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ABSTRACT

Purpose: (i) To assess whether 12°Xe apparent diffusion coefficient (ADC) and diffusive length scale (Lmy,) metrics are quanti-
tatively preserved with deep learning (DL) accelerated acquisition and reconstruction and (ii) to evaluate the feasibility of 1*°Xe
diffusion weighted imaging with natural-abundance xenon at increased acceleration factors.

Methods: Twenty three-dimensional compressed sensing (CS) accelerated 2Xe DW MRI datasets were gathered from a cohort
of patients with asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Images were
retrospectively reconstructed with DL based CS, denoising and de-ringing reconstruction, and compared to conventional CS.
ADC and diffusive length scales (Lmy,) were assessed and compared between conventional CS and DL reconstructions. Prospec-
tively acquired DL reconstruction was then assessed in three healthy volunteers who underwent 2Xe DW MRI with both
natural-abundance and enriched xenon mixes.

Results: DL reconstruction qualitatively improved the sharpness, SNR and image quality of *Xe DW images. In the retrospective
study, DL reconstruction produced a slight bias in ADC (5.4%) and Lmy, (0.8%) values when compared with conventional CS
reconstruction. In the prospective study, DL reconstruction significantly improved the SNR of natural-abundance xenon images
and produced ADC and Lmy, values comparable to those achieved with 129-enriched xenon.

Conclusion: DL-based CS, denoising and de-ringing significantly improves SNR and image sharpness in 3D '¥Xe
diffusion-weighted MRI while exhibiting a slight bias in ADC and Lmy,. This approach enables the use of natural-abundance
xenon and higher acceleration factors, offering substantial cost reduction and improved clinical feasibility for hyperpolarized
129%¥e lung morphometry.

1 | Introduction Diffusion weighted (DW) MRI with hyperpolarized '?°Xe enables

quantitative assessment of lung microstructure through metrics
Hyperpolarized *Xe magnetic resonance imaging (MRI) is a such as the apparent diffusion coefficient (ADC) and morphom-
valuable modality to assess lung function and structure [1-4]. etry measurements generated from diffusion models [5-9]. The
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sensitivity of 12Xe DW MRI in probing tissue microstructure
has been well established in patients with chronic obstructive
pulmonary disease (COPD) and emphysema [1, 2]. Hyperpolar-
ized gas diffusion biomarkers also agree well with histologically
derived measurement parameters [2, 6]. However, 2°Xe DW-MRI
faces significant SNR challenges due to the low gyromagnetic
ratio and diffusivity, which necessitates longer diffusion gradi-
ent times, and in turn, sequence echo time (TE) and repetition
times (TR) [9] that together extend the acquisition time needed
for volumetric coverage of the lungs. Several research groups
have worked on multi b value **Xe DW MRI [6, 9, 10] with
the different b value interleaves either acquired without whole
lung coverage or across multiple breath-holds with long scan
times. 3D spoiled gradient echo (SPGR) acquisitions [6, 10] with
compressed sensing (CS) acceleration were proposed to enable
whole lung coverage, but the breath-holds for such scans are
longer (>4s per interleave) [6] and have the same SNR limi-
tations. Though CS techniques have been developed to acceler-
ate hyperpolarized gas MRI acquisitions [6, 10-12] the resulting
SNR penalty further constrains the achievable acceleration fac-
tors, especially for diffusion-weighted acquisitions where SNR is
intrinsically lower. Current clinical scans with CS acceleration
factor (AF) of four require breath-holds of approximately 17s
when implemented as per [6]. This duration can be challenging
for patients with respiratory limitations and exceeds the recom-
mended breath-hold duration of less than 15 established by the
129%e MRI clinical trials consortium protocols [13].

