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Abstract 

This paper addresses a critical gap in circular economy (CE) research by introducing a novel 

methodological framework that integrates Network Data Envelopment Analysis (NDEA) with 

a chance-constrained programming. The proposed approach captures the interrelated dynamics 

of economic production and waste treatment subsystems, while accounting for stochastic 

variables and data uncertainties to provide robust CE efficiency estimates. Using data from 26 

European (EU) countries from 2013 to 2020, our results reveal that achieving CE efficiency 

requires a balanced focus on economic production and waste management. Although strong 

economic output can support circularity, waste treatment efficiency often plays a decisive role 

in determining overall CE performance. Moreover, we find that economic size does not 

necessarily translate into circular efficiency, whilst large economies may face challenges with 

effective waste management and resource recovery despite their economic status. Our proposed 

approach offers policymakers and practitioners a robust empirical framework to guide CE 

improvements, particularly in regions where environmental practices lag behind economic 

achievements. Stronger incentives and regulatory measures are recommended to enhance 

circular activities within the EU and foster greater circular efficiency across countries. 
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1 Introduction 

The world faces an increasingly complex and interconnected set of challenges spanning socio-

economic and environmental dimensions. The rapid acceleration of climate change, driven by 

escalating greenhouse gases (GHG) emissions, presents an urgent threat to the environment 

[1]. At the same time, global economic downturns and the depletion of resources exacerbate 

this intricate landscape. In Europe, these challenges are particularly pronounced, with 

household expenditures surged by 69% from €4.3 trillion to €7.3 trillion [2], yet only 11.7% of 

the 6.95 billion tonnes of material used within the EU economy is recovered and reintegrated 

into the economic cycle. Moreover, nearly one-quarter of the resources employed within the 

EU are imported from external sources [3]. 

A promising solution to these challenges lies in the adoption of the CE, a paradigm aimed at 

decoupling economic growth from resource consumption while fostering value creation 

through innovative consumption and production patterns [4]. The European Commission has 

been a strong proponent of this approach through initiatives like the Roadmap to a Resource 

Efficient Europe (2011) and the EU Action Plan for the CE (2015), which are designed to 

enhance resource efficiency and facilitate the transition towards a more circular model [5]. 

However, despite growing interest among policymakers, researchers and practitioners, 

transitioning from a linear to a circular economy remains challenging for societies that are 

deeply rooted in traditional production practices. 

Achieving sustainability in CE initiative requires thoughtful design, with sustainability as a 

core principle, coupled with ongoing rigorous evaluation and monitoring of sustainability 

performance [6]. Standardised measurement tools are essential for evidence-based 

management [7], and there is broad consensus among academics, industry practiotioners, and 

policymakers on the need for CE-specific tools to track progress at national, regional, and 

sectoral levels [8].  A thorough review of the literature [9] reveals several prevalent 

methodologies for evaluating CE performance, such as Life Cycle Assessment (LCA), Material 

Cost Analysis (MCA), Material Flow Cost Accounting (MFCA), Multi-Criteria Decision 

Making (MCDM), and Data Envelopment Analysis (DEA). Among these, DEA has gained 

particular popularity for assessing circular systems’ performance due to its ability to treat 

decision-making units (DMUs) as black boxes, focusing on their inputs and outputs while 

bypassing the internal complexities of processes involved [10-13]. Recent advancements have 

led to the development of Network DEA (NDEA) models [14, 15], which account for multi-
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stage DMU processes [16]. The NDEA model with feedback has been applied in several studies 

to assess CE performances [17-21]. 

Despite these advancements, two key challenges persist in CE evaluation. First, the lack of a 

standardised CE definition, combined with the diversity of associated practices create 

inconsistencies in measurement methods. This is evidenced by over 114 distinct CE-related 

definitions [22] and more than 270 distinct measurement indicators reported in previous studies 

[6]. The second challenge is rooted in the limitations of data utilisation. CE systems are 

complex, encompassing multifaceted supply chains that span collection, sorting, 

remanufacturing, and distribution stages. Each stage can potentially introduce errors in data 

collection, creating vulnerabilities that current assessment tools often fail to address. Without 

accounting for these uncertainties, evaluation results risk being incomplete or misleading. 

