different limits. For example, the
Benjamin condition tends to

√
2 (Benjamin 1968). Allen et al. (2020) identified three key

curves based on the characteristics whose interaction with the shock qualitatively changes
the solution and, in particular, the shock propagation speed for phased release flow in
an infinitely deep ambient. The positive and negative characteristic curves for the infinite
depth SWE are

dx

dt
= u + √

h, (3.3)

dx

dt
= u − √

h, (3.4)

respectively, with corresponding Riemann invariants α = u + 2
√

h and β = u − 2
√

h and
require numerical integration for certain flow regions. The first two, x̃ref and x̃fan, emanate
from the front of the first lock box, (x̃, t̃) = (2, 0), and initially correspond to the fastest
and slowest moving negative characteristics that bound an expansion fan that describes the
decreasing flow depth behind the head. Until reaching the back of the first lock box xref
corresponds to the backwards travelling disturbance propagating into undisturbed fluid, i.e.
h̃ = 1 to the left of x̃ref. At t̃ = 1, x̃ref, the backwards travelling disturbance, reflects of the
back of the first lock box and follows the path of the last positive characteristic emanating
from unperturbed fluid. The reflected wave propagates towards the head of the flow and
when it reaches the head the slumping phase finishes. During the slumping phase, the head
of the current has not been affected by the finite supply of material within the lock box and
moves with constant speed and depth. After this, x̃ref, tracks the subsequent reflections of
this curve and switches polarity back and forth as it reaches either the head or the back of
the lock box. The second curve x̃fan initially bounds the region where the solution changes
from uniform (constant depth) to simple (varying depth). Both these curves influence
the propagation speed of the shock. Similarly to x̃ref, the fastest backwards propagating
characteristic from the second release and its subsequent reflections is also tracked as
the curve x̃fan. A curve similar to x̃ref, which tracks the backwards travelling disturbance
from the second lock box is also introduced and labelled x̃fin. The position of the second
release x̃s , which appears as a shock, and its subsequent reflections is also tracked. The
shock corresponds to a location where characteristics in one of two directions intersect.
In particular any of the three curves discussed above would follow the path of the shock
after reaching it when representing a characteristic in the same direction as the shock.
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Figure 9. Characteristic diagrams showing the key curves: x̃ref, x̃fan, x̃fin, x̃s and the head of the current x̃1
f

for Case 2; t̃re = 5.13, L̃3 → ∞ and Fr = 1. The times tref(�), tfin(•), ts(�) and tfan(�) indicate when the key
characteristic curve or the shock intersects the head of the flow. This is to highlight the change in relative head
position in figure 11. This corresponds to a C1Ni case identified by Allen et al. (2020). Panel (a)shows the early
stages of the flow t̃ < 50.

The change in characteristics arriving at the shock will change the shock propagation
speed and hence the value of the other characteristic, which naturally travels back from
the shock. To track this change, if any of x̃ref, x̃fan or x̃fin reach the shock they then switch
to following a characteristic of the opposite polarity.

Diagrams of the four key curves based on characteristics, x̃ref, x̃fan, x̃fin and x̃s, and the
front flow boundary x̃1

f are plotted in figure 9 for Case 2; Fr = 1, t̃re = 5.13 and L̃3 → ∞.
This case corresponds to a C1Ni shock identified by Allen et al. (2020). Initially, the shock
propagates at constant speed before intersecting x̃fan and then x̃ref before reaching the
head. Over the total integration time t̃int = 1000, the shock x̃s , in addition to x̃ref and x̃fan,
reflects off the head of the current, off the back of the lock box and then again reach
the head of the flow. These intersection times with the head of the flow are labelled t̃ref,
t̃fan, t̃fin and t̃s and also displayed in figure 9. When comparing the relative displacement
between single and double releases, 
x1

f , these curves highlight some of controls on
whether the double release is travelling faster or slow than the single release, figure 10.
Each minimum of 
x̃1

f occurs when the shock or its reflection reaches the head of the
flow. In between each of these minima, 
x̃1

f increases to a maximum that is larger than
zero, before decreasing again. None of the other points correspond to an extrema in 
x̃1

f .
However, numerous coincide with changing behaviour in 
x̃1

f . For example, at t̃ ≈ 175
for t̃re = 5.13 the gradient increases after t̃fan and t̃ref in quick succession. This is to be
expected as they indicate changing behaviour in the positive characteristics arriving at the
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Figure 10. Relative displacement between single and phased releases (
x̃1
f ) for Cases 1–6, which approximate

an infinitely deep ambient (L̃3 → ∞). The times tref(�), tfin(•), ts(�) and tfan(�), indicate when the key
characteristic curve or the shock intersects the head of the flow. The first occurrence of tfan, tref and tfin are
suppressed for clarity.

