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Abstract
How long does a uniformly rotating observer need to interact with a quantum
field in order to register an approximately thermal response due to the circular
motion Unruh effect? We address this question for a massless scalar field in
2 + 1 dimensions, defining the effective temperature via the ratio of excitation
and de-excitation rates of an Unruh—DeWitt detector in the long interaction
time limit. In this system, the effective temperature is known to be significantly
smaller than the linear motion Unruh effect prediction when the detector’s
energy gap is small: the effective temperature tends to zero in the small gap
limit, linearly in the gap. We show that a positive small gap temperature at long
interaction times can be regained via a controlled long-time-small-gap double
limit, provided the detector’s coupling to the field is allowed to change sign.
The resulting small gap temperature depends on the parameters of the circular
motion but not on the details of the detector’s switching. The results broaden the
energy range for pursuing an experimental verification of the circular motion
Unruh effect in analogue spacetime experiments. As a mathematical tool, we
provide a new implementation of the long interaction time limit that controls
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in a precise way the asymptotics of both the switching function and its Fourier
transform.

Keywords: Unruh effect, quantum field theory,
relativistic quantum information

1. Introduction

The Unruh effect [ 1-4] is the prediction in quantum field theory that a uniformly linearly accel-
erated detector with proper acceleration a responds to the Minkowski vacuum of a relativistic
quantum field as if the vacuum were a thermal state at the Unruh temperature

ha

- 27TCkB.

Ty (1.1)
The geometric observation behind this phenomenon is that the restriction of the Minkowski
vacuum to a quadrant of Minkowski space, adapted to the boost Killing vector that generates
the linearly accelerated trajectory, is a genuinely thermal state with respect to the detector’s
proper time, at the temperature (1.1) [3-8]. As a temperature of 1K requires an acceleration
of approximately 2.4 x 10?°ms~2, an observational verification of this phenomenon currently
lies well beyond experimental capabilities. Despite this challenge, observation of the Unruh
effect would be significant, partly due to its deep connections with other phenomena, such
as the Hawking effect [9], and the cosmological particle production [10], which may have
played a critical role in the formation of the present-day structure of the Universe [11]. For a
comprehensive review of the Unruh effect and its applications, see [12].

Better prospects for observing the Unruh effect are provided by analogue spacetime sys-
tems [13-15], which simulate relativistic quantum fields in nonrelativistic hydrodynamical or
condensed matter table-top experiments. In such systems, excitations in some observable prop-
erty of a fluid, like the density, velocity potential, or fluid height, play the role of the quantum
field, and crucially, the speed of light is replaced by the speed of sound of the fluid, thereby
raising the Unruh temperature (1.1) by several orders of magnitude. Confirmation of stimu-
lated Hawking emission [16], the classical mode conversion underlying the Unruh effect [17],
and (phononic) Hawking radiation and entanglement [18] have been reported in such analogue
systems.

Another challenge with observing the Unruh effect, even in analogue systems, is to be able
to maintain a linearly accelerating system within the experimental apparatus for a length of
time sufficient to resolve the phenomenon. This challenge can be overcome by considering
circular [19-22] rather than linear acceleration, for which an experiment can be conducted
for an arbitrarily long time. A further advantage of circular acceleration is that the lack of
a condensed matter relativistic time dilation can be accounted for at the data analysis stage
[23-27]. The circular motion Unruh effect has previously been considered in the context of
electron beam depolarisation in accelerator storage rings [19-22, 28, 29]. For other work on
the theory of the circular motion Unruh effect, see [30—41].

For uniform linear acceleration, the Unruh effect can be understood in terms of a
Bogoliubov transformation that expresses the Minkowski vacuum in terms of the Rindler
vacuum (the vacuum adapted to the boost Killing vector), together with the corresponding
Rindler excitations [3]. The spectrum of these excitations is thermal at the Unruh temperat-
ure (1.1), where a is the proper acceleration of the trajectory. For uniform circular motion,
by contrast, a Bogoliubov transformation that would express the Minkowski vacuum in terms
of a ‘co-rotating’ vacuum and ‘co-rotating’ excitations thereon is not available [3, 30, 31, 34,
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42]. Instead, an effective temperature parameter can be defined operationally in terms of the
ratio of excitations and de-excitations of a ‘particle detector’, which is typically modelled by
a localised quantum system with discrete energy levels or by a localised mode of a quantum
field [3, 43]. Although the effective temperature in circular motion depends not just on the
proper acceleration but on all the parameters of the orbit and on the internal energy spacing
of the detector, the effective temperature largely agrees with the Unruh temperature (1.1) over
most of the parameter space [21, 25, 38]. It is in this sense that the response of such a detector
is approximately thermal and the effective temperature therefore provides a useful quantifier
of the circular motion Unruh effect.

In the recent analogue spacetime proposals to observe the circular motion Unruh effect in
Bose-Einstein condensates [24, 27] and superfluid Helium thin-films [44], the quantum field
that is simulated is a (2 + 1)-dimensional massless scalar field. In this system, the circular
acceleration effective Unruh temperature is of the same order of magnitude as the linear accel-
eration prediction over most of the parameter space, but it is much smaller when the internal
energy spacing of the accelerating detector is small and the interaction with the quantum field
lasts for a long time [25]. This phenomenon is characteristic of circular motion in 2 4 1 dimen-
sions for a massless field, and its mathematical origin is in the weak fall-off of the field’s
Wightman function along the circular worldline [45]. The phenomenon hence presents a chal-
lenge for experiments that would operate in the small energy spacing regime. We shall show
that the challenge can be alleviated by allowing the coupling between the ambient field and
the probe to change sign in a suitably controlled way.

Mathematically, the purpose of this paper is to investigate to what extent the assumption
of an infinitely long interaction duration is responsible for the disparity between the circular
motion effective temperature and the Unruh temperature in the small gap regime. In brief: How
long does an observer undergoing circular motion in 2 + 1 dimensions need to wait to register
approximate thermality when the observer’s internal energy spacing is small? Physically, the
answer has clear resource implications for any experiment.

A similar question was investigated in [46] for a uniformly linearly accelerated two-level
detector with a large energy gap. In that setting, the waiting time for approximate thermality
was found to grow with the energy gap, at a rate that depends on how the large interaction time
is modelled.

The model we employ here is as follows. We consider a massless scalar field in 2 4 1 dimen-
sional Minkowski spacetime, prepared initially in the Minkowski vacuum. We probe the field
with an Unruh-DeWitt (UDW) detector, a pointlike two-level quantum system coupled lin-
early to the quantum field [3, 43], and we take the interaction to be sufficiently weak that first
order perturbation theory in the coupling strength is valid. In 3 4+ 1 dimensions, this model
captures the essence of the interaction between an atom and the electromagnetic field when
angular momentum interchange is negligible [47, 48]. To control the interaction duration, we
assume that the interaction strength is time dependent and proportional to a switching function
that depends on the detector’s proper time, and the switching function either has compact sup-
port or is appropriately suppressed in the distant past and future. The profile of the switching
then determines the interaction duration, or the effective interaction duration when the sup-
port is not compact. The long interaction limit is implemented by stretching the profile in a
controlled way.

The switching profile could be stretched in various ways, two of which were considered
in [46]: adiabatic scaling, in which the entire switching function is scaled by a constant in its
argument, and plateau scaling, in which only the duration of an intermediate plateau interval is
scaled, leaving the finite duration switch-on and switch-off intervals unscaled. However, there
are other possibilities, and to provide a broad framework we introduce a new implementation
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of the long interaction time limit, which we call an Asymptotically Scaled Switching Family
(ASSF). This is a family of functions x (A > 0) obeying conditions set out in definition 3.2,
where the long time limit corresponds to A — co. The definition encompasses as special cases
both the adiabatic and plateau scalings of [46] but is significantly more general, controlling in
a precise way the asymptotics of both the switching function and its Fourier transform. Some
of our results are developed for ASSFs in general, while others are given for adiabatic and
plateau scalings, making use of ASSF properties to simplify the technical proofs by placing
them in the appropriately general and rigorous setting. However, we anticipate that many of
the latter results are generalisable to broader classes of ASSFs.

We first consider ASSFs in which the functions x» do not change their sign and are bounded
uniformly in A. It is shown that the effective temperature vanishes in a successive limit of
A — oo and E — 0, taken in either order. We then specialise to adiabatically scaled and plat-
eau scaled switching functions, maintaining the assumption that the switching function has
a uniform sign, but considering a simultaneous limit of A — co and E — 0, assuming that
these parameters are related in some way—we choose an inverse power law. We show that the
effective temperature still tends to zero in the small gap limit, although the rate at which the
temperature approaches zero can be slowed to an arbitrarily small power of the gap by taking
the interaction duration to increase relatively slowly when the detector gap decreases.

We then consider switching functions that do change their sign. For adiabatic scaling, in
the simultaneous long-time and small-gap limit described above, we show that a necessary
condition for the effective temperature to have a positive small gap limit is that the time-average
of the switching function vanishes. We present explicit examples of adiabatically scaled zero-
time-average switching functions for which a positive small gap temperature is indeed attained.
We further show that any adiabatically scaled, non-compactly supported switching function
with this small-gap limit property can be modified, subject to mild falloff conditions, into a
compactly supported switching function that has the same limit property under a scaling that
is asymptotically adiabatic. Finally, we show that similar constructions are not available with
plateau scaling.

Crucially, under the switching constructions described above, the recovered small-gap
effective temperature depends only on the parameters of the circular motion and is independ-
ent of the details of the switching. These switching constructions therefore reveal properties
of the worldline and the quantum field theory, rather than properties of a deftly engineered
switching.

Switching functions with sign changes appear not to have received attention in the literature.
However, there is nothing that prevents us a priori from considering such switching functions,
or from constructing them in laboratory experiments. In fact, they arise naturally in entangle-
ment harvesting protocols in which causally disconnected local laser pulses become entangled
through their interaction with, for example, an electromagnetic field [49] or a Bose—Einstein
condensate [50]. In this setting, the switching function is given by the coherent amplitude
of the electric field of the laser, which can be given any profile, and in particular, it can be
engineered to change sign. In the Bose—Einstein condensate experiment proposed in [24, 27],
the engineering would be related to the detuning of the probe laser beam sidebands around a
resonance frequency of the condensate.

The paper is structured as follows. In section 2 we introduce the preliminary theory: the
UDW detector model and its response in stationary motion, approximate thermality and the
effective temperature, and the long time limit. Section 3 introduces ASSFs as a new imple-
mentation of the long interaction time limit, proving properties that will be used in the later
sections. Section 4 specialises to 2 4 1 circular motion and considers the long-time and small-
gap limits when the limits are taken in succession in either order. Section 5 is an interlude that
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establishes the notation for the adiabatic and plateau scalings. In section 6, we compute the
simultaneous long time with small gap asymptotics with adiabatic and plateau scaled switch-
ing functions, under the assumption of no sign changes. Switchings that change sign are con-
sidered in section 7. Section 8 presents a summary and conclusions. Proofs of technical results
are delegated to five appendices.