Although the broader CE assessment literature has explored the incorporation of uncertain 

variables, particularly within DEA and NDEA methodologies, the treatment of uncertainty in 

relation to CE drivers remains underdeveloped [23-26]. 

Recognising the pivotal role of CE practices in shaping both the EU's internal dynamics and 

its global influence, this paper addresses the issue of uncertainty in CE measures for EU 

countries using data from 2013 to 2020. First, we establish a robust framework conceptualising 

the CE system as two interlinked subsystems: Economic Production Subsystem (EPS) and Waste 

Treatment Subsystem (WTS). These subsystems form the backbone of material flow within the CE 

model, embedding sustainability principles into economic and environmental processes. Second, 

we introduce the innovative concept of circular disposability, establishing a robust and 

transformative foundation for advancing CE efficiency measurement models. Third, we prove 

that in a circular system, as modelled, the efficiency of the EPS is contingent on the efficiency 

of the WTS; however, the converse does not hold. This asymmetry underscores the intrinsic 

interdependence between the EPS and WTS. Finally, we examine the inherent data 

uncertainties presented in CE metrics for EU countries. To address these challenges, we 

propose an innovative chance-constrained NDEA model. This model explicitly captures the 

interconnectedness between EPS and WTS while addressing data variability. 

The remainder of this paper is organised as follows. Section 2 provides a brief literature review 

on CE assessment. Section 0 presents the research framework, developed using the Design 

Science Research Methodology (DSRM). Section 4 outlines the CE measurement framework 

and analyses the data used in the analysis. Section 5 introduces the proposed NDEA model, 

detailing its features. Section 6 discusses our key findings, highlighting insights from the 
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analysis. Finally, section 7 concludes with a comprehensive summary of the findings and the 

implications of our research. 

2 Literature Review 

This section reviews existing literature on measuring CE performance, with a particular focus 

on DEA and NDEA methodologies, as well as the CE performance in EU countries. 

2.1 CE Performance Measurement 

The concept of the CE has become central to industrial and environmental policies in many 

countries, such as China [27], Japan [28] and the UK [29]. After the 2008 financial crisis, there 

has been growing interest in 'green growth', underscoring resource productivity and efficiency 

under the motto of achieving “more with less”. In response, the European Commission 

introduced its vision for a 'Resource Efficient Europe', which became a key pillar of the 'Europe 

2020 Strategy' [30]. CE aims to promote sustainable economic growth through material 

recycling, resource security, pollution reduction, and adherence to the 9R principles: refuse, 

rethink, reduce, reuse, repair, refurbish, remanufacture, repurpose, recycle and recover [31]. 

Despite progress, critics highlight inefficiencies in EU waste policy, with concerns about its 

limited effectiveness in driving waste reduction [32, 33]. In addition, current trajectories 

indicate that the EU might fall short of its ambitious target to double the circular material use 

rate by 2030 [34]. 

A significant body of research has sought to address ambiguities in CE performance indicators. 

Notably, [8] developed a taxonomy comprising 55 indicators, categorised into ten into ten 

dimensions based on CE implementation levels, CE loops as in Ellen MacArther Foundation’s 

butterfly diagram, and development context. In a parallel vein, [6] created an extensive 

database of over 270 leading indicators, systematically classified based on sustainability 

dimensions, business processes, and CE strategies. For firm-level CE measurement, [35] and 

[36] provide critical insights, while [9] provides an in-depth review of the state-of-the-art 

methodologies. 

