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I INTRODUCTION 1

Estimating the Mixing Coefficients of

Geometrically Ergodic Markov Processes
Steffen GrÈunewÈalder∗, Azadeh Khaleghi†

AbstractÐWe propose methods to estimate the β-mixing coef-
ficients of a real-valued geometrically ergodic Markov process
from a single sample-path X0, X1, . . . , Xn−1. Under standard
smoothness conditions on the densities, namely, that the joint
density of the pair (X0, Xm) for each m lies in a Besov space
Bs

1,∞(R2) for some known s > 0, we obtain a rate of convergence

of order O(log(n)n−[s]/(2[s]+2)) for the expected error of our

estimator in this case1. We complement this result with a high-
probability bound on the estimation error, and further obtain
analogues of these bounds in the case where the state-space
is finite. Naturally no density assumptions are required in
this setting; the expected error rate is shown to be of order

O(log(n)n−1/2). The theoretical results are complemented with
empirical evaluations.

Index TermsÐβ-mixing, estimation, geometric ergodicity,
Markov process, consistency

I. INTRODUCTION

Temporal dependence in time-series can be quantified via

various notions of mixing, which capture how events sepa-

rated over time may depend on one another. The dependence

between the successive observations in a stationary sequence

implies that the sequence contains less information as com-

pared to an i.i.d. sequence with the same marginal distri-

bution. This can negatively affect the statistical guarantees

for dependent samples. In fact, various mixing coefficients

explicitly appear in the concentration inequalities involving

dependent and functions of dependent sequences, making them

looser than their counterparts derived for i.i.d. samples, see,

e.g. [1]±[9] for a non-exhaustive list of such results. Thus,

in order to be able to use these inequalities in finite-time

analysis, one is often required to assume known bounds on the

mixing coefficients of the processes. Moreover, the quality of

the assumed upper-bounds on the mixing coefficients directly

translates to the strength of the statistical guarantees involving

the sequence at hand. Therefore, one way to obtain strong

statistical guarantees for dependent data, is to first estimate

the mixing coefficients from the samples, and then plug in the

estimates (as opposed to the pessimistic upper-bounds) in the

appropriate concentration inequalities. Estimating the mixing

coefficients can more generally lead to a better understanding

of the dependence structure in the sequence.

∗ Department of Mathematics, University of York, York, UK, stef-
fen.grunewalder@york.ac.uk
† ENSAE - CREST, Institut Polytechnique de Paris, Palaiseau, France,

azadeh.khaleghi@ensae.fr
1We use [s] to denote the integer part of the decomposition s = [s] + {s}

of s ∈ (0,∞) into an integer term and a strictly positive remainder term
{s} ∈ (0, 1].

In this paper, we study the problem of estimating the β-

mixing coefficients of a real-valued Markov chain from a

finite sample-path, in the case where the process is stationary

and geometrically ergodic. A stationary, geometrically ergodic

Markov process is absolutely regular with β(m) → 0 at least

exponentially fast as m → 0. We start by recalling the relevant

concepts.

β-mixing coefficients. Let (Ω,F , µ) be a probability space.

The β-dependence β(U ,V) between the σ-subalgebras U and

V of F is defined as follows. Let ι(ω) 7→ (ω, ω) be the

injection map from (Ω,F) to (Ω×Ω,U ⊗V), where U ⊗V is

the product sigma algebra generated by U ×V . Let µ⊗ be the

probability measure defined on (Ω × Ω,U ⊗ V) obtained as

the pushforward measure of µ under ι. Let µU and µV denote

the restrictions of µ to U and V respectively. Then

β(U ,V) := sup
W∈U⊗V

|µ⊗(W )− µU × µV(W )| (1)

where µU × µV is the product measure on (Ω × Ω,U ⊗
V) obtained from µU and µV . This leads to the sequence

β := ⟨β(m)⟩m∈N of β-mixing coefficients of a process X,

where

β(m) := sup
j∈N

β(σ({Xt : 0 ≤ t ≤ j−1}), σ({Xt : t ≥ j+m})).

A stochastic process is said to be β-mixing or absolutely

regular if limm→∞ β(m) = 0.

Geometrically ergodic Markov processes. In this paper, we

are concerned with real-valued stationary Markov processes

that are geometrically ergodic. Recall that a process is sta-

tionary if for every m, ℓ ∈ N the marginal distribution on R
m

of (Xℓ, . . . , Xm+ℓ) is the same as that of (X0, . . . , Xm). In

the case of stationary Markov processes, the β-mixing coef-

ficient β(m), m ∈ N can be simplified to the β-dependence

between the σ-algebras generated by X0 and Xm respectively,

i.e.

β(m) = β(σ(X0), σ(Xm))

[7, vol. 1 pp. 206]. A stationary Markov process is said to

satisfy ªgeometric ergodicityº if there exists Borel functions

f : R → (0,∞) and c : R → (0,∞) such that for ρ-a.e.

x ∈ R and every m ∈ N, it holds that

sup
B∈B(R)

|pm(x,B)− ρ(B)| ≤ f(x)e−c(x)m

where pm(x,B) defined for x ∈ R and B ∈ B(R) is the

regular conditional probability distribution of Xm given X0

and ρ denotes the marginal distribution of X0 [7, vol. 2
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Definition 21.18 pp 325]. It is well-known - see, e.g. [7, vol.

2 Theorem 21.19 pp. 325] - that a stationary, geometrically

ergodic Markov process is absolutely regular with β(m) → 0
at least exponentially fast as m → 0. This means that in this

case the β-mixing coefficients of the process satisfy

β(m) ≤ ηe−γm (2)

for some η, γ ∈ (0,∞) and all m ∈ N.

Overview of the main results. Our first result involves the

estimation of β(m) for each m = 1, 2, . . . , of a real-valued

geometrically ergodic Markov process from a finite sample

path X0, X1, . . . , Xn. Our main assumption in this case is

that the joint density fm of the pair (X0, Xm) lies in a

Besov space Bs
1,∞(R2) ; roughly speaking, this implies that

fm has [s] many weak derivatives. As discussed above, for

a geometrically ergodic Markov process, there exists some

η, γ > 0 such that β(m) ≤ ηe−γm. Given some η, γ ∈ (0,∞)
we show in Theorem 3 that

E|β(m)− β̂N (m)| ∈ O(log(n)n− [s]
2[s]+2 ),

for all m ≲ (log n)/γ, where, β̂N is given by (7) with

N ≈ γn/ logn (given in Condition 2). Moreover, there exists a

constant ζ > 0 such that with probability 1−ζ log(n)n− [s]
2[s]+2

it holds that

|β(m)− β̂N (m)| ∈ O(log2(n)n− [s]
2[s]+2 ).

The constants hidden in the O-notation are included in the

full statement of the theorem. An important observation is

that neither η nor γ affect the rate of convergence. However,

a factor 1/γ appears in the constant, and a pessimistic upper-

bound on the mixing coefficients (i.e. a small γ) can lead to a

large constant in the bound on the estimation error. Theorems 5

and 6 are concerned with a different setting where the state-

space of the Markov processes is finite. In this case, we do not

require any assumptions on the smoothness of the densities,

and the rates obtained here match that provided in Theorem 3

if we let s → ∞. For the estimate β̂N (m) given by (10) with

N ≈ (log n)/γ and every m ≲ (log n)/γ we have,

E|β̂N (m)− β(m)| ≲ |X |
γ

log(n)n−1/2. (3)

Moreover,

Pr(|β̂N (m)− β(m)| ≥ ϵ)

≲ |X |n−1/2 + |X |2 exp
(
− γnϵ2

|X |4 log n

)

for ϵ > 0. We refer to the statement of Theorem 5 for the

explicit constants. Observe that we have a factor |X |/γ in (3).

In other words, γ has the same effect here as in the bound

provided in Theorem 3, and the constant increases linearly in

the size of the state-space. In this setting, apart from estimating

the individual mixing coefficients we can also simultaneously

estimate β(m) for m up to some k† ≲ (log n)/γ (see the full

statement of Theorem 6 for a specification). The analysis relies

on a VC-argument in place of a union bound which leads to

tighter error bounds in this case. We obtain,

E( sup
m≤k†

|β̂N (m)− β(m)|) ≲ 1

γ
log(n|X |)|X |2n−1/2,

and,

Pr( sup
m≤k†

|β̂N (m)− β(m)| ≥ ϵ)

≲ |X |2 log(n|X |)n−1/2 + |X |2 exp
(
− γnϵ2

|X |4 log n

)
.

for all ϵ > 0. Note that the parameter k† does not explicitly

appear on the right hand side of the above bounds as it has

already been substituted for in the calculation.