To address SNR limitations, most '?°Xe diffusion imaging stud-
ies utilize enriched (EN) xenon mixes (> 85% *Xe) compared
to natural-abundance (NA) xenon (26% *°Xe) [8] as enriched
xenon provides an approximately threefold SNR benefit. How-
ever, natural abundance xenon has been historically an order of
magnitude cheaper than enriched xenon [13] and with improve-
ments in polarization technology [14], it can be a viable option for
129Xe ventilation imaging [15]. NA '?°Xe ventilation imaging has
recently been shown to be improved with a deep learning denois-
ing and de-ringing reconstruction pipeline [16] and CS recon-
struction has enabled robust NA '?*Xe gas exchange imaging [12]
but the feasibility of diffusion weighted NA 2°Xe imaging, (where
quantitative accuracy is crucial), has yet to be demonstrated.
Importantly, DL reconstruction has the potential to enable higher
acceleration factors which could reduce breath-hold time within
the consortium guidelines of 15 s while maintaining or improving
image quality.

Some research groups have focussed on use of deep learning
only for ?°Xe diffusion CS reconstruction [17] and explored algo-
rithmic denoising techniques like HOSVD [18] to improve diffu-
sion image quality, but there has been no reported work on an
integrated reconstruction approach that employs DL-based CS,
denoising and de-ringing methods together. While the present
manuscript was under review, a publication comparing super-
vised and unsupervised deep learning strategies for denoising
129%e images was published [19]. While the approach used in that
work addressed only denoising of 12°Xe images, our deep learning
approach involves an integrated reconstruction as follows.

In this work, we evaluate the feasibility of applying deep learning-
based CS, denoising and de-ringing to 2°Xe diffusion-weighted

MRI. Mean ADC and Lmj values are compared between
conventional CS reconstruction and DL reconstruction in a retro-
spective patient cohort. We demonstrate that these combinations
of techniques enable: (1) the use of natural-abundance xenon
instead of enriched xenon; and (2) increased acceleration factors
while maintaining quantitative diffusion metrics.

2 | Methods

2.1 | Retrospective Study Design

A retrospective analysis of 20 °Xe diffusion datasets was con-
ducted from the Advanced Diagnostic Profiling (ADPro) study
[20]. The patients were scanned under a National Research Ethics
Committee approved protocol (16/EM/0439) and had a diagnosis
of asthma and/or COPD. The datasets were selected manually to
cover a range of Lmy, values from a database of > 100 examina-
tions and were retrospectively reprocessed using the deep learn-
ing reconstruction pipeline. To demonstrate applicability to other
lung disorders, we also retrospectively analyzed a dataset from a
patient with idiopathic pulmonary fibrosis (IPF) [21].

2.2 | Prospective Study Design

A prospective study then followed to assess the feasibility of
using natural abundance xenon and CS acceleration factor of
5. Three healthy volunteers (age: 29, 35, 36years; sex: 3 M)
were scanned with a 50:50 mix of natural abundance xenon
(550 mL) and N, (450 mL). Hyperpolarized '?°Xe doses were pro-
duced to a polarization level of 30% using an in-house regulatory
approved spin-exchange optical pumping polarizer [14]. All vol-
unteers were also scanned with the usual dose of 129-enriched
Xenon. The volunteers were scanned under ethics UOS052024.
Four datasets were acquired from the three volunteers with both
enriched and natural abundance xenon: three datasets using con-
ventional acceleration factor of 4 and one dataset using accelera-
tion factor of 5. The CS masks used with acceleration factors of 4
and 5 are shown in Figure S3.

2.3 | MRI Acquisition

Images were acquired on 1.5T GE Healthcare scanners (HDx
for the retrospective study and SIGNA Artist for the prospec-
tive study) with a flexible single channel transmit-receive vest
coil (Clinical MR Solutions). For the retrospective study, only
129-enriched xenon was used ("86% enrichment) and for the
prospective study, both 129-enriched xenon and natural abun-
dance (26% *°Xe) xenon were used. In all cases, the total gas vol-
ume delivered was determined based on patient height as previ-
ously described in [22], with volumes typically <1 L. The gas was
inhaled from functional residual capacity with subjects maintain-
ing a breath-hold during image acquisition.