head (Allen et al. 2020). The change in gradient of 
x̃1
f is also observed in the finite depth

cases, figure 8, for L̃3 = 10 and L̃3 = 5.
In addition to Fr = 1, two more studies are conducting using Fr = 0.9 and Fr = 1.1

for Cases 1–6. The characteristic diagrams appear similar to figure 9. The relative
displacement between single and double release for each of these is plotted in figure 11.
Lower Froude numbers result in a lower propagation speed of the current and hence, the
shock x̃s has less distance travel between the head of the current and the back of the
lock box. Thus, the time between minima and maxima of 
x̃1

f decreases. The decreased
propagation speed and time between extrema results in the magnitude of extrema in 
x̃1

f
being smaller. As Fruz → 1 and h̃ f /L̃3 → 0, the long-term behaviour for Fr = Fruz is
similar to the Fr = 1 case. Crucially, it is the magnitude of the Froude number that is
the dominant control of the extremal values of 
x̃1

f and their locations rather than the
ambient depth L̃3, figures 8, 10 and 11.

3.4. Depth-resolving model
Cases 28–33 are run with passive scalars to track the propagation and mixing of material
from the two locks, using the methods outlined in § 2.2.2. Plots of the LBM predictions
of front location for Cases 28–33 are presented in figure 12. The front location of
the instantaneous release, Case 28 where (t̃re = 0.0), is the baseline against which the
propagation of the pulsed currents is measured.

The structure of the 
x̃1
f curves are the same as those observed in the results of physical

experiments and LBM simulations for Cases 25–27. At early non-dimensional times the
pulsed currents fall behind the instantaneous release current, as they exit the slumping
stage of the flow at an earlier time. The distance between the pulsed and instantaneous
currents increases until the second pulse merges with the first at t̃ = t̃M . After merging,
the unified front accelerates relative to the single release current. As observed in the
deep-ambient experiments, the pulsed currents with relatively short delay times between
releases – in this data set t̃re ∈ {1.5, 2.5, 5.0} – accelerated beyond the single release
current, ultimately plateauing with a relative front location of 
x̃1

f > 0. As observed in the
experiments, the relative front locations of the faster currents oscillate around a positive

x̃1

f value, which makes it challenging to definitively state which delay time produces the
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Figure 11. Relative displacement between single and phased releases (
x̃1
f ) for Cases 1–6, which approximate

an infinitely deep ambient (L̃3 → ∞), for (a) Fr = 0.9 and (b) Fr = 1.1. The times tref(�), ts(�) and tfin(•)

indicate when the key characteristic curve or the shock intersects the head of the flow. The first occurrence of
tfan, tref and tfin are suppressed for clarity.
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Figure 12. Plots of head location of leading currents relative to the baseline single stage release case (
x̃1
f ) in

depth-resolving simulations of Cases 28–33.
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fastest current. The relative front location of the pulsed release with t̃re = 10 plateaued at
the value 
x̃1

f = 0, while the t̃re = 15 case plateaued at a value of 
x̃1
f ≈ −0.5.

The results demonstrate that the key result of the physical experiments – short delays
between releases generate faster currents than are produced by an instantaneous release of
an equal volume of dense material – is robust to changes in the lock aspect ratio.

3.4.1. Visualisation of dense intrusions using passive scalar fields
The passive scalar fields ρ̃P1 and ρ̃P2 are used to track dense material released from
the first and second lock, respectively. The passive scalar density fields are visualised
using RGB contour plots. In the RGB plots pixels are coloured according to fluid
concentration, with ρ̃P1 = 1 ∧ ρ̃P2 = 0 and ρ̃P2 = 1 ∧ ρ̃P1 = 0 corresponding to cyan and
purple, respectively. Densities of ρ̃P1 = 0 ∧ ρ̃P2 = 0 map to white pixels. A mixture of
dense material produces a mix of cyan and purple, providing a qualitative visual measure
of pulse mixing.