In our empirical evaluations provided in Section V, we high-

light one of the key features of our estimators: their model-

agnostic nature, which enables them to function effectively

without prior knowledge of the underlying time-series models,

requiring only assumptions on the smoothness of densities and

loose bounds on the mixing rate. We specifically demonstrate

that a natural model-specific β-mixing estimator, designed for

autoregressive AR process, suffers performance drop in the

presence of model-mismatch. In contrast to our estimator, this

model-specific estimator exhibits bias and fails to consistently

estimate the mixing coefficient, highlighting its vulnerability

to inaccuracies when the underlying model is not correctly

specified.

Related literature. Research on the direct estimation of

the mixing coefficients is relatively scarce. In the asymp-

totic regime, [10] used hypothesis testing to give asymptot-

ically consistent estimates of the polynomial decay rates for

covariance-based mixing conditions. [11] proposed asymptot-

ically consistent estimators of the α-mixing and β-mixing co-

efficients of a stationary ergodic process from a finite sample-

path. Since in general, rates of convergence are non-existent

for stationary ergodic processes (see, e.g. [12]), their results

necessarily remain asymptotic and no rates of convergence can

be obtained. An attempt at estimating β-mixing coefficients

has also been made by [13]. Despite our best attempts, we

have been unable to verify some of their main claims and

have particular reservations about the validity of their rates.

More specifically, their main theorem (Theorem 4) suggests a

rate of convergence of order log(n)n−1/2 for their estimator,

independently of the dimension of the state-space and under

the most minimal smoothness assumptions on the densities.

Given that under these conditions a density estimator is known

to have a dimension-dependent rate of about n−1/(2+d) even

when the samples are iid [14, pp. 404], it is highly unlikely

that a dimension-independent rate would be achievable for an

estimator of the β-mixing coefficient. An interesting body of

work exists for a different, yet related problem, concerning the

estimation of the mixing times of finite-state Markov processes

[15]±[17]. Indeed, in their recent work, [18] strategically

exploit the relationship between the mixing time and the

β-mixing coefficients of an ergodic Markov process with a

discrete alphabet, and use this connection to construct estima-

tors for the average mixing time of the process. Moreover,
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they propose an approach that reduces the dependence on

the size of the state space in the discrete-alphabet setting.

This in turn, enables them to handle certain countably infinite

state-space chains and to estimate the corresponding mixing

coefficients.

Organization. The remainder of the paper is organized as

follows. In Section II we introduce some preliminary notation

and basic definitions. After formulating the problem in Sec-

tion III, we propose our estimators in Section IV, considering

real-valued as well as we finite-valued sample-paths; the

technical proofs are deferred to Section VII. In Section V, we

present empirical evaluations of our estimators, focusing on

their model-agnostic nature, to support the primary theoretical

results. In Section VI we provide concluding remarks and

explore potential future research directions.

II. PRELIMINARIES

In this section we introduce notation and provide some basic

definitions. We denote the non-negative integers by N :=
{0, 1, 2, . . . }. If U and V are two σ-algebras, we will occa-

sionally use standard measure-theoretic notation as follows:

their product σ-algebra is denoted by U ⊗ V := σ(U × V),
and the σ-algebra generated by their union is denoted by

U ∨ V := σ(U ∪ V). If s ∈ (0,∞), then we let s = [s] + {s}
be decomposed into its integer part [s] ∈ N and a strictly

positive remainder term {s} ∈ (0, 1]. In particular, if s = i
for any i > 0 ∈ N then, [s] = i − 1 and {s} = 1. As part

of our analysis in Section IV-A, we impose classical density

assumptions on certain finite-dimensional marginals of the

Markov processes considered. The densities satisfy standard

smoothness conditions as controlled by the parameters of

appropriate Besov spaces.

Besov Spaces Bs
p,∞(Rd). For an arbitrary function f : Rd →

R and any vector h ∈ R
d let ∆hf(x) := f(x+h)−f(x) be the

first-difference operator, and obtain higher-order differences

inductively by ∆r
hf := (∆h ◦∆r−1

h )f for r = 2, 3, . . . . De-

note by Lp(R
d), p ≥ 1 the Lp space of functions f : Rd → R.

For s > 0 the Besov space Bs
p,∞(Rd) is defined as

Bs
p,∞(Rd) := {f ∈ Lp(R

d) : ∥f∥Bs
p,∞(Rd) < ∞} (4)

with Besov norm

∥f∥Bs
p,∞(Rd) := ∥f∥1 + sup

0<t<∞
t−s sup

|h|≤t

∥∆r
hf∥1

where |v| := ∑d
i=1 |vi| for v = (v1, . . . , vd) ∈ R

d, and r is

any integer such that r > s [19]. Denote by W r
p (R

d), r ∈ N

the Sobolev space of functions f : R
d → R. We rely on

the following interpolation result concerning W r
p (R

d) and

Bs
p,∞(Rd).

Remark 1. As follows from [19, Proposition 5.1.8 and Theo-

rem 5.4.14] for any r0, r1 ∈ N and ς := (1−θ)r0+θr1, θ ∈
(0, 1) it holds that

W r0
p (Rd) ∩W r1

p (Rd) →֒ Bς
p,∞(Rd) →֒ W r0

p (Rd) +W r1
p (Rd).

(5)

If r0 < r1, then the left and right hand sides of (5) reduce

to W r1
p (Rd) and W r0

p (Rd) respectively. Furthermore, in this

case we have ∥f∥Bς
p,∞(Rd) ≥ ∥f∥W r0

p (Rd). To see this consider

the K-functional

K(f, t;W r0
p (Rd),W r1

p (Rd))

:= inf{∥f0∥W r0
p (Rd) + t∥f1∥W r1

p (Rd) : f = f0 + f1}

and observe that by [19, Theorem 5.4.14 and Definition 5.1.7]

we have

∥f∥Bς
p,∞(Rd)

= sup
t>0

t−θK(f, t;W r0
p (Rd),W r1

p (Rd))

≥ K(f, 1;W r0
p (Rd),W r1

p (Rd))

≥ inf{∥f0∥W r0
p (Rd) + ∥f1∥W r0

p (Rd) : f = f0 + f1}
≥ ∥f∥W r0

p (Rd)

In particular, consider the Besov space Bs
1,∞(Rd) for some

s ∈ (0,∞) and take θ = {s}/2, r0 = [s] and r1 = [s] + 2 for

the above convex combination. Then,

∥f∥Bs
1,∞(Rd) ≥ ∥f∥

W
[s]
1 (Rd)

.

III. PROBLEM FORMULATION

We are given a sample X0, X1, . . . , Xn generated by a sta-

tionary geometrically ergodic Markov process taking values

in some X ⊆ R. As discussed in Section II such a process

is known to have a sequence of β-mixing coefficients such

that

β(m) ≤ ηe−γm, m ∈ N

for some unknown constants η, γ ∈ (0,∞). The mixing

coefficient β(m) is unknown, and it is our objective to estimate

it. In Section IV we introduce our estimators together with

theoretical bounds on the estimation error. In Section V we

demonstrate the performance of the proposed estimators on

samples generated by standard time-series models.

IV. THEORETICAL RESULTS

In this section, we present our estimators for β(m). We

consider two different settings, depending on the state-space.

First, in Section IV-A, we consider the case where the process

is real-valued and its one and two-dimensional marginals

have densities with respect to the Lebesgue measure. Next,

in Section IV-B, we consider the case where the state-space

X is finite. In this setting we do not require any density

assumptions, and are able to control the estimation error

simultaneously for multiple values of m. This is stated in

Theorem 6. The following notation is used in both settings.

For each m ∈ N, denote by Pm the joint distribution of the

pair (X0, Xm) so that for each U ∈ B(X 2) we have

Pr({(X0, Xm) ∈ U}) = Pm(U).

By stationarity,

Pr({(Xt, Xm+t) ∈ U}) = Pm(U), t ∈ N.
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A. Real-valued state-space

We start by considering the case where X is any subset of R.

We assume that Pm has a density fm : R2 → R
2 with respect

to the Lebesgue measure λ2 on R
2. Denote by P0 the marginal

distribution of Xt, t ∈ N whose density f0 : R → R with

respect to the Lebesgue measure λ on R can be obtained as

f0(x) =
∫
R
fm((x, y))dλ(y) for x ∈ R. It follows that

β(m) =
1

2

∫

R2

|fm − f0 ⊗ f0|dλ2.

For some fixed k ∈ m,m+1, . . . , ⌊n/8⌋ let N = N(k, n) :=
⌊ n−k
2(k+1)⌋ and define the sequence of tuples

Zi = (X2i(k+1), X2i(k+1)+m), i = 0, 1, 2, . . . , N.