Volumetric multiple b value diffusion-weighted *Xe MRI
was acquired using a 3D spoiled gradient echo sequence
with the following parameters: Average FOV =40X32.5X
27 cm?; matrix =64 X 52 x 18 (effective voxel size =6.25 X 6.25 X
15mm?), elliptical-centric phase encoding, four diffusion-
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weighted interleaves (b=0, 12, 20, and 30s/cm?), CS accel-
eration factor (AF)=4, TE/TR=11.7/15.0ms, diffusion time
(A)=8.5ms, and flip angle=2.7". This protocol was adapted
from Chan et al. [6].

2.4 | Image Reconstruction
Raw k-space data from each acquisition were reconstructed
using:

1. Conventional CS reconstruction [6, 10].

2. Deep learning-based (DL) reconstruction pipeline.

The integrated DL reconstruction pipeline combines a supervised
DL network (adapted from [23] for single channel use) trained to
fill missing k-space points (hereafter referred to as DL CS) and,
subsequently, AIR Recon DL [24] (GE Healthcare) for denoising
and de-ringing. AIR Recon DL utilizes a convolutional neural net-
work (CNN) containing 4.4 million trainable parameters across
approximately 10000 kernels designed for MRI reconstruction.
The key features of the CNN include: scale-invariant design using
Rectified Linear Unit (ReLU) activations without bias terms,
enabling effective processing across the wide dynamic range
encountered in low-SNR ?Xe imaging, providing user-tunable
noise reduction and integrated truncation artifact suppression
that converts ringing artifacts into improved edge sharpness.
The network was trained using supervised learning with pairs
of near-perfect high-resolution and lower-resolution MR images
with added truncation artifacts and noise, utilizing the ADAM
optimizer to minimize mean squared error between CNN predic-
tions and target images [24]. For the current study, we employed
the commercially available implementation without modifica-
tion or retraining specific to 12Xe imaging, applying maximum
denoising (1.0) and de-ringing (1.0) levels based on the low-SNR
characteristics of hyperpolarized gas diffusion imaging. Images
were also generated after DL CS only, DL CS with only denoising
(DL CS: DN) and DL CS with denoising and de-ringing (DL CS:
DN + DR) to isolate and characterize the effects of the individual
processing steps.

2.5 | Data Analysis

ADC maps from the b=0 and b=12s/cm? images were calcu-
lated. For multiple b value analysis, the stretched exponential
model (SEM) was applied to the diffusion signal decay:

S/, = o~ (bxDDC)

where S is the signal at b=0, S, is the signal at a non-zero
b value, DDC is the distributed diffusivity coefficient, and « is
the heterogeneity index (ranging from 0 to 1). Unlike the stan-
dard mono-exponential model, the SEM accounts for the hetero-
geneous microstructural environment within each voxel. From
these parameters, we derived the mean diffusive length scale
(Lmp) which represents the alveolar dimensions. The SEM anal-
ysis was done using custom software written in MATLAB.

For the retrospective study, Bland-Altman analysis was per-
formed to assess the agreement between different reconstruction

methods for both ADC and Lmj maps. This analysis was cru-
cial for determining whether the DL reconstruction introduced
any systematic bias into the quantitative diffusion measurements.
A simple flowchart showing the process of reconstruction and
image analysis is included in Figure S1.

2.6 | Synthetic Noise Addition Experiment

To evaluate the robustness of the DL reconstruction at different
noise levels, we added complex Gaussian noise with standard
deviations of: 2x, 3.3x (which represents the expected SNR drop
when using natural abundance xenon) and 5x the original noise
level, to one COPD dataset obtained with 129-enriched xenon.
The datasets with added noise were reconstructed using conven-
tional CS and the DL reconstruction methods, and the resulting
ADC and Lmp, maps were compared.

3 | Results

3.1 | Retrospective Study
129Xe diffusion images from a COPD patient are shown in
Figure 1A.

