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I INTRODUCTION

Estimating the Mixing Coefficients of
Geometrically Ergodic Markov Processes

Steffen Griinewalder™

Abstract—We propose methods to estimate the [S-mixing coef-
ficients of a real-valued geometrically ergodic Markov process
from a single sample-path X, Xi,..., X,,_1. Under standard
smoothness conditions on the densities, namely, that the joint
density of the pair (Xo, X,,) for each m lies in a Besov space
Bj. o (R?) for some known s > 0, we obtain a rate of convergence
of order O(log(n)n~ 51/ 2142 for the expected error of our
estimator in this casq’ | We complement this result with a high-
probability bound on the estimation error, and further obtain
analogues of these bounds in the case where the state-space
is finite. Naturally no density assumptions are required in
this setting; the expected error rate is shown to be of order
O(log(n)n~1/?). The theoretical results are complemented with
empirical evaluations.

Index Terms—[(-mixing, estimation,
Markov process, consistency

geometric ergodicity,

l. INTRODUCTION

Temporal dependence in time-series can be quantified via
various notions of mixing, which capture how events sepa-
rated over time may depend on one another. The dependence
between the successive observations in a stationary sequence
implies that the sequence contains less information as com-
pared to an i.i.d. sequence with the same marginal distri-
bution. This can negatively affect the statistical guarantees
for dependent samples. In fact, various mixing coefficients
explicitly appear in the concentration inequalities involving
dependent and functions of dependent sequences, making them
looser than their counterparts derived for i.i.d. samples, see,
e.g. [1]-[9] for a non-exhaustive list of such results. Thus,
in order to be able to use these inequalities in finite-time
analysis, one is often required to assume known bounds on the
mixing coefficients of the processes. Moreover, the quality of
the assumed upper-bounds on the mixing coefficients directly
translates to the strength of the statistical guarantees involving
the sequence at hand. Therefore, one way to obtain strong
statistical guarantees for dependent data, is to first estimate
the mixing coefficients from the samples, and then plug in the
estimates (as opposed to the pessimistic upper-bounds) in the
appropriate concentration inequalities. Estimating the mixing
coefficients can more generally lead to a better understanding
of the dependence structure in the sequence.

* Department of Mathematics, University of York, York, UK, stef-
fen.grunewalder @york.ac.uk
ENSAE - CREST, Institut Polytechnique de Paris, Palaiseau, France,
azadeh.khaleghi @ensae.fr
'We use [s] to denote the integer part of the decomposition s = [s] + {s}
of s € (0,00) into an integer term and a strictly positive remainder term
{s} €(0,1].

, Azadeh Khaleghi®

In this paper, we study the problem of estimating the (-
mixing coefficients of a real-valued Markov chain from a
finite sample-path, in the case where the process is stationary
and geometrically ergodic. A stationary, geometrically ergodic
Markov process is absolutely regular with 5(m) — 0 at least
exponentially fast as m — (. We start by recalling the relevant
concepts.

[S-mixing coefficients. Let (£, F, 1) be a probability space.
The (-dependence 5(U, V) between the o-subalgebras U and
V of F is defined as follows. Let t(w) — (w,w) be the
injection map from (Q, F) to (A x Q,URV), where U ®V is
the product sigma algebra generated by U/ x V. Let pg be the
probability measure defined on (2 x Q,U/ ® V) obtained as
the pushforward measure of o under ¢. Let 1y, and py denote
the restrictions of ;1 to ¢/ and V respectively. Then

BU,V) = sup |pg(W) =y x py(W)] )]
UV

w

where pgs X py is the product measure on (2 X QU ®
V) obtained from gy, and py. This leads to the sequence

B = (B(m))men of B-mixing coefficients of a process X,
where
B(m) = sup B(a({X, : 0 <t < j—1}),0({X; : £ > j+m})).

JEN
A stochastic process is said to be [-mixing or absolutely
regular if lim,, o 8(m) = 0.

Geometrically ergodic Markov processes. In this paper, we
are concerned with real-valued stationary Markov processes
that are geometrically ergodic. Recall that a process is sta-
tionary if for every m, ¢ € N the marginal distribution on R™
of (X¢,..., Ximye) is the same as that of (Xo,...,X,,). In
the case of stationary Markov processes, the S-mixing coef-
ficient 5(m), m € N can be simplified to the S-dependence
between the o-algebras generated by X and X, respectively,
ie.

B(m) = B(o(Xo),0(Xm))

[7, vol. 1 pp. 206]. A stationary Markov process is said to
satisfy “geometric ergodicity” if there exists Borel functions
f:R = (0,00) and ¢ : R — (0,00) such that for p-a.e.
z € R and every m € N, it holds that

sup |pm (2, B) — p(B)| < .f(z)eic(z)m
BEB(R)

where p,,(z, B) defined for + € R and B € B(R) is the
regular conditional probability distribution of X, given X
and p denotes the marginal distribution of X, [7, vol. 2
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Definition 21.18 pp 325]. It is well-known - see, e.g. [7, vol.
2 Theorem 21.19 pp. 325] - that a stationary, geometrically
ergodic Markov process is absolutely regular with 5(m) — 0
at least exponentially fast as m — 0. This means that in this
case the S-mixing coefficients of the process satisfy

Bm) <ne ™ )
for some 7, v € (0,00) and all m € N.

Overview of the main results. Our first result involves the
estimation of B(m) for each m = 1,2,..., of a real-valued
geometrically ergodic Markov process from a finite sample
path Xy, X1,...,X,,. Our main assumption in this case is
that the joint density f,, of the pair (Xg,X,,) lies in a
Besov space nyoc(]R2) ; roughly speaking, this implies that
fm has [s] many weak derivatives. As discussed above, for
a geometrically ergodic Markov process, there exists some
1,7 > 0 such that 3(m) < ne~7™. Given some 7, v € (0, 00)
we show in Theorem [3 that

[s]

E|3(m) — By (m)| € O(log(n)n™ 275,

for all m < (logn)/v, where, By is given by with
N = yn/logn (given in Condition . Moreover, there exists a

[5]
constant ¢ > 0 such that with probability 1 —( log(n)n™ 2EI+2
it holds that

[s]

18(m) — B (m)| € O(log?(n)n~ 21+7).

The constants hidden in the O-notation are included in the
full statement of the theorem. An important observation is
that neither 1 nor y affect the rate of convergence. However,
a factor 1/~ appears in the constant, and a pessimistic upper-
bound on the mixing coefficients (i.e. a small ) can lead to a
large constant in the bound on the estimation error. Theorems ]
and [6] are concerned with a different setting where the state-
space of the Markov processes is finite. In this case, we do not
require any assumptions on the smoothness of the densities,
and the rates obtained here match that provided in Theorem
if we let s — oo. For the estimate 3y (m) given by with
N = (logn)/v and every m < (logn)/y we have,

E|Bx(m) — B(m)] < 'f' ogmn~"2. @3

Moreover,
Pr(|Bn(m) = B(m)| = €)

2
<RIV 4 (P exp [
~ | ‘TL + | | exXp |X‘4 logn

for € > 0. We refer to the statement of Theorem [3] for the
explicit constants. Observe that we have a factor |X|/~ in ().
In other words, v has the same effect here as in the bound
provided in Theorem [3] and the constant increases linearly in
the size of the state-space. In this setting, apart from estimating
the individual mixing coefficients we can also simultaneously
estimate 3(m) for m up to some k < (logn)/~ (see the full
statement of Theorem [6] for a specification). The analysis relies

on a VC-argument in place of a union bound which leads to
tighter error bounds in this case. We obtain,

E( sup [By(m) — B(m)]) S = log(nlX])|X[2n /2,
m<kt Y

and,

Pr( sup |Bx(m) = B(m)| > €)

m<kt
2
_ yne
< X log(al )0~ + e (~ 2.

for all € > 0. Note that the parameter kT does not explicitly
appear on the right hand side of the above bounds as it has
already been substituted for in the calculation.