Define the Kernel Density Estimator (KDE) of fm as

f̂m,N (z) =
1

Nh2
N

N−1∑

i=0

K

(
z − Zi

hN

)
(6)

with kernel K : R
2 → R and bandwidth hN > 0.

Marginalizing we obtain an empirical estimate of f0, i.e.

f̂0,N (x) :=
∫
R
f̂m,N (x, y)dλ(y). We define an estimator of

β(m) as

β̂N (m) =
1

2

∫

R2

|f̂m,N − f̂0,N ⊗ f̂0,N |dλ2 (7)

where ⊗ denotes the tensor product. Note that to simplify

notation in (6) and (7), we have omitted the dependence of

N on the choice k. An optimal value for k, denoted by k⋆,

is provided in Condition 2. In our analysis we make standard

assumptions (see, Condition 2 below) about the smoothness of

fm and the order of the kernel K in (6). Recall that a bivariate

kernel is said to be of order ℓ if

cℓ(K) :=
∑

i,j∈N

i+j=ℓ

∫

z=(z1,z2)∈R2

|z1|i|z2|j |K(z)|dλ2(z) < ∞,

∫

z∈R2

K(z)dλ2(z) = 1

and for all i, j ∈ N, i+ j < ℓ,
∫

z=(z1,z2)∈R2

zi1z
j
2K(z)dλ2(z) = 0.

Condition 2. The density fm ∈ Bs
1,∞(R2) for some s > 1

and ∥fm∥Bs
1,∞(R2) ≤ Λ for some Λ ∈ (0,∞). It is further

assumed that the ℓth moments of the pair (X0, Xm) are finite

for ℓ = 1, . . . , ⌈s⌉, and
∫

R2

fm(z)(1 + ∥z∥2)dλ2(z) < ∞
∫

R2

K2(z)(1 + ∥z∥2)dλ2(z) < ∞

We assume that some (η, γ) ∈ (0,∞)2 is provided satisfying

β(m) ≤ ηe−γm. The estimator β̂N (m) given by (7) for m =
1, . . . , k⋆ is obtained via

i. a convolution kernel K of order [s] such that

c0 :=

∫

R2

|K(z)|dλ2(z) < ∞.

ii. and a bandwidth of the form

hN = (cΛ)−
[s]

[s]+1

(
[s]− 1

2

)− [s]
2[s]+2

n− 1
2[s]+2

where, c :=
c[s](K)

[s]!
and N = ⌊ n−k⋆

2(k⋆+1)⌋ with

k⋆ =

⌊
1

γ

(
log

γη

8C
+

(
3[s] + 2

2[s] + 2

)
logn

)⌋
, (8)

and

C := (2 + c0)(L1)
[s]

[s]+1 (cΛ)
1

[s]+1

with L1 defined such that L2
1 is given by,

√
2

∫

R2

f(z)(1 + ∥z∥2)dλ2(z)

∫

R2

K2(z)(1 + ∥z∥2)dλ2(z)

by choosing the hyperparameter in [14, Remark 5.16] to be

equal to 2.

We are now in a position to state our main result, namely,

Theorem 3 below which provides bounds on the estimation

error of β̂N given by (7), when the assumptions stated in

Condition 2 are satisfied. Note that this condition is fulfilled

by a number of standard models. For instance, consider the

stationary, geometrically ergodic AR(1) model

Xt+1 = aXt + ϵt, t ∈ N

where ϵt ∼ N (0, σ2) for some σ > 0 and where X0 ∼
N (0, σ2/(1 − a2)) for some a ∈ R with |a| < 1. All of

the finite-dimensional marginals of this process are Gaus-

sian; in particular, its marginal and joint densities f0 and

fm, m = 1, 2, . . . , being infinitely differentiable, lie in any

of the Besov spaces that we consider in this paper. Note that

the corresponding Besov norm will be influenced by σ. In

particular, for very small values of σ the densities will have a

sharp peak and the Besov norm will be large.

Theorem 3. Under the assumptions stated and with the

parameters defined in Condition 2, for each m ∈ 1, . . . , k⋆

we have

E|β(m)− β̂N (m)|

≤ 8Cn− [s]
2[s]+2

γ

(
eγ + log

γη

8C
+

(
3[s] + 2

2[s] + 2

)
log n

)

Moreover, with probability at least 1 − 8Cn− [s]
2[s]+2 it holds

that

|β(m)− β̂N (m)|

≤ 64
(
1 +

c0
2

)
(C1 + C2 log(n) +

6∥K∥1
γ

log2(n))n− [s]
2[s]+2 .

where

C1 :=
1

γ
log
( γη
8C

)
(A1 +B1) ,

with

A1 := 3(L1)
[s]

[s]+1 (cΛ)
1

[s]+1

B1 := Λ(cΛ)−
[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2



V EMPIRICAL EVALUATIONS 5

and,

C2 :=
4∥K∥1

γ
log
( γη
8C

)
+

3

2γ
(A2 +B2)

− [s]2

2[s]+2

where

A2 := 3(L1)
[s]

[s]+1 (cΛ)
1

[s]+1

B2 := Λ(cΛ)−
[s]2

[s]+1

(
[s]− 1

2

)
.

See Section VII for a proof.

Remark 4. We refer to Section V for a discussion on natural

choices for k⋆, η and γ in the context of some standard time-

series models such as AR(1).

B. Finite state-space

In the special case where the state-space X of the Markov

process is finite, we can relax the density assumptions and

obtain an empirical estimate of β by counting frequencies.

More specifically, in this case, for each t ∈ N the σ-algebra

σ(Xt) is completely atomic with atoms {Xt = s}, s ∈ X .

Therefore, by [7, vol. Proposition 3.21 pp. 88] we have

β(m) =
1

2

∑

u∈X

∑

v∈X
|Pm({(u, v)})− P0({u})P0({v})| (9)

where as before, Pm and P0 are the joint and the marginal

distributions of (X0, Xm) and X0 respectively. Given a sample

X0, . . . , Xn−1, we can obtain an empirical estimate of β(m)
in (9) as follows. Fix a lag of length k ∈ 1, . . . , n (an

optimal value for which will be specified in Proposition 5).

Define the sequence of tuples Zi = (X2ki, X2k(i+1)), i =
0, 2, 4, . . . , N − 1, with N = N(k, n) := ⌊ n−k

2(k+1)⌋. For each

pair (u, v) ∈ X 2 let

P̂m,N ((u, v)) =
1

N

N−1∑

i=0

1{(u,v)}(Zi).

Similarly, for each u ∈ X we can obtain an empirical estimate

of P0(u) as

P̂0,N (u) :=
1

2N

2N−1∑

i=0

1{u}(Xki).

Define β̂N (m) as

1

2

∑

u∈X

∑

v∈X
|P̂m,N ({(u, v)})− P̂0,N ({u})P̂0,N ({v})| (10)

Theorem 5. Consider a sample of length n ∈ N of a

stationary, geometrically ergodic Markov process with finite

state-space X . Define N(k, n) = ⌊ n−k
2(k+1)⌋, n, k ∈ N. Let

k⋆ :=
⌊
1
γ log

(
ηγn3/2

√
2|X |

)⌋
and N = N(k⋆, n) with

n ≥ max





(√
2|X |e2γ
ηγ

)2/3

,

(
ηγ

|X |

)2/3


 .

For every m = 1, . . . , k⋆ and β̂N (m) given by (10) we have,

E|β̂N (m)− β(m)|

≤
√
8|X |n−1/2

γ

(
e+ log

(
ηγ√
2|X |

)
+

3

2
logn

)
.

Moreover, for ϵ > 0 it holds that

Pr(|β̂N (m)− β(m)| ≥ ϵ)

≤ e
√
2|X |n−1/2

2 log(ηγn
3/2√

2|X | )
+ 4|X |2 exp

{
− γnϵ2

48|X |4 log n

}
.

The proof is provided in Section VII.

In this setting, we are also able to simultaneously control the

estimation error for all m = 1, . . . , k† where k† is specified

in the statement of Theorem 6. The proof relies on a VC

argument which helps replace a factor of k† (which would have

otherwise been deduced from a union bound) with a log k†

factor.

Theorem 6. Consider a sample of length n ∈ N of a

stationary, geometrically ergodic Markov process with finite

state-space X . For n, k ∈ N define

N(k, n) =

⌊
n− k

2(k + 1)

⌋
.

Let N = N(k†, n) with

k† :=

⌊
1

γ
log

(
ηγn3/2

4
√
2|X |2 log2(n|X |)

)⌋

and

n ≥ max

{
4
√
2|X |3eγ
ηγ

,
2k(k + 1)

3k + 2

}
.

