- 1 Intersecting Infections: The enhancing effect of Neisseria gonorrhoeae
- 2 pathogenesis on HIV-1
- 3 Dhanjal A^{1,2}, Shaw JG^{2,3}, Cole J^{2,3,4}, Green LR^{1,2}
- 4 1 School of Clinical Dentistry, University of Sheffield, UK
- 5 2 Florey Institute of Infection, University of Sheffield, UK
- 6 3 School of Medicine and Population Health, University of Sheffield, UK
- 7 4 Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS, UK
- 8 Email addresses: AD adhanjal1@sheffield.ac.uk; LG l.r.green@sheffield.ac.uk; JS
- 9 <u>i.g.shaw@sheffield.ac.uk</u>; JC <u>joby.cole1@nhs.net</u>
- 11 Running Title: N. gonorrhoeae pathogenesis and HIV-1
- 12 **Corresponding Author:** AD adhanjal1@sheffield.ac.uk
- 13 **Keywords:** *N. gonorrhoeae, HIV-1, co-infection, synergy, transmission*
- 14 **Word Count:** 4220
- 15 **Conflicts of Interest:** There are no conflicts of interest to be declared.
- 16 Funding Acquisition: NIHR Sheffield Infection and Immunity Biological Research
- 17 Centre

18

10

19

20

Abstract

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Despite the relatively low transmission rates of HIV-1, the virus accounted for 1.5 million new infections worldwide deaths in 2020, with widespread infection and devastating sequelae. Various mechanisms have been described which exacerbate HIV-1 progression including concurrent infection with other sexually transmitted infections (STIs). Epidemiological evidence has suggested the strongest association between N. gonorrhoeae and HIV-1 compared to other STIs and the presence of untreated N. gonorrhoeae before infection with HIV-1 has been shown to enhance viral infection. Molecular investigation has corroborated this by showing that presence of N. gonorrhoeae enables transmission of HIV-1 across the epithelial membrane, enhances replication of HIV-1, increases viral shedding, and heightens immune dysregulation. Gonorrhoea infections are rapidly increasing worldwide providing a potential platform for increased HIV-1 incidence. Furthermore, whilst treatment of N. gonorrhoeae in parallel infection alleviates HIV-1 progression and transmission, this is becoming a less viable option as the threat of multidrug resistance within N. gonorrhoeae proliferates. These findings highlight the requirement for greater surveillance of concurrent infections to tackle the HIV-1 epidemic and warrant monitoring of the resistance crisis in Neisseria gonorrhoeae to prevent worsening outcomes of HIV-1 patients.

Introduction

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The World Health Organisation has stated that HIV, viral hepatitis, and sexually transmitted infections (STIs) together account for 2.3 million deaths worldwide annually (1), however, little focus is made upon their concomitant infections, and the exacerbating effect of Neisseria gonorrhoeae on HIV-1 infection. HIV is a complex viral infection which alters host cells indefinitely and consists of two different subtypes, HIV-1 and HIV-2. HIV-1 is responsible for most worldwide cases as it shows higher transmissibility and faster progression of disease (2). Transmission occurs through bodily fluids predominantly by sexual intercourse but also through intravenous drug use, contaminated blood products, and vertical transmission. After entry into the host, it traverses the genital mucosal barrier before binding to immune cells and initiating replication (3). This leads to the eventual destruction of CD4+ T cells, and causes significant immunosuppression and the development of acquired immune deficiency syndrome (AIDS) (3). One of the factors that increase transmission and exacerbate disease progression is the presence of concurrent sexually transmitted infections (STIs), including infection with Neisseria gonorrhoeae (3). N. gonorrhoeae, or the gonococcus, causes the treatable bacterial infection, gonorrhoea (4). Gonococci can colonise the mucosal epithelium at multiple sites of infection including the urogenital tract, cervix, pharynx, rectum and conjunctiva (5). Infection can be symptomatic and asymptomatic with most asymptomatic cases occurring in gay and bisexual men who have sex with men (GBMSM). This was shown in the latest surveillance data from the UK with a total of 53.3% (n=936) asymptomatic cases, with 646 of these in GBMSM and 167 in women (6). Complications can occur with sustained untreated infection and can result in disseminated disease, pelvic inflammatory disorder, and infertility (5). Sex-specific presentation in males includes urethral discharge and pain during urination, and in females includes cervical inflammation and purulent discharge (4,5). Whilst infection with N. gonorrhoeae is

treatable with antibiotics, it is still classified as a World Health Organisation high priority 66 67 pathogen due to the persistence of multidrug resistant strains (7), meaning the pathogen 68 remains a public health threat. For both *N. gonorrhoea*e and HIV-1, sexual transmission is the major cause of infection 69 (2,8,9). This shared method of transmission means both infections can occur 70 71 concurrently. This has been observed in studies showing that HIV-positive men who 72 have sex with men (MSM) are four times more likely to carry an additional STI than HIVnegative MSM (10,11). Whilst all STIs demonstrate moderate to strong associations with 73 74 HIV, recent modelling evidence has found N. gonorrhoeae has the strongest prevalence 75 association with HIV-1, with a correlation coefficient of 0.84 (12). N. gonorrhoeae is also 76 believed to increase transmission of HIV-1 both by enhancing the infectivity and 77 susceptibility to HIV-1 in sexual partners by increased shedding, most notably in the early 78 stages of HIV-1 infection (8). 79 The mechanisms by which N. gonorrhoeae enhances viral infection involve both direct (enhancing HIV-1 viral replication and transmission) (13,14) and indirect means (immune 80 81 response activation) (15), which will be discussed in the later sections of this review. 82 Recent breakthroughs have further established the molecular and immunological link between N. gonorrhoeae and HIV-1, which provides causal data to the correlational 83 findings from clinical and modelling studies. This review aims to discuss the recent 84 85 epidemiological and clinical links between N. gonorrhoeae before discussing some

Epidemiology

86

87

The incidence of *N. gonorrhoeae* has wavered throughout the years but is inextricably linked to HIV. In the UK, the 1960s saw a rise in the "sexual liberation" countercultural movement, which was in line with a greater incidence of gonorrhoea in MSM (16).

breakthrough molecular and immunological advances.