Plots of spanwise averaged RGB density contours from the depth-resolving simulation
of Case 31, t̃re = 5.0, are presented in figure 13. The RGB contours show that the LBM
simulations capture the intrusion of the second gravity current into the first. The advancing
front of the dense intrusion is highlighted in figure 13(e). The leading nose of the second
pulse, tracked by the ρ̃P2 density field, is elevated above a layer of dense fluid in the
body of the leading current as it propagates at the height of neutral buoyancy. These
qualitative features of the flow were impossible to verify when visualising simulations of
pulsed currents using a single scalar. Although we do not have validation data for Case 31,
we can make qualitative comparisons with physical scale experiments. We observe good
qualitative agreement between the elevated nose observed in the LBM results, and the
intrusion structure observed in the Ho et al. (2018a) experiments, presented in figure 1.
The RGB contours indicate that the intrusion remains largely separate from the leading
gravity current until it arrives at the head and undergoes turbulent mixing. In the following
subsections, the mechanics of the intrusion are quantitatively analysed to determine the
underlying controls.

3.4.2. Analysis of the drag forces acting on intrusion boundaries
The focus of the study now shifts to the objective of understanding the mechanisms that
determine whether or not a pulsed current accelerates beyond an instantaneous release
current of an equivalent volume of fluid. A secondary objective is to understand why
the depth-averaged model does not reproduce this finding, instead predicting that any
delay time between releases results in a faster current, and that the maximum observed

x̃1

f increases with increasing t̃re. Our working hypothesis is that the relative acceleration
of pulsed currents is controlled by the stresses experienced by the dense intrusion as it
propagates to the head. The stresses acting on the dense intrusion prior to the merge time
(t̃M ) for Cases 28–33 are quantitatively analysed using the results of the LBM simulations.

Prior to t̃M the pulsed current can be conceptualised as a dense intrusion propagating
through a moving ambient. The interface between the currents is identified through the
passive scalar density fields, denoted ρ̃P1 and ρ̃P2, which track material released from
the first and second lock, respectively. The boundary between the dense intrusion and
surrounding fluid is defined as the isoline I(t̃). To define I(t̃) we need to assign a
density value for the current–ambient interface. Here we set the nominal density threshold
to ρ̃∗

P2 = 0.02, motivated by the empirically validated use of this value by Ottolenghi
et al. (2016, 2018) to model mixing and entrainment in gravity currents. The isolines
for the intrusion boundaries in the LBM simulation of Case 31 are plotted in figure 14.
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Figure 13. Red–green–blue (RGB) contour plot of density in the LBM pulsed gravity current simulation of
Case 31, t̃re = 5. Passive scalars are used to track the propagation and mixing of dense material from each lock.
The density field ρ̃P1 tracks material from the first lock, while the field ρ̃P2 tracks material from the second
lock. Pixels are coloured according to fluid concentration, with ρ̃P1 = 1 ∧ ρ̃P2 = 0 and ρ̃P2 = 1 ∧ ρ̃P1 = 0
corresponding to cyan and purple, respectively. Densities of ρ̃P1 = 0 ∧ ρ̃P2 = 0 map to white pixels. A mixture
of dense material produces a mix of cyan and purple, as indicated by the colour scale. Contours are plotted at
times (a) t̃ = 1, (b) t̃ = 3, (c) t̃ = 5, (d) t̃ = 7, (e) t̃ = 10, ( f ) t̃ = 15, (g) t̃ = 20, (h) t̃ = 25, (i) t̃ = 30.
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Figure 14. Plots of the density isolines that define the boundary of the leading pulse and the dense intrusion
triggered by the release of the second lock gate in the LBM simulations of Case 31, t̃re = 5. The current–ambient
interface is defined as the longest continuous isoline of the density threshold ρ̃∗

P1 = 0.02 for the leading current
(solid line), and ρ̃∗

P2 = 0.02 for the dense intrusion (dashed line).
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Case t̃re t̃M L̃ M

28 0.00 8.00 6.34
29 1.50 9.00 6.82
30 2.50 11.00 7.74
31 5.00 19.50 11.18
32 10.00 33.5 15.37
33 15.00 45.5 18.05

Table 2. Results for pulse merge time t̃M and the location of the intrusion front at the time of pulse merging
L̃ M in the LBM simulations of Cases 28–33, which have dual-stage release delay times t̃re ∈ [0.00, 15.00]. The
pulses are said to have merged when the distance between their respective fronts is less than or equal to x̃0.