For β̂N given by (10) we have,

E[ sup
m∈1,...,k†

|β̂N (m)− β(m)|]

≤ 4
√
2|X |2n−1/2 log2(n|X |)

γ

×
(
e+ log

(
ηγn3/2

4
√
2|X |2 log2(n|X |)

))

Furthermore, for ϵ > 0 it holds that

Pr( sup
m∈1,...,k†

|β̂N (m)− β(m)| ≥ ϵ)

≤ 4
√
2|X |2 log(n|X |)n−1/2

log( ηγn3/2

8
√
2|X |2 )

+ 16|X |2 log
(
3|X |
2γ

log(η2/3γ2/3n)

)

× exp

{
− γnϵ2

3072|X |4 log n

}

The proof is provided in Section VII.
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V. EMPIRICAL EVALUATIONS

In this section, we evaluate the performance of our estimators

using synthetic data generated from the well-known autore-

gressive (AR) time-series model of order 1 (see, e.g., [20]).

Additionally, we examine the case where the autoregressive

process deviates from the traditional AR model, featuring

a non-Gaussian noise process. This latter setting serves to

highlight the model-agnostic nature of our estimators.

A first-order autoregressive process, AR(1) can be defined as

follows:

Xt = ϕ1Xt−1 + ϵt, t ≥ 1

with parameter ϕ1 ∈ R \ {0} and an i.i.d. sequence of zero-

mean normally distributed noise random variables ϵ1, ϵ2, . . .
with variance σ2. The process is stationary if |ϕ1| < 1 and,

and by letting X0 have distribution N (0, σ2/(1 − ϕ2
1)) we

can guarantee stationarity of the process X0, X1, X2, . . .. To

be able to calculate the estimation error, we compute the true

β-mixing coefficients numerically. Furthermore, in the context

of AR models, it is common to estimate the autocorrelation

function (ACF) which is a measure of linear (as opposed to

full) dependence. More specifically, the ACF at lag m is given

by ρm = E(X0Xm). A standard estimator of ρm when given

a sample of length n can be obtained as

ρ̂m =
1

(n−m)σ̂2

n−m∑

t=0

XtXt+m (11)

with

σ̂2 =
1

n

n−1∑

t=0

X2
t

In the case of an AR(1) process with Gaussian noise, an

estimate of the β-mixing coefficients of the process can be

readily obtained by using the ACF estimator given by (11).

With this observation, we obtain a (model-specific) estimate

of the β-mixing coefficient of the AR(1) process. This es-

timator is used as a point of comparison against our own

estimators of β in this experiment. It is important to note

that unlike the ρ̂m-based estimator, our estimators do not

have prior knowledge of the underlying time-series model,

beyond assumptions on the smoothness of the densities. In

fact, as part of our experiments, we further emphasize the

model-agnostic nature of our estimator by comparing it with

the ACF-based estimator under model-mismatch conditions:

when the noise process is no longer Gaussian. In this setting,

while the ACF-based estimator demonstrates bias and fails

to consistently estimate the mixing coefficients, our estimator

maintains remains consistent.

As discussed in Section IV, our estimators rely on KDEs

to estimate β and as such require smoothness conditions

on the the densities. Additionally, proper selection of k⋆,

necessitates (loose) bounds on the mixing rate parameters of

the process. Below, we discuss these conditions for AR(1)

and provide insights into our approach for choosing k⋆ in our

experiments.

KDE estimators for AR(1). Classical time-series models

often assume Gaussian increments. This implies in various

contexts that the joint densities of Xi and Xi+m is Gaus-

sian. Gaussian densities are infinitely often differentiable and

correspond to the smoothness parameter s of a Besov space

approaching infinity. This yields a very fast rate of con-

vergence of the KDE when the bandwidth hn of the KDE

is adapted to this context. In particular, the bandwidth hn

depends logarithmically on n and the rate of convergence will

approach
√
log(n)/n in the L2-distance and log(n)/n for the

mean squared error independently of the dimension. A natural

alternative to selecting the bandwidth in this way is to make

use of popular heuristics for choosing hn. In practice, it is

common to use either Scott’s rule or Silverman’s rule to select

hn; in our experiments hn is selected according to Scott’s rule,

which for an R
d-valued sample sets hn = n−1/(4+d). In the

context of Besov spaces this corresponds to the case s = 2 [14,

p.404] with corresponding rate of convergence of the KDE

of order n−2/(4+d). Using Scott’s rule leads to suboptimal

rates of convergence of the KDE if our model assumptions

are, in fact, correct since Scott’s rule is pessimistic about the

smoothness of the density and does not exploit the smoothness

of the Gaussian distribution.

Choice of k⋆. Another hyperparameter we are required to

select is k⋆, which corresponds the gap between time-points

at which we collect observations. Larger values of k⋆ lead to

observations that are closer to independent. The downside of

large values of k⋆ is that significant amount of information

is discarded. In Condition 2, we provided a general way to

select k⋆ based on loose bounds on the mixing rate parameter.

In the context of classical time-series models we have natural

alternatives to this choice. In particular, for AR(1) models it

is possible to bound the mixing-rate in terms of the AR(1)

parameter and it is natural to replace our general assumption in

Condition 2 by an AR-specific assumption on the parameters

(e.g. the AR(1) parameter is smaller than 0.95). We develop

these alternative approaches to select k⋆ as part of the model

specific sections that follow.

As follows from [21, Thm.10.14], for an AR(1) process we

can bound β(m) from above and below using ρm as

1

π
|ρm| − ρ2m + (1/4)ρ4m

(1− ρm)2

≤ β(m)

≤ 1√
2π

|ρm|+ ρ2m + (1/16)ρ4m
(1− ρm)2

(12)

Note that the bound becomes tighter for small ρm and looser

as ρm approaches 1. For larger values of ρm it indeed becomes

trivial. The bound given in (12) allows us to control β(m) by

means of the correlation coefficients of the AR model. The

correlation coefficients are in turn directly related to ϕ1. It is

natural to work in the AR(1) context with loose assumptions

on ϕ1 and the above discussion provides a path for turning

such assumptions into bounds on β(m) which we can then

use to tune k⋆. The relationship between ρm, m ≥ 1, and ϕ1

is given by

ρm = ϕm
1 E(X2

0 )/E(X2
0 ) = ϕm

1 .
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Fig. 1. The plot on the left illustrates the performance of our KDE-based estimators, while the plot on the right demonstrates the performance of the ACF-based
estimators for the estimation of β(m), m = 1, 3, 5 when samples are generated according to AR(1). The horizontal lines represent the true values of β, with
the top solid line (red) corresponding to m = 1, the middle solid line (green) to m = 3, and the bottom solid line (blue) to m = 5. The mean estimates
(averaged over 20 rounds) are plotted for each m value, and the shaded areas indicate the uncertainty in these estimates. As n increases, the estimates clearly
converge to their respective true β values. In the right plot, the results for the ACF-based estimator are shown. The ACF-based estimator takes advantage of
the knowledge that the process is AR(1) and, more specifically, assumes Gaussian densities. This assumption leads to faster convergence in this particular
setting, as the model assumption is accurate.

In particular, if we assume an upper bound b on |ϕ1| then

|ρm| ≤ bm. Substituting this into Equation (12) and ignoring

second order terms provides us with the bound

β(m) ≲
1√
2π

bm. (13)

Taking into account (13) when optimizing the bound on the

expected error given by (33), and noting the smoothness of

the Gaussian density, we propose choosing k⋆ in this case

as ⌊
log log(1/b) + (3/2) log n

log(1/b)

⌋
. (14)

Observe that for a fixed n, when b → 1 we obtain k⋆ → ∞.

Another alternative is to relax the requirement for the estimator

to be based on (near)-independent samples by setting k⋆ = 0.

In this case, one can leverage the ergodicity of the underlying

process to achieve consistency, as demonstrated in [11]. An

advantage of this approach is that it eliminates the need for

bounds on the mixing rate to select k⋆, allowing us to utilize

the entire dataset without discarding any data. However, this

might result in a higher variance, which would need to be

appropriately controlled. Although theoretical results for finite-

time analysis in the context of Markov processes and KDE-

based estimators are currently lacking, we conjecture that it

may be possible to prove the consistency of our estimator for

k⋆ = 0. We provide some simulation results below which lend

support to this hypothesis.

Simulation Results. We start by considering an AR(1) model

with ϕ1 = 1/2 and σ2 = 1. Figure 1 shows the estimation

results for the values of β(m), m = 1, 3 and 5. The plot on

the left shows the results for our estimator when k⋆ is chosen

according to Equation (14) and using the assumption that

|ϕ1| ≤ 0.9. The plot on the right shows the results for a naive

plug-in estimator that relies on the empirical ACF to calculate

the empirical joint and marginal densities of the Gaussian

distribution, and integrate the absolute difference to estimate β.