2.2 Employing DEA for CE Performance Measurement 

DEA has emerged as a prominent method for performance measurement [40, 41], with its 

applications spanning various domains, including CE performance. Since its inception, the 

DEA framework has undergone significant advancements, such as the introduction of non-

discretionary environmental adjustments to account for external factors beyond the control of 

decision-makers [37] [38]. The use of DEA in CE performance assessment gained its popularity 
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with a study evaluating a city’s CE progress [39]. This study paved the way for numerous 

research initiatives exploring CE across various contexts, such as analysing the impact of CE 

on carbon intensity, addressing wind turbine end-of-life issues, conducting provincial CE 

assessments, assessing recycling and material use in municipal waste management, and 

examining CE practices in coal-fired power plants [10, 12, 40-43]. These applications highlight 

DEA’s flexibility and effectiveness in addressing the multifaceted challenges of CE. Recent 

studies have further expanded DEA's applicability by integrating it with other models [9]. For 

instance, DEA combined with Tobit regression model was used to assess recycling and 

renewable energy across EU countries [44]. DEA and Malmquist productivity index were 

applied to analyse resource use efficiency in the CE policies of OECD countries [45]. 

Note that transitioning from traditional linear supply chains to circular systems involves 

integrating waste treatment systems with feedback loops, adding significant complexity. To 

address these challenges, NDEA models have emerged as particularly effective tools for 

evaluating CE performances [16, 46, 47]. NDEA models, especially those incorporating 

feedback mechanisms, are critical in CE performance measurement. The intricate interplay 

between inputs and outputs in the CE systems requires approaches that enable simultaneous 

improvements of both. This is where Directional Distance Function (DDF) NDEA models 

excel. First introduced in [38], the DDF approach allows for the concurrent optimisation of 

inputs and outputs, thereby enhancing the overall effectiveness of NDEA methodologies. 

Further exploration of DDF-NDEA models in [16] provided a comprehensive understanding 

of their intricacies and reinforced their importance in addressing the inherent complexity of CE 

systems. 

NDEA frameworks have continued to evolve, with refinements adding new dimensions and 

enhancing their analytical ability [48]. A notable development was the creation of a taxonomy 

that categorises NDEA models into classes, encompassing standard game-theoretic centralised 

global optimal solution, and feedback models [49]. This taxonomy provided a structured 

framework to deepen understanding of the multifaceted nature of NDEA. Subsequent studies 

further extended this classification by introducing additional dimensions, improving the versatility 

and scope of NDEA methodologies [50-52]. For example, a game meta-frontier NDEA approach 

has been introduced to evaluate technology heterogeneity and efficiency in China’s CE, utilising a 

leader-follower dynamic to assess production and environmental performance [21]. An extended 

Malmquist index based on cooperative game NDEA model was applied to study the dynamic 

evolution of industrial CE, including marine CE systems in China [20]. 
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2.3 CE Performance Measurement Across Different Levels  

One strand of studies examines CE performance on across micro-, meso- and macro-levels. At 

the micro-level, the focus is on individual products and companies. For instance, [53] evaluated 

material durability and environmental footprints during the product development phase. 

Similarly, [4] used a directed graph methodology to monitor CE performance in service-

oriented businesses. 

At the meso-level, the emphasis shifts to sectors and industrial parks. For example, [54] 

conducted an in-depth evaluation of CE implementation within a Chinese aluminium industrial 

park, highlighting structural upgrades, functional enhancements, and facility development. 

Similarly, [55] used DEA models to analyse the efficiency of industrial parks in China focusing 

on energy savings and pollution reduction. Further studies have explored sector-specific CE 

performance, such as in food [56], constructions [57], plastics [58] [59], and textiles [60]. 

At the macro-level, the focus broadens to regional or national evaluations. Due to the 

comprehensive historical CE performance data provided by the Eurostat database, it attracts 

many studies to assess CE performance in EU countries. For example, one of the first studies 

[61] applied a Shannon Entropy-based evaluation algorithm to model CE processes in the EU, 

creating a composite indicator through a weighted summation of individual indicators. Weights 

reflected the importance of each indicator in shaping the composite measure. In another study, 

[45] evaluated CE framework using essential variables outlined by the European Commission, 

with rigorous comparisons ensuring the robustness of findings. 

Table 1: CE performance measurement inputs and outputs 

Title of the 

reference 

Year Model Inputs Outputs Countries 

Modelling the 

circular economy 

processes at the EU 

level using an 

evaluation algorithm 

based on shannon 

entropy [61]. 