These isolines are extracted by applying the ρ̃∗
P2 = 0.02 threshold to the ρ̃P2 field in the

RGB contour plots in figure 13.
The non-dimensional drag coefficient (CD) is an analytical tool for quantifying the

resistance experienced by a flow. Here we apply the concept to the dense intrusion prior
to merging with the leading current, defining the drag coefficient as the dimensionless
measure of resistance due to the sum of skin friction drag (Cf ) and form drag. The drag
force (FD) is the force acting in the opposite direction to the predominant flow velocity u.
The skin-friction coefficient is a non-dimensional measure of resistance due to friction at
an interface (Tritton 2012). In turbulent gravity currents the skin-fiction coefficient, due to
shear at the lower boundary of the body, is of the order 10−3 (Wells & Dorrell 2021). This
is true at both the laboratory and environmental scale.

As the shape and volume of the dense intrusion change continuously between the release
of the current and the merge time, it is necessary to normalise the absolute stresses acting
on the intrusion by the length of the boundary of the intrusion L I,B . This length is the sum
of the length of the isoline I(t̃), and the curve that defines the contact line between the
boundary walls and the current B(t̃). Additionally, the values used to calculate the drag
coefficients are averaged over the time between the release of the current at t̃ = t̃re and the
merge time t̃ = t̃M . The merge time (t̃M ) and current front location at the time of merging
(L̃ M ) for Cases 28–33 are presented in table 2. The pulses are said to have merged when
the intrusion produced by the second release has entered the head of the leading current.
We make the conservative estimation that the intrusion has entered the head of the leading
current when the distance between their respective fronts is less than or equal to x̃0.

In order to calculate the skin-friction and drag coefficients for the dense intrusions it is
necessary to calculate the cumulative skin-friction force (Ff ) and drag force (FD) acting
on the boundary of the intrusion. This is achieved by computing the line integral of the
fluid shear stresses along the current–ambient interface isoline I(t̃), and the curve that
defines the contact line between the boundary walls and the current B(t̃). This is in effect
the dashed closed curve that bounds the intrusion in figure 14. The shear stress field is
spanwise averaged, resulting in a 2-rank tensor τ̃ (x̃, z̃, t̃) that defines the shear stress in
the field. The shear stresses are calculated from the velocity field ũ(x̃, t̃) predicted by the
LBM model run in VirtualFluids.

The total skin-friction force acting on the boundary of the intrusion is calculated as the
line integral along the curves I(t̃) and B(t̃) of the stress acting tangential to the intrusion
boundary τ̃s , i.e. the skin-friction shear stress,

Ff (t̃) =
∫

C=I∪B

τ̃s(x̃, t̃) dC. (3.5)
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The total drag force acting on the boundary of an intrusion FD(t̃) as a function of time
t̃ , is calculated by integrating the stress acting in the opposite direction to the velocity of
the intrusion front (τ̃xz(x̃, t̃)) along the curves I(t̃) and B(t̃),

FD(t̃) =
∫

C=I∪B

τ̃xz
(
x̃, t̃

)
dC. (3.6)

The stresses experienced by the intrusion are dynamic. To compute coefficients for the
lifetime of the intrusion, i.e. from its release at t̃re to the merge time t̃M , the resistive forces
are averaged over the time period [t̃re, t̃M ]. The equation

Cf = 2
ρ̃

u−2τf

= 2
ρ̃

(
L̃ M

t̃M − t̃re

)−2
1

t̃M − t̃re

t̃M∫
t̃re

Ff (t̃)

L I,B(t̃)
dt̃ (3.7)

is used to calculate a skin-friction coefficient for an intrusion. The velocity is taken
to be the average speed of the intrusion front prior to t̃M , i.e. u = L̃ M/(t̃M − t̃re). The
average skin-friction stress τf is defined as the time average of the spatially averaged
skin-friction stress acting on the boundary intrusion as a function of time, Ff (t̃)/L I,B(t̃).
The equation

CD = 2
ρ̃

u−2τD

= 2
ρ̃

(
L̃ M

t̃M − t̃re

)−2
1

t̃M − t̃re

t̃M∫
t̃re

FD(t̃)

L I,B(t̃)
dt̃ (3.8)

is used to calculate a drag coefficient for an intrusion. The average drag stress τD is defined
as the time average of the spatially averaged total drag stress acting on the boundary
intrusion as a function of time FD(t̃)/L I,B(t̃).