We use units in which /i = kg = ¢ = 1. We work in (2 4 1)-dimensional Minkowski space-
time with standard Minkowski coordinates (¢,x,y) = (#,x), in which the Minkowski metric 7
reads ds’> = —dr> + dx* 4 dy?. Spacetime points are denoted by sans serif letters. In asymptotic
formulae, f{x) = O(x) denotes that f{x)/x is bounded in the limit of interest, and f(x) = o(x)
denotes that f{(x) /x — 0 in the limit of interest. The Heaviside theta function ©(x) is defined
as

>
o) = 1 forx>0 (1.2)
0 forx <O,

and the signum function sgn(x) is defined as

1 forx >0
sgn(x) =90  forx=0 (1.3)
—1 forx<O.

The Fourier transform is defined as

flw) = / dre (7). (1.4)

— 00

The L*(R) norm || - || is denoted by

7P = [ et (15
The kth moment of a real-valued function g, with k =0, 1,2,..., is denoted by
(oo}
Mile)= [ arte (0. (1.6)

Finally, we recall that sinc denotes the analytic function defined by

. sinz £
sincz = z 1.7
{1 z=0. (1.7

2. Preliminaries

In this section we set out preliminaries about the field-detector model in d spacetime dimen-
sions. We introduce the effective temperature for a detector in stationary motion, defined via
the detailed balance formula, and we review how the long interaction time limit is implemented
in the detector’s response and in the effective temperature.
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2.1. Field-detector model

We consider an UDW detector [3, 43], a pointlike two-level quantum system, on a worldline
X(7) parametrised by proper time 7 in d-dimensional Minkowski spacetime with d > 3. The
detector’s Hilbert space Hp =2 C? is spanned by the orthonormal basis {|0),|E)} whose ele-
ments satisfy Hp |0) = 0 and Hp |[E) = E|E), where Hp and E are the detector’s Hamiltonian
and energy gap, respectively. If E > 0, |0) and |E) are the ground and excited states, respect-
ively, whereas if £ < 0, these roles are reversed. We assume throughout that E # 0, since from
section 4 onward we specialise to 2+ 1 dimensions, where the detector’s transition rate is
discontinuous at E = 0.

We let the detector interact with a real massless scalar field ¢ whose free Hilbert space H is
the Fock space induced by the Minkowski vacuum. The total Hilbert space is H = Hp @ He.
Working in the interaction picture, we take the interaction Hamiltonian to be

Hin (7) = cx (T) (1) @ ¢ (X (7)), 2.1

where c is a real-valued coupling constant, x(7) is a real-valued switching function that spe-
cifies how the interaction is turned on and off, ;(7) is the detector’s monopole moment oper-
ator, and ¢(X(7)) is the field evaluated on the detector’s worldline. The monopole moment
operator is given by

p(r)y=e o 7o, 2.2)

where 0~ |[E) = |0) and o1 |0) = |E). For E> 0, o is the raising operator and o~ is the
lowering operator; for E < 0, these roles are reversed.

In the present section, section 2, we assume for concreteness that y is a smooth function of
compact support, x € C5°(R), and not identically vanishing. It follows that X, where the hat
denotes the Fourier transform in the convention (1.4), is smooth (and in fact real analytic) and
falls off faster than any inverse power. We shall relax these assumption from section 3 onwards.
Earlier literature on detectors with compactly supported switching functions includes [46, 51—
53].

Before the interaction is turned on, the detector is prepared in the state |0) and the field
is prepared in a state |¥) whose Wightman function (¥|p(X)p(x’)|¥) is a distribution of
Hadamard type in the coincidence limit X’ — x [54]. Working within first-order perturbation
theory in the coupling constant c, the probability of finding the detector in the state |E) after
the interaction has ceased, without observing the final state of the field, is proportional to the
response function F, (E),

Fy(E)= /:X’ d'}'/ﬁOo dr'x () x (7) efiE(T*T,)VV(T,T')7 (2.3)

where the distribution W(,7") := (¥|od(X(7))p(X(7"))|¥) is the pull-back of the Wightman
function in the state |¥) to the detector’s worldline [3, 43, 55-57]. In the rest of the paper
we suppress the constant of proportionality and we use the terms ‘response function’ and
‘probability’ interchangeably.

When |U) is the d-dimensional Minkowski vacuum, W(r,7') is given by

W(r,r') = Ld/2-1) (2.4)

@
4md/2 [(x —x) (=1t — ie)z}
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where x =x(7), x’ =x(7’), t=1(7) and t' = ('), and the distributional limit ¢ — 0% is
understood. For odd d, the denominator has the phases i9~2 or (—i)¢=2 when t—t' >0 or
t—t' < 0, respectively, because X(7) is a timelike curve.

We note that this model, though standard, has some defects if one tries to understand it
beyond the context of first order perturbation theory in 3 4 1 dimensions (see, e.g. the brief
discussion in section 5 of [58]) arising from the singular nature of the coupling. The problem
can be ameliorated by extending the smearing around the curve, as is done in the rigorous treat-
ment [59], or by imposing cut-offs [60]. A recent treatment that renormalises the interaction
can be found in [61]. We will restrict to first order perturbation theory in this paper.

2.2. Stationary response and the long time limit

We now specialise to a detector whose response is stationary, in the sense that W(r,7’), the
pull-back of the Wightman function to the detector’s trajectory, depends on 7 and 7’ only
through their difference 7 — 7/. We may then write W(7,7’) = W(r —7/,0) = W(r — 1),
so that all the dependence of the response on the trajectory and on the field’s initial state |¥) is
encoded in the single-variable distribution V. The response function (2.3) can then be recast
as [40, 46]

F) =5 [ dwlR@) W), @3

— 00

where we recall that the hat denotes the Fourier transform in the convention (1.4). This situ-
ation is realised when the trajectory is stationary in the sense of Minkowski geometry, that is,
when it is the orbit of a Killing vector that is timelike in at least some neighbourhood of the
trajectory [32, 62, 63], and the state |¥) is invariant under the Poincaré transformations gen-
erated by the Killing vector. In particular, when |¥) is the Minkowski vacuum, the response
is stationary in any geometrically stationary motion.

While W is in general a distribution, with falloff properties that depend on the spacetime
dimension, we assume from now on that it is a bounded function, and continuous except pos-
sibly at zero argument. This will be the case for circular motion in 2 + 1 dimensions, which
we consider from section 4 onward.

Consider now the limit in which the interaction operates for a long time with approxim-
ately constant coupling strength. As x has by assumption compact support, we may formalise
the long time limit by considering a family of switching functions y », where X is a positive
parameter, such that the support of x is an interval with length proportional to A as A — oo,
and x is approximately constant within this interval as A — oo, at least in some averaged
sense. Specific implementations of this limit were introduced in [46], under the assumption
that x is non-negative, and we will employ these implementations in sections 4 and 6. These
implementations satisfy

Al —— C—l, c¢1 > 0 constant, (2.6)
A—oo 2T
and
A F L (B) = CIW(E) , ¢1 > 0 constant, 2.7
— 00

for each fixed E # 0, using the continuity of JV at nonzero argument. This means that the A —
oo limit implements the limit of long interaction time, with the parameter A being proportional
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to the duration of the interaction, and with 17V\(E) being proportional to the detector’s transition
probability per unit time, known as the transition rate. From the experimental point of view,
each value of ) in this implementation should be understood as the duration of an individual
experimental run, and the limit A — oo can be approached by longer and longer individual
runs.

We shall show in section 3, in proposition 3.1, that (2.7) holds way beyond the specific
implementations of [46]: it holds under rather general conditions on the A — co asymptotics
of x and its Fourier transform. In particular, y, does not need to have a uniform sign. This
generality will provide a key tool for addressing the case of circular motion in 2 4 1 dimensions
in the later sections.

2.3. Effective temperature

We now describe a notion of an effective temperature that characterises the detector’s response
in long time limit implementations in which (2.7) holds.

For background, recall that when the detector-field interaction is modelled by a Markovian
environment, the detector’s state in the weak-coupling-with-long-duration limit approaches
the density matrix [59, 64]

1 1 0
PE) = ) (o e_E/T(E)>’ (2.8)

where T(E) satisfies

—~

W(E) = e ETEW (—E), (2.9)

and is explicitly given by

L (WEE
1 g( rE ) (2.10)

For uniform linear acceleration with proper acceleration a, with the field initially prepared in
the Minkowski vacuum, 7(E) is independent of the energy E and equal to the Unruh temper-
ature Ty = a/(2) [3, 43]. The state p(E) (2.8) in this case is thus a genuine thermal Gibbs
state in the temperature Ty, and (2.9) is the detailed balance relation between excitation and
de-excitation rates in thermal equilibrium [65, 66]. For other types of non-inertial stationary
motion, p(E) (2.8) is not a thermal state in the Gibbs sense since T(E) depends on E; however,
for sufficiently narrow intervals in E, we may view p(E) as an approximate Gibbs state in the
energy-dependent temperature T(E). We refer to T(E) as the (infinite time) detailed balance
temperature. Studies of T(E) in a range of situations are given in [25, 38-41, 45, 64].

Now, in our present case of a finite duration interaction, we consider a family x of switch-
ing functions for which (2.7) holds. Following [46], we define the A-dependent detailed balance
temperature T (E) by

L1 (R(E)
NG L g<]__)\ G ) 2.11)

where

Fr(E)=Fy, (E) /A (2.12)
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For fixed A, T (E) does not have an interpretation in terms of the Markovian long time limit
considered in (2.8), but in the long interaction duration limit in the sense of A — oo, F(E)
becomes proportional to W(E) and T (E) approaches T(E) (2.10). We therefore refer to T\ (E)
as the (finite time) detailed balance temperature, and we use it to characterise the response of
the detector with the finite time switching function X and the limit of this response when
A — 00,

3. Asymptotically scaled switching families

In this section we provide a new implementation of the long interaction time limit, such that
the long time limit (2.7) holds, controlling in a mathematically precise way the asymptotics
of both the switching function and its Fourier transform. This contains as special cases the
adiabatic and plateau scalings of [46] but is significantly more general, and in particular allows
the switching functions not to have uniform sign.

Recall that in section 2 we assumed )y to have compact support. Recall also that one of the
long time implementations in [46], called adiabatic scaling, was to set xx(7) = x(7/\), where
X is a fixed non-negative switching function. Our generalisation is to require ) to asymptote
to £(-/\) in a suitable sense as A — oo, where £ is a function with suitable properties.

Our construction of £ relies on the following Proposition, which will be proved at the end
of this section.

Proposition 3.1. Let x» € C'(R)(\ > 0) be a family of absolutely integrable switching func-
tions with the property that \='Xx (u/ \) converges almost everywhere in u as A — oo. Suppose
that there exists € L*(R,du/(27)) with the property that, for all sufficiently large X > 0, one
has |Xx(w)] < An(Aw) for almost all w € R. Then there is & € L*(R,dt) so that

) = lim X (u/A)

for almost all u € R. Furthermore, if V: R* — C is any bounded measurable function that is
continuous at (E,,0) € R?, then one has a double limit

L[ )P Aseo, 1
3 | PRI V(EY) T EPVE.0). (32)

In particular, the scaled response function F (2.12) obeys

FA(E) 225 [l€PW(E.), (3.3)

for every E, € R at which W is continuous. This implies that one also has
Fa(E) ——— [EIPW(E) (34

for all such E.,.