However, as the HIV epidemic emerged in the 1980s, gonorrhoea incidence declined sharply as condom usage increased and the number of casual sexual partners diminished (1,12). ART was introduced and disseminated widely to the public in 1987 and consequently an increase in STI incidence was observed in the 1990s, which has continued to worsen throughout the 2000s (4,17). One behavioural shift that occurred because of the HIV epidemic was a concept known as "serosorting" or "negotiated safety", where individuals would participate in unprotected sex with individuals of the same HIV status as themselves (18). However, this practice contributed to the persistence of HIV between 2000-2013 with undiagnosed individuals unknowingly transmitting to HIV-negative groups and contributed to the rise of STIs (19), although the practice of serosorting appears to have diminished in recent years (9). Currently, gonorrhoea diagnoses have more than doubled over the past 10 years in the UK going from 31,177 in 2013 to 85,223 in 2023, as well as the largest number of annual cases reported in 2023 since records began in 1918 (6). Use of preventative medicine has also played a role in changing behavioural practices. Preexposure prophylaxis (PrEP) was introduced as a daily treatment in the UK in 2017 (20), which offered temporary protection against HIV viral replication. PrEP was found to decrease HIV acquisition in the UK (6), but evidence indicated an association with increased STI prevalence, potentially caused by diminished condom use in PrEP users (18). In Germany, a study found that STI prevalence in MSM was high, particularly in PrEP users compared to non-PrEP users (21). Another US based study found a 14% increase in STI diagnoses in patients after PrEP use compared to before PrEP use, however this may have been caused by increased screening during the period examined (22). Additionally, a large study conducted in Australia (n=2981) found that STI prevalence increased after enrolment on to PrEP, with 1242 incidences of N. gonorrhoeae, and 39.0 incidence rate per 100 person years. Interestingly, only 736

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

individuals accounted for the majority these cases. This suggests repeated infection 117 118 amongst the same individuals during the 1.1-year period of the study, meaning high STI incidence was confined within a subset of individuals, rather than the whole of the 119 120 GBMSM population (23). 121 At present, the World Health Organisation has found that 1.5 million individuals were 122 newly diagnosed with HIV globally in 2020 (1). Whereas, for gonorrhoea 82.4 million 123 people were newly diagnosed (1) (Figure 1). The worldwide proportion estimated to 124 exhibit two concurrent STIs is 37.7% (12). A recent meta-analysis of dual infection by Zhang et al., claimed that only 0.8% of cases exhibited both N. gonorrhoeae and HIV-1 125 based on worldwide data, but this number has been disputed. 126 127 In their meta-analysis, Zhang and co-workers demonstrated a clear diversity between different economic zones, with 0.3% of co-infection cases in high-resource settings 128 129 (HRS) contrasting with 1.3% in low-resource settings in 2024 (24). However, this analysis 130 may not be an accurate reflection of trends in HRS from surveillance reports, which suggest a higher number of concurrent N. gonorrhoeae and HIV-1 cases. The 131 gonococcal resistance to antimicrobials surveillance programme (GRASP) conducted 132 across the UK suggested 9.4% of positive gonorrhoea cases (n=1,762) were associated 133 134 with those living with HIV in 2024 (6), while other reports have suggested a 3.9% 135 prevalence of co-infection in men who have sex with men (MSM) across England in 2021 (25), which is significantly higher than the 0.3% claim from Zhang et al., in HRS. 136 137 Figures also vary across geographical regions, in Europe for example, the prevalence of 138 co-infection was 0.6% which contrasted starkly with 12.9% in Central Africa (24). 139 However, the World Health Organization has described barriers with the availability of 140 sexual health data in Africa, which suggests these figures may be higher than stated. 141 This is in part due to the stigma of being diagnosed with an STI in areas of Africa, which 142 is reflected in the politics and culture of the continent. Twelve of the twenty-five Central and West African countries have criminalised same-sex relationships, and twenty-one have criminalised sex work (1). These policies no doubt act as a deterrent to groups that are most vulnerable to STIs, MSM, transgender people, and sex workers, in jeopardising themselves to seek treatment (26).

Global surveillance of concurrent *N. gonorrhoeae* and HIV-1 is lacking but would provide further insights into trends across regions with greater clarity. However, findings from GRASP and meta-analyses show that the dynamics of co-infection with *N. gonorrhoeae* and HIV-1 are complex, involving not only biological factors but also sociological, economic and behavioural factors (6,24). This includes the number of sexual partners, history of addiction, sexuality, access to sexual health services, and education of safe sexual practices (27).

Viral Shedding

One proposed biological link between *N. gonorrhoeae* and HIV-1 is that *N. gonorrhoeae* enhances transmission of the virus through increased HIV-1 shedding. This has been established in both humans and in non-human animals. In 2018, a humanised mouse model was produced by engrafting immunodeficient mice with CD34+ stem cells. Mice were exposed to HIV-1 and infection was confirmed by increased viral load observed in blood after four weeks. However, after mice were infected with *N. gonorrhoeae* the overall viral load remained constant, but viral shedding increased in the genital tract, in line with clinical data in humans (28). This suggests *N. gonorrhoeae* enhances HIV-1 infection by increasing transmissibility of the virus through increased shedding.

Increased shedding has also been observed in studies monitoring co-infection of both sexes in humans. In females with concurrent infection, cervicovaginal viral shedding was significantly higher in those who were also infected with *N. gonorrhoeae*. Treatment of *N. gonorrhoeae* with antibiotics decreased viral shedding from 42% to 21%,

demonstrating that treatment drastically reduced transmission (29). In males, those infected with *N. gonorrhoeae* and HIV-1 had eight times higher levels of HIV-1 RNA in their semen compared to HIV-1 positive men without *N. gonorrhoeae* (30). Later studies found similar evidence, with fivefold greater levels of viral RNA found in the semen of men with concurrent HIV-1 and *N. gonorrhoeae* (31), a factor linked with greater transmissibility of the virus (32). Findings also suggest that higher seminal viral loads are diminished after treatment with antibiotics, suggesting that tackling the high prevalence of *N. gonorrhoeae* should be considered in efforts to reduce HIV-1 transmission (12,30,31). However, the increasing threat of multi-antibiotic resistant *N. gonorrhoeae* strains may jeopardise this, increasing HIV-1 transmissibility.