The skin-friction (Cf ) and drag coefficients (CD) of dense intrusions in the LBM
simulations of Cases 28–33 are presented in table 3. Alongside the absolute values, the
ratio between the coefficients for each delay time and the respective coefficient for the
t̃re = 0 instantaneous release case is also tabulated. The results for the skin-friction and
drag coefficients are all of the order of magnitude 10−3, which provides confidence in
the method used, as this is the same order of magnitude that has been documented in the
literature for the skin friction in the body of a gravity current (Wells & Dorrell 2021).

The ratio between the skin-friction coefficient for the pulsed intrusions and the
instantaneous release intrusions shows that the delay times that produced faster currents,
t̃re ∈ {1.50, 2.50, 5.00} had intrusions that experienced the least resistance due to skin-
friction prior to the merge time t̃M . However, the two cases that did not result in slower
currents t̃re ∈ {10.00, 15.00}, also experience less skin-friction resistance than the single
release case intrusion. Therefore, lower skin-friction prior to t̃M is not entirely predictive
of a faster current postmerging. The computed drag coefficients are larger than the skin-
friction coefficients, which is expected as CD includes the additional effect of form drag,
i.e. drag due to the intrusion’s shape. The ratio between the drag coefficient for the
pulsed intrusions and the instantaneous release intrusions shows that the delay times that
produced faster currents had intrusions that experienced less drag than the t̃re = 0 case
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Case t̃re Faster or slower Cf Cf /Ct̃re=0
f CD CD/Ct̃re=0

D

28 0.00 ∼ 0.0030 1.00 0.0033 1.00
29 1.50 F 0.0020 0.65 0.0022 0.67
30 2.50 F 0.0020 0.66 0.0021 0.65
31 5.00 F 0.0023 0.77 0.0027 0.83
32 10.00 ∼ 0.0024 0.79 0.0031 0.96
33 15.00 S 0.0028 0.92 0.0037 1.13

Table 3. Results for the skin-friction coefficient (Cf ) and the drag coefficient (CD) of the dense intrusion in
the LBM simulations of the pulsed gravity currents in Cases 28–33. The drag coefficients are time averaged
between the release of the current at t̃ = t̃re and the merge time t̃ = t̃M . The pulses are said to have merged
when the intrusion has entered the head of the leading current, i.e. when the distance between their respective
fronts is less than or equal to x̃0. The ratio between the coefficients for the instantaneous release, Case 28, and
each pulsed release are also tabulated in the Cf /Ct̃re=0

f and the CD/C
t̃re=0
D columns. Additionally, whether

or not the delay time resulted in a pulse that was faster (F), slower (S) or of equal speed (∼) after t̃M is also
documented.

prior to the merge time. However, the drag coefficient ratio for the intrusion in Case 32 is
CD/Ct̃re=0

D = 0.96, indicating the intrusion experienced approximately equal (within 4 %)
drag resistance to the intrusion in the instantaneous release simulation. A review of the
relative front location curve (
x̃1

f ), see figure 12, shows that postmerging the relative
front location plateaued approximately equal to the single release case.

The drag coefficient ratio for the intrusion in Case 33 is CD/Ct̃re=0
D = 1.13, meaning the

intrusion experienced 13 % more drag than the instantaneous release intrusion. The plots
of relative front location (figure 12) show that this case resulted in a slower current after the
merge time. The results demonstrate that the time averaged drag coefficient of the intrusion
prior to t̃M is predictive of the speed of the current postmerging relative to an instantaneous
release current. Interestingly, the skin-friction coefficients do not capture this trend. This
provides evidence that it is an increase in relative form drag on the intrusion for larger
t̃re that results in a slower current. A reduction in drag means that short delays between
releases result in dense intrusions that dissipate less energy relative to an instantaneous
release prior to t̃M , and therefore supply more energy to the head of the leading current
when they merge. Long delays between releases result in intrusions that deliver less energy
to the leading current at t̃M , relative to an instantaneous release.