Note that the function ¢ provided by proposition 3.1 may be the zero element of L*(RR, dt),
and in this case the right-hand sides of (3.2)—(3.4) all vanish. The assumptions of proposition
3.1 even allow the special case where every Y, is identically vanishing. The case of interest for
us is when £ is not the zero element of L?(R, d¢). We hence introduce the following Definition.

9
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Definition 3.2 (ASSF). If a switching function family x satisfies the assumptions of propos-
ition 3.1 and the function ¢ € L*(RR,d¢) provided by proposition 3.1 is not the zero element of
L*(R,dr), we call x, an ASSF.

Anexample of an ASSFis x(7) = x(7/)\) where x € C}(R) and not identically vanishing:
this is as in the adiabatic scaling of [46], but without requiring x to have a uniform sign,
and relaxing y to be C! rather than smooth. The conditions of proposition 3.1 hold with =
x|, and the Proposition provides ¢ = y, with [|¢|* > 0. In this example £ is continuous. A
second example is the plateau scaling of [46], which we discuss in section 5, showing that the
conditions of proposition 3.1 again hold and ||£ ||2 > 0, but in this example £ is not continuous.

We remark that in the adiabatic scaling example the continuity of £ implies the pointwise
limit

xa(r) ——¢(0) (3.5

A—00

for each fixed 7 € R. The pointwise limit (3.5) is however not the property responsible for the
long time limit (3.3), as the coefficient in (3.3) is ||£ ?, which concerns the whole profile of &,
not just £(0). The long time limit (3.3) holds even when £(0) = 0 so that the pointwise limit
in (3.5) vanishes. Again, in the plateau scaling example, we show in section 5 that & is not
continuous at 7 =0, and £(0) is hence not defined, but the long time limit (3.3) still holds.
These observations show that the long time limit (3.3) has come from the averaged sense in
which y asymptotes to £(-/A), not from a pointwise sense.

We also remark that the functions in an ASSF do not need to have compact support, nor do
they need to have a uniform sign. The latter property will be important in the applications in
section 7.

Under the circumstances described in section 2.2, proposition 3.1 shows that the long time
limit (2.7) at fixed E # 0 holds for an ASSF, with ¢; = ||¢||*. When W fails to be continuous at
E =0, as is the case for circular motion in 2 + 1 dimensions, proposition 3.1 does however not
immediately yield a simultaneous long-time, low-gap limit, but the Proposition will provide
key elements in controlling this double limit, as we will see in sections 6 and 7.

For reference, we record three facts concerning ASSFs. First, because ) in an ASSF are
absolutely integrable by assumption, their Fourier transforms ) (w) are continuous and o(1)
as |w| — oo. Second, the hypotheses relating to 7 imply that x is square-integrable for suffi-
ciently large A. Indeed, applying (3.2) to a constant function V and using Plancherel’s theorem,
we have || x|?>/X — ||€]|* as A — oo. Third, given that the y are continuously differentiable,
their absolute integrability would be guaranteed if they are also assumed to have compact
support.

We end this section with the proof of proposition 3.1.

Proof. Define Y (7) = xa(Af). Then )AZ/\(M) = A"\ (u/)), so the hypotheses imply that
[X»(#)| < n(u) almost everywhere in u for each sufficiently large A\. By dominated conver-
gence, it follows that the a.e. pointwise limit of the X, as A — oo defines an element of

L2(R,du/(27)) which we write as the Fourier transform ¢ of some ¢ € L*(R,dr). Making
a change of variables, one has

o0 = 2 oo N
[ a2y - L [ aR wpvEly (3.6)

2 — 00 —00
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and since V is bounded, we may use dominated convergence again, together with continuity
of Vat (E.,0), to show that the double limit exists and is equal to

© dy ~
| S PYVE.0) = € V(E..0 6)

using Plancherel’s theorem. The particular case (3.3) follows immediately with V(E,w) =

—

W(E +w), and the last statement (3.4) is just the fact that the existence of a double limit
implies the existence of the limit in A with E held fixed. O

4. 2 + 1 circular motion

We now specialise to the response of a detector in uniform circular motion in 2 4 1 dimensions.
We first write down the scaled response F(E) (2.12) when x is a general ASSF. We then
find the long-time limit and the small-gap limit when the limits are taken in succession in each
order, under an additional positivity and uniform boundedness assumption on Y . Finally, we
isolate the mathematical obstruction to a simultaneous long-time and small-gap limit, showing
that this simultaneous limit will need further assumptions on y and on the relation between
the duration and the gap.

4.1 Response

We consider a UDW detector in uniform circular motion in (2 + 1)-dimensional Minkowski
space, and a field prepared in the Minkowski vacuum.
In an adapted Lorentz frame, the circular motion worldline can be written as
X (1) = (y7,Rcos (%) ,Rsin (%4F)) @.1)
where v is the orbital speed with0 <v < 1,v=(1— vz)fl/ 2 is the Lorentz factor, and R > 0
is the radius of the circular motion. The proper acceleration of this worldline is
2,2
Y
— ) 4.2
a=" (4.2)
Due to the stationarity of the circular motion worldline, the response function is given by (2.5),

where the Fourier transform of the vacuum Wightman function pulled back to the circular
motion worldline (4.1) is [25, 45]

— 1 1 / o0 d sin (kE?) 1
0

W(E) =7 )
< V1 —12sinc’z

N 4.
4 27y (4.3)

where k =2R/(yv).

Properties of W (4.3) were analysed in [25, 45]. A property significant in what follows is
that 17\/\ is bounded, 0 < 17\/\ < % The bound from below follows from the Bochner—Schwartz
theorem, theorem IX.10 in [67], because W is positive type (see theorem 2.1 in [68]) and
translationally invariant. The bound from below can also be obtained by more elementary
considerations by observing that the response function (2.5) is non-negative for all | X (w) |2, by
the perturbation theory calculation from which the response function emerges, and noting that
|X(w)|* can be arbitrarily sharply peaked. To see the bound from above, we note that 0 < W

1



Class. Quantum Grav. 42 (2025) 245012 L J A Parry et al

implies that the second term in (4.3) is bounded from below by —}1, and as the second term

is odd in E, the bound from above follows. W\(E) is continuous at E # 0 but discontinuous
at £ = 0, with well-defined nonzero limits as £ — 0 from above and below, as shown in [25];
this is characteristic of 2 + 1 spacetime dimensions [45].

It is convenient to split W into three terms as

S Lk _ sgn(E)
W(E) = mU(E) P 4.4)
where
U(E)= E/OO dzsinc (kEz) L 1 4.5)
0 V1 —v2sinc’ -

is a bounded odd function (using boundedness of )7\/\). In fact, U is continuous every-
where, including E = 0, by dominated convergence and continuity of the sinc function. In

the split (4.4), we have subtracted from (1 - stinCZZ)_]/2 its asymptotic large z behaviour,
equal to 1; the compensating term can be evaluated by the standard formula fooo dz% =

1msgn(a).
Inserting (4.4) into (2.5) and (2.12), we obtain

1 2 kE [ (W) sgn(E)/E N 2
E)= — L P RS Sl N V2600 d 4.6
A= gyhol - gz [ af0 v L [ w4

— 00

where, in the second and third terms, we have used the fact that | (w) |* is even in w because
X x 1s real-valued, and defined

U(E+w) 4 UE-w) [ |
V(E,w) = 3E _/o dzsinc (kEz) cos (kwz) m 1.

A7)

As the portion of the integrand in parentheses in (4.7) is absolutely integrable and the remaining
factors are bounded and jointly continuous in £ and w, it follows that V is continuous and
bounded on R?. Furthermore, V(E,w) is even in both arguments separately. Thus the first term
in (4.6) is even in E, while the second and third terms are odd.

4.2. Successive long time and small gap limits

We assume the switching function family x to be an ASSF in the sense of definition 3.2, so
that the limit property (2.7) holds as A — co. In addition, we assume that x » are non-negative
and bounded uniformly in A: 0 < x < M, where M is a positive constant, independent of \.

4.2.1. X\ — oo followed by E— 0.  When E # 0 is fixed, the relevant notion of temperature
in the A — oo limit is the infinite time detailed balance temperature T(E) (2.10), based on the

transition rate )7V\(E) (4.3). In the subsequent small gap limit, we have [25]

= v —sgn (E)

W(E) = 1y +O0(E), 4.8)
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and hence
E|

()

We see from (4.9) that the temperature vanishes as O(E) as E — 0. The infinite time detailed
balance temperature is thus not a good quantifier of the effect of acceleration on the detector’s
response in the small-gap limit. The mathematical reason for the vanishing small-gap temper-
ature is the discontinuity of W(E) at E =0, seen in (4.8). This discontinuity arises from the
weak decay of W(7) at 7 — +o00, a phenomenon characteristic of circular motion in 2 + 1
spacetime dimensions [45].

+0(E%). 4.9)

4.2.2. E— 0 followed by )\ — co. Suppose that A is fixed, and consider Fy(E) (4.6)
as E— 0. The first term in (4.6) is independent of E. In the third term, we observe that
|E|~! flE|1|5| dw|¥x (w)]* = 2|XA(0)|* as E — 0, by continuity of X. In the second term, the
E — 0 limit of the integral may be obtained by dominated convergence, assuming A is so large
that ' is square-integrable by proposition 3.1. The result is the small E expansion

Fr(E)=ax—PBr\E+o(E), (4.10)
where
1 2
ay = EHXAII ; (4.11a)
b= s O P + 5 [ R @) PY(00) (4.11b)
= — w .
A 47_[_7)\ XA 271_2,72‘/)\ - X ) )

using k = 2R/(yv).

Note that cvy, (4.11a) is positive. In 8 (4.11b), the first term is positive by the non-negativity
assumption on . The second term in (4.11b) is positive for sufficiently large A, because it
converges to a positive multiple of ||£]|>V(0,0) as A — oc by proposition 3.1, and

o 1
V(0,0 :/ | — 1), (4.12)
9.9 0 Z(\/l—vzsinczz )

which is clearly positive. Therefore, for fixed sufficiently large A, the small E expansion of the
detailed balance temperature is

T,\(E):%—&—o(l). 4.13)

Consider now the subsequent A — oo limitin (4.13). In this limit, ), tends to a positive con-
stant, by proposition 3.1, and the second term in /3 (4.11b) tends to a positive constant, as noted
above. In the first term in 8y (4.11b), we recall that x are by assumption non-negative and
uniformly bounded in A, 0 < x < M, where M is a positive constant. From this, an elementary
estimate gives Y (0) = M~'||xa||*. The limit (2.6) then shows that the first term in (4.11b) is
bounded below by )\ times a positive constant as A — co.