In our empirical evaluations provided in Section [V] we high-
light one of the key features of our estimators: their model-
agnostic nature, which enables them to function effectively
without prior knowledge of the underlying time-series models,
requiring only assumptions on the smoothness of densities and
loose bounds on the mixing rate. We specifically demonstrate
that a natural model-specific S-mixing estimator, designed for
autoregressive AR process, suffers performance drop in the
presence of model-mismatch. In contrast to our estimator, this
model-specific estimator exhibits bias and fails to consistently
estimate the mixing coefficient, highlighting its vulnerability
to inaccuracies when the underlying model is not correctly
specified.

Related literature. Research on the direct estimation of
the mixing coefficients is relatively scarce. In the asymp-
totic regime, [10] used hypothesis testing to give asymptot-
ically consistent estimates of the polynomial decay rates for
covariance-based mixing conditions. [[11] proposed asymptot-
ically consistent estimators of the a-mixing and S-mixing co-
efficients of a stationary ergodic process from a finite sample-
path. Since in general, rates of convergence are non-existent
for stationary ergodic processes (see, e.g. [12]]), their results
necessarily remain asymptotic and no rates of convergence can
be obtained. An attempt at estimating [-mixing coefficients
has also been made by [13[]. Despite our best attempts, we
have been unable to verify some of their main claims and
have particular reservations about the validity of their rates.
More specifically, their main theorem (Theorem 4) suggests a
rate of convergence of order log(n)n~'/2 for their estimator,
independently of the dimension of the state-space and under
the most minimal smoothness assumptions on the densities.
Given that under these conditions a density estimator is known
to have a dimension-dependent rate of about n~ /(2% even
when the samples are iid [[14, pp. 404], it is highly unlikely
that a dimension-independent rate would be achievable for an
estimator of the J-mixing coefficient. An interesting body of
work exists for a different, yet related problem, concerning the
estimation of the mixing times of finite-state Markov processes
[15]-[17]. Indeed, in their recent work, [18] strategically
exploit the relationship between the mixing time and the
B-mixing coefficients of an ergodic Markov process with a
discrete alphabet, and use this connection to construct estima-
tors for the average mixing time of the process. Moreover,
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they propose an approach that reduces the dependence on
the size of the state space in the discrete-alphabet setting.
This in turn, enables them to handle certain countably infinite
state-space chains and to estimate the corresponding mixing
coefficients.

Organization. The remainder of the paper is organized as
follows. In Section [lI| we introduce some preliminary notation
and basic definitions. After formulating the problem in Sec-
tion we propose our estimators in Section considering
real-valued as well as we finite-valued sample-paths; the
technical proofs are deferred to Section In Section [V] we
present empirical evaluations of our estimators, focusing on
their model-agnostic nature, to support the primary theoretical
results. In Section we provide concluding remarks and
explore potential future research directions.

Il. PRELIMINARIES

In this section we introduce notation and provide some basic
definitions. We denote the non-negative integers by N :=
{0,1,2,...}. If U and V are two o-algebras, we will occa-
sionally use standard measure-theoretic notation as follows:
their product o-algebra is denoted by Y @ V := o(U x V),
and the o-algebra generated by their union is denoted by
UVY :=cUUUV). If s € (0,00), then we let s = [s] + {s}
be decomposed into its integer part [s] € N and a strictly
positive remainder term {s} € (0,1]. In particular, if s = 4
for any ¢ > 0 € N then, [s] =i — 1 and {s} = 1. As part
of our analysis in Section we impose classical density
assumptions on certain finite-dimensional marginals of the
Markov processes considered. The densities satisfy standard
smoothness conditions as controlled by the parameters of
appropriate Besov spaces.

Besov Spaces B;  (R%). For an arbitrary function f : R? —
R and any vector h € R? let Ay, f(z) := f(z+h)—f(z) be the
first-difference operator, and obtain higher-order differences
inductively by A7 f := (A 0 A7) f for r = 2,3,... . De-
note by L,(R%), p > 1 the L,, space of functions f : R? — R.
For s > 0 the Besov space B;yoo(Rd) is defined as

B o (RY) :={f € Ly(RY) : | f|

with Besov norm

B: (re) <00} (4

1fllBs ®ey = [[fllL + sup ¢7% sup [[A}
: 0<t<oo  |h|<t
where |v| = Z?Zl lv;| for v = (vy,...,v4) € R, and 7 is

any integer such that 7 > s [19]]. Denote by W (RY), r €N
the Sobolev space of functions f : R? — R. We rely on
the following interpolation result concerning W7 (R4) and
B o (RY).

Remark 1. As follows from [19, Proposition 5.1.8 and Theo-
rem 5.4.14] for any ro, r1 € Nand ¢ := (1—0)ro+0ry, 0 €
(0,1) it holds that

T d r d d T d i d
WPO(R )ﬂWpl(R )(—>B;7DO(R ) — WPO(R )Jerl(R ).

®)

If ro < 71, then the left and right hand sides of () reduce
to W) (R?) and Wj°(R?) respectively. Furthermore, in this

case we have || f||ps _wa) = || fllwro(ra). To see this consider
the K-functional —

K(f, ;W0 (RY), Wy (RY))
= inf{|| follwro ey + thfillwyr ey : f = fo + fi}

and observe that by [19, Theorem 5.4.14 and Definition 5.1.7]
we have

/155 . re)
= supt UK (f,t; W,;°(RY), W) (RY))
t>0
> K(f, ;W0 (RT), Wyt (RY))
> inf{| follwzo ey + | fillwzro@ay : f = fo+ fi}

> [ fllwzo e

In particular, consider the Besov space Bioo(Rd) for some
s € (0,00) and take 0 = {s}/2, ro = [s] and r1 = [s] + 2 for
the above convex combination. Then,

1A l5; ray = Hf”Wl[S](]Rd)'

lll. PROBLEM FORMULATION

We are given a sample Xy, X1,...,X, generated by a sta-
tionary geometrically ergodic Markov process taking values
in some X C R. As discussed in Section [lIf such a process
is known to have a sequence of S-mixing coefficients such
that

B(m) <ne™ ™, meN

for some unknown constants 7, v € (0,00). The mixing
coefficient 3(m) is unknown, and it is our objective to estimate
it. In Section we introduce our estimators together with
theoretical bounds on the estimation error. In Section [V] we
demonstrate the performance of the proposed estimators on
samples generated by standard time-series models.