2018 An Evaluation 

Algorithm Based 

on Shannon 

Entropy 

- • Percentage of 

Recycling. 

• GDP Per Capita. 

European 

Countries 

Assessing 28 EU 

member states' 

environmental 

efficiency in 

national waste 

generation with 

DEA [62]. 

2019 VRS CRS DEA 

Models 
• Labor force. 

• Investment. 

• Population 

density. 

• Waste. 

• GDP. 

• NOx emissions. 

• SOx emissions. 

• GHG emissions. 

European 

Countries 

Technology 

heterogeneity and 

efficiency of China’s 

circular economic 

systems: A game 

2019 Meta-Frontier 

Cooperative 

Game Network 

DEA 

Economic 

Production: 
• Fixed Asset. 

Investments. 

• Employed 

Population. 

Economic 

Production: 
• GDP. 

• Wastewater 

(Undesirable). 

• Solid Waste. 

Provinces of 

China 
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meta-frontier DEA 

approach [21]. 
• Total Water 

Supply. 

• Wastewater. 

Waste Treatment: 
• Treatment 

Investment. 

• Solid Waste 

Disposal. 

Investment. 

Waste Treatment: 
• Solid Waste 

Utilisation. 

• Recycled Water. 

• Wastewater 

Treatment Rate. 

Ranking European 

countries on the 

basis of their 

environmental and 

circular economy 

performance: A 

DEA application in 

MSW [32]. 

2020 Weight restriction 

DEA 
• MSW generated. 

• Basic human 

needs. 

• Foundations of 

wellbeing 

opportunity. 

• Recycling rate of 

MSW. 

• Circular material 

use rate. 

European 

Countries 

Performance 

measurement for the 

recycling production 

system using 

cooperative game 

network data 

envelopment 

analysis [63]. 

2021 Cooperative 

Game Network 

DEA 

• Labor force.  

• Capital. 

• Energy 

consumption. 

• Energy recovery. 

• GDP per capita. 

• Volume of 

recycled solid 

waste. 

• Volume of 

backfill. 

• Total waste 

generated. 

European 

Countries 

The efficiency of 

circular economies: 

A comparison of 

Visegrád Group 

Countries [64]. 

2021 VRS CRS DEA 

Models 
• Waste generated 

per capita. 

• Gross capital 

formation. 

• Recycling rate of 

MSW. Circular 

material use rate. 

Visegrad Group 

countries 

Assessment of the 

effectiveness of the 

European Union 

countries transition 

to a circular 

economy: data 

envelopment 

analysis [65]. 

2021 VRS CRS DEA 

Models 
• Generation of 

municipal waste 

per capita. 

• Water 

exploitation 

index. 

• Final energy 

consumption. 

• Social progress 

index. 

• Recycling rate of 

municipal waste. 

• Circular material 

uses rate. 

European 

Countries 

A design science 

research 

methodology for 

information systems 

research [66]. 

2023 DEA Super-

efficiency dual 

VRS with MPI 

• Generation of 

municipal waste 

per capita. 

• Generation of 

waste excluding 

major mineral 

waste per GDP. 

• Recycling rate of 

municipal waste. 

• Recycling rate of 

packaging waste. 

• Recycling 

biowaste per 

capita Circular 

material uses rate. 

European 

Countries 

In terms of the methodologies, various methodologies have been employed to assess CE 

efficiency, with DEA emerging as a widely used approach, as summarised in Table 1. For 

instance, [32] was the first to apply DEA to measure the performance EU countries in 

transitioning to a CE, evaluating both environmental and CE performance. Similarly, [67] 

ranked EU countries’ recycling and material use efficiency using DEA models, noting that 

relying solely on metrics like recycling, or cyclical material use rate for municipal solid waste 

can lead to overestimations or underestimations of a country’s true performance. For example, 
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low waste generation, an often-overlooked factor, may indicate a country’s economic and social 

progress. 