The figure presents images from conventional CS reconstruc-
tion, DL-based CS reconstruction (DL CS), deep learning CS
reconstruction with denoising (DL CS: DN), and deep learning
reconstruction with denoising and de-ringing (DL CS: DN + DR).
The b=0 and b=30 images are shown along with the corre-
sponding ADC and Lm;, maps. The DL CS: DN +DR recon-
structed images demonstrate substantial visual quality enhance-
ment with increased sharpness indicated by arrows. In addition
to the enhanced image appearance with the DL reconstruction,
the spatial distributions of quantitative diffusion metrics ADC
and Lmp, were well preserved.

Figure 1B shows results from an IPF patient. The b=0, b=30
images are shown with the corresponding ADC and Lmp,. Sim-
ilar observations of improved image quality and sharpness with
preservation of quantitative metrics were observed.

Across the 20 datasets, the ADC and Lmy, values derived from
the DL reconstruction pipelines showed good agreement with the
conventional CS results, with a slightly increased bias for DL CS:
DN + DR. To quantify the bias, Bland Altman analyses were per-
formed. Figure 2 shows the Bland-Altman plots for DL CS, DL
CS: DN, and DL CS: DN + DR.

Comparison of ADC values with DL CS: DN+ DR and con-
ventional CS reconstruction revealed a mean positive bias of
0.003 cm?/s (5.4%) which reduced to 0.0008 cm?/s (1.46%) when
de-ringing was removed. Similarly, the mean Lm,, difference
between CS and DL CS: DN + DR showed a negative bias of
3.5 um (0.78%) which reduced to 1.2 pm (0.3%) when de-ringing
was removed. The mean ADC and Lmy, differences between CS
and DL CS were 1% and 0.33%, respectively which suggests that
CS and DL CS produced nearly identical results. Figure 3 shows
the results of the synthetic noise addition experiment on a COPD
dataset.
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Retrospective study. (A) From left to right: Conventional CS reconstruction, deep learning CS reconstruction (DL CS), deep learning

CS reconstruction with denoising (DL CS: DN), deep learning CS reconstruction with denoising and de-ringing (DL CS: DN + DR) for b=0s/cm? and

b =30s/cm? images. The corresponding ADC and Lmy, maps are shown for a COPD patient. The global ADC and Lmy, values are indicated for each

reconstruction method. Arrows indicate enhanced image sharpness achieved with deep learning reconstruction. (B) Representative results from an

Idiopathic pulmonary fibrosis (IPF) patient. Images for b=0s/cm?, b=30s/cm?, ADC and Lmy, maps are shown for conventional CS reconstruction

and DL CS: DN + DR.

Qualitatively, the reconstructed images look sharp even after
addition of noise. The mean global ADC values obtained from
DL reconstruction showed no differences at 2x, 3.3x, and 5%
noise levels, respectively, compared to the DL reconstruction

without adding noise. The mean global Lmp, showed negligible
differences at 2x, 3.3%, and 5X noise levels with mild regional
heterogeneity that became slightly less similar with increasing
noise levels. To quantify the regional variations, we computed
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CS: DN + DR are also shown. Note that addition of 3.3x noise is chosen to mimic acquiring with natural abundant xenon.

TABLE1 | Global mean ADC (ADCyq,) and Lmy, (Lmpg,) from three healthy volunteers obtained with enriched and natural abundance Xe + N,

inhaled gas mixture.

Subject 1 (EN)

1 (NA)

2 (EN) 2 (NA) 3 (EN) 3 (NA)

ADCyq, (cm?/s) (DL CS)

0.030+0.008 0.029 +£0.009 0.042+0.008 0.043+0.015

0.033+0.010 0.034 +0.008

ADCyp, (cm?/s) (DL CS: DN+DR)  0.030+0.013  0.033+0.014 0.042+0.011 0.047+0.019 0.036+0.012 0.033+0.013
Ly, (4m) (DL CS) 261 + 62 255+ 67 320 + 54 318+ 63 274 + 60 281+ 54
LMy, (4m) (DL CS: DN + DR) 257 +72 272479 318+ 67 328+ 76 289 + 72 273+71

the mean absolute error (MAE) of the ADC and Lm;, maps at
2X, 3.3%X, and 5X noise levels compared to the DL reconstruction
without addition of noise. The MAE in ADC was 2.9e—4, 4.34e—4,
and 5.54e—4 cm?/s while the MAE in Lmy, was 2.86, 4.19, and
5.06 pm at 2%, 3.3%, and 5X noise levels, respectively.