IV. THEORETICAL RESULTS

In this section, we present our estimators for (G(m). We
consider two different settings, depending on the state-space.
First, in Section we consider the case where the process
is real-valued and its one and two-dimensional marginals
have densities with respect to the Lebesgue measure. Next,
in Section we consider the case where the state-space
X is finite. In this setting we do not require any density
assumptions, and are able to control the estimation error
simultaneously for multiple values of m. This is stated in
Theorem [6] The following notation is used in both settings.
For each m € N, denote by P,, the joint distribution of the
pair (X, X,,) so that for each U € B(X?) we have

Pr({(X()va) € U}) = Pm(U)-
By stationarity,

Pr({(Xthm—O—t) € U}) = Pm(U)a teN.
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A. Real-valued state-space

We start by considering the case where X" is any subset of R.

We assume that P, has a density f,, : R? — R? with respect

to the Lebesgue measure A\, on R2. Denote by P the marginal

distribution of X;, t € N whose density fy : R — R with

respect to the Lebesgue measure A on R can be obtained as
z) = [ fm((x,9))dA(y) for z € R. It follows that

-3 s

For some fixed k € m,m+1,...,|n/8| let N = N(k,n) :=
LQ(k +1)J and define the sequence of tuples

Z; = (XQi(k-i-l)v X2i(k+1)+'m)v t=0,1,2,..., N.
Define the Kernel Density Estimator (KDE) of f,,, as

SRS e

with kernel K : R?2 — R and bandwidth hy > 0.
Marglnahzlng we obtaln an empirical estimate of fj, i.e.
fo nz) = [p fm ~(z,y)d\(y). We define an estimator of
B(m )aS

By (m

where ® denotes the tensor product. Note that to simplify
notation in (6) and (7), we have omitted the dependence of
N on the choice k. An optimal value for k, denoted by k*,
is provided in Condition 2] In our analysis we make standard
assumptions (see, Conditionbelow) about the smoothness of
fm and the order of the kernel K in (6). Recall that a bivariate
kernel is said to be of order ¢ if

me

1 ~ —~ ~
= 5/ |fm,N — fo,n @ fo,n|dA2 (7)
R2

=2 [ Rl K <
ijeN /2=(21,22)
i+j=L
K(z)d\a(z) =
z€R?

and for all i, j €N, i+ j </,

/ z{ng(z)d)\g(z) =
z=(z1,22)ER2

Condition 2. The density f,, € Bj . (R?) for some s > 1
and | fmllBs w2y < A for some A € (0,00). It is further

assumed that the (" moments of the pair (Xo, X,,) are finite
fort=1,...,[s], and

[, £+ elP)adat) < o0
/ K2(2)(1+ ||2]®)da(2) < o0
RQ
We assume that some (n,v) € (0, 00)? is provided satisfying

B(m) < ne~ ™. The estimator Bn(m) given by (1) for m =
1,...,k* is obtained via

i. a convolution kernel K of order [s| such that

co = /]Rz | K (2)]|dA2(2) < oo.

ii. and a bandwidth of the form
_ s
s — 2[s]+2
N = (CA)*[S[H]J <[S]21> " n- 2[s}+2

where, ¢ :=

|1 m 3[s] + 2
=[5 (o + (3) 10g”>J @
C:=(2+4+¢y)(Lq)FHT SE (c/l)
with Ly defined such that L? is given by,
\/5/ f2) 1+ IIZHQ)dAz(Z)/ K2(2)(1+ |[2]*)dXa(2)
R? R2

by choosing the hyperparameter in [|14, Remark 5.16] to be
equal to 2.

and

We are now in a position to state our main result, namely,
Theorem |3| below which provides bounds on the estimation
error of Sy given by (7), when the assumptions stated in
Condition [2] are satisfied. Note that this condition is fulfilled
by a number of standard models. For instance, consider the
stationary, geometrically ergodic AR(1) model

Xt+1 =aX;+¢€, teN

where ¢; ~ N(0,0?%) for some o > 0 and where Xy ~
N(0,02/(1 — a?)) for some a € R with |a| < 1. All of
the finite-dimensional marginals of this process are Gaus-
sian; in particular, its marginal and joint densities fy and
fm, m = 1,2,..., being infinitely differentiable, lie in any
of the Besov spaces that we consider in this paper. Note that
the corresponding Besov norm will be influenced by o. In
particular, for very small values of o the densities will have a
sharp peak and the Besov norm will be large.

Theorem 3. Under the assumptions stated and with the
parameters defined in Condition |2} for each m € 1,... k*
we have

E|8(m) — By (m)|
< 8 i o (3[s] +2
v <e +Og80+<[s]+2 og "
Moreover, with probability at least 1 — 8Cn"~ EoRs it holds
that
|B(m) — B (m)]
6|| K s
< 64(1+ L) (Cy + Cylog(n) + ”7”11Og2(n))n o=l
where
1
Cl = —10g (80) (Al + Bl)
with
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and,

12

_[s]”
) e

4||K
Cy = I Hllog(gg

where

As —3(L1)[5H‘( A)

B2 = A(CA)

See Section [VI] for a proof.

Remark 4. We refer to Section |V for a discussion on natural
choices for k*, n and ~y in the context of some standard time-
series models such as AR(1).

B. Finite state-space

In the special case where the state-space X of the Markov
process is finite, we can relax the density assumptions and
obtain an empirical estimate of 5 by counting frequencies.
More specifically, in this case, for each ¢ € N the o-algebra
o(X¢) is completely atomic with atoms {X; = s},s € X.
Therefore, by [7, vol. Proposition 3.21 pp. 88] we have

SEP I

uEX veEX

— Bo({u)Po({v})l 9

where as before, P,, and P, are the joint and the marginal
distributions of (X, X,,,) and X respectively. Given a sample
Xo,...,Xn—1, we can obtain an empirical estimate of 5(m)
in @) as follows. Fix a lag of length ¥ € 1,...,n (an
optimal value for which will be specified in Proposition [5).
Define the sequence of tuples Z; = (Xopi, Xog(it1)), 1 =
0,2,4,...,N — 1, with N = N(k,n) := Lﬁj. For each
pair (u,v) € X? let

P’rrLN U,U

=N Z L@ (Z
Similarly, for each © € X we can obtain an empirical estimate
of Py(u) as

2N—-1

Py n(u) = I > 1y (Xka)-
=0

Define By (m) as

fZZ\ﬁ v)}) -

ueX veX

Pon({ul)Pon({v})]  (10)

Theorem 5. Consider a sample of length n € N of a
stationary, geometrically ergodic Markov process with finite

state-space X. Define N(k,n) = LQ(”Tjrkl)j, n,k € N. Let

k= H log (%Q;I)J and N = N(k*,n) with

Vaxe Ty
n > max _— , <)
my X

For every m = 1,...,k* and B (m) given by (T0) we have,

E|Bn (m) — B(m)]
- \/§|X|1’L—1/2

ik 3
e+log( )+10gn> .
gl ( V2|x|) 2

Moreover, for € > 0 it holds that

Pr(|Bn (m) — B(m)| = €)

X —-1/2
€f| |n + 4|X|26Xp {_

o1 nvyn3d/2.
~ 2log (”}lxl)

Yne
48|X|*logn | -

The proof is provided in Section

In this setting, we are also able to simultaneously control the
estimation error for all m = 1,... k" where k' is specified
in the statement of Theorem [6] The proof relies on a VC
argument which helps replace a factor of k' (which would have
otherwise been deduced from a union bound) with a log k'
factor.