The drag analysis results are potentially sensitive to the assigned nominal density of the
current–ambient interface, ρ̃∗

P2 = 0.02. Therefore, to assess the sensitivity of Cf and CD
to variation in the interface density. We set the current–ambient interface threshold to six
values spread logarithmically over two orders of magnitude; ρ̃∗

P2 ∈ [0.001, 0.1]. For each
ρ̃∗

P2 value we calculate Cf and CD for t̃re ∈ {1.50, 2.50, 5.00, 10.00, 15.00}. The results
are presented in figure 15, where we plot the coefficients relative to their respective values
in the case t̃re = 0, that is, Cf /Ct̃re=0

f and CD/Ct̃re=0
D . The solid curves in figure 15 are the

median values of the coefficients, while the shaded region represents the interval P2.5 to
P97.5. The results show that although uncertainty in ρ̃∗

P2 propagates through to a spread
in computed Cf and CD , the trends in the results are unchanged. We find that currents
with delay times of t̃re ∈ {1.50, 2.50, 5.00} experience the smallest skin-friction and drag
coefficients, and that all release times result in Cf /Ct̃re=0

f < 1. Critically, whilst accounting
for uncertainty in ρ̃∗

P2, we still observe that Case 33 – the intrusion generated by the
longest delay time between releases (t̃re = 15.00) – is the only one to experience a drag
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Figure 15. Sensitivity analysis results for the skin-friction coefficient Cf and the drag coefficient CD of the
dense intrusion in the LBM simulations of the pulsed gravity currents. We vary the current–ambient interface
density threshold logarithmically across the range ρ̃∗

P2 ∈ [0.001, 0.1]. For each ρ̃∗
P2 value we calculate Cf and

CD for t̃re ∈ {1.50, 2.50, 5.00, 10.00, 15.00}. Here Cf /Ct̃re=0
f and CD/Ct̃re=0

D are the coefficients relative to their
respective values at t̃re = 0.

resistance greater than an equivalent instantaneous release. This reinforces the finding that
the time averaged drag coefficient of the intrusion prior to t̃M is predictive of current speed
postmerging, and demonstrates that the result is robust to uncertainty in ρ̃∗

P2, within the
ranges considered.

4. Discussion
The present study uses experiments, depth-averaged simulations and depth-resolving
models to study the dynamics of pulsed gravity currents. Analysis of the experimental
results reveals a new and important finding; that pulsed gravity currents with short
delay times between releases can propagate faster than an instantaneous release of
an equal volume of dense material, after the two pulses have merged. However, it
was found that longer delays between releases resulted in slower currents. Given a
fractional depth of release of h0/L3 = 0.2, physical experiments show that delay times
of t̃re ∈ {5.13, 11.02} result in faster currents postmerging, while delay times of t̃re ∈
{14.41, 27.94, 42.61} produced slower currents. The experimental results for h0/L3 = 0.5,
show that a delay time of t̃re = 5.14 produces a faster current, while t̃re = 10.15 generates a
slower current. This result has implications for our understanding of environmental gravity
currents. Pulsed currents arise naturally due to a range of causes including successive
slope failures on the continental shelf, intermittent seismic activity and the merging of
currents at channel confluences (Goldfinger et al. 2017). Additionally, their dynamics
have implications for the geohazard risks posed by pyroclastic flows, avalanches and
turbidity currents (Loughlin et al. 2002). The key research objectives are to understand the
mechanisms that produce the observed phenomena and assess the ability of conventional
geohazard prediction models to capture the dynamics of the pulsed currents.

Depth-averaged simulations predict a different trend to that observed in the physical
experiments; pulsed currents are found to always generate faster flows after the pulses
merged, and increasing delays between releases resulted in increasingly faster currents
after merging. There is an overlap between the parameters used to generate the
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experimental, depth-averaged and depth-resolving LBM data sets, allowing for direct
comparison between the predictions of each method. The LBM model reproduces the
same findings observed in the experimental results, and shows close agreement in the
prediction of front location across a range of delay times. The depth-averaged simulations
show close agreement with the experiments and depth-resolving simulations at early times,
but diverge when the flow enters the viscous phase, as the shallow-water equations neglect
viscous terms in the governing equations.