There is evidence that has suggested that highly virulent, antibiotic resistant strains of N. gonorrhoeae were associated with HIV status, but conflicting research on the topic means a clear link has not been fully established. A large-scale survey conducted in 2009 in Thailand analysed N. gonorrhoeae isolates that were collected from HIV-positive patients, and antimicrobial resistance (AMR) was determined using disk diffusion assays. None of the 122 isolates were susceptible to penicillin or tetracycline and 90% of the isolates were resistant to ciprofloxacin. 83.6% of the isolates produced βlactamase, and 79.5% of these were also resistant to tetracycline (33). Further evidence into the virulence of N. gonorrhoeae isolates using sequencing data suggested a link between specific subspecies of *N. gonorrhoeae* found in HIV-positive cases in Australia. Neisseria gonorrhoeae molecular antigen sequence typing (NG-MAST) is a scheme which is used to categorise N. gonorrhoeae subtypes by comparing two variable genes (porB and tbpB). NG-MAST data from 3340 N. gonorrhoeae isolates showed that HIV notifications were linked to 65 different N. gonorrhoeae genotypes. Two sequence types (STs) were commonly associated with HIV, ST-1407 and ST-2992, and both demonstrated resistance to penicillin and azithromycin from a study in Australia (34).

However, conflicting evidence from England found no such link between antimicrobial resistance (AMR) status of *N. gonorrhoeae* isolates and HIV-1 (35), but a smaller number of cases was studied compared with the Australian study (34). This suggests further surveillance is warranted to firmly establish a link between highly virulent *N. gonorrhoeae* strains and HIV-1.

Transmission of HIV-1 across the membrane

After infection with HIV-1 the virus traverses the epithelial membrane to begin replication within cells and initiate seroconversion. Up until 2022, the mechanisms for HIV-1 traversal across the membrane were not firmly established, with most researchers suggesting that HIV-1 passively traversed disrupted epithelial junctions (36,37). A mechanism for HIV-1 transcytosis across an intact epithelial membrane found that HIV-1 used a cervical membrane receptor to traverse the epithelium. These findings showed a closer connection to HIV-1 and *N. gonorrhoeae* than previously assumed, as both pathogens used complement receptor 3 (CR3) for transcytosis across the cervical mucosal barrier (38) (Figure 2). In addition, the presence of *N. gonorrhoeae* was shown to enhance transmission of HIV-1 across cervical mucosa, which saw a 55% increase when cervical tissues were exposed to *N. gonorrhoeae* after 24 hours, and a 350% increase in transmission after 7 days of exposure (15), suggesting that CR3 activation by gonococcal pili allows for more efficient HIV-1 binding (39). This shows that HIV-1 and *N. gonorrhoeae* have shared methods of transcytosis, with a compounding effect on one another.

Immune cell responses

216 CD4+ T cells

- 217 HIV-1 replicates in CD4+ T cells meaning CD4+ T cells play a significant role in HIV-1
- 218 infection. This is facilitated by defensins, molecules that are enhanced by infection with

N. gonorrhoeae. Human defensins 5 and 6 (HD5, HD6) are defence peptides that are expressed by secretory cells, and have been observed in elevated levels when cervical cells are exposed to N. gonorrhoeae (13). HD5 and HD6 were found to increase infectivity of HIV-1 by enhancing attachment and the concentration of the virus to CD4+ T cells, promoting entry and replication in the presence of N. gonorrhoeae (40). The mechanisms by which HD5 and HD6 increase infectivity is related to the structure of the peptides, as loss of intramolecular cysteine bonds prevented the enhancing effect. When the cysteine bonds were present HD5 and HD6 had an aggregating effect on HIV-1 to CD4+ T cells shown in microscopy images. However, the enhancing effect of N. gonorrhoeae only occurred if the cells were pre-treated with it before HIV-1 infection. This suggests that enhancement of HIV-1 is reliant on HD5 and HD6 presence before HIV-1 initiates infection (13). To investigate the mechanisms of co-infection in CD4+ T cells Ding et al., (2010) exposed primary resting CD4+ T cells to N. gonorrhoeae peptidoglycan, as peptidoglycan is a known TLR2 agonist, the findings showed enhanced HIV-1 viral replication (14). During co-infection, known TLR2 pathways were activated, suggesting TLR2 activation by N. gonorrhoeae was crucial for viral enhancement. However, TLR2 activation did not enhance HIV-1 infection after the early stages of infection, which suggests that the enhancing effect of N. gonorrhoeae only occurs if the individual is already infected with N. gonorrhoeae or becomes exposed to N. gonorrhoeae in the early stages of HIV-1 infection. Additionally, IL-2 was a necessary cytokine for N. gonorrhoeae mediated enhancement of HIV-1, as HIV-1 enhancement only occurred in the presence of IL-2 and TLR2 agonists. Absence of IL-2 during these early infection stages inhibited viral replication, suggesting an importance for this cytokine during co-infection (14). This suggests that IL-2 that is expressed during N. gonorrhoeae infection plays a role in enhancing HIV-1 pathogenesis (41).

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Further, studies utilising immortalised CD4+ cell lines have suggested gonococcal infection can increase transcription of HIV-1 genes. One of the ways in which HIV-1 transcription is controlled is by activation of a 636 base pair region within the HIV-1 RNA genome known as the long-terminal repeat (LTR) region. This region promotes HIV-1 replication when activated (42). Jurkat cells transformed with a luciferase reporter gene under the control of a LTR HIV-1 promoter were infected with *N. gonorrhoeae*. Increased luciferase activity was observed after the cells were infected with *N. gonorrhoeae*, suggesting increased transcription of HIV-1 within cells after *N. gonorrhoeae* exposure (43).