Theorem 6. Consider a sample of length n € N of a
stationary, geometrically ergodic Markov process with finite
state-space X. For n, k € N define

310t (svamogsoren)
= | —log
g 42| X |2 log, (n] X])

42| X|PeY 2k(k + 1)
n > max , .
ny 3k +2

and

For By given by (I0) we have,

B[ swp[Bv(m) — A(m)|
mel,.. kT

_ VAP 2 logy (0] )

N Y

nyn3/?

: (e“"g (mwzlog2<n|2«|>>)

Furthermore, for € > 0 it holds that

Pr( Sup B (m) — B(m)| > €)
mel,....kt
4f|X\210g(n|X\) 12
= n3/2
loB(47%)

3|x
+ 16|X|* log (|2’y| log(n2/372/3n))

X exp{—

The proof is provided in Section

yne
3072|X|*logn
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V. EMPIRICAL EVALUATIONS

In this section, we evaluate the performance of our estimators
using synthetic data generated from the well-known autore-
gressive (AR) time-series model of order 1 (see, e.g., [20]).
Additionally, we examine the case where the autoregressive
process deviates from the traditional AR model, featuring
a non-Gaussian noise process. This latter setting serves to
highlight the model-agnostic nature of our estimators.

A first-order autoregressive process, AR(1) can be defined as
follows:
Xt =01 X1 + e,

with parameter ¢; € R\ {0} and an i.i.d. sequence of zero-
mean normally distributed noise random variables €1, €3, ...
with variance 0. The process is stationary if |¢;| < 1 and,
and by letting X have distribution A'(0,02%/(1 — ¢3)) we
can guarantee stationarity of the process Xg, X1, Xo,.... To
be able to calculate the estimation error, we compute the true
([-mixing coefficients numerically. Furthermore, in the context
of AR models, it is common to estimate the autocorrelation
function (ACF) which is a measure of linear (as opposed to
full) dependence. More specifically, the ACF at lag m is given
by pm = E(XoX,,). A standard estimator of p,,, when given
a sample of length n can be obtained as

t>1

R 1 n—m
Pm:m ZXtXt+m (11)
t=0

with

n—1
- 1
52 =— E Xf
n
t=0

In the case of an AR(1) process with Gaussian noise, an
estimate of the [-mixing coefficients of the process can be
readily obtained by using the ACF estimator given by (TI).
With this observation, we obtain a (model-specific) estimate
of the [-mixing coefficient of the AR(1) process. This es-
timator is used as a point of comparison against our own
estimators of (8 in this experiment. It is important to note
that unlike the p,,-based estimator, our estimators do not
have prior knowledge of the underlying time-series model,
beyond assumptions on the smoothness of the densities. In
fact, as part of our experiments, we further emphasize the
model-agnostic nature of our estimator by comparing it with
the ACF-based estimator under model-mismatch conditions:
when the noise process is no longer Gaussian. In this setting,
while the ACF-based estimator demonstrates bias and fails
to consistently estimate the mixing coefficients, our estimator
maintains remains consistent.

As discussed in Section our estimators rely on KDEs
to estimate S and as such require smoothness conditions
on the the densities. Additionally, proper selection of k*,
necessitates (loose) bounds on the mixing rate parameters of
the process. Below, we discuss these conditions for AR(1)
and provide insights into our approach for choosing £* in our
experiments.

KDE estimators for AR(1). Classical time-series models
often assume Gaussian increments. This implies in various

contexts that the joint densities of X; and X;.,, is Gaus-
sian. Gaussian densities are infinitely often differentiable and
correspond to the smoothness parameter s of a Besov space
approaching infinity. This yields a very fast rate of con-
vergence of the KDE when the bandwidth h, of the KDE
is adapted to this context. In particular, the bandwidth h,,
depends logarithmically on n and the rate of convergence will
approach /log(n)/n in the L2-distance and log(n)/n for the
mean squared error independently of the dimension. A natural
alternative to selecting the bandwidth in this way is to make
use of popular heuristics for choosing h,. In practice, it is
common to use either Scott’s rule or Silverman’s rule to select
hy; in our experiments h,, is selected according to Scott’s rule,
which for an R%valued sample sets h,, = n~ /(T4 1In the
context of Besov spaces this corresponds to the case s = 2 [|14}
p-404] with corresponding rate of convergence of the KDE
of order n~2/(4+4) Using Scott’s rule leads to suboptimal
rates of convergence of the KDE if our model assumptions
are, in fact, correct since Scott’s rule is pessimistic about the
smoothness of the density and does not exploit the smoothness
of the Gaussian distribution.

Choice of k*. Another hyperparameter we are required to
select is k£*, which corresponds the gap between time-points
at which we collect observations. Larger values of k* lead to
observations that are closer to independent. The downside of
large values of k* is that significant amount of information
is discarded. In Condition [2] we provided a general way to
select k* based on loose bounds on the mixing rate parameter.
In the context of classical time-series models we have natural
alternatives to this choice. In particular, for AR(1) models it
is possible to bound the mixing-rate in terms of the AR(1)
parameter and it is natural to replace our general assumption in
Condition 2] by an AR-specific assumption on the parameters
(e.g. the AR(1) parameter is smaller than 0.95). We develop
these alternative approaches to select £* as part of the model
specific sections that follow.

As follows from [21, Thm.10.14], for an AR(1) process we
can bound S(m) from above and below using p,, as

1 P+ (1/4)p3,
;|pm‘ - W
< B(m)

<L |+p?nJr(l/lG)pi‘n
“Ver " (1= pm)?

Note that the bound becomes tighter for small p,, and looser
as p,, approaches 1. For larger values of p,, it indeed becomes
trivial. The bound given in allows us to control 3(m) by
means of the correlation coefficients of the AR model. The
correlation coefficients are in turn directly related to ¢;. It is
natural to work in the AR(1) context with loose assumptions
on ¢; and the above discussion provides a path for turning
such assumptions into bounds on S(m) which we can then
use to tune k*. The relationship between p,,, m > 1, and ¢
is given by

12)
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Fig. 1. The plot on the left illustrates the performance of our KDE-based estimators, while the plot on the right demonstrates the performance of the ACF-based

estimators for the estimation of 8(m), m

=1, 3,5 when samples are generated according to AR(1). The horizontal lines represent the true values of 3, with

the top solid line (red) corresponding to m = 1, the middle solid line (green) to m = 3, and the bottom solid line (blue) to m = 5. The mean estimates
(averaged over 20 rounds) are plotted for each m value, and the shaded areas indicate the uncertainty in these estimates. As n increases, the estimates clearly
converge to their respective true 3 values. In the right plot, the results for the ACF-based estimator are shown. The ACF-based estimator takes advantage of
the knowledge that the process is AR(1) and, more specifically, assumes Gaussian densities. This assumption leads to faster convergence in this particular

setting, as the model assumption is accurate.