Collecting, we see that the leading term in T(E) (4.13) vanishes as O(A~!) as A — oo.
This shows that if we take the long time limit after the small gap limit, the detailed balance
temperature (2.11) fails to serve as a good quantifier of how acceleration affects the detector’s
response in the small gap limit.
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4.2.3. Summary. In summary, when the infinite time limit and the small gap limit are taken
in succession, in either order, for ASSFs that satisfy the positivity and boundedness assump-
tions stated in the first paragraph of section 4.2, the resulting temperature vanishes. These suc-
cessive limits are hence not good quantifiers of how acceleration affects the detector’s response
in the small gap limit.

4.3. Obstruction to a simultaneous small gap and long time limit

We now consider the simultaneous small gap and long time limit.

For F)(E) (4.6) with a general ASSF, we have already observed that the discontinuity of
W(E) at E = 0 prevents us from reading off from proposition 3.1 a double limit for F (E) as
E — 0 and A\ — oo. The first and second term in (4.6) do however have a defined behaviour in
this limit: the first term converges to ||€||? /4, while the integral in the second term has a nonzero
double limit by proposition 3.1, recalling that V is continuous and bounded with V(0,0) > 0.
Thus we have

_w _ki 2 _sgn(E) . > 2
)= (10, (1) = 3 EPV0.0)(1-+0.(1) [, &

87‘(-7)\ —|E
4.14)

as E — 0 and A\ — oo simultaneously, where the subscript e on the o.(1) terms indicates that
they are even in E. In fact the first o.(1) term in (4.14) is E-independent, and the evenness of
the second 0, (1) term follows because the second term in (4.6) is odd.

It is the third term in (4.14) that does not have a defined behaviour as £ — 0 and A — oo
simultaneously: the term depends on the magnitude of |Y(w)|?/\ over the interval —|E| <
w < |E| as E — 0 and A — oo, and this is sensitive to how |E| and ) are related to each other
in the double limit, as the examples in sections 6 and 7 show.

Controlling the third term in (4.14) will be the key in the switching family constructions of
section 7 in which a positive temperature will be obtained in the small gap limit.

5. Interlude: adiabatic and plateau scaled switching functions

In this section we recall the definitions of two ASSF subfamilies introduced in [46], the adia-
batic scaled family and the plateau scaled family. To avoid cluttering the notation, we denote
each family by x», with the family being understood from the context.

5.1 Adiabatic scaling

We define an adiabatic scaled switching function family by

X (1) =x(T/A), (5.1

where we recall that A > 0 is the dimensionless scaling parameter. We take the unscaled
switching function  to be in C}(RR), non-negative, and not identically vanishing. This is as in
[46] but relaxing C3°(R) to C}(R).

As noted in section 3, this scaling is an ASSF, and (3.4) gives

Fa(E) == IIxIPW(E), (52)
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for each fixed E # 0. Moreover, x, are bounded uniformly in \. The family x hence satis-
fies the conditions in the first paragraph of section 4.2, and the results of section 4.2 about
successive long time and small gap limits apply.

5.2. Plateau scaling

We define a plateau scaled switching function family by

= [ e wE) o6 - n ), (53)

— 00

where 75 and d 7, are positive constants, w € Co(R), and A > 0is again the dimensionless scaling

parameter. ¢ is smooth, it has falloff 1/)( ) =o0(1) as |w| — oo, and it is square integrable.
We assume 1) to be non-negative, not identically vanishing, and with support contained in an
interval of duration 7. This is as in [46] but relaxing 1 to be Cy(R) rather than C5°(R).

It follows that each y, is in C}(R), and the family y is bounded uniformly in \. Each
X is switched on over an interval of duration 7y, it then stays at constant positive value
S fooo dr’4(7") for an interval of duration A7, and it is switched off over an interval of dura-
tion 7. The profiles in the switch-on and switch-off intervals are determined by 1. The scaling
parameter A stretches only the plateau where y has a constant positive value, proportionally
to A, while the switch-on and switch-off intervals remain of fixed duration.

We shall now show that  is an ASSF.

A calculation from (5.3) shows that

N 1— efiw('rSJr)\Tp) .

(@) = (W), (5:4)

where the formula is understood in the limiting sense at w = 0. From (5.4) we find
N0 (/N[ = (7 + 7oA sing? (L (7 + 7o /A 1) [ (u/N) [ (5.5)

As 1p is integrable, |1/)( = [*_dr|i(1)| > 0. As sinc is continuous and satisfies
sinc? < x~2 for x £0, there exists a constant b, > 1 such that sinc?x < b5/(1+x?) forx € R.
This gives the bound sinc2(%(7'p + 75/ Mu) < B3/ (14 5(1p + 75/ 2u?) < b3/ (1+ %szuz).
Finally, for A > 1, the factor (7, +7,/A\)” in (5.5) is bounded by (7, +7,)>. It follows that

AT (/A)| < m(u) for all u € R and A > 1, where (i) = byby(7p + 75) (1 + 7, ou?) 12,
Asne LZ(R, du/(2m)), the conditions of proposition 3.1 hold.
From (3.1) and (5.4) we have
~ oo (/A 1—emm
=1 = 0 5.6
§(u) = lim ===+ 9 (0), (5.6)

pointwise for all u € R, where the formula is understood in the limiting sense at u = 0. As ¢

is nonnegative and not identically vanishing, we have zZ(O) >0, so E is nonvanishing as an
element of L?(IR,du/(27)). This shows that x in an ASSF.

15
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Taking the inverse Fourier transform, we find that £ is 1Z (0) times the characteristic function
of [0,7,]. Hence ||€||* = 7,,4(0)|%, and from (3.4) we have

FA(E) - IO (0) PW(E), (5.7)

for each fixed E # 0.

As the family x, is uniformly bounded in A, this family satisfies the conditions in the first
paragraph of section 4.2, and the results of section 4.2 about successive long time and small
gap limits apply.

Note that £ is discontinuous at 7 =0 and at 7 = 7, and is undefined at these points. No
physical pathology associated with this discontinuity is known to us.

5.3. Comments

Our assumptions about the adiabatic and plateau scalings here are chosen so that they will
suffice for the joint small £ and long time analysis in section 6, and they involve weaker
differentiability than the large |E| analysis in [46]. Yet weaker assumptions within the adiabatic
and plateau scalings will be considered in section 7.2.

6. Small gap with long time: double limit with adiabatic and plateau scalings

In this section we consider the 2 4 1 circular motion response in the simultaneous small gap
and long interaction time limit, for the adiabatic and plateau scalings of section 5. We further
assume that the simultaneous limit is taken so that £ — 0 and A = A(E) — oo where A(E) is
an inverse power law, given by

AE) = <|;§|)a (6.1)

where « is a positive parameter that specifies the exponent in the power law, and S is a pos-
itive constant with units of energy, introduced for consistency with our convention that the
scaling parameter ) is dimensionless. In an experimental setting, such as an analogue space-
time system [24, 27, 44], S would be chosen as an energy scale characterising the physical
system.

6.1. Adiabatic scaling

For the adiabatic scaled switching function family (5.1), we have ||xx||>/\ = || x| for all A
and so the first error term in (4.14) vanishes, giving

1 kE E) mCED R
B (B) = I = 3 PV 0.0 1+, (1) - B " g 62

81y J-nqen
where in the last term we have changed variables, used k = %, and written n(|E|) :=

S(|E|/S)' ™. The second term in (6.2) can be written as sgn(E)O(|E|), where O(|E|) is even
in E, and the notation encodes the evenness in the absolute value in the argument.

The small E behaviour of the last term in (6.2) depends on the small E behaviour of 7(|E|),
which is determined by «. There are three qualitatively different cases: o > 1, a =1 and 0 <

16



Class. Quantum Grav. 42 (2025) 245012 L J A Parry et al

a < 1, which give the small E behaviour 7(|E|) — oo, n(|E|) = S = constant and n(|E|) — 0,
respectively. We give the small E expansion of this term in appendix A.
Collecting, we find that the small E expansion of (6.2) is

%HXHZ[I —y'sen(B) (14 0(IE) +o (1E°7) )] for a > 1,(6.3a)

Fage (B) = { FIXIP[1 =7 Zsen (B) (1 + O ((ED)] for a = 1,(6.3b)
= 2 oo

I %sgn@)(ww—a +0(IEP1) + 0(E)) fora<1,(630)

and the corresponding small E temperatures are

ﬁ(l +O(|E]) +0<|E|a_l)) fora>1, (6.4a)
log()
v—1
E
Tyiey (E) = (L+E><1+o<|E|>> fora=1, (6.4
log —
T—=
2 «
Ty _Ixl (|E|> (1+0(|E|2(1_Q))+0(|E|a)) fora <1,  (6.4c)
2 1o 0 2 S 5 .
1X(0)|
where
_ S
== 5 [ dwx(W)[" (6.5)
27| x|I” /-

Note that 0 < E < 1, because in the § — oo limit (6.5) becomes unity by the Plancherel the-
orem. The coefficient of |E| in (6.4b) is therefore well defined. The O and o error terms in (6.3)
and (6.4) are even in E, as indicated by |E| in their arguments.

From (6.4) we now see that when A — oo and E — 0 under the inverse power law rela-
tion (6.1), the temperature vanishes for any a > 0. For o > 1, the temperature vanishes linearly
in E, whereas for 0 < « < 1, the temperature vanishes as the weaker power law |E|“.

It is instructive to compare the temperatures (6.4) to the successive long time and small
gap limits of section 4.2. For a > 1, the temperature (6.4a) agrees with the temperature (4.9),
which was obtained by first letting A — oo with E fixed and then letting £ — 0. Conversely, for
a < 1, the power-law |E|” oc A~! in the temperature (6.4c) agrees with the power-law A~! in
the temperature that was obtained by first letting £ — 0 with A fixed and then letting A — oo,
as discussed below (4.13). In the intermediate case v = 1, where the interaction duration is
inversely proportional to the detector gap, the temperature (6.4b) has a linear falloff in terms of
E as for o > 1, and a falloff proportional to A~! in terms of ) as for a < 1. These comparisons
illustrate the fact that while the interaction duration increases to infinity as £ — 0 for all «, the
increase is more rapid for large o and less rapid for small a.

6.2. Plateau scaling

For the plateau scaled switching function family (5.3), we recall from section 5.2 that propos-
ition 3.1 applies with ||£]|* = 7,,|¢/(0)|?. For the scaled response function, (4.14) hence gives

17
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T 2
P = (1) - 20,001 0.1
sen(®) (rp+m(E/S)) [ 1 —cosu|~( |E
i O <|E|>)’ (00

where now 7)(|E|) := |E| (7 + 75 (S/|E|)®), we have used (5.4), and k = 7 R as before.

As with the adiabatic scaling, there are three qualitatively different cases: a >0, o =1
and 0 < a < 1, which give the small E behaviour n(|E|) — oo, 1(|E|) = 7,5 and 7(|E|) — 0,
respectively. We give the small E expansion of the last term in (6.6) in appendix B.