Genome-wide mutagenesis studies of *N. gonorrhoeae* demonstrated that mutation within the hldA locus could inhibit HIV-1 transcription within Jurkat cells. This increased HIV-1 mechanism has been linked with the *hldA* locus from *N. gonorrhoeae. hldA* encodes the heptose phosphate kinase enzyme which is responsible for liberating a heptose molecule during the growth phase of *N. gonorrhoeae*. Heptose is a carbohydrate used by *N. gonorrhoeae* for synthesis of surface lipooligosacharide molecules, a critical component of the bacterial outer membrane. The liberated heptose molecule activated CD4+ T cells and initiated the NF-kB dependent transcription of HIV-1 LTR (44). NF-kB are a group of proteins that bind to DNA to regulate transcription. When *N. gonorrhoeae* binds to epithelial cells through TLR2 the NF-kB signalling pathway is initiated, resulting in increased expression of pro-inflammatory cytokines (45). NF-kB also controls HIV-1 transcription by binding to the LTR region of HIV-1, eliciting replication of HIV-1 virions (42). Interestingly, this function of *N. gonorrhoeae* is unique, as heptose is expressed in other bacteria including *E. coli* but does not elicit the same enhanced transcriptional response as *N. gonorrhoeae* (44).

Critics of these studies suggest it relied on immortalised cell lines to investigate the effect of *N. gonorrhoeae* on HIV-1 infection as other studies have found differential responses

in co-infection between primary human CD4+ T cells compared to Jurkat cells. Whilst both cell types produced a significant cytokine response upon exposure to *N. gonorrhoeae*, Jurkat cells showed increased viral replication within the cell, but in primary CD4+ T cells there was an inhibition of viral replication (46). This suggests some cell lines, such as Jurkat cells, produce a false positive result regarding HIV-1 and *N. gonorrhoeae* co-infection. However, it does not explain why HIV-1 replication was increased in primary CD4+ T cells in previous studies Ding *et al.*, (2010) (14) and were concordant with data from Chen *et al.*, (2003) (43) who used a Jurkat cell line derivative.

CD3+ T cells

Whilst CD4+ T cells remain the preferential immune cell for progression of HIV-1 infection (47), some argue that systemic immune response is a more important marker for HIV-1 risk (48). This was shown in a paper by Sanyal *et al.*, (2019) which found that CD3+ T cells were integral in the transmission of HIV-1 across the cervical membrane in a cervical tissue model (15). Cervical epithelial membrane ruffling caused by *N. gonorrhoeae* infection leads to migration of CD3+ T cells to the subepithelial layer, and higher levels of IL-1β and TNF-α cytokines. The flooding of CD3+ T cells to the subepithelial layer of the cervical model provided greater levels of HIV-1 target cells which lead to higher levels of HIV-1 replication during co-infection. Therefore, both CD4+ and CD3+ T cells play an important role in enhancing HIV-1 infection during *N. gonorrhoeae* infection, warranting further investigation of a more systemic T cell response to explain how *N. gonorrhoeae* enhances HIV-1 infection. A limitation of this study is the low sample size (n=14), meaning there is scope to expand this study investigating models made from cervical tissues from donors of different ages, menstrual cycles and race (15). Additionally, there are large areas of uncertainty in HIV-1 and *N.*

gonorrhoeae co-infection in male uroepithelial cells, as research on male 3D models has not yet been published, highlighting a significant gap within the literature.

Dendritic cells

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

In addition to recruitment of T cells, N. gonorrhoeae has shown to enhance infection by using dendritic cells (DCs). DCs play a role in the capture of pathogens followed by antigen presentation which elicits an adaptive immune response (49). DCs have been found to capture HIV-1, acting as reservoirs of the virus, before carrying the virions to target CD4+ T cells (50). Therefore, DCs play a crucial role in enhancing infection of HIV-1, even before co-infection is involved. During co-infection, N. gonorrhoeae can dysregulate the adaptive immune response to enhance its own pathogenesis as well as HIV-1. This is achieved by preventing DCs in building a cytotoxic immune memory against HIV-1, and by suppressing maturation of DCs. The mechanisms of this involve N. gonorrhoeae binding to carcinoembryonic antigen related cellular adhesion molecule-1 (CEACAM-1) found on the surface of DCs through gonococcal outer membrane opacity (Opa) proteins. Binding of Opa to CEACAM-1 elicits an immunosuppressive response which is characterised by upregulation of IL-10 and Programmed Death Ligand 1 (PD-L1), and thereby suppressing maturation markers on DCs, such as CD38 (49,51). These effects combined mean N. gonorrhoeae enhances infection of HIV-1 in a mutually beneficial subversion of the immune response. Presence of N. gonorrhoeae has also been found to enhance HIV-1 replication in monocyte derived DCs. Greater levels of viral DNA were found in monocyte derived DCs that were exposed to N. gonorrhoeae peptidoglycan, indicating further uptake of HIV-1 in DCs in the presence of N. gonorrhoeae. The mechanism of this response was believed to involve TLR2, as DCs without TLR2 were not enhanced (52). Meaning N. gonorrhoeae enhanced viral replication in DCs using TLR2 related pathways, in a similar method to

the mechanisms of viral replication in CD4+ T cells described previously.