In particular, if we assume an upper bound b on |¢;| then
|pm| < b™. Substituting this into Equation (T2) and ignoring
second order terms provides us with the bound

1
m) S —=b".
Taking into account (I3) when optimizing the bound on the
expected error given by (33), and noting the smoothness of

the Gaussian density, we propose choosing k* in this case

. loglog(1/b) + (3/2)logn

{ log(1/b) J '
Observe that for a fixed n, when b — 1 we obtain k* — oo.
Another alternative is to relax the requirement for the estimator
to be based on (near)-independent samples by setting £* = 0.
In this case, one can leverage the ergodicity of the underlying
process to achieve consistency, as demonstrated in [11]. An
advantage of this approach is that it eliminates the need for
bounds on the mixing rate to select k*, allowing us to utilize
the entire dataset without discarding any data. However, this
might result in a higher variance, which would need to be
appropriately controlled. Although theoretical results for finite-
time analysis in the context of Markov processes and KDE-
based estimators are currently lacking, we conjecture that it
may be possible to prove the consistency of our estimator for
k* = 0. We provide some simulation results below which lend
support to this hypothesis.

13)

(14)

Simulation Results. We start by considering an AR(1) model
with ¢; = 1/2 and 02 = 1. Figure 1| shows the estimation
results for the values of 3(m), m = 1,3 and 5. The plot on
the left shows the results for our estimator when £* is chosen
according to Equation (T4) and using the assumption that
|¢1] < 0.9. The plot on the right shows the results for a naive
plug-in estimator that relies on the empirical ACF to calculate
the empirical joint and marginal densities of the Gaussian

distribution, and integrate the absolute difference to estimate .
In this experiment, the true 5 values (numerically determined)
are B(1) ~ 0.1846, 5(3) ~ 0.0402 and $(5) ~ 0.00996. As
expected, the ACF-based estimator which relies on the fact
that the process is AR(1), is able to efficiently estimate S in
this setting by calculating a simple 2 X 2 covariance matrix.

In a second set of experiments, we study the performance
of the estimators under a mild model miss-specification. In
this setting, the samples are given by exp(X;) — E(exp(X;))
where X; is an AR(1) process. This yields a sequence of
(centered) log-normal random variables. Observe that this
transformation of X; does not change the [-dependence of
the original process. The results are shown in Figure [2}
The plots on the top left and right show the results of our
estimator where k* is chosen according to (T4) and k* = 0
respectively; the latter is more sample-efficient. Two notable
observations can be gleaned from the results. 1. The model-
mismatch encountered by the ACF-based estimator in this case
results in a noticeable systematic bias in the estimates, even
under a minor model mis-specification. This bias is particularly
prominent for m = 1, where the dependencies are more
significant. 2. Interestingly, in the case where k* = 0, the
estimator performs well, despite the samples being dependent.
This leads us to believe that it may be possible to prove
consistency of our KDE-estimators without the need to rely
on blocks that are k* steps apart.

VI. DISCUSSION

We have introduced novel methods for estimating the S-mixing
coefficients of a real-valued geometrically ergodic Markov
process from a sample-path of length n. Under standard
smoothness conditions on the densities, we have established a
convergence rate of O(log(n)n~[sl/(5142)) for the expected
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Fig. 2. Performance of our estimators (top) and the ACF-based estimator (bottom) when the sample is a transformation of an AR(1) process.

error of our estimator, and have provided a high-probability
bound on the estimation error. Furthermore, we have derived
analogous bounds in the case of a finite state-space, where no
density assumptions are required, and demonstrate an expected
error rate of O(log(n)n~1/2). Although our work is primarily
theoretical, we have also presented empirical evaluations to
further validate the performance of the proposed estimators. In
our experiments, we demonstrate the efficacy of our estimators
across a range of geometircally ergodic Markov processes
without being tied to any particular modeling specification,
such as linear or autoregressive structures.

Our estimators rely on (near)-independent samples obtained
from blocks separated by some k* time-steps in the sample
path. While this is a classical technique, based on Berbee’s
coupling lemma, allowing to control dependencies, it has its
downsides. First, to determine an appropriate value for k*
we require bounds, albeit loose, on the mixing parameters.
Moreover, using blocks that are k* steps apart leads to sample-
inefficiency. An alternative strategy could involve eliminating
the need for (near)-independent samples by setting k* = 0. As
in [[11]] it may be possible to exploit the underlying process’s
ergodicity to ensure consistency. However, this might result in
a higher variance to be controlled. While to the best of our
knowledge there are currently no theoretical results available

for finite-time analysis in the context of Markov processes
and KDE-based estimators, we conjecture that it could be
feasible to demonstrate the consistency of our estimator under
the condition that £* = 0. We leave this investigation for future
work.

VIl. TECHNICAL PROOFS

In this section, we provide proofs for our theorems. A common
ingredient is a coupling argument for time-series, which allows
one to move from dependent samples to independent blocks.
This is facilitated by Lemma [/| below, which is a standard
result based on, commonly used in the analysis of dependent
time-series, see e.g. [22]-[24]]. For completeness, we provide
a proof of this lemma, which in turns relies on a coupling
Lemma of [25]] stated below.

Lemma 7. Let X;, ¢ € N be a stationary sequence of random
variables with [3-mixing coefficients 5(j), j € N. For a fixed
k, e NletY, = Xi(k+€)7~ .. 7Xik+(i+l)€ for i € N. There
exists a sequence of independent random variables Y;*, © € N
taking values in R® and have the same distribution as Y; such
that for every i € N we have,

Pr(Y; # Vi) < B(k).
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Lemma 8 ( [25])). Let X and Y be two random variables tak-
ing values in Borel spaces S; and Ss respectively. Denote by
U a random variable uniformly distributed over [0, 1], which
is independent of (X,Y). There exists a random variable
Y* = g(X,Y,U) where g : S x S x [0,1] — Sy such
that Y™ is independent of X and has the same distribution as
Y, and that

Pr(Y* £ V) = Alo(X),a(Y).