Collecting, we find that the small E expansion of (6.0) is

ZI0) 1 [(1+0c(1)) =7 'sen (B) (1 + 0 (1))] fora>1, (6.7a)
‘me%_:@@PW+WUWﬂN®@ww+%(w fora=1, (6.76)
21HOF (1+oe(1))_%s(@) sgn(E)(l—&-oe(l))} fora <1, (6.7c)

and the corresponding small E temperatures are

||

1+0.(1)) fora>1 (6.8a)
T (
log ’Y"‘)
v—1
E
T\r) (E) = %(l—i—og(l)) fora=1 (6.8b)
log| ——
7—C
E
Z(';) (1+0.(1)) fora<l, (6.8¢)
p
where
1 (™ 1-—cos 2 (.. cos (7p8) — 1
= [ a2 s+ 2RI, (©9)
s u ™ T
and Si(z) = [, dzsin(z)/z is the sine integral [69]. Note that 0 < ¢ < 1, and that ( — 1 as

TpS — 00 [69] The coefficient of |E| in (6.8b) is therefore well defined.

From (6.8) we now see that the temperature again vanishes when A — oo and £ — 0 under
the inverse power law relation (6.1), for any o > 0. Furthermore, the power of |E| in the lead-
ing term in (6.8) is identical to the power of |E| in the leading term in the adiabatic scaling
temperature (6.4), and for o > 1 the leading terms in (6.4a) and (6.8a) are in fact fully identical.

6.3. Summary

To summarise, in the simultaneous long time and small gap limit, under the power-law rela-
tion (6.1), the effective temperature vanishes, both for adiabatic-scaled and plateau-scaled
switching functions. The behaviour of the effective temperature is qualitatively similar for
the two scalings.
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7. Positive small gap temperature from interaction sign changes

In section 6, we found that in the simultaneous limit of long interaction and small energy gap,
under the inverse power law relation (6.1) between the gap and the interaction duration, the
detailed balance temperature (2.11) vanishes for both the adiabatic and plateau scaled switch-
ing families that were defined in section 5. In this section, we show that a key assumption
behind this property was the non-negativity of the switching functions, and we show how a
positive temperature in the long-interaction-and-small-gap limit can be recovered by allowing
the switching functions to change sign.

In section 7.1 we work within a general ASSF of definition 3.2, identifying the key neces-
sary property for recovering a positive temperature in the simultaneous limit of small gap and
long time. Sections 7.2-7.4 present examples, both with compact support and with noncom-
pact support, where a positive temperature in the limit is recovered, under the inverse power
law relation (6.1) between the gap and the interaction duration.

71. Recovery of a positive temperature

Let the family x, be an ASSF as given in definition 3.2. By assumption, X is absolutely
integrable and in C'. By proposition 3.1, y is square-integrable for sufficiently large ), and

Ixall?/A = 11€])* >0 (7.1)

as A — oo.

We assume that A and E are related by A = A\(E), where the positive-valued function \(E)
is even and satisfies A(E) — oo as E — 0.

We wish to recover a positive temperature in the £ — 0 limit. From (2.11) we see that this
happens if and only if

Fae) (—E) E
— =14+ —+0o(E 7.2
Fae) (E) Ty o(E) 7.2)

as E — 0, where Ty is a positive constant, and we then have T ) (E) = To +o(1) as E — 0.
This means that the crucial issue is the balance of the even and odd parts of F) ) (E).
From (4.14), using the evenness of A\(E), we have the decomposition

Fae) (E) = FX@ (E) + F3g) (E), (7.3a)
2
v 8= B (o, (1), (735)
E |E| R
73l ) = NI 10, 0) = 250 [ awln @B, (130

where in the first term in (7.3¢) we have written k = 2R/(-yv) in terms of the proper acceleration
a (4.2) as k = 2yv/a, and we have written V(0,0) (4.12) in terms of the function

(7.4)

o 1
IM:—/dz—————A.
™ Jo (\/ 1 — v2sinc’z )
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even

By the positivity of NE) (E) (7.3b) as E — 0, the positive temperature condition (7.2) holds
if and only if

y ;dd (E) E
————=———+0(F 7.5

as E— 0. By (7.3b) and (7.3c), (7.5) holds if and only if

2
Bt B =—ELE0+0.0) a6)

as E— 0.
Comparing now (7.3b) and (7.6), we see that a positive temperature 7y is attained if and
only if

1 |E|
dw!® 2 7.7

has a finite, possibly zero, limit as £ — 0. A nonzero limit would modify the limiting temper-
ature Tj, so we focus on the case where the limit vanishes. This happens when

1 |E| R 5
G /_ Ll @) =oE) sE=0. (sFS) (7.8)

We refer to (7.8) as the small frequency suppression (SFS) condition. When SFS holds, the
small E expansions of F3§, (E) and Tg) (E) become

2
Ty (E) = —%E(l +o,(1)), (7.9a)

o), (7.9b)

e )= 2270

where we recall that I(v) is given in (7.4) and a is the proper acceleration (4.2).

We emphasise that the SFS condition (7.8) is a condition on the last term in (4.14). This
term in (4.14) is precisely the one that does not have a defined behaviour as E — 0 and A — oo
independently, for a general ASSF.

We summarise. When the simultaneous small gap and long duration limit is taken so that
A = A(E), where the even positive-valued function A(E) satisfies A(E) — oo as E — 0, a pos-
itive small gap temperature is achieved for an ASSF satisfying the SFS condition (7.8). The
small gap temperature is given by the leading term shown in (7.9b), and this temperature is
insensitive to the detail of the switching beyond the SFS condition (7.8). The function I(v)
in (2.1) encodes the ratio of the small gap temperature and the usual linear acceleration Unruh
temperature a/(27). We show in appendix D that I(v) is increasing in v and it has the asymp-
totic forms I(v) = 2v* + O(v*) asv — 0 and I(v) = —i}—zﬁlog(l —v)+0(1)asv—1

What remains to show is that ASSFs satisfying SFS exist for some A\(E). We turn to this
question next.
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72. Adiabatic and plateau scalings revisited

In this section we revisit the adiabatic and plateau scaled switching functions of section 5 in
the light of the SFS condition (7.8). We assume A(E) to be the inverse power law (6.1) as in
section 6. We ask whether the zero temperature conclusion of section 6 can be circumvented
by some reasonable modification of the technical assumptions about these switching families.

72.1. Adiabatic scaling. ~ We consider first the adiabatic scaled family y = x(7/A), where
now Y is in C'(RR), absolutely integrable and square integrable, and not identically vanish-
ing. Proposition (7.1) then applies with 7 = |x/|, providing £ = x. This shows that x is an
ASSF. Compared with the assumptions of sections 5 and 6, we have replaced compact sup-
port by square integrability and dropped the assumption of uniform sign. The assumptions of
section 7.1 hence hold.

We wish to examine the SFS condition (7.8). As Yx(w) = AX(Aw), the left-hand side
of (7.8) equals

=/ Yo @i= [ g
T dw [XaE) (W =/ dulx (u) |, (7.10)
AE) J g ()

where we have changed variables by u = Aw, and n(E) = S(|E|/S)' ™. The expression (7.10)
is equal to (A.1) in appendix A. Adapting the analysis of appendix A to our present, weaker
assumptions, we find

2
n(IE]) 2| x |l for a > 1
/ dulX (u) > ~ {27 Z x| fora =1 (7.11)
—n(lED 4 SIX(0) P(E)/S)' ™ for0<a <1,

where = is defined in (6.5) and satisfies 0 < Z < 1, and for 0 < a < 1 we have assumed X (0) #
0. The SFS condition (7.8) is hence not satisfied when X(0) # 0. This is consistent with what
we found in section 6.1.

When X(0) =0 and 0 < o < 1, however, the term shown in (7.11) vanishes. In this case
SFS is satisfied if X (w) — O sufficiently rapidly as w — 0. For example, if X (w) = O(|w|?) as
w — 0 with some positive constant ¢, then

n(|E]) ) (2q1)(1—
[ aulgwl = o(iger 00 ) (112
—n(lE)
as E — 0. This satisfies SFS when ¢ > ﬁ
We conclude that when 0 < o < 1, a positive temperature at small gap is recovered from
the adiabatic scaling if X' (w) — 0 sufficiently rapidly as w — 0. By continuity of X, we then
have

0:2(0)2/oo drx(r), (7.13)

— 0o

and indeed [ d7x(7) =0 for all A > 0. The switching function hence cannot be every-
where non-negative: it must change sign at least once. We shall give examples of noncompact
and compact support in section 7.3.

21



Class. Quantum Grav. 42 (2025) 245012 L J A Parry et al

We note in passing that if |x(w)| — 0 as w — 0 but more slowly than any positive power
of |w|, SFS (7.10) does not hold for the power-law A(E) (6.1), for any value of v as we show
in appendix C. We further give in appendix C an example in which |X(w)] is asymptotic to
1/+/—log|w| as w — 0, and SFS holds when A\(E) — oo as E — 0 so that \(E) = o(log |E]).
Situations of this type are however likely to have a weaker decay of x(7) as 7 — %00, and
they are therefore less likely to be of interest for analogue spacetime experiments.

72.2. Plateau scaling. = We next consider the plateau scaled family x (5.3) as defined in
section 5.2, except that we now allow ¢ to have a nonuniform sign. We continue to assume
that ¢/ has a non-empty support contained in an interval of duration 7;. We further continue to
assume that {Z; (0) # 0O: this is necessary and sufficient for x to be nonvanishing in the plateau
of duration 7, A, between the switch-on and switch-off intervals of duration 7. The assumptions
of section 7.1 hence hold.

We wish to examine the SFS condition (7.8). Using (5.4), the left-hand side of (7.8) equals

1 /|E| N 2 < <|E|)O‘> /"(ED 1 —cosu A< |E| )
— dwlx w | =2({mp+7| — du P u
ME) J_g X ()] P N —n(lED u? n(|E|)

(7.14)
where we have changed variables by u = Aw, and now 7(|E|) := |E| (s + 7, (S/|E|)). The
expression (7.14) is proportional to (B.1) in appendix B. Adapting the analysis of appendix B
to our present assumptions, we find

2

)

R i 2mp|$£0) k for > 1
- 27 (18) 4 (0) P(IEN/S)' ™ for0<a <1,

where ( is defined in (6.9) and satisfies 0 < ¢ < 1. The SFS condition (7.8) is hence not sat-
isfied for any «, given that 1)(0) # 0 by assumption. This is consistent with what we found in
section 6.2.

We conclude that a plateau scaled switching function cannot recover a positive temperature
at small gap, even under the weakened assumptions of the present section.

73. Adiabatic scaling examples

In this section we present two adiabatic scaled switching families for which the SFS condi-
tion (7.8) holds, and the small gap temperature is hence positive and given by the leading term
in (7.9b).