3.2 | Prospective Study

Table 1 summarizes the global mean ADC (ADCgy,) and Lmy,
(Lmpgqp) values obtained from three healthy volunteers using a
natural abundance Xe + N, inhaled gas mixture.

The mean ADC and Lmj values were preserved between
enriched and natural abundance xenon with DL CS: DN+ DR
when compared to DL CS reconstruction. The b =0 images, ADC
and Lmp, maps are shown for one volunteer in Figure S2 where

the use of DL CS: DN + DR shows slight visual variations in the
ADC and Lmj, maps while it increased the SNR of natural abun-
dant xenon to be closer to that of enriched xenon.

Figure 4 shows a comparison of DL CS versus DL CS: DN + DR
for enriched xenon and natural abundant xenon for data acquired
from one volunteer at an acceleration factor of 5. Similar to pre-
vious observations, the overall sharpness improved with DL CS:
DN + DR, and the ADC and Lm, maps exhibit preserved quanti-
tative accuracy.

4 | Discussion

In this work, we have demonstrated the feasibility and advantages
of applying an extended deep learning and CS reconstruction
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pipeline (CS, denoising, and de-ringing) to 3D *°Xe diffusion-
weighted MRI. The substantial SNR enhancement pro-
vided by DL reconstruction is particularly valuable for *°Xe
diffusion-weighted imaging, where the inherently lower SNR in
high b value images often limits quantitative analysis.

The DL reconstruction approach differs from traditional denois-
ing methods by integrating CS, denoising, and de-ringing within
a unified framework. This approach helps recover information
and provide enhanced image quality which explains the superior
performance, particularly at low SNR.

The retrospective study results showed visually improved image
quality with a slight positive bias in ADC (5.4%) and slight nega-
tive bias in Lmp, (—0.78%), when compared with conventional CS
reconstructions. The bias reduces to 1.46% for ADC and —0.3%
for Lmp when de-ringing is removed. This aligns with previ-
ous findings by Stewart et al. [16] in '*°Xe ventilation imaging
with DL reconstruction, where ventilation metrics like ventila-
tion defect percentage (VDP) and ventilation heterogeneity index
(VHI) had a slightly higher bias with denoising and de-ringing
when compared to denoising only. Bland Altman analysis shows
that the bias is within the statistical (95%) limits of agreement.
This bias likely arises from the sharper structural boundaries due
to the de-ringing component of the DL reconstruction, which has
been previously reported to increase sharpness at tissue inter-
faces [16]. Disabling de-ringing improves the quantitative agree-
ment with the gold-standard but the reconstructed images lose
the sharp boundaries generated due to de-ringing (these being
a major factor in improving visual image quality). The bias was
consistent across subjects from healthy volunteers to patients
with severe COPD. This suggests that DL reconstruction does not
compromise the ability to detect focal pathological changes in
lung microstructure.

During our analysis we also observed that the AIR Recon DL
processing can produce subtle background artifacts, typically

appearing as haze-like patterns in high-noise regions outside the
lung region. These artifacts are minimal and do not affect quan-
titative analysis within the lung regions. This can be observed in
the background in Figure 3.