Proof of Lemma([7} Let U;, j € N be a sequence of i.i.d.
random variables uniformly distributed over [0, 1] such that
each U; is independent of o({Y; : i € N}). Set Y =Y}, By
Lemma [8] there exists a random variable Y7* = g1 (Y, Y1, Uy)
where g is a measurable function from R x R x [0, 1] to R*
such that Y7* is independent of Y, has the same distribution
as Y1 and Pr(Yy* # Y1) = S(o(Yy),o(Y1)). Similarly, there
exists a random variable Y5" = go((Yy, Y1), Y2, U2) where
g2 is a measurable function from (R)2 x R x [0,1] to
R* such that Y5 is independent of (Yy,Y7"), has the same
distribution as Y3 and Pr(Y5" # Ya) = B(o (Y, Y1), 0(Y2)).
Continuing inductively in this way, at each step j =
3,4,..., by Lemma@ there exists a random variable Y;* =
g; (Yo, Y7, ..., Y[ 1), Y}, Uj) where g is a measurable func-
tion from (R)7 xR %[0, 1] to R* such that Y;* is independent
of (Yy,Y,...,Y" ), has the same distribution as Y; and

that Pr(Y? £ V) = Bo(VE, Y7, ..., Yr,),o(Y)). I
7)) < B(k)

remains to show that 8(o(Yy, Y7',..., Y/ 1), 0(Y]
for all 7 € N. To see this, first note that Y = Y; by
definition, and that for each ¢ € N, it holds that Y;* €

o((Y5, Y5, ..., Y ), Y:, U;), we have
oYy, iy Yo CU VY, (15)
where U; = o(Un,...,U;—1) and V; = o(Yp, Y1,...,Y;_1).

Take any U € U; and W € o(Y;). We almost surely have,

(UQW\V') =E(1ylw|Vy)
E(E(1ulwl|V; Vo(Y;)) V) (16)
EQAwE (1p|V; Va(Y;) V) (A7)
E(1wE (1v) |V;) (18)
PU)P(W|V;)
= P(Ule)P(WIVj) (19)

where (T6) follows from the fact that V; Co(Y;) VvV V(D)
follows from noting that W E o (]B[) holds smce U; is
independent of o(Yp,...,Y;) and (]EI) follows since le is
independent of V;. Therefore and U;, V; and o(Y;) form a
Markov triplet in the sense of [[7, Vol. 1 Definition 7.1 pp.
205]. Thus, as follows from [7, Vol. 1 Theorem 7.2 pp. 205]
we obtain,

BU; v Vj,a(Yy) = B(Vj, o). (20)
In light of (I5) and (20), and noting that by construction

B(V;,0(Y;)) < (k) we obtain
Blo(Yo, Y1y, Y] ), 0(Y;) < BU; VvV, 0(Y;))
< B(Vj,0(Yj))
< B(k).

O

Proof of Theorem 3] Given the sample X, ...,
the sequence

X,,, consider

Zi = (Xai(k+1)s X2i(k+1)4m)

with i =0,1,2,...,N — 1 where N = N(k,n) := L2k+1)J
for some fixed k € m + 1,...,|n/8]. As part of the proof,
we propose an optimal choice for k, see (34). Enlarge 2 if
necessary in order for Lemma [7] to be applicable. As follows
from Lemma [7) there exists a sequence of independent random
variables Z, © = 0,1,..., N —1 each of which takes value in
R? and has the same distribution as Z;, i = 0,1,...,N — 1,

with the additional property that
Pr({2e0,....N—-1:Z # Z;}) < NB(k)
Define the KDE of f,, through Z*, i =0,...,N —1

- R z— 24
* — K )

with the same kernel K : R?2 — R and bandwidth Ay > 0 as
in (6) and let

Bic(m

2

/ Fon-Fvolidde @

where fo N fR (z,y)d\(y).

Ifo® fo— fon ® fanlh
- / Fo@)foly) — Fi (@) Fo e () |dA(@)dAw)
zJy

+f0N ) foly) — Forn (@) For v () [dA () dA(y)
/ foly / fol@) — Fn (@) dA(@)dA(y)

+ [ fan@) / foly) -

< (L+co)llfo = fonlh

where ¢y = [g. [K(2)]dA\2(2)
statement. It follows that

[8(m) = By (m)
= 3| [ 1 = o8 ol [ 1o = T @ Fiwlire

@) foly) — o n () foly)

o v ()| dN(y)dA(x)
(23)

as specified in the theorem

1 Tk 1 Tk e
<3 / = Frke 5 1508 8o = B Fiwlare

Hfm —Im, fronlli+ 5 ||f0 ® fo— fon ® fonlh

5 (fm = Bl + 0+ @)llfo = Fonli)

where (24) follows from (23). Next, it is straightforward to
check that if f,, € B5(R?) with I fllB: 2y < A, then
fo = [z fmdX € Bi(R) with || fllp: &) < A. Moreover,

| /\

(24)
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observe that, as follows from Remark (I} for all f € B
and g € Bj.(R?) we have ||f||W1[s](R) < |Ifl
HgHW (4 (R2) < ||g||Bs (r2)- Therefore, with the choice of
bandwidth £ spec1ﬁed in the theorem statement, by [14}
Proposition 4.1.5 and Proposition 4.3.33] and an argument
analogous to that of |14, Proposition 5.1.7], we obtain,

Too(R)

Bf,oo(]R) and

P ~ (5]
sup EHfg,N — folli <L CN™=T+2

fo:llfllBg <A

(25)

where C' = 2(L1)F i (c/l) . Similarly, by [14, pp. 404]

we have,
sup E|fyy = fumli SCNTZIE(26)
fm:”fHBfoc(u@)SA
Set C' := (2 + ¢)C/2. Define the event
E:={Zr=2,1i€0,...,N —1}.
We obtain,
E|B(m)—Bx (m)|
< E|B(m) — By (m)]
+ E[|BN (m) — Bn(m)| |E]Pr(E®)  (27)
< E[B(m )— Bn(m)| +2NB(k) (28)
<CN~ mire + 2N3(k) (29)
< CN~m 4 2Nne 7k (30)
[s]
4k 2[s]+2 n
< —pe vk 1
_C<n—4k> +ne 3D
]+2
<c <8k ) + Rk (32)
n k
< % + e 33)
n 2ls1+2

where follows from triangle inequality and observing that
under E the estimators Sy and (% are equal, (28) follows

from 1), 29) follows from (24),(23) and 26), (30) follows

from observing that S(k) < 1 and the geometric ergodicity of
the process, and (31) and (32) follow from the definition of
N and the fact that 2 < k < [n/8]. Optimizing (33) for k& we

obtain
o[} ot (4 22))

which in turn leads to

E|3(m) — B <m>\
3[s] +

SC’n 2[ . 2
(e —HogSC—i-( H+2)logn) (35)

This completes the proof of the bound on the expected error.
For ¢ > 0 define the event U, == {NHf;; N —E(fmnl =
(3/2)NE|f% y — E(f5, p)ll + V2NE| K|y + 5] K][1}. To
obtain the high probability bound observe that |14, Theorem
5.1.13] states that

(34)

(36)

for all ¢ > 0. Furthermore, ]E(f; N
Kn(z) = (1/h)K
Lfm, v = fmlln

< fmn =B mn)l + 1 Bny * fn = flli 37

The latter term can be bounded by using [14, Proposition
4.3.33],

~) = Khny * fm, where
(x/h) for h > 0,2 € R?. Hence,

HKhN *fm_mel Sh[[ff]‘lf’rn”WI[S](Rg)a (38)

Note that there is a typo in [14, Proposition 4.3.33] which
states the result as in the one-dimensional case. The inequality
(38) relies on the remainder term of a Taylor series. The
remainder term in ||-||;-norm is upper bounded by (Minkowski
inequality for integrals)

[s] Z / lfu 1||Daf ||1du

lee|= [s

1
< [S]hkf]/o (1_U’)[S]_ldu”fm||W1[5](R2)7 (39)

where @ = (ay,@s) is multi-index of dimension 2, a! =
aqlas!, the integral [s] fol(l —u)l*1=1 is equal to 1, and D° f,,,
is a weak-derivative of f,, : R> — R. Hence,

Nl fun = Fnllt < NI Fiw = BB )l + NARY)
and with probability at least 1 —e™",
N”fr*n,N - mel
< NARY + (3/2)NEIIJ;, v = E(f7 )
+ V2Nu|K |1 4+ ub[| K1
Recall that
||fm||W1[S](R2) < ||fm||Bioo(R2)

and, therefore, from (26) it follows that for any fm such that
I/l B (R2) < A, with probability 1 — e~ we have,

1Fon = fmlls < ARY) + (3/2)C N7
+v/2u/N||K |1 + u5|| K|} /N.