73.1. Adiabatic scaling with power-law or Gaussian decay.  As a first example, we consider
the unscaled switching function and its Fourier transform given by

VS g+1 5272 g 1 $27?
VP r(gt+1)/2 e S 2 _1.-.2 7
x (7) Nq27r2 F( 7 >exp( 2 >1F1( 215073 >, (7.16a)

= _ Ny |w] 1 w?
X(w)= 75 (S) exp (—252> , (7.16b)
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—qg=1
q="15
q=20

Figure 1. Plots of x(7) (7.16a) for ¢ =1, ¢ = 7.5 and ¢ = 20. Each curve crosses the
horizontal axis at least once at positive 7 and at least once at negative 7, as is required
by the property [°°_x(7)dr = 0 and the evenness of x.

where ¢ is a dimensionless positive constant, S is a positive constant with units of energy,

1F is the confluent hypergeometric function of the first kind [69], and N, = /27 /T (q + %)
(7.16a) may be obtained from (7.16b) by using 3.952.8 in [70]. The normalisation constant N,
has been chosen so that ||y||* = 1 and ||Y||* = 2. Plots of x and ¥ for selected values of g are
shown in figures 1 and 2. The scaled switching function and its Fourier transform are given by
Xa(7) = x(7/A) and X (w) = AX(Mw).

It follows by elementary considerations that y and X satisfy the assumptions stated in the
first paragraph of section 7.2.1. In particular, y has noncompact support, but it is integrable
and square integrable, as is seen from the large | 7| falloff

Nq\/gﬁr(_g) \ST|‘Z+1 forq#2n, n=1,2,...,
X (1) ~ ? (7.17)
\/§ 2 22
Now(—1)" == (S7)"e 57 /% forq=2n, n=12,...,
V2T

where the power-law decay for ¢ # 2n follows from 13.2.4 and 13.2.23 in [69], and the
Gaussian decay for g = 2n follows by observing from 13.6.16 in [69] that in this case
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VSX(w)

—qg=1
q="75
q=20

‘J .IK*l"-w/S

-5 5

Figure 2. Plots of x(w) (7.16b) for ¢ =1, g ="7.5 and ¢ = 20. Each curve displays
a characteristic ‘double-peak’ structure around the global minimum at w = 0 where

$(0) = 0.
S (—1)" 5272 s
x(T)=Nzn\/\%(2,,) exp(— ;)I‘b(\/%) (7.18)

where H,, are the Hermite polynomials.

Now, to consider SFS (7.8), we note from (7.16b) that X(w) = O(|w|?) as |w| — 0. The
discussion around (7.12) then shows that SFS is satisfied provided g > ﬁ, where « is the
exponent in the power-law scaling (6.1) and 0 < v < 1.

The characteristic features of x and X are clear from the plots shown in figures 1 and 2.
x has zeroes, as is required by the property | fooo X(7)dr =0, and X has a double peak around

the origin, as is required by the property X (0) = 0 and the evenness of X.

73.2. Adiabatic scaling with compact support. As a second example, we consider the
unscaled switching function and its Fourier transform given by

Y(r) = Nn,m(ﬁm Z (-1)f (") (ST+n—2k)""'O(ST+n—2k),  (7.19a)

m—1) — k
iy s (%)
X(OJ)—N,,’m \/g (g)m ’ (719b)
S

where S is again a positive constant with units of energy, n and m are integers with 3 <m < n,
and N, , is a positive constant, for which a cumbersome formula exists, chosen so that || X||2 =

1 and ||||* = 2. Formula (7.19a) can be verified from (7.19b) by contour integration.
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Figure 3. Plots of the compact support switching function x (7.19a) for selected values
of m and n. The support —n < S7 < n and the parity (—1)"~" of are clear in the plots.

Elementary considerations show that the assumptions stated in the first paragraph of
section 7.2.1 hold; in particular, y € C' follows despite the theta-functions in (7.19a) because
m > 3. For the SFS condition (7.8), we see from (7.19b) that X (w) = O(Jw|"™™) as |w| —
0. The discussion around (7.12) hence shows that the SFS condition is satisfied provided
n—m> ﬁ, where « is the exponent in the power-law scaling (6.1) and 0 < o < 1.

The significant feature of this example for us is that y has compact support, in the inter-
val [—n/S,n/S]. The lower bound of the support is clear from (7.19a) because all the theta-
functions vanish for 7 < —n/S. The upper bound follows from this because y has a definite
parity, even for n — m even and odd for n — m odd; this is because X (7.19b) is even for n — m
even and odd for n — m odd. The upper bound is also seen by observing that for 7 > n/S all
theta-functions in (7.19a) reduce to unity and using the identity

Zn:(—l)k (Z) (St+n—2k)""" =0, (7.20)

k=0

which follows from 0.154.6 in [70].
Plots of y (7.19a) and  (7.19b) for selected values of n and m are shown in figures 3 and 4.

74. Example: compact support scaling from cropping adiabatic tails

The adiabatic scaled switching function examples constructed in section 7.3.2 have compact
support, and this compact support arose from the special properties of the generalised sinc
functions used in (7.19b). In this section we show that compact support switching functions
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"MV SX (W)

—m=3,n=4

m=3,n=2>5

5 2 2 2 4

M=~

Figure 4. Plots of i" " (7.19b) that correspond to two of the switching functions plot-
ted in figure 3. A dominant double peak within —7 < w/S < 7 is clear in the plots, with
power-law suppressed peaks at larger |w/S]|.

that lead to a positive small gap temperature are much more general: given an adiabatic scaled
switching x, that satisfies the assumptions of section 7.1, leading to a positive small gap tem-
perature, and given a slightly stronger large argument falloff condition on ', a compact sup-
port modification that leads to a positive small gap temperature under the power-law \(E) (6.1)
can be found by an appropriate cropping.

The construction is given in the following Proposition.

Proposition 7.1. Let x be a real-valued function in C'(R), absolutely integrable and square
integrable, and not identically vanishing. In addition, let

/00 drx(r) =0, (7.21)
and
/OO dr |7 x (1) ] < o0. (7.22)

Define the switching function families {xx | A > 0} and {x x5 | X > 0} by

X (1) =x(7/N), (7.23a)
Xos (T) =X (T/ N f(T/X°), (7.23b)

where f is a real-valued smooth function of compact support with f(0) =1, and 6 > 1 is a
constant.
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Then:

1. xx and x s are ASSFs.

2. Suppose A(E) is given by the power-law (6.1) with 0 < o < 2/3. Then x satisfies the SFS
condition (7.8), thus leading to the positive small gap temperature (7.9b), and the same
holds for x s when § >3/2.

Proof. Given in appendix E. O

In proposition 7.1, x, (7.23a) is an adiabatic scaled family, satisfying the conditions
described in section 7.2.1. For x, the small gap temperature results in the proposition just
restate the discussion around (7.12) for g = 1. Note that x (7.23a) need not have compact
support.

The new part of proposition 7.1 concerns the compact support switching family
Xx,s (7.23b). This family is obtained from x5 by cropping off the tails, and because § > 1, the
cropping recedes to infinity as A — oo faster than the profile of x spreads: for any fixed 7, we
have xx 5(A7) = x(7)f(N'797) = x(7) as A — 0. As x changes sign somewhere, this implies
that x s changes sign somewhere for all sufficiently large \. proposition 7.1 shows that the
cropping retains the small gap temperature results when 6 > 3/2.

Stronger assumptions on the large argument falloff of x and the small argument variation
of f give variants of proposition 7.1 with larger ranges of the parameters o and §. We give an
example in section E.4 of appendix E.

8. Conclusions

In this paper, we addressed a puzzle concerning the circular motion Unruh effect for a point-
like UDW detector interacting with a massless scalar quantum field in (2 + 1)-dimensional
Minkowski spacetime. Although the circular motion and linear acceleration Unruh effects are
similar over much of the parameter space, the two have a significant discrepancy: in the limit of
long interaction time, the effective temperature associated with circular motion, defined oper-
ationally via the ratio of the detector’s excitation and de-excitation rates, vanishes linearly in
the gap as the detector’s energy gap approaches zero [25]. This property renders the effective
temperature an unreliable quantifier of the circular motion Unruh effect at small detector gaps.
A practical consequence is that proposals to verify the circular motion Unruh effect in analogue
spacetime experiments [23—-27, 44] would need to operate outside the small gap regime.

The purpose of this paper was to provide access to the small gap regime in the circular
motion Unruh effect in 2 + 1 dimensions, by reconsidering how the long interaction time limit
is taken.

As a first step, we introduced a new implementation of the long interaction time limit, the
ASSF of definition 3.2, which encompasses as special cases both the adiabatic and plateau
scalings of [46] but is significantly more general, controlling in a precise way the asymptotics
of both the switching function and its Fourier transform.

We then showed that within the ASSFs, under modest technical uniformity conditions, the
Unruh effect remains inaccessible in the small-gap and long-time limit when the two limits
are taken in succession in either order, assuming that the coupling of the local UDW detector
to the field does not change sign during the interaction.

We next turned to the small-gap and long-time limit taken simultaneously, under an inverse
power law relation between the two. Within the adiabatic and plateau scalings of [46], and
continuing to assume that the coupling of the local UDW detector to the field does not change
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sign during the interaction, we showed that the effective temperature still tends to zero in the
small gap limit, although the rate at which the temperature approaches zero can be slowed by
taking the interaction duration to increase relatively slowly when the detector gap decreases.

We then observed that recovering a positive small gap temperature is possible only by bal-
ancing two conditions on the Fourier transform of the switching function. First, the long time
limit implies that the squared modulus of the Fourier transform must become increasingly
peaked near small values of the argument, but there does not necessarily need to be a peak
at the value zero. Second, and pivotally, recovering a finite small gap temperature requires
the Fourier transform to vanish sufficiently fast near zero argument, while simultaneously pre-
serving the sharp peaking of its squared modulus at small arguments implied by the long-time
limit. We showed that this cannot be achieved in plateau scaling, but it can be achieved in adia-
batic scaling by taking the Fourier transform of the switching function to be strictly vanishing at
zero argument. The time average of the switching function then vanishes, so that the switching
function must change sign at least once. We gave examples of such adiabatic scaled switching
functions with compact support, power-law decay and Gaussian decay. Finally, we presented
a construction of sign-changing, compactly supported switching functions that achieve this
balance through a scaling that, while not strictly adiabatic, is asymptotically adiabatic at long
interaction times.

Thus, we recover a positive temperature in the small gap and long time limit by arranging
the switching function to change sign. However, crucially, the small gap temperature obtained
does not depend on the details of the switching: it depends on the parameters of the motion,
in a manner that is consistent with the linear motion Unruh effect prediction, up to a velocity-
dependent factor that we identified. Therefore, the small gap temperature obtained is a property
inherent to the system, revealed by our construction of suitably scaled switchings.

In the simultaneous limit of small gap and long interaction time, most of our examples
assumed that the gap and the interaction time are related by an inverse power law, and the
examples recovering a finite small gap temperature had power-laws where the interaction time
goes to infinity more slowly than the inverse gap. We discussed in section 7.2.1 and appendix C
an adiabatic scaling example where the interaction profile is stretched more slowly than any
inverse power of the gap, but we also noted that in such examples the interaction profile itself is
likely to have a weak falloff at early and late times, and hence to be of less interest for analogue
spacetime experiments. We leave further discussion of non-power-law scalings to future work.