In this experiment, the true β values (numerically determined)

are β(1) ≈ 0.1846, β(3) ≈ 0.0402 and β(5) ≈ 0.00996. As

expected, the ACF-based estimator which relies on the fact

that the process is AR(1), is able to efficiently estimate β in

this setting by calculating a simple 2 × 2 covariance matrix.

In a second set of experiments, we study the performance

of the estimators under a mild model miss-specification. In

this setting, the samples are given by exp(Xt)−E(exp(Xt))
where Xt is an AR(1) process. This yields a sequence of

(centered) log-normal random variables. Observe that this

transformation of Xt does not change the β-dependence of

the original process. The results are shown in Figure 2.

The plots on the top left and right show the results of our

estimator where k⋆ is chosen according to (14) and k⋆ = 0
respectively; the latter is more sample-efficient. Two notable

observations can be gleaned from the results. 1. The model-

mismatch encountered by the ACF-based estimator in this case

results in a noticeable systematic bias in the estimates, even

under a minor model mis-specification. This bias is particularly

prominent for m = 1, where the dependencies are more

significant. 2. Interestingly, in the case where k⋆ = 0, the

estimator performs well, despite the samples being dependent.

This leads us to believe that it may be possible to prove

consistency of our KDE-estimators without the need to rely

on blocks that are k⋆ steps apart.

VI. DISCUSSION

We have introduced novel methods for estimating the β-mixing

coefficients of a real-valued geometrically ergodic Markov

process from a sample-path of length n. Under standard

smoothness conditions on the densities, we have established a

convergence rate of O(log(n)n−[s]/(2[s]+2)) for the expected
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Fig. 2. Performance of our estimators (top) and the ACF-based estimator (bottom) when the sample is a transformation of an AR(1) process.

error of our estimator, and have provided a high-probability

bound on the estimation error. Furthermore, we have derived

analogous bounds in the case of a finite state-space, where no

density assumptions are required, and demonstrate an expected

error rate of O(log(n)n−1/2). Although our work is primarily

theoretical, we have also presented empirical evaluations to

further validate the performance of the proposed estimators. In

our experiments, we demonstrate the efficacy of our estimators

across a range of geometircally ergodic Markov processes

without being tied to any particular modeling specification,

such as linear or autoregressive structures.

Our estimators rely on (near)-independent samples obtained

from blocks separated by some k⋆ time-steps in the sample

path. While this is a classical technique, based on Berbee’s

coupling lemma, allowing to control dependencies, it has its

downsides. First, to determine an appropriate value for k⋆

we require bounds, albeit loose, on the mixing parameters.

Moreover, using blocks that are k⋆ steps apart leads to sample-

inefficiency. An alternative strategy could involve eliminating

the need for (near)-independent samples by setting k⋆ = 0. As

in [11] it may be possible to exploit the underlying process’s

ergodicity to ensure consistency. However, this might result in

a higher variance to be controlled. While to the best of our

knowledge there are currently no theoretical results available

for finite-time analysis in the context of Markov processes

and KDE-based estimators, we conjecture that it could be

feasible to demonstrate the consistency of our estimator under

the condition that k⋆ = 0. We leave this investigation for future

work.

VII. TECHNICAL PROOFS

In this section, we provide proofs for our theorems. A common

ingredient is a coupling argument for time-series, which allows

one to move from dependent samples to independent blocks.

This is facilitated by Lemma 7 below, which is a standard

result based on, commonly used in the analysis of dependent

time-series, see e.g. [22]±[24]. For completeness, we provide

a proof of this lemma, which in turns relies on a coupling

Lemma of [25] stated below.

Lemma 7. Let Xi, i ∈ N be a stationary sequence of random

variables with β-mixing coefficients β(j), j ∈ N. For a fixed

k, ℓ ∈ N let Yi = Xi(k+ℓ), . . . , Xik+(i+1)ℓ for i ∈ N. There

exists a sequence of independent random variables Y ∗
i , i ∈ N

taking values in R
ℓ and have the same distribution as Yi such

that for every i ∈ N we have,

Pr(Y ∗
i ̸= Yi) ≤ β(k).
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Lemma 8 ( [25]). Let X and Y be two random variables tak-

ing values in Borel spaces S1 and S2 respectively. Denote by

U a random variable uniformly distributed over [0, 1], which

is independent of (X,Y ). There exists a random variable

Y ∗ = g(X,Y, U) where g : S1 × S2 × [0, 1] → S2 such

that Y ∗ is independent of X and has the same distribution as

Y , and that

Pr(Y ∗ ̸= Y ) = β(σ(X), σ(Y )).

Proof of Lemma 7. Let Uj , j ∈ N be a sequence of i.i.d.

random variables uniformly distributed over [0, 1] such that

each Uj is independent of σ({Yi : i ∈ N}). Set Y ∗
0 = Y0. By

Lemma 8 there exists a random variable Y ∗
1 = g1(Y

∗
0 , Y1, U1)

where g1 is a measurable function from R
ℓ×R

ℓ× [0, 1] to R
ℓ

such that Y ∗
1 is independent of Y ∗

0 , has the same distribution

as Y1 and Pr(Y ∗
1 ̸= Y1) = β(σ(Y ∗

0 ), σ(Y1)). Similarly, there

exists a random variable Y ∗
2 = g2((Y

∗
0 , Y

∗
1 ), Y2, U2) where

g2 is a measurable function from (Rℓ)2 × R
ℓ × [0, 1] to

R
ℓ such that Y ∗

2 is independent of (Y ∗
0 , Y

∗
1 ), has the same

distribution as Y2 and Pr(Y ∗
2 ̸= Y2) = β(σ(Y ∗

0 , Y
∗
1 ), σ(Y2)).

Continuing inductively in this way, at each step j =
3, 4, . . . , by Lemma 8, there exists a random variable Y ∗

j =
gj((Y

∗
0 , Y

∗
1 , . . . , Y

∗
j−1), Yj , Uj) where gj is a measurable func-

tion from (Rℓ)j×R
ℓ×[0, 1] to R

ℓ such that Y ∗
j is independent

of (Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1), has the same distribution as Yj and

that Pr(Y ∗
j ̸= Yj) = β(σ(Y ∗

0 , Y
∗
1 , . . . , Y

∗
j−1), σ(Yj)). It

remains to show that β(σ(Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1), σ(Yj)) ≤ β(k)

for all j ∈ N. To see this, first note that Y ∗
0 = Y0 by

definition, and that for each i ∈ N, it holds that Y ∗
i ∈

σ((Y ∗
0 , Y

∗
1 , . . . , Y

∗
i−1), Yi, Ui), we have

σ(Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1) ⊆ Uj ∨ Vj (15)

where Uj = σ(U1, . . . , Uj−1) and Vj = σ(Y0, Y1, . . . , Yj−1).
Take any U ∈ Uj and W ∈ σ(Yj). We almost surely have,

P (U ∩W |Vj) = E (1U1W |Vj)

= E (E (1U1W |Vj ∨ σ(Yj)) |Vj) (16)

= E (1WE (1U |Vj ∨ σ(Yj)) |Vj) (17)

= E (1WE (1U ) |Vj) (18)

= P (U)P (W |Vj)

= P (U |Vj)P (W |Vj) (19)

where (16) follows from the fact that Vj ⊆ σ(Yj) ∨ Vj ,(17)

follows from noting that W ∈ σ(Yj), (18) holds since Uj is

independent of σ(Y0, . . . , Yj), and (19) follows since Uj is

independent of Vj . Therefore, and Uj , Vj and σ(Yj) form a

Markov triplet in the sense of [7, Vol. 1 Definition 7.1 pp.

205]. Thus, as follows from [7, Vol. 1 Theorem 7.2 pp. 205]

we obtain,

β(Uj ∨ Vj , σ(Yj)) = β(Vj , σ(Yj)). (20)

In light of (15) and (20), and noting that by construction

β(Vj , σ(Yj)) ≤ β(k) we obtain

β(σ(Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1), σ(Yj)) ≤ β(Uj ∨ Vj , σ(Yj))

≤ β(Vj , σ(Yj))

≤ β(k).