Conclusion

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

The dynamics of coinfection have proven to exhibit complexity, affected by several behavioural and biological factors. Eradicating the HIV-1 pandemic will therefore involve addressing the virus on multiple fronts, including acknowledgment of the enhancing effect N. gonorrhoeae has on HIV-1 infection. Addressing the socio-behavioural barriers that restrict access to treatment, particularly in the groups most affected, such as GBMSM, sex workers, and transgender people would help alleviate the progression of both STIs and HIV. The UK has produced up to date surveillance of STIs in specific areas (6), but worldwide surveillance could be improved, with gaps observed in some regions caused by both economic and political barriers (1). Whilst clinical reports suggest a preliminary link between N. gonorrhoeae and HIV (31) it is challenging to establish causality with confounding variables potentially affecting the correlation. Early in vitro immunological studies produced conflicting results, impacted by a lack of representative models. However, more recent work using organ culture, animal, and 3D models has shed insights into how transmission and replication of HIV-1 is enhanced when N. gonorrhoeae infection is present before HIV-1 entry or during the early stages of HIV-1 infection (15). This link between increased HIV transmissibility and infectivity during concurrent infection is worrying at a time when gonorrhoea incidence is rising globally alongside a concerning rise in antimicrobial resistance within N. gonorrhoeae. It is therefore critical to monitor these cases and utilise these results to develop novel drugs or repurpose existing medications to treat co-infections and prevent worsening the HIV-1 crisis (53).

Acknowledgments

This study/research is funded by the National Institute for Health and Care Research (NIHR) Sheffield Biomedical Research Centre (NIHR203321). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Re	·fρι	ren	ces
176	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CII	65

- 353 1. World Health Organisation. Global Progress Report on HIV, Viral Hepatitis and
- 354 Sexually Transmitted Infections, 2021. Accountability for the Global Health Sector
- 355 Strategies 2016-2021: Actions for Impact. 1st ed. Geneva: World Health
- 356 Organization; 2021. 1 p.
- 2. Bekker LG, Beyrer C, Mgodi N, Lewin SR, Delany-Moretlwe S, Taiwo B, et al. HIV
- 358 infection. Nat Rev Dis Primer. 2023 Aug 17;9(1):42.
- 359 3. Maartens G, Celum C, Lewin SR. HIV infection: epidemiology, pathogenesis,
- treatment, and prevention. The Lancet. 2014 Jul;384(9939):258–71.
- 361 4. Hütter G, Ganepola S, Schneider T, Blau O, Thiel E. Long-Term Control of HIV by
- 362 CCR5 Delta32/Delta32 Stem-Cell Transplantation. N Engl J Med. 2009;
- 5. Pitman MC, Lau JSY, McMahon JH, Lewin SR. Barriers and strategies to achieve a
- 364 cure for HIV. Lancet HIV. 2018 Jun;5(6):e317–28.
- 365 6. A. Jarvis G, L. Chang T. Modulation of HIV Transmission by Neisseria gonorrhoeae:
- Molecular and Immunological Aspects. Curr HIV Res. 2012 May 1;10(3):211–7.
- 7. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat
- 368 Rev Microbiol. 2018 Apr;16(4):226-40.
- 8. Unemo M, Seifert HS, Hook EW, Hawkes S, Ndowa F, Dillon JAR. Gonorrhoea. Nat
- 370 Rev Dis Primer. 2019 Nov 21;5(1):79.
- 9. UK Health Security Agency. Gonococcal resistance to antimicrobials surveillance
- 372 (GRASP) [Internet]. UK Health Security Agency; 2023. Available from:
- 373 https://www.gov.uk/government/publications/gonococcal-resistance-to-

- 374 antimicrobials-surveillance-programme-grasp-report/grasp-report-data-to-june-
- 375 2023#main-findings
- 10. World Health Organisation. WHO Bacterial Priority Pathogens List 2024: Bacterial
- Pathogens of Public Health Importance, to Guide Research, Development, and
- 378 Strategies to Prevent and Control Antimicrobial Resistance. 1st ed. Geneva: World
- 379 Health Organization; 2024. 1 p.
- 11. Galvin SR, Cohen MS. The role of sexually transmitted diseases in HIV transmission.
- 381 Nat Rev Microbiol. 2004 Jan;2(1):33–42.
- 12. Naik PA, Zu J, Owolabi KM. Global dynamics of a fractional order model for the
- transmission of HIV epidemic with optimal control. Chaos Solitons Fractals. 2020
- 384 Sep;138:109826.
- 385 13. Malek R, Mitchell H, Furegato M, Simms I, Mohammed H, Nardone A, et al.
- Contribution of transmission in HIV-positive men who have sex with men to evolving
- 387 epidemics of sexually transmitted infections in England: an analysis using multiple
- data sources, 2009–2013. Eurosurveillance [Internet]. 2015 Apr 16 [cited 2024 Dec
- 389 13];20(15). Available from: https://www.eurosurveillance.org/content/10.2807/1560-
- 390 7917.ES2015.20.15.21093
- 391 14. Taylor M, Newman D, Gonzalez J, Skinner J, Khurana R, Mickey T. HIV status and
- viral loads among men testing positive for rectal gonorrhoea and chlamydia,
- 393 Maricopa County, Arizona, USA, 2011–2013. HIV Med. 2015 Apr;16(4):249–54.
- 15. Omori R, Chemaitelly H, Abu-Raddad LJ. Understanding dynamics and overlapping
- epidemiologies of HIV, HSV-2, chlamydia, gonorrhea, and syphilis in sexual
- 396 networks of men who have sex with men. Front Public Health. 2024 Apr
- 397 2;12:1335693.