Switching functions that change sign appear not to have featured prominently in the lit-
erature on UDW detectors. We note however that such switchings arise naturally in relativ-
istic entanglement-harvesting protocols, where two causally disconnected local laser pulses
become entangled with each other through their individual interaction with an electromagnetic
field or a Bose—Einstein condensate [49, 50]. In this setting, the switching function is given by
the coherent amplitude of each laser, which typically changes sign. This underscores the prac-
tical relevance and potential experimental feasibility of sign-changing switching functions.

We considered a massless scalar field in (2 + 1)-dimensional Minkowski spacetime because
this field appears in the experimental proposals that employ a planar Bose—Einstein condensate
or a superfluid Helium surface [23-27, 44]. A massless fermion field in (2 + 1)-dimensional
Minkowski spacetime can be simulated in an optical lattice, and this system has been pro-
posed as an analogue spacetime simulation of the linear motion Unruh effect [71, 72]. Were
it possible to use the optical lattice for a simulation of the circular motion Unruh effect, such
that the signal extraction can be modelled by an UDW detector coupled linearly to the scalar
density of the spinor field, the detector analysis would be as for a massless scalar field in 5 + 1
dimensions [73], and there would be no suppression of the signal in the small gap and long
time regime [45]. A Maxwell field in (2 + 1)-dimensional Minkowski spacetime is not known
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to us to arise in an analogue spacetime simulation, but were such a system found, and proposed
for simulating the circular motion Unruh effect, such that the signal extraction is modelled by
an UDW detector with a dipole interaction, the linear acceleration results in section 9.3 of [33]
suggest that the outcomes would be similar to a massless scalar field in 4 + 1 dimensions, and
hence display no suppression of the signal in the small gap and long time regime [45].

In conclusion, we have clarified the reasons behind the vanishing effective Unruh tem-
perature for circular acceleration in the long-time-small-gap limit in 2 + 1 spacetime dimen-
sions, highlighting the role that the uniform sign of the switching function plays in this phe-
nomenon. By allowing the switching function to change sign, and carefully controlling the
interaction duration, we have shown that it is possible to recover a non-zero effective tem-
perature in the long-time-small-gap limit, with the interaction duration and gap related by an
inverse power law. This opens avenues for future theoretical investigations and experimental
realisations, suggesting the potential for broader control of detector response and quantum
field interactions through tailored switching protocols. Ultimately, our results deepen the con-
ceptual understanding of acceleration-induced quantum effects and offer promising directions
for observing analogue spacetime relativistic phenomena in condensed matter experiments.
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Appendix A. Small E expansion with adiabatic scaling

In this appendix we find the small E expansion of the third term in the adiabatic scaled response
function (6.2).
We write the third term in (6.2) as — %A(E) where

8

n(|E[) R )
a®= [ wRE, A1)
—n(|E])
and we recall from section 6.1 that
11—«
E
nien=s(5) (a2)

29



Class. Quantum Grav. 42 (2025) 245012 L J A Parry et al

Note that A(E) is even in E. We consider the cases & > 1, « = 1 and & < 1 in turn.

Al a>1
Suppose « > 1. Using the evenness of |x(w) \2, we rewrite (A.1) as

aw - [ TR w) -2 / T wlRw) P (A3)

—o0 n(lED)

The first term in (A.3) equals 27 || ||* by Plancherel’s theorem. In the second term, we recall
that X(w) = o(w™!) as w — oo, since x € C), and we see from (A.2) that 7(|E|) tends to

infinity proportionally to |E |7(a71) as E — 0. As E — 0, we hence have
A(E) =2r|[x| +o (EI*™"), (A4)

where writing the error term as a function of |E| denotes that the error term is even in E.
The third term in (6.2) is hence

2
Cixdl
4y

sgn(E)(1+o(|E|*7")). (A.5)

A2 a=1

Suppose v = 1. From (A.2) we now have 7(|E|) = S, which is independent of E, and (A.1)
becomes

S
A(E) :/ dw| T (W) [ (A.6)

)

The third term in (6.2) is hence

1 s,
—msgn(E)/_de|X(w)| . (A7)

A3 a<1

Suppose finally that o < 1. From (A.2) we now have n(|E|) — 0 as E — 0. Hence (A.1) gives
A(E) = 2% (0) s |EI" (1+ 0 (|20 ) ). (A8)
where we recall that X (0) > 0 by the assumptions on Y, and the error term comes using smooth-

ness and evenness of |Y(w)|’.
The third term in (6.2) is hence

_IXOF
dmy

5%sgn (E) |E|1_O‘(l +O(\E\2(l_"‘))). (A.9)
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Appendix B. Small E expansion with plateau scaling

In this appendix we find the small E expansion of the third term in the plateau scaled response
function (6.6).
We write the integral in the third term in (6.6) as

n(|E[) 1— =N E
B(E)::/ du cosuw< |E| u)
n(1E])
where we recall from section 6.2 that

—n(IE) uw
S (0%
n(IE]) = | (+(|E|) ) B2)

From (B.2) it follows that

2
, (B.1)

El 1 olE”

n(E) 7 1+clE|

where ¢; = 7,/(7,8%). Note that |E|/n(|E|) — 0 proportionally to |E|* as E — 0.
Note that 5 is even. We consider the small E behaviour of B(E) separately fora > 1, o = 1
and0<a <1

B.1l a>1

Suppose « > 1. Then n(|E|) — oo as E — 0, and from (B.3) we have |E|/n(|E|) — 0as E — 0.

2, we may write (B.1) as

Using the evenness of |1Z

2

© 1—cosul|~( |E| >2 /°° 1 —cosu A< |E| )
B(E)=2 d -2 d .
B=2 [ a2 e s e |\ (ED
(B.4)
As E— 0, (B.4) gives
B(E) = 7| (0)[* + 0. (1), (B.5)

using in the first term a dominated convergence argument and the standard integral
fooo du 1*;205” = %77, and using the second term the boundedness of 1Z and the integrability
of (1 —cosu)/u’.

Hence, the third term in (6.6) is

{—;@ (0) [Psgn (E) (1+0,(1)). (B.6)

B2 a=1
Suppose a = 1. Then n)(|E|) — 7,,S and |E|/n(|E|) — 0 as E — 0, and from (B.1) we have

B(E) =71 (0)[?¢ + 0. (1), (B.7)
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where
1™ 1
g:f/ du—2%, (B.8)
i —7,8 u
Hence, the third term in (6.6) is
T ~
=150 Psen(B)(1-+ 0. (1). (B.9)

B.3. a<1

Finally, suppose « < 1. Then n(|E|) — 0 as E — 0.
We write (B.1) as

BE)=n(e) [ avi =S G P (8.10)

by the change of variables u = n(|E|)v. As E — 0, a dominated convergence argument allows
the limit to be taken under the integral, with the result

B(E) =n(|E|) [ (0) > (1+0.(1)). (B.11)

Hence, the third term in (6.6) is

28 e
_4577“/’(0)\2 ('?') sgn (E) (140, (1)). (B.12)

Appendix C. Adiabatic scaling with weak small-frequency suppression of |x} |

In this appendix we address the SFS condition (7.8) for adiabatic scaled switching families,
Xx = X(7/)), under the assumptions of section 7.2.1, but in the special case where |x(w)| — 0
as w — 0 more slowly than any positive power of |w|. We first show that in this case the SFS
condition does not hold for any inverse power-law growth of A(E) as E — 0. We then give
an example in which | (w)]| is asymptotic to 1/1/—1log|w| as w — 0, and SFS holds when
ME) — oo as E — 0 so that \(E) = o(log |E]).

We formalise the first statement as the following Proposition.

Proposition C.1. Let x(7) = x(7/)\) be an adiabatic scaled switching function family such
that x is in C'(R), real-valued, absolutely integrable and square integrable, and not identically
vanishing. Suppose that for every p > 0, |u| =" |x(u)|> = oo as u — 0.
For E # 0, let \(E) be positive-valued, even in E, and such that \(E) — co as E — 0.
Then, if X ) (u) satisfies the SFS condition (7.8), we have \(E) = o(|E|=") as E — 0 for
all 8> 0.

Proof. Proceeding as in (7.10), the SFS condition (7.8) takes the form

1 n(E) 5
— du|x 0 C.1
‘E‘ —n(E) u |X (u) | E——>O> ) ( )
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where n(E) := A(E)|E|. Let p > 0. By the assumptions about , there exists a § > 0 and an
M > 0 such that |X(u)|? > M|ul’ when |u| < 6. From (C.1) it then follows that n(E) — 0 as
E — 0. This implies A\(E) = o(|E|#) as E — 0 for all 8 > 1.

Now, when |E| is so small that n(E) < §, we compute

NEYTHEP.  (C2)

n(E) n(E) p+1
o B
El ) ) E] Jo p+1 [E[  p+l
Since (C.1) holds, the rightmost expression in (C.2) vanishes as E — 0. Hence \(E)PT!|E[P —
0as E — 0. Since p > 0 was arbitrary, this implies that \(E)|E|® — 0as E — 0 forall 0 < 3 <
1. This gives A(E) = o(|E|™?) as E — 0 forall 0 < 3 < 1.

Combining, we have \(E) = o(|E|~?) for all 3 > 0. O

As an example, suppose that

1
- log(8/u])
as u — 0, where S is a positive constant of the dimension of energy, introduced to make the

argument of the logarithm dimensionless. For A(E) such that n(E) — 0 as E — 0, we then
have

X (u) (140(1)) (C.3)

1 n(E) R 28
), IR = 2 (e () 0 +o1)
-n

2 (12

=— | —F—— | (1+o0(1

|E| log<%E)) (1+ol))
2A(E)

:log(S/|E|)_1og()\(E)) (I+o(1)), (C4)

where in the first equality we have estimated the integral by the exponential integral function
Ej, and in the second equality we have used the large argument expansion 6.12.1 in [69]. SFS
is hence satisfied if A(E) — oo as E — 0 so slowly that A\(E) = o(log(S/|E])).

This example also illustrates that proposition C.1 does not have a straightforward converse:
under the conditions of the proposition, a slower-than-powerlaw growth of A(E) is necessary
for SFS, but it is not sufficient. For example, suppose that A(E) ~ (log(S/|E |))2 as E — 0. The
growth of \(E) is then slower than any inverse power, but SFS is not satisfied in this example
because the last expression in (C.4) tends to infinity as £ — 0.