Proof of Theorem 3. Given the sample X0, . . . , Xn, consider

the sequence

Zi = (X2i(k+1), X2i(k+1)+m)

with i = 0, 1, 2, . . . , N − 1 where N = N(k, n) := ⌊ n−k
2(k+1)⌋

for some fixed k ∈ m + 1, . . . , ⌊n/8⌋. As part of the proof,

we propose an optimal choice for k, see (34). Enlarge Ω if

necessary in order for Lemma 7 to be applicable. As follows

from Lemma 7 there exists a sequence of independent random

variables Z∗
i , i = 0, 1, . . . , N−1 each of which takes value in

R
2 and has the same distribution as Zi, i = 0, 1, . . . , N − 1,

with the additional property that

Pr ({∃i ∈ 0, . . . , N − 1 : Z∗
i ̸= Zi}) ≤ Nβ(k) (21)

Define the KDE of fm through Z∗
i , i = 0, . . . , N − 1

f̂∗
m,N (z) =

1

Nh2
N

N∑

i=1

K

(
z − Z∗

i

hN

)

with the same kernel K : R2 → R and bandwidth hN > 0 as

in (6) and let

β̂∗
N (m) =

1

2

∫

R2

|f̂∗
m,N − f̂∗

0,N ⊗ f̂∗
0,N |dλ2 (22)

where f̂∗
0,N (x) :=

∫
R
f̂∗
m,N (x, y)dλ(y).

∥f0 ⊗ f0 − f̂∗
0,N ⊗ f̂∗

0,N∥1
=

∫

x

∫

y

|f0(x)f0(y)− f̂∗
0,N (x)f̂∗

0,N (y)|dλ(x)dλ(y)

=

∫

x

∫

y

∣∣∣f0(x)f0(y)− f̂∗
0,N (x)f0(y)

+ f̂∗
0,N (x)f0(y)− f̂∗

0,N (x)f̂∗
0,N (y)

∣∣∣dλ(x)dλ(y)

≤
∫

y

f0(y)

∫

x

|f0(x)− f̂∗
0,N (x)|dλ(x)dλ(y)

+

∫

x

|f̂∗
0,N (x)|

∫

y

|f0(y)− f̂∗
0,N (y)|dλ(y)dλ(x)

≤ (1 + c0)∥f0 − f̂∗
0,N∥1 (23)

where c0 =
∫
R2 |K(z)|dλ2(z) as specified in the theorem

statement. It follows that

|β(m)− β̂∗
N (m)|

=
1

2

∣∣∣∣
∫

|fm − f0 ⊗ f0|dλ2 −
∫

|f̂∗
m,N − f̂∗

0,N ⊗ f̂∗
0,N |dλ2

∣∣∣∣

≤ 1

2

∫
|fm − f̂∗

m,N |dλ2 +
1

2

∫
|f0 ⊗ f0 − f̂∗

0,N ⊗ f̂∗
0,N |dλ2

=
1

2
∥fm − f̂∗

m,N∥1 +
1

2
∥f0 ⊗ f0 − f̂∗

0,N ⊗ f̂∗
0,N∥1

≤ 1

2

(
∥fm − f̂∗

m,N∥1 + (1 + c0)∥f0 − f̂∗
0,N∥1

)
(24)

where (24) follows from (23). Next, it is straightforward to

check that if fm ∈ Bs
1∞(R2) with ∥f∥Bs

1∞(R2) ≤ Λ, then

f0 =
∫
R
fmdλ ∈ Bs

1∞(R) with ∥f∥Bs
1∞(R) ≤ Λ. Moreover,
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observe that, as follows from Remark 1, for all f ∈ Bs
1∞(R)

and g ∈ Bs
1∞(R2) we have ∥f∥

W
[s]
1 (R)

≤ ∥f∥Bs
1,∞(R) and

∥g∥
W

[s]
1 (R2)

≤ ∥g∥Bs
1,∞(R2). Therefore, with the choice of

bandwidth h specified in the theorem statement, by [14,

Proposition 4.1.5 and Proposition 4.3.33] and an argument

analogous to that of [14, Proposition 5.1.7], we obtain,

sup
f0:∥f∥Bs

1∞(R)≤Λ

E∥f̂∗
0,N − f0∥1 ≤ C̃N− [s]

2[s]+2 (25)

where C̃ = 2(L1)
[s]

[s]+1 (cΛ)
1

[s]+1 . Similarly, by [14, pp. 404]

we have,

sup
fm:∥f∥Bs

1∞(R2)≤Λ

E∥f̂∗
m,N − fm∥1 ≤ C̃N− [s]

2[s]+2 (26)

Set C := (2 + c0)C̃/2. Define the event

E := {Z∗
i = Zi, i ∈ 0, . . . , N − 1}.

We obtain,

E|β(m)−β̂N (m)|
≤ E|β(m)− β̂∗

N (m)|
+ E[|β̂∗

N (m)− β̂N (m)| |Ec] Pr(Ec) (27)

≤ E|β(m)− β̂∗
N (m)|+ 2Nβ(k) (28)

≤ CN− [s]
2[s]+2 + 2Nβ(k) (29)

≤ CN− [s]
2[s]+2 + 2Nηe−γk (30)

≤ C

(
4k

n− 4k

) [s]
2[s]+2

+
n

k
ηe−γk (31)

≤ C

(
8k

n

) [s]
2[s]+2

+
n

k
ηe−γk (32)

≤ 8Ck

n
[s]

2[s]+2

+ ηne−γk (33)

where (27) follows from triangle inequality and observing that

under E the estimators β̂N and β̂∗
N are equal, (28) follows

from (21), (29) follows from (24),(25) and (26), (30) follows

from observing that β(k) ≤ 1 and the geometric ergodicity of

the process, and (31) and (32) follow from the definition of

N and the fact that 2 ≤ k ≤ ⌊n/8⌋. Optimizing (33) for k we

obtain

k⋆ =

⌊
1

γ

(
log

γη

8C
+

(
3[s] + 2

2[s] + 2

)
log n

)⌋
(34)

which in turn leads to

E|β(m)− β̂∗
N (m)|

≤ 8Cn− [s]
2[s]+2

γ

(
eγ + log

γη

8C
+

(
3[s] + 2

2[s] + 2

)
log n

)
(35)

This completes the proof of the bound on the expected error.

For t > 0 define the event Ut := {N∥f̂∗
m,N − E(f̂∗

m,N )∥1 ≥
(3/2)NE∥f̂∗

m,N − E(f̂∗
m,N )∥1 +

√
2Nt∥K∥1 + t5∥K∥1}. To

obtain the high probability bound observe that [14, Theorem

5.1.13] states that

Pr
(
U
)
≤ e−t (36)

for all t > 0. Furthermore, E(f̂∗
m,N ) = KhN

∗ fm, where

Kh(x) = (1/h)K(x/h) for h > 0, x ∈ R
2. Hence,

∥f̂∗
m,N − fm∥1

≤ ∥f̂∗
m,N − E(f̂∗

m,N )∥1 + ∥KhN
∗ fm − fm∥1. (37)

The latter term can be bounded by using [14, Proposition

4.3.33],

∥KhN
∗ fm − fm∥1 ≤ h

[s]
N ∥fm∥

W
[s]
1 (R2)

, (38)

Note that there is a typo in [14, Proposition 4.3.33] which

states the result as in the one-dimensional case. The inequality

(38) relies on the remainder term of a Taylor series. The

remainder term in ∥·∥1-norm is upper bounded by (Minkowski

inequality for integrals)

[s]h
[s]
N

∑

|α|=[s]

1

α!

∫ 1

0

(1− u)[s]−1∥Dαfm∥1 du

≤ [s]h
[s]
N

∫ 1

0

(1− u)[s]−1du∥fm∥
W

[s]
1 (R2)

, (39)

where α = (α1, α2) is multi-index of dimension 2, α! =

α1!α2!, the integral [s]
∫ 1

0
(1−u)[s]−1 is equal to 1, and Dαfm

is a weak-derivative of fm : R2 → R. Hence,

N∥f̂∗
m,N − fm∥1 ≤ N∥f̂∗

m,N − E(f̂∗
m,N )∥1 +NΛh

[s]
N

and with probability at least 1− e−u,

N∥f̂∗
m,N − fm∥1

≤ NΛh
[s]
N + (3/2)NE∥f̂∗

m,N − E(f̂∗
m,N )∥1

+
√
2Nu∥K∥1 + u5∥K∥1.

Recall that

∥fm∥
W

[s]
1 (R2)

≤ ∥fm∥B2
1,∞(R2)

and, therefore, from (26) it follows that for any fm such that

∥fm∥B2
1,∞(R2) ≤ Λ, with probability 1− e−u we have,

∥f̂∗
m,N − fm∥1 ≤ Λh

[s]
N + (3/2)C̃N− [s]

2[s]+2

+
√
2u/N∥K∥1 + u5∥K∥1/N.