- 16. Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA, Lu W, et al. Neisseria
- 399 gonorrhoeae -Induced Human Defensins 5 and 6 Increase HIV Infectivity: Role in
- 400 Enhanced Transmission. J Immunol. 2008 May 1;180(9):6176–85.
- 401 17. Ding J, Rapista A, Teleshova N, Mosoyan G, Jarvis GA, Klotman ME, et al. Neisseria
- 402 gonorrhoeae Enhances HIV-1 Infection of Primary Resting CD4+ T Cells through
- 403 TLR2 Activation. J Immunol. 2010 Mar 15;184(6):2814–24.
- 404 18. Sanyal A, Shen C, Ding M, Reinhart TA, Chen Y, Sankapal S, et al. Neisseria
- gonorrhoeae uses cellular proteins CXCL10 and IL8 to enhance HIV-1 transmission
- across cervical mucosa. Am J Reprod Immunol. 2019 Jun;81(6):e13111.
- 407 19. Mohammed H, Blomquist P, Ogaz D, Duffell S, Furegato M, Checchi M, et al. 100
- 408 years of STIs in the UK: a review of national surveillance data. Sex Transm Infect.
- 409 2018 Dec;94(8):553-8.
- 20. Catalan J, Ridge D, Hedge B. HIV in the UK; Voices from the Epidemic (1st Ed).
- 411 Routledge. 2020;
- 21. Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primer.
- 413 2015 Oct 1;1(1):15035.
- 414 22. Aghaizu A, Wayal S, Nardone A, Parsons V, Copas A, Mercey D, et al. Sexual
- behaviours, HIV testing, and the proportion of men at risk of transmitting and
- acquiring HIV in London, UK, 2000–13: a serial cross-sectional study. Lancet HIV.
- 417 2016 Sep;3(9):e431–40.
- 418 23. Nagington M, Sandset T. Putting the NHS England on trial: uncertainty-as-power,
- evidence and the controversy of PrEP in England. Med Humanit. 2020
- 420 Sep;46(3):176–9.

- 421 24. Jansen K, Potthoff A, Schuppe AK, Beer D, Jessen H, Scholten S, et al. STI in times
- of PrEP: high prevalence of chlamydia, gonorrhea, and mycoplasma at different
- anatomic sites in men who have sex with men in Germany. BMC Infect Dis. 2020
- 424 Dec;20(1):110.
- 425 25. Montaño MA, Dombrowski JC, Dasgupta S, Golden MR, Duerr A, Manhart LE, et al.
- 426 Changes in Sexual Behavior and STI Diagnoses Among MSM Initiating PrEP in a
- 427 Clinic Setting. AIDS Behav. 2019 Feb;23(2):548–55.
- 26. Zhang Q, Peng L, Yuan Y, Hu Z, Zeng Y, Zeng W, et al. High rates of Treponema
- pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, or Trichomonas vaginalis
- co-infection in people with HIV: a systematic review and meta-analysis. Eur J Clin
- 431 Microbiol Infect Dis. 2025 Jan;44(1):1–15.
- 432 27. MacGregor L, Kohli M, Looker KJ, Hickson F, Weatherburn P, Schmidt AJ, et al.
- Chemsex and diagnoses of syphilis, gonorrhoea and chlamydia among men who
- have sex with men in the UK: a multivariable prediction model using causal inference
- 435 methodology. Sex Transm Infect. 2021 Jun;97(4):282–9.
- 436 28. Keshinro B, Crowell TA, Nowak RG, Adebajo S, Peel S, Gaydos CA, et al. High
- prevalence of HIV, chlamydia and gonorrhoea among men who have sex with men
- and transgender women attending trusted community centres in Abuja and Lagos,
- 439 Nigeria. J Int AIDS Soc. 2016 Jan;19(1):21270.
- 29. Guvenc F, Kaul R, Gray-Owen SD. Intimate Relations: Molecular and Immunologic
- Interactions Between Neisseria gonorrhoeae and HIV-1. Front Microbiol. 2020 Jun
- 442 3;11:1299.
- 30. Xu SX, Leontyev D, Kaul R, Gray-Owen SD. Neisseria gonorrhoeae co-infection
- exacerbates vaginal HIV shedding without affecting systemic viral loads in human

- 445 CD34+ engrafted mice. Ambrose Z, editor. PLOS ONE. 2018 Jan
- 446 23;13(1):e0191672.
- 447 31. Ghys PD; F. The associations between cervicovaginal HIV shedding, sexually
- transmitted diseases and immunosuppression in female sex workers in Abidjan,
- 449 Côte d'Ivoire. AIDS. 1997;11(12):F85-93.
- 32. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, et al. Reduction
- of concentration of HIV-1 in semen after treatment of urethritis: implications for
- prevention of sexual transmission of HIV-1. The Lancet. 1997 Jun
- 453 28;349(9069):1868–73.
- 454 33. Sadiq ST. The effects of urethritis on seminal plasma HIV-1 RNA loads in
- homosexual men not receiving antiretroviral therapy. Sex Transm Infect. 2005 Apr
- 456 1;81(2):120–3.
- 457 34. Baeten JM, Kahle E, Lingappa JR, Coombs RW, Delany-Moretlwe S, Nakku-Joloba
- 458 E, et al. Genital HIV-1 RNA Predicts Risk of Heterosexual HIV-1 Transmission. Sci
- Transl Med [Internet]. 2011 Apr 6 [cited 2024 Dec 13];3(77). Available from:
- 460 https://www.science.org/doi/10.1126/scitranslmed.3001888
- 35. Srifeungfung S, Roongpisuthipong A, Asavapiriyanont S, Lolekha R, Tribuddharat C,
- Lokpichart S, et al. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae
- in HIV-Seropositive Patients and Gonococcal Antimicrobial Susceptibility: an Update
- in Thailand. Jpn J Infect Dis. 2009 Nov 30;62(6):467–70.
- 465 36. Bell SF, Lambert SB, Jennison AV, Guglielmino CJ, Ware RS. HIV risk and
- 466 gonococcal genotype: Opportunities to improve passive surveillance for prompt
- identification of syndemics? Commun Dis Intell [Internet]. 2022 Apr 26 [cited 2025]
- 468 Jan 29];46. Available from:

- https://www1.health.gov.au/internet/main/publishing.nsf/Content/2A15CD097063E
- 470 F40CA2587CE008354F1/\$File/hiv risk and gonococcal genotype opportunities
- 471 to improve passive surveillance for prompt identification of syndemics.pdf
- 472 37. Town K, Field N, Furegato M, Cole M, Harris S, Hughes G. The emergence and
- spread of antimicrobial resistant Neisseria gonorrhoeae in hiv positive men who have
- sex with men. Sex Transm Infect. 2017 Jul 1;93(Suppl 2):A27.
- 475 38. Valere K, Rapista A, Eugenin E, Lu W, Chang TL. Human Alpha-Defensin HNP1
- 476 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated
- Enhancement of HIV Transmission. Viral Immunol. 2015 Dec 1;28(10):609–15.
- 478 39. Tugizov S. Human immunodeficiency virus-associated disruption of mucosal barriers
- and its role in HIV transmission and pathogenesis of HIV/AIDS disease. Tissue
- 480 Barriers. 2016 Jul 2;4(3):e1159276.
- 481 40. Day CJ, Hardison RL, Spillings BL, Poole J, Jurcisek JA, Mak J, et al. Complement
- Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell
- Barrier: New Insight into HIV Transmission in Women. Sansonetti PJ, editor. mBio.
- 484 2022 Feb 22;13(1):e02177-21.
- 41. Chen A, Boulton IC, Pongoski J, Cochrane A, Gray-Owen SD. Induction of HIV-1
- 486 long terminal repeat-mediated transcription by Neisseria gonorrhoeae. AIDS
- 487 [Internet]. 2003;17(4). Available from:
- https://journals.lww.com/aidsonline/fulltext/2003/03070/induction_of_hiv_1_long_te
- 489 rminal repeat mediated.19.aspx
- 490 42. Zhu W, Ventevogel MS, Knilans KJ, Anderson JE, Oldach LM, McKinnon KP, et al.
- 491 Neisseria gonorrhoeae Suppresses Dendritic Cell-Induced, Antigen-Dependent CD4
- T Cell Proliferation. Chakravortty D, editor. PLoS ONE. 2012 Jul 23;7(7):e41260.

- 493 43. Rapista A, Ding J, Benito B, Lo YT, Neiditch MB, Lu W, et al. Human defensins 5
- and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology.
- 495 2011 Dec;8(1):45.
- 496 44. Malott RJ, Keller BO, Gaudet RG, McCaw SE, Lai CCL, Dobson-Belaire WN, et al.
- 497 Neisseria gonorrhoeae derived heptose elicits an innate immune response and
- drives HIV-1 expression. Proc Natl Acad Sci. 2013 Jun 18;110(25):10234–9.
- 499 45. Dobson-Belaire WN, Cochrane A, Ostrowski MA, Gray-Owen SD. Differential
- Response of Primary and Immortalized CD4+ T Cells to Neisseria gonorrhoeae-
- Induced Cytokines Determines the Effect on HIV-1 Replication. Schwartz O, editor.
- 502 PLoS ONE. 2011 Apr 22;6(4):e18133.
- 46. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, et al. HIV
- preferentially infects HIV-specific CD4+ T cells. Nature. 2002 May;417(6884):95–8.
- 47. Vieira VA, Avelino-Silva VI, Cerqueira NB, Costa DA, Costa PR, Vasconcelos RP, et
- al. Asymptomatic anorectal Chlamydia trachomatis and Neisseria gonorrhoeae
- 507 infections are associated with systemic CD8+ T-cell activation. AIDS.
- 508 2017;31(15):2069–76.
- 48. Yu Q, Chow EMC, McCaw SE, Hu N, Byrd D, Amet T, et al. Association of Neisseria
- 510 gonorrhoeae OpaCEA with Dendritic Cells Suppresses Their Ability to Elicit an HIV-
- 511 1-Specific T Cell Memory Response. Wang T, editor. PLoS ONE. 2013 Feb
- 512 12;8(2):e56705.
- 49. Engering A, Van Vliet SJ, Geijtenbeek TBH, Van Kooyk Y. Subset of DC-SIGN+
- dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood. 2002 Sep
- 515 1;100(5):1780–6.

- 516 50. Zhang J, Li G, Bafica A, Pantelic M, Zhang P, Broxmeyer H, et al. Neisseria
- 517 gonorrhoeae Enhances Infection of Dendritic Cells by HIV Type 1. J Immunol. 2005
- 518 Jun 15;174(12):7995–8002.
- 519 51. Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, et
- 520 al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced
- 521 HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014 Sep
- 522 1;8(9):1781–93.
- 523 52. Ceccarani C, Marangoni A, Severgnini M, Camboni T, Laghi L, Gaspari V, et al.
- Rectal Microbiota Associated With Chlamydia trachomatis and Neisseria
- gonorrhoeae Infections in Men Having Sex With Other Men. Front Cell Infect
- 526 Microbiol. 2019 Oct 18;9:358.
- 527 53. Poole J, Day CJ, Haselhorst T, Jen FEC, Torres VJ, Edwards JL, et al. Repurposed
- Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent
- and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells. McDaniel
- 530 LS, editor. mBio. 2020 Apr 28;11(2):e03046-19.

Table 1. A spread of co-infection point-prevalence (%) for HIV-1 and N. gonorrhoeae based on different regions.

This table demonstrates the heterogeneity observed between figures for co-infection across several papers (8,21–28). Whilst the year of data collection and groups studied differ in some examples, significant variation is observed, even within the same continent and region - highlighting the requirement for comprehensive global surveillance of co-infection.

	Region and co-				Year of
Continent	infection point	Authors	Risk group	Reference	data
	prevalence				collection
Asia	Asia – 2.3%	Zhang., et al	M&F	(27)	2025
	Delhi, India – 7.0%	Bala., et al	М	(28)	2011
	Shiraz, Iran – 2.9%	Ghassabi., <i>et al</i>	M&F	(29)	2018
Europe	Europe – 0.6%	Zhang., et al	M&F	(27)	2025
	UK – 9.4%	GRASP	M&F	(7)	2024
	England – 12.53%	O'Brien., et al	M&F	(20)	2012-2013
	Barcelona – 7.7%	Sentís., et al	15-24 year old M	(30)	2015
	Barcelona – 1.6%	Sentís., et al	15-24 year old F	(30)	2015
Africa	Central Africa – 12.9%	Zhang., et al	M&F	(27)	2025
	East Africa – 2.6%	Zhang., et al	M&F	(27)	2025
	Kenya – 17.0%	Sheung., et al	F sex workers	(31)	2008
Oceania	Oceania – 13.5%	Zhang., et al	M&F	(27)	2025
	Australia – 37.7%	Callander., et al	М	(32)	2017
North	North America – 0.3%	Zhang., et al	M&F	(27)	2025
America	Toronto, Ontario – 1.2%	Grewal., et al	MSM	(33)	2010-2013
South	South America – 0.6%	Zhang., et al	M&F	(27)	2025
America	Brazil – 5.2%	Cunha., et al	MSM	(34)	2015

Table 2. Shows a comparison of 4 different studies and levels of reported increase of HIV-1 viral RNA after exposure to N. gonorrhoeae.