The depth-resolving models permit more detailed analysis of the flow using passive
scalars to track the propagation, mixing and merging of material from each lock. Here
the level of resistance experienced by the intrusion prior to merging was shown to be
predictive of the speed relative to an instantaneous release current. This was demonstrated
by computing the skin-friction and drag coefficients of the intrusions. The results
confirmed that intrusions generated by pulsed currents with short delays between releases
experienced less skin-friction and total drag resistance prior to merging than instantaneous
release intrusions. Long delays between releases resulted in intrusions with lower skin-
friction resistance than an instantaneous release intrusion, but critically higher total drag
resistance. A sensitivity analysis showed that the trends were robust to uncertainty in
the current–ambient interface density. This result demonstrates that a delay between
releases reduces the skin-friction resistance experienced by an intrusion, likely due to the
propagation of the second current over the layer of dense material deposited by the first
release. It should be noted that as the delay time increases, this effect diminishes, as can be
seen in the skin-friction coefficient results. However, it is an increase in form drag acting
on intrusions with longer delay times that is responsible for the slower propagation of these
currents. This partially explains the inability of depth-averaging simulations to capture
this phenomenon, as they do not resolve the detailed shape of the intrusion front, instead
modelling it as a sharp discontinuity regardless of delay time. Therefore, such models
are not able to capture the increase in form drag that results from the intrusion being
less sheltered by the residual density field of the first current. In environmental settings
the faster flows created by pulsed gravity currents may more readily suspend and entrain
sediment, in turn extending run out distances. Real world flows will also be complicated by
differing volumes and densities of sequential release, slopes and topography interactions.
Moreover, naturally occurring gravity currents typically flow on a downward slope and
may be unstable to roll-waves, which can give rise to internal pulses that propagate faster
than the front. These may all act to enhance (or diminish) the generation of intrusions
within gravity currents.

The physical experiments and LBM simulations are limited by physical scale
and computational expense, respectively, preventing them from reaching the high
buoyancy Reynolds numbers that would generate a highly turbulent flow throughout
the experimental run time. Therefore, care must be taken when extrapolating to highly
turbulent environmental scale flows. In the present study all simulations were run for a
buoyancy Reynolds number of Reb ≈ 6000. The effect of Reynolds number on the results
could be the subject of further research.

The depth-averaged simulations model the second release as a propagating shock with
uniform flow properties throughout the current depth. This is fundamentally different to
the drag reducing intrusions observed in the physical experiments and LBM simulations.
It has been demonstrated that density stratification models are critical for the modelling
of gravity current run-out (Dorrell et al. 2014; Wells & Dorrell 2021). Additionally,
the SWE model does not currently include entrainment. The three-equation entrainment
model has been used in combination with an infinite depth ambient to study the impact of
entrainment on front propagation (Johnson & Hogg 2013). However, extending the finite
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depth shallow-water equations to include entrainment has, to the authors’ knowledge, not
been demonstrated before. Such model extensions were outside the scope of the present
study.

Incorporating density stratification and entrainment in finite-depth SWE models of
pulsed currents may help to address the existing limitations of the depth-averaged
simulations and should be considered in future research.

5. Conclusion
A comparison of methods to predict and understand the dynamics of pulsed gravity
currents was made. Physical scale experiments were used to quantify front propagation
rates and merging times between sequential releases. Further, a depth-averaged shallow
water model and a full three-dimensional LBM simulation were developed to investigate
the dynamics observed in the physical experiments. The study covers a broad parameter
space including a wide range of delay times between releases, fractional depths of release
and lock aspect ratios.

Crucially it is shown, for the first time, that pulsed gravity currents with short delay
times between releases propagate faster than an instantaneous release of an equal volume
of dense material, while longer delays result in slower currents. The results from the
physical experiments and LBM modelling highlight the critical role of intrusions, enabled
by vertical variation in flow density, in the dynamics of pulsed flow propagation.

Intrusions in pulsed flows that propagate faster than instantaneous releases are shown
to experience less drag resistance, and therefore dissipate less energy. Depth-averaged
simulations were unable to capture this phenomenon as they do not resolve the intrusion
shape, and so cannot effectively predict form drag. Further research is required to
understand the trigger mechanisms of natural hazards, including pulsed events, to better
enable the prediction and mitigation of their risks.
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Appendix A. Shallow-water numerical solver and verification
The shallow-water equations with the initial and boundary conditions reflecting a double-
lock release problem are solved using a Lax–Wendroff finite-difference scheme. For more
details see the appendix of Bonnecaze et al. (1993) and Allen et al. (2020). When solving
the shallow-water equations, the second lock box is neglected when t < tre, and the
coordinates are translated so that the left-hand boundary of the flow (front of the second
lock box) is at x = 0. The equations are scaled using the following coordinate transform
(ζ, τ ) = (x/x1

f (t), t):

∂h

∂t
= 1

x1
f

(
ẋ1

f ζ
∂h

∂ζ
− ∂m

∂ζ

)
, (A1)
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∂m

∂t
= 1

x1
f

[(
ζ ẋ1

f − m

h
(2 − 2a)