Substituting hN as stated in Condition 2.ii, yields that with

probability 1− e−u,

∥f̂∗
m,N − fm∥1

≤
√
2uN−1∥K∥1 + u5∥K∥1N−1

+


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2

Similarly, we can bound the difference between f̂∗
0,N and f0

in high probability; for u > 0, with probability 1 − e−u, it

follows from (23) that

∥f0 ⊗ f0 − f̂∗
0,N ⊗ f̂∗

0,N∥1/(1 + c0)

≤ ∥f̂∗
0,N − f0∥1

≤
√

2u/N∥K∥1 + u5∥K∥1/N

+


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2
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Substituting this into (24) gives that with probability at least

1− 2e−u,

|β(m)− β̂∗
N (m)|/(1 + c0/2)

≤
√
2u/N∥K∥1 + u5∥K∥1/N (40)

+


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2

Furthermore, with probability

1−Nβ(k⋆) ≥ 1− 8Cn− [s]
2[s]+2

it holds that f̂∗
0,N = f̂0,N and f̂∗

m,N = f̂m,N . By setting

u = log(n)[s]/(2[s] + 2)

in (40) with probability at least 1− 8Cn− [s]
2[s]+2 we have

|β(m)− β̂N (m)|/(1 + c0/2)

≤
√

[s] log(n)

([s] + 1)N
∥K∥1 +

5[s] log(n)|K∥1
(2[s] + 2)N

+


3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2

Finally, observing that N ≥ (n/4k⋆) − 1, and noting that

16N− [s]
2[s]+2 ≥ (N + 1)−

[s]
2[s]+2 whenever N ≥ 2 and [s] ≥ 1

we obtain,

|β(m)− β̂N (m)|

≤ 16
(
1 +

c0
2

)
(
3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2

+

(√
[s]

([s] + 1)
+

5[s]

(2[s] + 2)

)
log(n)|K∥1

)( n

4k⋆

)− [s]
2[s]+2

Noting that (4k⋆)
[s]

2[s]+2 ≤ 4k⋆, defining C1 as

1

γ
log
( γη
8C

)

3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2




and letting

C2 =
4∥K∥1

γ
log
( γη
8C

)

+
3

2γ


3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2




we obtain

|β(m)− β̂N (m)|

≤ 64
(
1 +

c0
2

)
(C1 + C2 log(n) +

6∥K∥1
γ

log2(n))n− [s]
2[s]+2 .

Proof of Theorem 5. As in the proof of Theorem 3, we use

a coupling argument together with concentration bounds on

independent copies. More specifically, consider the geomet-

rically ergodic Markov sample X0, . . . , Xn, and define the

sequence of tuples Zi = (X2i(k+1), X2i(k+1)+m), i =
0, 1, 2, . . . , N − 1 where N = N(k, n) := ⌊ n−k

2(k+1)⌋ for

some fixed k ∈ m+ 1, . . . , ⌊n/8⌋; as in the continuous state-

space setting, an optimal choice for k is specified later in

the proof, see (45). As follows from Lemma 7 there exists a

sequence of independent random vectors Z∗
i = (Z∗

i,1, Z
∗
i,2) for

i = 0, 1, . . . , N − 1 each of which takes value in X 2 and has

the same distribution as Zi such that

Pr ({∃i ∈ 0, . . . , N − 1 : Z∗
i ̸= Zi}) ≤ Nβ(k) (41)

Define β̂∗
N (m) as

1

2

∑

u∈X

∑

v∈X
|P̂ ∗

m,N ({(u, v)})− P̂ ∗
0,N ({u})P̂ ∗

0,N ({v})|

where

P̂ ∗
m,N ((u, v)) :=

1

N

N−1∑

i=0

1{(u,v)}(Z
∗
i )

and

P̂ ∗
0,N (u) :=

1

N

N∑

i=0

1{u}(Z
∗
i,1)

By a simple application of Jensen’s inequality and noting that

the random variables Z∗
i , i = 0, . . . , N − 1 are iid, for each

z ∈ X × X we have,

E[|P̂ ∗
m,N (z)− Pm(z)|]

≤ 1

N
(

N−1∑

i=0

E(1{z}(Z
∗
i )− E1{z}(Z

∗
i ))

2)1/2

≤
√

Pm(z)/N (42)

where the second inequality is due to

Var
(
1{z}(Z

∗
i )− E1{z}(Z

∗
i )
)
≤ Pm(z)

Similarly, for each u ∈ X we obtain

E[|P̂ ∗
0,N (u)− P0(u)|] ≤

√
P0(u)/N

It follows that

2E|β̂∗
N (m)− β(m)|
≤

∑

(u,v)∈X 2

E|Pm({(u, v)})− P̂ ∗
m,N ({(u, v)})|

+ 2
∑

u∈X
E|P0({u})− P̂ ∗

0,N ({u})|

≤ 2|X |N−1/2.

In much the same way as in the proof of Theorem 3, let

E := {Z∗
i = Zi, i ∈ 0, . . . , N − 1}

and observe that

E(|β̂∗
N (m)− β̂N (m)| |E) = 0
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Moreover, recall that k ≤ ⌊n/8⌋. We obtain,

E|β(m)− β̂N (m)| ≤ E|β(m)− β̂∗
N (m)|+ 2Nβ(k) (43)

≤ |X |
(

4k

n− 4k

)1/2

+ 2nηe−γk

≤ |X |
(
8k

n

)1/2

+ 2nηe−γk

≤
√
8|X |n−1/2k + 2nηe−γk (44)

where (28) follows from (41). Optimizing (44) we obtain

k⋆ =

⌊
1

γ
log

(
ηγn3/2

√
2|X |

)⌋
(45)

where n is taken large enough so ensure that k⋆ ≥ 2 (see (46)

below). This choice of k⋆ and n leads to

E|β̂N (m)− β(m)|
≤

√
8|X |n−1/2k⋆ + 2nηe−γk⋆

≤
√

8

n

|X |
γ

log

(
ηγn3/2

√
2|X |

)
+ 2nηe

−γ( 1
γ log

(

ηγn3/2
√

2|X|

)

−1)

≤
√
8|X |n−1/2

γ

(
e+ log

(
ηγ√
2|X |

)
+

3

2
log n

)
.

Next, take N = N(k⋆, n) = ⌊ n−k⋆

2(k⋆+1)⌋, with k⋆ given by (45)

and let n be large enough so that

n3/2 ≥ max

{√
2|X |e2γ
ηγ

,
ηγ

|X |

}
. (46)

Substituting for k⋆ and noting that

N =

⌊
n− k⋆

2(k⋆ + 1)

⌋
≤ γn

2 log
(

ηγn3/2√
2|X |

)

we have,

Nηe−γk⋆ ≤ e
√
2|X |n−1/2

2 log(ηγn
3/2√

2|X | )
. (47)

On the other hand, by Hoeffding’s inequality, for any ϵ > 0
and each u ∈ X we have,

Pr(|P̂ ∗
0,N ({u})− P0({u})| ≥

ϵ

2|X | )

≤ 2 exp

{
− Nϵ2

2|X |2
}

Similarly, for each (u, v) ∈ X 2 it holds that

Pr(|P̂ ∗
m,N ({(u, v)})− Pm({(u, v)})| ≥ ϵ

2|X |2 )

≤ 2 exp

{
− Nϵ2

2|X |4
}

It follows that

Pr(|β̂∗
N (m)− β(m)| ≥ ϵ/2)

≤
∑

u,v

Pr(|Pm({(u, v)})− P̂ ∗
m,N ({(u, v)})| ≥ ϵ

2|X |2 )

+ 2
∑

u

Pr(|P0({v})− P̂ ∗
0,N ({u})| ≥ ϵ

2|X | )

≤ 2|X |2 exp
{
− Nϵ2

2|X |4
}
+ 2|X | exp

{
− Nϵ2

2|X |2
}

≤ 4|X |2 exp
{
− Nϵ2

2|X |4
}

≤ 4|X |2 exp{− (n− 4k⋆)ϵ2

8k⋆|X |4 } (48)

≤ 4|X |2 exp{− nϵ2

16k⋆|X |4 } (49)

= 4|X |2 exp



− γnϵ2

16|X |4
(
log
(

ηγ√
2|X |

)
+ 3

2 log n
)



 (50)

≤ 4|X |2 exp{− γnϵ2

48|X |4 log n} (51)

where, (48) follows from the choice of N = ⌊ n−k⋆

2(k⋆+1)⌋ and

noting that k⋆ ≥ 2, (49) follows from recalling that in general,

k (and thus also k⋆), is less than ⌊n/8⌋, and finally, (50) and

(51) follow from substituting the value of k⋆ as given by (34)

and observing that by (46) we have 3
2 log n ≥ log( ηγ

|X | ). Hence,

by (41), (47) and (51) we obtain,

Pr(|β̂N (m)− β(m)| ≥ ϵ)

≤ Nβ(k⋆) + Pr(|β̂∗
N (m)− β(m)| ≥ ϵ/2)

≤ e
√
2|X |n−1/2

2 log
(

ηγn3/2√
2|X |

) + 4|X |2 exp
{
− γnϵ2

48|X |4 log n

}

Proof of Theorem 6. As in the proof of Theorem 5, we start

by a coupling argument, with the difference that instead of

generating 2-tuples, we generate blocks of length k+1 for an

appropriate value of k which we specify further in the proof.