This table shows viral RNA significantly increases during when exposed to both HIV-1 and *N. gonorrhoeae*, which can explain the increase in viral shedding during concurrent infection.

	Effect of N.		
Model type	gonorrhoeae on HIV-1	Further background of study	Reference
	viral RNA shedding	,	
	Vilai KNA Sileduliig		
Mouse -		7 out of 9 (78%) mice exhibited vaginal shedding after	(43)
female	Significantly increased	N. gonorrhoeae infection compared to only 2 out of 7	
		(29%) in the PBS control group.	
Human –		1202 female sex workers were investigated for factors	(44)
female sex		that increase vaginal shedding. N. gonorrhoeae	
workers	Adjusted odds ratio of 1.9	increased risk of shedding by the adjusted odds ratio	
		of 1.9. When the STI was treated vaginal shedding	
		decreased from 42% to 21%.	
Human – male		135 men from Malawi showed a strong association	(45)
	8-fold higher	with higher levels of HIV-1 in the semen (15.8x10 ⁴	
		copies/ml). This decreased to 8.91x10 ⁴ copies/ml after	
		treatment of the STI.	
Human – male		13 cases of GBMSM showed that the mean log semen	(46)
	5-fold higher	plasma viral loads were higher for those with <i>N</i> .	
		gonorrhoeae and Chlamydia trachomatis infection	
		(4.27) compared to the controls (3.55). After treatment	
		with antibiotics mean semen plasma levels dropped by	
		0.25 log.	

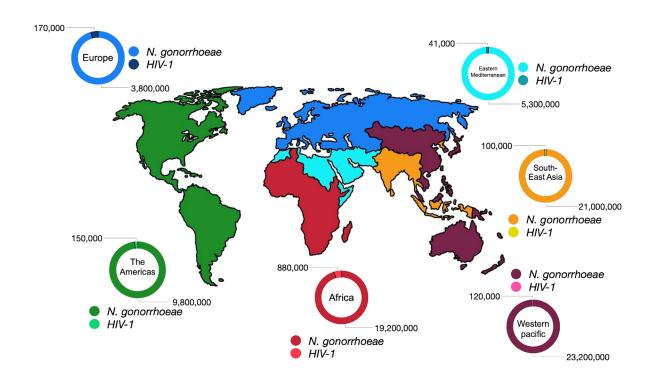


Fig 1. A worldwide map showing the incidence of HIV-1 and N. gonorrhoeae infections in 2021.

Generally, higher incidence of gonorrhoea reflects higher HIV-1 incidence. The African region is disproportionately affected by HIV incidence with numbers five times greater than the European region. Figures were taken from the 2021 WHO STI report (1).

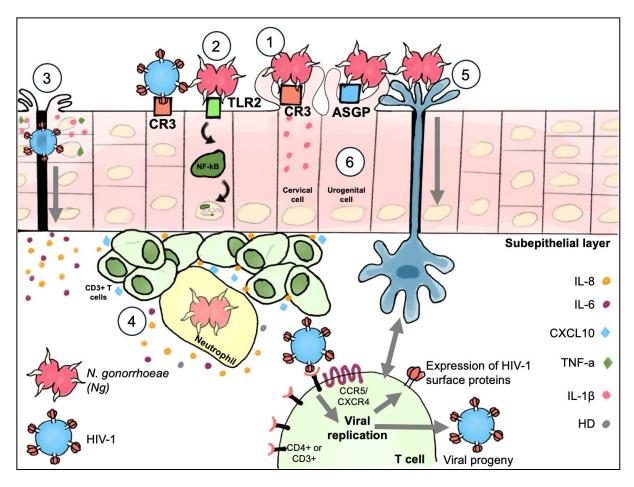


Fig 2. Enhanced transmission, and replication of HIV-1 caused by N. gonorrhoeae infection.

1) HIV-1 and Ng both use CR3 for transcytosis. Binding of Ng to CR3 leads to secretion of IL-1β within the epithelial cell, activating CXCL10 and IL-8 chemokine and cytokine production (15). The cytokines and chemokines attract CD3+ T cells to the subepithelial layer so that sub-mucosal HIV can infect these target cells resulting in greater levels of HIV-1 replication. 2) TLR2 recognition by Ng activates downstream signalling of NF-kB. This produces increased pro-inflammatory cytokines (14,45). 3) Membrane ruffling induced by Ng allows for HIV-1 transport through epithelial lesions (15). Once HIV-1 enters the mucosal space it initiates viral replication within T cells. 4) Activated neutrophils increase levels of pro-inflammatory cytokines and human defensins (HD). These have both been found to increase levels of HIV-1 replication

(36,45). **5)** Binding of Ng to DCs elicits immune dysregulation and immune system suppression that enhances both Ng and HIV-1 infection (52). DCs also facilitate transport of Ng though epithelial lesions, Ng is moved from the surface of the epithelium to the subepithelial layer where Ng binds to DCs (27). **6)** Ng enters male epithelial cells using the ASGP receptor. However, very little is still known about transcytosis of HIV-1 in male urogenital cells. There is a possibility that HIV-1 enters the submucosal space via a specific receptor found on male epithelial cells, but this knowledge currently remains an enigma. Development of 2D and 3D male models would benefit understanding of HIV-1 transcytosis and co-infection.