The synthetic noise addition experiment provides valuable
insights into the robustness of DL reconstruction across a range
of SNR conditions. While the global ADC and Lmy, values look
unaffected even after addition of noise, the MAE values increase
with increasing noise levels which indicates divergence in the
regional variations as noise level increases. However, visual
inspection of the maps at three noise levels for the COPD dataset
show that the main patterns of regional heterogeneity are pre-
served, thus demonstrating suitability for use of natural abun-
dance xenon. The ability to maintain accurate diffusion metrics
even at very low SNR levels is particularly important for clin-
ical applications. These results suggest that DL reconstruction
could potentially enable the use of natural abundance xenon
instead of enriched xenon for diffusion-weighted imaging while
still obtaining reliable quantitative metrics. This was shown in
the subsequent prospective study where healthy volunteers were
scanned with natural abundance xenon and we observed good
image quality and reliable quantitative metrics with DL recon-
struction. Increasing the acceleration factor to 5 allowed a further
reduction in the breath-hold time from 17 to 14 s. This reduction
is particularly important for patients with respiratory limitations
who may struggle to maintain longer breath-holds. Combined
with the use of natural-abundance xenon, these advances could
significantly improve the economic and practical aspects of 3D
129Xe diffusion-weighted MRI.

Some of the limitations of this work include the prospective
experiments with natural abundance xenon and higher accel-
eration factors being performed on only healthy volunteers
with normal lung function. Further studies in patients with
pulmonary diseases are needed to assess the clinical utility of use
of natural abundance xenon and DL reconstruction in a wider
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clinical setting. We have restricted our analysis to 3D Cartesian
data acquired using SPGR at 1.5T. Though the DL model can
support both 2D and 3D scans, 3D SPGR is used routinely for
diffusion imaging at our center. Also, the model used here can-
not be applied directly to non-Cartesian trajectories. Recently,
there has been considerable interest in the use of non-Cartesian
trajectories for diffusion imaging [25, 26], and thus training
and using a model for non-Cartesian reconstruction will be the
subject of future work. Finally, the specific DL reconstruction
algorithm used in this study is currently only implemented
on GE HealthCare scanners and alternative models that can
support cross-vendor studies will be important for the 2Xe MRI
community.

5 | Conclusion

DL-based reconstruction significantly enhances SNR in 12°Xe
diffusion-weighted MRI while preserving quantitative met-
rics (ADC and Lmp). This approach shows promise for the
use of natural-abundance xenon gas instead of more costly
129-enriched xenon and may allow higher acceleration factors
than conventional methods.

Our retrospective and prospective results extend the findings of
Stewart et al. [16] for ventilation imaging to diffusion-weighted
imaging, where preserving quantitative accuracy is particularly
critical for morphometric assessment of alveolar microstructure.
In conclusion, the integration of DL-based reconstruction for
129Xe diffusion-weighted MRI shows promise for significantly
enhancing the economic viability and clinical practicality of this
technique.
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Supporting Information

Additional supporting information can be found online in the Sup-
porting Information section. Figure S1: Deep learning-based recon-
struction pipeline for hyperpolarized *°Xe diffusion weighted MR.
CS=compressed sensing reconstruction; DDC =distributed diffusion
coefficient; SNR =signal-to-noise-ratio. Figure S2: (Prospective study)
SNR comparison between deep learning CS reconstruction (DL CS) and
deep learning CS reconstruction with denoising and de-ringing (DL CS:
DN + DR) after inhalation of enriched xenon and natural abundance
xenon. Quoted SNR is the mean apparent SNR across all slices. The ADC
and Lmp, maps from deep learning CS reconstruction with denoising and
de-ringing (DL CS: DN + DR) is also shown. Global ADC and Lmy, val-
ues are indicated in the figure. Figure S3: (Retrospective and prospec-
tive study) Compressed sensing masks used for acceleration factors of
4 and 5. The x-axis corresponds to kz dimension while the y-axis cor-
responds to ky dimension. White points denote the sampled locations
while the blue region denotes unsampled points. Note that the same
masks are used across all b values. Figure S4: (Retrospective study)
Evaluation of four different denoising levels of 1, 0.75, 0.5, and 0.25
on a COPD dataset at b=12s/cm? and b=30s/cm?. When denoising
levels reduce, we can see more noise in the image background espe-
cially in b=30s/cm? images. The increased sharpness in all the images

is attributed to de-ringing. While adjusting the denoising levels showed
qualitative changes mostly in the background, there was no considerable
quantitative changes observed. In all our experiments, we used 1.0 as
denoising and de-ringing levels due to low SNR characteristics of 12Xe
imaging.
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