Substituting hy as stated in Condition Qii, yields that with

u

probability 1 —e™",

I fon — fmlln
< V2uN-1||K||; + ub| K|, N~

[5]2

— 1\ ;e .
+ [ 3/2)6 + Aty <[8]2> N

Similarly, we can bound the difference between ]?(’i N and fo
in high probability; for « > 0, with probability 1 — e™, it
follows from (23) that

1fo @ fo— fon @ Jowlli/(1+co)
<|lfo.n = fola
< V2u/N|| K|y + ub|[K||1/N

—1\ == s
+ [ 3/2)6 + Aty <[S]2> N

2
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Substituting this into (24) gives that with probability at least
1—2e™,

18(m) — By (m)|/(1 + co/2)
< V2u/N|[K]|s + 5| K /N

[s)2
2 PR )
s|—1 2[s]+2 __ls]
[s]+1 (H N~ 2[0+2
2

Furthermore, with probability

(40)

+ | (3/2)C + A(eA)™

[s]
1—NB(k*) > 1—8Cn" 2H:1+2
it holds that f&N = ﬁ),N and f;LN = ﬁ,L7N. By setting
u = log(n)[s|/(2[s] +2)

[s]
26s7+2 we have

in (@0) with probability at least 1 — 8C'n~
|B(m) = B (m)|/(1+ co/2)
[s] log(n) 5[s]log(n)| K1
<\ e on K N

+ O+A(c/1) 1+1<”_1> e N

Flnally, 0bserv1ng that N > (n/4k*) — 1, and noting that

[s]
16N~ > (N + 1) 2612 whenever N > 2 and [s] > 1
we obtaln,
|B8(m) — B (m)|

[s]2
co\ [ 3 = _ 2 [[s] =1\ 2612
<16(1+ =) | = A(cA) ™ TsT+T
_6(+2)<20+ (cA) ( 5 )

[s] 5[s] n o\~
+ < W+ @ +2)> log(””K“) (%)

Noting that (4k*)>2lT+2

o < 4k*, defining C as

[s)?
1 n 3~ _ L2 [[s] =1\ >z
,1 —_ AleA [s]+1 L
°8 (80) ¢+ Ald) ( 2
and letting

2 — T a2
+ o 70+A(c/1) H]ﬂ([s] 1)
2y

we obtain
|B(m) — BN(m)|
K s
<64(1+ )(01 + Cylog(n) + MlogQ(n))n_ﬂgJﬁ
vy
O

Proof of Theorem 5] As in the proof of Theorem [3} we use
a coupling argument together with concentration bounds on

independent copies. More specifically, consider the geomet-
rically ergodic Markov sample Xy, ..., X,, and define the
sequence of tuples Z; = (X2i(k+1),X2i(k+1)+m), i =
0,1,2,...,N — 1 where N = N(k,n) := L;T;’;J for
some fixed k € m+1,...,|n/8]; as in the continuous state-
space setting, an optimal choice for k is specified later in
the proof, see (IZ-_3]) As follows from Lemma |Z| there exists a
sequence of independent random vectors Z; = (Z/,, Z;,) for
1=0,1,..., N —1 each of which takes value in X2 and has
the same distribution as Z; such that

1: Z; # 2.}) < NA(k)

Pr({3i€0,...,N— (41)

Define 3}*\, (m) as

fZZI )} -

ueX veX

Po N({u})P() ~{v})

where

PmN

N—

Z L, (Z
=0

and

1 N

By a simple application of Jensen’s inequality and noting that

the random variables Z7, i = 0,..., N — 1 are iid, for each
z € X x X we have,
E[| Py v (2) = Pm(2)]]
=
< (OO0 B (Z)) — E1(2))?
i=0
<V Pn(2)/N (42)
where the second inequality is due to
Var(1(.)(Z]) = E1(.3(Z])) < Pu(2)
Similarly, for each u € X we obtain
B[P v (u) = Po(u)]] < v/ Po(u)/N

It follows that

2E|B3 (m) — B(m)|
< > EP.({(w0)}) = B v ({(u,0)})]
(u,v)eX?
+2) B[P ({u}) - Py ({ud)]
< 2|X|N"1/2,

In much the same way as in the proof of Theorem [3] let

E={Z'=27,i€0,...,N—1}

and observe that

(B (m) — Bn(m)| |E) =0
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Moreover, recall that k < |n/8]. We obtain,

E|B(m) — By (m)| < E|B(m) — By (m)| +2NB(k)  (43)
Ak O\ /2 .
< |X| (n—4k‘) + 2nne
1/2
<|X| (8:> + 2nne ="
< VBIX|n 2k 4 2npe 7t (44)

where (28) follows from (@T). Optimizing (@4) we obtain

1 3/2
[ ()
gt V2|X|
where n is taken large enough so ensure that k* > 2 (see (@6)
below). This choice of k* and n leads to

(45)

E|By (m) — B(m)]
< VB|IX|nTV 2k 4 2nme™ R

nyn3/
/|X| (mn + o o () -
valx|

<—— e+ log = log n)
v fl?fl

Next, take N = N (k*,n) = Lmj with £* given by @3)
and let n be large enough so that

2| X |e2Y
n3/2 > max \ﬂik, e ) (46)
|
Substituting for £* and noting that
_ L*
N = {2&* fl)J ~ 3/2
myn
2lo (ﬁlxl)
we have,
N 21X —-1/2
Npe™ " < % (47)

On the other hand, by Hoeffding’s inequality, for any ¢ > 0
and each u € X we have,

Pr(| By ({u}) — Po({u})| > ﬁ)

Ne?
§2€Xp _W

Similarly, for each (u,v) € X? it holds that

€

Pr(|By, v ({(u,v)}) — Wz 57p)

P ({(u,v

Ne?
SQeXp _W

It follows that

Pr(| By (m) — A(m)| > /2
sZPum )} -

€

)
Py ({01 > 5m)

2 Y PHIR((eh) — B (1)) 2 570

. MFQXP{;'V;} +2|xexp{2N;|22}
S
< 4X|2exp{_w} "
g 4X|2exp{_m:*i&} (49)
= 4|X[Pexp § — e >