) ∂m

∂ζ
+
(

m2

h2 (1 − 2a) − h(1 − b)

)
∂h

∂ζ

]
, (A2)

where t is replaced with τ for convenience and a and b remain unchanged. In
characteristic form the two-layer shallow-water ((A1) and (A2)) are

dh

du
= 1

1 − b

(
au ∓

√
a2u2 + (1 − b)h

)
(A3)

on
dζ

dt
= 1

x1
f

[
u(1 − a) − ζ ẋN ±

√
a2u2 − (1 − b)h

]= c±. (A4)

In the deep ambient limit L̃3 → ∞, these reduce to the characteristic curves for the
single-layer SWEs and can be integrated to obtain the Riemann invariants of the single-
layer shallow-water equations (Stoker 2011). In practice the reduced deep ambient limit
equations could be solved as a separate case as in Allen et al. (2020). However, a suitably
large value of L̃3 = 104 is chosen instead. Increasing or decreasing this value by an
order of magnitude does not change the solutions. In a deep ambient case the values
α = u + 2

√
h and β = u − 2

√
h are conserved along positive or negative characteristics,

respectively. To correctly impose the front boundary condition u1
f = Fr(h1

f /)
√

h1
f the

positive characteristic arriving at the head at the next time step needs to be determined.
This provides the second condition on for h1

f and u1
f at the head of the flow. The method is

similar to Ungarish & Zemach (2005), who instead integrate forward from the unperturbed
region of the flow.

A grid resolution of 
ζ = 0.001 is used to discretise the scaled domain into Nx = 1001
equally spaced grid points. At t = t̃re, �N x/Nx� additional nodes are included to represent
the fluid in the second lock box, where � � is the floor function. This changes the unit
interval to [−1/x1

f (t̃re, 1)], which is then rescaled back to the unit interval [0,1]. This
ensures the same number of nodes remain in the body of the first release and removes the
need to interpolate the solution at t = t̃re. Time stepping is controlled by a Courant number
condition

δt = Cr
mini
xi

maxi (|c+i |, |c−i |)
, (A5)

where c±i are the wave speeds at node i . A necessary but not sufficient condition for
stability in a numerical scheme is Cr < 1. A conservative value of Cr = 0.1 was chosen
as a balance between numerical stability and computational cost. This gives an added
advantage that, provided there is rapid changes in the solution at the head, the positive
characteristic that arrives at the head at the next time step originates between the last two
grid nodes. By using this Courant condition based on the wave speeds it is guaranteed that
the positive characteristic arriving at the head of the flow at the next time step originates
in between the last two nodes of the domain. The average values between the last two cells
(hn

N−1/2, un
N−1/2) are used as initial conditions when first solving for the head height and

velocity at the next time step (hn+1
N , un+1

N ),

dh

du
= 1

1 − b

(
au −

√
a2u2 + (1 − b)h

)
. (A6)

The characteristic gradient (A4) is then backwards integrated in time using a first-order
upwind method to obtain a more accurate starting location for the characteristic arriving
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at the head ζ = ζs . Using linear interpolation between the final two nodes, the depth hζs

and uζs velocity at the point ζ = ζs is obtained and used as initial conditions to solve
equation (A6) again to obtain a more accurate estimate of the head depth and velocity
(hn+1

N , un+1
N ). After investigation, repeating the process to find further better estimates

made no difference to the obtained solutions.
A small artificial viscosity term ∼ b1∂

2u/∂ζ 2, the same form as used by Ungarish &
Zemach (2005) and similar to Bonnecaze et al. (1993) and Allen et al. (2020) was
introduced to dampen spurious oscillations that appear within the solution that can lead
to divergence if allowed to grow over time. These arises behind the head and the shock
during the first few time steps after the first and second release. A coefficient b1 = 1
removes the vast majority of these oscillations. The exception is for the longest release
times, where small oscillations can be observed behind the shock until it reaches the head
of the flow. These dissipate after the shock reflects backwards after reaching the head.
At T = 100, which is sufficient time for the shock to reach the head in all release times
tre presented in this paper, the diffusion coefficient is reduced to b1 = 0.1. Keeping the
diffusion coefficient at b1 = 1 led to numerical instability as the current became very thin
and further, this additional diffusion is only necessary during the early stages when the
jumps at the shock are large.
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