Appendix D. Asymptotics of I(v) (7.4)

In this appendix, we find the v — 0 and v — 1 asymptotics of the function I(v) (7.4) given by

D.1)

> 1
IM:—/dz—————J.
™ Jo <\/ 1 —v2sinc’z )

The integrand in (D.1) is positive and pointwise increasing in v. It follows that I(v) is pos-
itive and increasing in v.
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Consider first the v — 0 limit. Expanding the integrand in (D.1) in powers of v, justified by
dominated convergence, we find

20 [ 5 L, 5
I(V):?/ dzsmcz—{—O(v):;v‘—i—O(v). (D.2)
0

Consider then the v — 1 limit. Recalling that v = 1/v/1 — v2, we write

4y 1
J(v) = /00 dz ! —1]. (D.3b)
0 \/1 — (1 —=~~2)sinc*;

v — 1 then corresponds to v — oco.
We split the integral in (D.3b) at z = 7/2, defining

J() =J< (V) +I> (1), (D.4a)
/2

J<(y)= / dz ! —1], (D.4b)
0 \/1 — (1 —y~2)sinc*;

Js () = / dz ! —1]. (D.4c)
/2 \/1 — (1 —~~2)sinc’z

For J- (7) (D.4c), we have

0<Js ( )</Ood : 1]==Z \/”2 | A2 (D.5)
X X v4 — = — — _ . .
TSRS \Visae ) T Ve

The rightmost expression in (D.5) is bounded as v — oo. Hence J~ () = O(1) as v — oc.
For J(7) (D.4b), we make a change of variables u(z) = \/1 — sinc’z, giving

u(m/2) q 1 1
J = ’ '
<() /0 ”\/7_2 +(1—y2)u? u'(z(u)) P

One may show that v/3 < 1/u'(z(u)) < V34 cu? on the integration range, for some con-
stant ¢ > 3+/3/5. Thus, by elementary integration,

3 3 A?
% sinh™! (YAB) < J< (7) < % sinh~' (YAB) + CTB’ (D.7)

where A = u(m/2), B=+/1—~~2, and we have estimated u?/+/~~2 + B2u?> < u/B. Noting
that B =1+ O(y~?) and sinh ™' (YAB) = log(27vA) 4+ O(y~2) as y — oo, this gives J (y) =
V3log(7y) +0(1) as y — oo.
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Combining these estimates for /. and J~ gives, as v — 00,

J(7) = V3log(7)+0(1)

:—?log(l—v)—%O(l)7 (D.8)

where in the last expression we have written «y in terms of v and the limit is v — 1.
Finally, combining (D.3a) and (D.8) gives I(v) = —% log(1—v) +0(1)asv— 1.
We note in passing that the estimate (D.8) can be improved to

J(V)\/glog(jﬂ)Jr/()oodz( - ! = V3 )1>+o(1), (D.9)

_sinck z(1+z

by the technique of appendix D.2 in [25]. This allows one to find the constant term in /(v) as
v— 1.

Appendix E. Proof and variants of proposition 7.1

This appendix provides the proof of proposition 7.1, split into sections E.1-E.3. Section E.4
discusses variants of proposition 7.1 that ensue under stronger assumptions on the switching
functions.

E.1 XA

Consider the adiabatic scaled switching family x\ = x(7/A) (7.23a) in proposition 7.1.

X is by assumption in C'(RR), absolutely integrable and square integrable, and not identic-
ally vanishing. These properties imply that x(7) is an ASSF, as was noted at the start of
section 7.2.1.

By continuity of X, the bound (7.22) implies that [ dr|r¥x(7)| < oo for k=
0,1,2,3. A dominated convergence argument then shows that X is in C3(R), X®¥)(w) =
(i) [% dre T rky(7) for k= 0,1,2,3, and hence Y¥) (0) = (—i)*My[x] fork=0,1,2,3,
where My[x] are the moments of x as defined in (1.6).

Since My[x] =0 by (7.21), it follows that |x(w)| = O(w) as w — 0. The discussion
around (7.12) then shows that when A(E) is the power-law (6.1) with 0 < e < 2/3, x sat-
isfies the SFS property (7.8). The small gap temperature is then positive and given by (7.9b).

This completes the proof of statements about X in proposition 7.1.

E.2. xxsis an ASSF

Consider the switching family » s (7.23b). We shall show that x 5 is an ASSF (outcome 1
of proposition 7.1). R
Starting from (7.23b), we use the convolution theorem to write X s in terms of  and f as

. A _
Xx,g(w):—/ dQf(Q) X (Aw —A17°Q) | (E.1)

21 J_

where f is smooth and falls off at infinity faster than any power, whereas ¥ is in C3 (R) and
square integrable.
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From (E.1) we find

X A [~ _
Do) _ 1 | a9 @R (- 0)

zﬂll 5/ dF (/A7) (u- Q). (E2)

where the second equality comes by the change of variables = \°~! Q. From (E.2) we have
the bound

Y A
M <n(u), (E3)

where

1
n(u) :=sup —
( ) e>0 27

/Oone f(Q/) (MQ)‘ (E.4)

Because?has rapid falloff and  is square integrable, 7 is square integrable by theorem I11.2.(a)
in [74], using the fact that  has a square integrable maximal function by theorem I.1.(c) in [74].
This provides the 7 for proposition 3.1.

From (3.1) and (E.2) we have

€l = Jim ol
A—00
EAhm/ dQF(Q) X (u—A'70Q)
=X (u), (E.5)

taking the limit under the integral by dominated convergence, and using f{0) = 1. Hence pro-
position 3.1 applies with & = x. As X is not identically vanishing, this completes the proof that
X»,s 18 an ASSF (outcome 1 of proposition 7.1).

E.3. x»,s satisfies SFSwhen0< a<2/3and d>3/2

What remains is to show that the switching family s (7.23b) satisfies the SFS condition
when 0 < o < 2/3 in the power-law A(E) (6.1) and 6 > 3/2 (outcome 2 of proposition 7.1).
Recall that the moments of x, M[x] (1.6), exists for k = 0, 1,2, 3, by the assumption (7.22).
Recall also that My[x] = 0 by (7.13).
To begin, we assume 0 < o < 1 and § > 1. We use (7.23b) and the reality of y and f to
write

R (@) = [ dudve I (u/3) x (/) £/ N7/
= /2 dudv cos (w(u—v)) x (u/N) x (V/)\)f(u/)\é)f(v/)\é)

=\ dexdy c0s (WA (x — ) x (¥) x ) F (A 2x) F(AI70y) E6)
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where the second equality follows because the contribution from sin (w(u — v)) vanishes by
antisymmetry under (u,v) — (v,u), and the third equality follows by the substitution u = Ax
and v = Ay. The expression on the left-hand side of (7.8) takes hence the form

5/ " o Ragers () P
— dw|X w
XE) i A(E),0

=25\ 1/e dxdysinc (S/\l_l/o‘ (x—y))X(x)x(y)f(/\l_‘;x)f()\l_‘sy), (E.7)
RZ

interchanging the integrals by Fubini’s theorem, performing the integral over w, and using (6.1)
to write |E| in terms of .
To simplify the notation, we write

1 1
= a=——1, b=5—1, (E.8)
A «

€=

so that € >0, a > 0, b > 0, and the limit A — oo corresponds to € — 0. From (E.7) we then
have

1

IE]
— dw | Xace.s (W) | = 28€1, (E.9q)

I. = /Rz dxdy y (x) x () sinc (Se (x — y)) £ ("x) £(e}y) . E9b)

Consider I. (E.9b). Writing the integrand in terms of the functions F(u) :=f(u) — 1 and
G(u) :=sinc(u) — 1, we have

I. = . dxdyx (x) x () [G (Se"(x—y))+F (ebx) F (eby) + G (S (x—y)) (F (ebx) +F (eby))

+G(Se" (x—y))F (ebx) F (ebyﬂ , (E.10)
where we have used
0= [ dedyx()x()= | dedyx(@®)x()F('x) = [ dedyx(x)xO)F(€"y),
R R R2
(E.11a)
which follows because My[x] = 0.
F and G are smooth bounded functions with the Maclaurin expansions F(u) =f"(0)u +

O(u*) and G(u) = —tu* + O(u*). In the first and second term in (E.10), a Taylor expansion
under the integral gives

dxdy x (x) x (v) G (S (x — y)) = —éSZEZ“ drdyy (x) x () (x—y)” +o ()

R2 R2
- %SZEZ“MI X +o (), (E.12a)
/00 dxy (x) F (é’x) =f (O)eb/OO dxy (x)x +o (€

= (0)M[x]€" +o("), (E.12b)
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where the error terms follow by a dominated convergence argument, using integrability of
x?|x ()| and |xx(x)|, which follows from (7.22), and in (E.12a) we have used Mo[x] = 0. The
third and fourth term in (E.10) are subdominant to the first term, by (7.22). Collecting, we
have

Io=M[x]’ (;5262(1 +(f (O))262h> +0(e*) +o (). (E.13)

From (E.9a) and (E.13) we then have

|E|
1 / deo [R5 () |2 = 25M, [ (1528” L <o>>2e”“b) +0(E) 4o ().
AE) g 3
(E.14)

Now, the SFS condition (7.8) is equivalent to the condition that (E.14) is o(e!*¢), using (6.1)
and (E.8). This happens when a > 1/2 and b > 1/2. In terms of « and 6, this happens when
0<a<2/3andé>3/2.

This completes the proof of outcome 2 of proposition 7.1.

E.4. Variants of proposition 7.1

If the falloff conditions of  are strengthened, the small e expansion of /. (E.9b) can be carried
out to higher orders than shown in (E.13). If x and f are such that some of the coefficients of
the low-order terms in this expansion vanish, the outcome is a variant of proposition 7.1 where
the domains of « or § can be larger. We shall present here one such variant.

We assume that both x and fare even, from which it follows that the coefficients of €2 and
€% in (E.13) vanish. We strengthen the falloff of y from (7.22) to

/ dr |7%x (1) ] < o0. (E.15)
The moments My[x] (1.6) are then defined for k =0,1,...,6, and My[x] = M;[x] = M5[x] =
Ms[x] = 0. We now show that the error terms in (E.13) can be improved.

In (E.10), we use for F and G the Maclaurin expansions F(u) = 3f"'(0)u* + O(u*) and
G(u) = — 1 + t55u* + O(u®). For the first and second term in (E.10), we find

vy () () G (8¢ (v 7)) = 1358°6% | dudyx () x 0 (x—3)* +0(e¥)
R2 R2

1
_ 2—05464“M2 > +o(e), (E.164)

/oo dxX(x)F(ebx) _ %f// (0) €2b/°° dxX(X)xz To (EZb)
= %f” (0)e? My [x] +o(?) . (E.16b)

The third and fourth terms in (E.10) are again subdominant to the first term. Collecting, we
have
1

I =M [x]’ (2105464“ +5 (7 (0))%‘“’) +0(e") +o(e?), (E.17)

38



Class. Quantum Grav. 42 (2025) 245012 L J A Parry et al

from which (E.9a) gives

|E|
515 | 1R s @F =25Ma 0 (5584 (07 0) % ) o () o (%)

(E.18)

The SFS condition (7.8) is equivalent to the statement that (E.18) is o(e!*%), which happens
whena > 1/4 and b > 1 /4. In terms of « and §, this happens when 0 < aw < 4/5 and § > 5/4.

Collecting, we have shown that in this variant of proposition 7.1 the parameter ranges in
outcome 2 are broadened to 0 < av < 4/5 and § > 5/4.
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