16| X[+ (log (xlel) + %1ogn)
§4\X|2€XP{‘48|;T+10M} (51)

where, (@8) follows from the choice of N = L2(k* +1)J and
noting that k* > 2, (@9) follows from recalling that in general,
k (and thus also k*), is less than [n/8], and finally, (30) and
(31) follow from substituting the value of k* as given by (34)
and observing that by (#6) we have 2 5 logn > log({&h K4 1). Hence,

by @), @7) and (51) we obtain,

Pr(|Bn (m) = B(m)| = €)
< NB(E™) + Pr(|6x (m) — B(m)| = €/2)
eV2|X|n=1/? 5 { yne }
< ———— +4|X|*expy ————
= dtog () TP Ao

O

Proof of Theorem [B] As in the proof of Theorem [3] we start
by a coupling argument, with the difference that instead of
generating 2-tuples, we generate blocks of length &£+ 1 for an
appropriate value of k£ which we specify further in the proof.
Specifically, given Xy, ..., X,, define

Zi = (X2itht1)s X2i(ht1)+15 - - - » X (2i41)k+2i)

fori = 0,1,...,N — 1 where N = N(k,n) := [55=p k7+1 ]
for some fixed k¥ € 1,...,|[n/8]; an optimal ch01ce for
k is specified later in the proof, see (60). By Lemma [7] l
there exists a sequence of independent random vectors Z F =
(Zfo,... sz) for i = 0,1,..., N — 1 each of which takes

value in X**1 and has the same distribution as Z such that

Pr ({Eli €0,....N—1:2; # Z-}) < NB(K).  (52)

Define

=3 ST IBL v v)}) - By (uh) B ({0}

ueX veX
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where

St
PmN U, v)

1 N=
= N Z 1{(u v)} Zz ,00 Zz m)
i=0
and
1 & ~
u) =5 > Ly (Zio).
i=0

As in the proof of Theorem [3] for each u € X it holds that

E(|P] y () = Po(u)l] < v/Po(u)/N < N7V,

Define the class of indicator functions

(53)

Hi ={lhm.:2€ X xX, m=1,...,k}.
where

B>+ XFT = {0,1}
Pon,=(X) := 123 (20, Trn)-

One can verify that the VC-dimension of Hj; is at most
log, (| X|k). To see this, first that the indicator functions in Hy,
depend on only two coordinates at a time, rather than on all
coordinates simultaneously. Consequently, the VC-dimension
of H; will typically exceed one but remain limited by the
combinatorial structure of these pairwise tests. The upper
bound follows from the standard result that the VC-dimension
of a finite hypothesis class #jy is at most logy |Hy|. In our
case, the class Hy, has cardinality |X'|?k. However, since the
first coordinate can be fixed to a constant value (say, 1), we
can restrict attention to a subclass of functions of size |X|k
that can shatter as many points as Hj. Therefore, the VC-
dimension of H;, is bounded by log, (| X|k).

Therefore, as follows from [[14} pp. 217] it holds that,
E[ sup [P} x((u,0) = Pn((u,0))]]

mel,... k

(u,v)eX?

_ \/810g2(|2(|k:) log N

5 (54)

By (33) and (54) we have,

QE[mesilp |BY (m) — B(m)]]
<E[ sup > |Pu({(w.0)}) - Pl y({(u,0)})
mel,...k (u,v)ex?
+2 3 [R({u}) — P y({ub)l]
ueX
< XPE[ sup [Pu({(u0)}) - Pl ({(u,0)})]]
(u,v),e.)é'2
+2 3 ElP({u}) — Py y({u})]
ueX
< X|2\/810g2(|/§vk) log N + 2|X|N_1/2

(55)

1 Xl|k)log N
S 2|X2\/8 Og2(| ]\lvk) og

Take n > 254D From the coupling argument given earlier

3k+2
we obtain,
E[ sup |By(m)—B(m)]
mel,... .k
<E| sup |BY (m) — B(m)|] + NB(k)
mel,...,
1 X|k)log N
S X|2\/8 Og2(| ]\‘[ ) 0g +N77€7’yk (56)
< X|2\/§10g2(N|X) + Npe 7k (57)
5 2k ok
< 4|X| . logy (n|X]) + nne™” (58)
2
< 4|X2\/;log2(n|)()k—|—m767k (59)

where (56) follows from (53)), and (57) follows from noting

that N = N(k,n) > k for n > z;’(,jle); similarly, (58)

follows form the choice of N = N(k,n) < 2&71’1) — 1 and
noting that k£ > 1. Optimizing (59) we have
1 3/2
k= {bg ( ek )J (60)
g 42| X |2 log, (n|X|)
with
42| X3e7 2k(k+1
n > max V2 Pe? 2k(k+1) | 61)
ny 3k +2

This leads to

E[mesilgk\@v(m) — B(m)]

_ VB log, (n] X))

gl

3/2
nyn

X e+log< )) .

< 42| X ]2 logy (n|X])

Take N = N(kf,n) =
follows that,

L%J’ with &t given by (60). It

2eV/2|X|? log, (n| X |)n~

Npe ' < (62)

7],7,,,13/2

log(zxﬂxwzlogz(nw)

On the other hand, by Hoeffding’s inequality, for any ¢ > 0
and u € X it holds that
Née?
2|2

(63)

PrB] v ([uh) - Folta)| = g5) < 2o {

Furthermore, noting that H, is a VC-class, by [26, Theorem
12.5] for € > 0 we have,

€

pr( sw P (@ o)) = Pu({(w )] 2 52
(u,v)eX?

< 8log, (| X|k)e” T (64)
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Furthermore, noting that in general all k are taken to be less
than |n/8], a minor manipulation gives,

N> "tk
~2(k+1)
n — 4k
>
4k
n
> — 65
=y (65)
where (63)) is from noting that k& < | |. Therefore, for any

€ > 0 we have,

since k > 2

1 N
e P sup (Bl (m) = B(m)] = ¢/2)
|X| mel,... kt
= €
<Pr| swp (|Pu({(w0)}) = Bl v({(w o)} > 5o
mel,... kT | X
(uv)€X2

* 1ap 2P (1At~ Rl () 2 575

Ne 2
f“"g(*"”)exp{‘mw}we@{ iR )

Ne?
< 16log(|X |kt L
< 1610g(|X )exp{ mw}
< 1610g(|X\kT)exp{—n7€2} (66)
= 1024kT] 2[4

< 161log <3| | log(n?/3~ 2/3n)>
yne?

B L — 7
8 exp{ 3072|X410gn} (©7)

where, the second inequality follows from (63) and (64),
(66) follows from the choice (63), and (67) follows from
substituting for the value of k' as given by and observing
that by (6I) we have

P n o m
log(nl X)) ~ [X] = V2l
Hence, by (52), (62) and (67) we obtain,
Pr( sup T\5N(m) —B(m)| > ¢)
m=1,...,
< Nne_’”CT +Pr( sup |§}V(m) — B(m)| > €/2)
m=1,...,kT
4\f|X|210g(n|X|) -1/
nyn3/2
10 (8\/“2(‘2)
X
+ 16|X|? log (3| | log(n?/3~ 2/3n)>
o yne
wpd I
P 30721 X logn
and the result follows. O
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