Specifically, given X0, . . . , Xn define

Z̃i = (X2i(k+1), X2i(k+1)+1, . . . , X(2i+1)k+2i)

for i = 0, 1, . . . , N − 1 where N = N(k, n) := ⌊ n−k
2(k+1)⌋

for some fixed k ∈ 1, . . . , ⌊n/8⌋; an optimal choice for

k is specified later in the proof, see (60). By Lemma 7

there exists a sequence of independent random vectors Z̃∗
i =

(Z̃∗
i,0, . . . , Z̃

∗
i,k) for i = 0, 1, . . . , N − 1 each of which takes

value in X k+1 and has the same distribution as Z̃i such that

Pr
(
{∃i ∈ 0, . . . , N − 1 : Z̃∗

i ̸= Z̃i}
)
≤ Nβ(k). (52)

Define

β̂†
N (m) :=

∑

u∈X

∑

v∈X
|P̂ †

m,N ({(u, v)})− P̂ †
0,N ({u})P̂ †

0,N ({v})|
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where

P̂ †
m,N ((u, v)) :=

1

N

N−1∑

i=0

1{(u,v)}(Z̃
∗
i,0, Z̃

∗
i,m)

and

P̂ †
0,N (u) :=

1

N

N∑

i=0

1{u}(Z̃
∗
i,0).

As in the proof of Theorem 5, for each u ∈ X it holds that

E[|P̂ †
0,N (u)− P0(u)|] ≤

√
P0(u)/N ≤ N−1/2. (53)

Define the class of indicator functions

Hk = {hm,z : z ∈ X × X , m = 1, . . . , k}.

where

hm,z : X k+1 → {0, 1}
hm,z(x) := 1{z}(x0, xm).

One can verify that the VC-dimension of Hk is at most

log2(|X |k). To see this, first that the indicator functions in Hk

depend on only two coordinates at a time, rather than on all

coordinates simultaneously. Consequently, the VC-dimension

of Hk will typically exceed one but remain limited by the

combinatorial structure of these pairwise tests. The upper

bound follows from the standard result that the VC-dimension

of a finite hypothesis class Hk is at most log2 |Hk|. In our

case, the class Hk has cardinality |X |2k. However, since the

first coordinate can be fixed to a constant value (say, 1), we

can restrict attention to a subclass of functions of size |X |k
that can shatter as many points as Hk. Therefore, the VC-

dimension of Hk is bounded by log2(|X |k).
Therefore, as follows from [14, pp. 217] it holds that,

E[ sup
m∈1,...,k
(u,v)∈X 2

|P †
m,N ((u, v))− Pm((u, v))|]

≤
√

8 log2(|X |k) logN
N

(54)

By (53) and (54) we have,

2E[ sup
m∈1,...,k

|β̂†
N (m)− β(m)|]

≤ E[ sup
m∈1,...k

∑

(u,v)∈X 2

|Pm({(u, v)})− P̂ †
m,N ({(u, v)})|

+ 2
∑

u∈X
|P0({u})− P̂ †

0,N ({u})|]

≤ |X |2E[ sup
m∈1,...,k
(u,v)∈X 2

|Pm({(u, v)})− P̂ †
m,N ({(u, v)})|]

+ 2
∑

u∈X
E|P0({u})− P̂ †

0,N ({u})|

≤ |X |2
√

8 log2(|X |k) logN
N

+ 2|X |N−1/2

≤ 2|X |2
√

8 log2(|X |k) logN
N

(55)

Take n ≥ 2k(k+1)
3k+2 . From the coupling argument given earlier

we obtain,

E[ sup
m∈1,...,k

|β̂N (m)− β(m)|]

≤ E[ sup
m∈1,...,k

|β̂†
N (m)− β(m)|] +Nβ(k)

≤ |X |2
√

8 log2(|X |k) logN
N

+Nηe−γk (56)

≤ |X |2
√

8

N
log2(N |X |) +Nηe−γk (57)

≤ 4|X |2
√

2k

n
log2(n|X |) + nηe−γk (58)

≤ 4|X |2
√

2

n
log2(n|X |)k + nηe−γk (59)

where (56) follows from (55), and (57) follows from noting

that N = N(k, n) ≥ k for n ≥ 2k(k+1)
3k+2 ; similarly, (58)

follows form the choice of N = N(k, n) ≤ n−k
2(k+1) − 1 and

noting that k ≥ 1. Optimizing (59) we have

k† =

⌊
1

γ
log

(
ηγn3/2

4
√
2|X |2 log2(n|X |)

)⌋
(60)

with

n ≥ max

{
4
√
2|X |3eγ
ηγ

,
2k(k + 1)

3k + 2

}
. (61)

This leads to

E[ sup
m∈1,...,k

|β̂N (m)− β(m)|]

≤ 4
√
2|X |2n−1/2 log2(n|X |)

γ

×
(
e+ log

(
ηγn3/2

4
√
2|X |2 log2(n|X |)

))
.

Take N = N(k†, n) = ⌊ n−k†

2(k†+1)
⌋, with k† given by (60). It

follows that,

Nηe−γk† ≤ 2e
√
2|X |2 log2(n|X |)n−1/2

log( ηγn3/2

4
√
2|X |2 log2(n|X |) )

(62)

On the other hand, by Hoeffding’s inequality, for any ϵ > 0
and u ∈ X it holds that

Pr(|P̂ †
0,N ({u})− P0({u})| ≥

ϵ

2|X | ) ≤ 2 exp

{
− Nϵ2

2|X |2
}

(63)

Furthermore, noting that Hk† is a VC-class, by [26, Theorem

12.5] for ϵ > 0 we have,

Pr( sup
m∈1,...,k†

(u,v)∈X 2

|P̂ †
m,N ({(u, v)})− Pm({(u, v)})| ≥ ϵ

2|X |2 )

≤ 8 log2(|X |k)e−
Nϵ2

128|X|4 (64)
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Furthermore, noting that in general all k are taken to be less

than ⌊n/8⌋, a minor manipulation gives,

N ≥ n− k

2(k + 1)
− 1

≥ n− 4k

4k
since k ≥ 2

≥ n

8k
(65)

where (65) is from noting that k ≤ ⌊n
8 ⌋. Therefore, for any

ϵ > 0 we have,

1

|X |2 Pr( sup
m∈1,...,k†

|β̂†
N (m)− β(m)| ≥ ϵ/2)

≤ Pr


 sup

m∈1,...,k†

(u,v)∈X 2

|Pm({(u, v)})− P̂ †
m,N ({(u, v)})| ≥ ϵ

2|X |2




+
2

|X |2
∑

u

Pr

(
|P0({v})− P̂ †

0,N ({u})| ≥ ϵ

2|X |

)

≤ 8 log(|X |k†) exp
{
− Nϵ2

128|X |4
}
+

2

|X | exp
{
− Nϵ2

2|X |2
}

≤ 16 log(|X |k†) exp
{
− Nϵ2

128|X |4
}

≤ 16 log(|X |k†) exp{− nϵ2

1024k†|X |4 } (66)

≤ 16 log

(
3|X |
2γ

log(η2/3γ2/3n)

)

× exp

{
− γnϵ2

3072|X |4 log n

}
(67)

where, the second inequality follows from (63) and (64),

(66) follows from the choice (65), and (67) follows from

substituting for the value of k† as given by (60) and observing

that by (61) we have

n3/2

log(n|X |) ≥ n

|X | ≥
ηγ

8
√
2|X |2

.

Hence, by (52), (62) and (67) we obtain,

Pr( sup
m=1,...,k†

|β̂N (m)− β(m)| ≥ ϵ)

≤ Nηe−γk†
+ Pr( sup

m=1,...,k†
|β̂†

N (m)− β(m)| ≥ ϵ/2)

≤ 4
√
2|X |2 log(n|X |)n−1/2

log( ηγn3/2

8
√
2|X |2 )

+ 16|X |2 log
(
3|X |
2γ

log(η2/3γ2/3n)

)

× exp

{
− γnϵ2

3072|X |4 log n

}

and the result follows.
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