Among different DEA models, NDEA models stand out due to their ability to decompose a CE 

system into interconnected subsystems and account for linkages between them, providing a 

holistic assessment. [63], for example, employed a cooperative game NDEA model to measure 

performance of CE in the EU countries. It is also important to incorporate undesirable factors, 

such as waste generation as an output, recycled materials as an undesirable input, are 

particularly relevant for CE evaluation. In Section 5.2, we delve deeper into the challenges of 

integrating undesirable factors into DEA models, the techniques for addressing these issues, 

and the implications of randomness in input-output variables in the context of CE efficiency 

measurement. 

3 Research Framework 

To establish a robust methodology for evaluating CE scores across EU countries, our research 

employs the DSRM approach introduced in [68] as outlined in Table 2. The application of 

DSRM in DEA models has grown significantly in recent years. For instance, [69] used DSRM 

to handle dimensionality in DMUs within a DEA framework. Moreover, a DEA-ANN 

technique was adopted to analyse bank branch performance using DSRM [70]. [71] combined 

DSRM and DEA to optimise IT outsourcing services. [72] applied DEA-DSRM to evaluate EU 

environmental efficiency, focusing on fixed costs and decision objectives. In addition, a 

DSRM-based technique was created to assess bank branches in DEA models under discrete 

situations [73]. More recently, [74] proposed a DEA-TOPSIS model, leveraging DSRM to 

quantify refrigeration system sustainability. 
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Table 2: DSRM Method utilised in this research 

DSRM Activity Description Knowledge Base 

Problem 

Identification & 

Motivation 

Highlight data uncertainties and stochastic 

factors that complicate CE performance 

monitoring. Show how existing CE 

evaluation models neglect random 

variability, especially in EU datasets. 

Literature overview on CE performance 

evaluation frameworks (DEA, NDEA), 

randomisation issues, and circularity 

metrics. 

Define  

Objectives 

Develop a reliable, comprehensive CE 

performance score for EU nations using a 

strong NDEA-based model and chance-

constrained programming to control data 

uncertainties. 

Previous CE metrics research indicate 

stochastic data elements that affect CE 

assessment accuracy (e.g., circularity 

investment, waste unpredictability). 

Design & 

Development 

Develop a CE-specific two-stage NDEA 

model. Integrate stochastic variables and 

model economic production and waste 

treatment as linked subsystems. 

Chance-constrained programming in 

DEA, CE NDEA models, and multi-

subsystem analysis. 

Demonstration 

Apply the NDEA model to CE data, 

analysing Economic Production Subsystem 

(EPS) and Waste Treatment Subsystem 

(WTS) to determine overall CE efficiency. 

Empirical data from the Eurostat CE 

database for 27 EU countries (2013-

2020), relevant variables for CE 

performance measurement, and 

stochastic DEA model applications. 

Evaluation 

Correlate efficiency ratings to analyse how 

economic output and waste treatment affect 

CE performance in each nation. Explore 

policy implications for enhancing circularity. 

Evaluation of CE efficiency measures, 

correlations, and EU sustainability 

regulations' effects on waste 

management and circularity. 

Communication 

Explain circularity drivers and suggest EU 

CE incentives and regulations to stakeholders 

in sustainability policy and economic 

modelling. 

Conclusions from model results, EU CE 

policy suggestions, and significance to 

CE performance evaluation and future 

policy orientations. 

4 CE Performance Framework and Data 

This section outlines the key drivers of a CE system, describes the proposed framework, and 

presents the data along with a randomness test to check data variability.  

4.1 CE Framework  

A robust CE system is grounded on the 9R principles [75-77], which advance sustainability by 

reducing resource depletion and environmental impact while fostering economic growth. These 

principles prioritise minimising waste and consumption, extending product lifecycles through 

reuse, repair, refurbishment, remanufacturing and repurposing, and implementing effective 

recycling and waste management. By adopting CE principles, businesses and societies can also 

create multifaceted value. Economically, these principles can, for example, drive innovations, 

open new markets, and create business opportunities. Environmentally, they reduce resource 

extraction and waste generation, mitigate emissions. Socially, CE drives job creation and 

encourages sustainable lifestyles. Our research focuses on assessing circularity within 

production systems, with particular attention to the key drivers of reduction, removal, and 

recycling. 
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Figure 1 conceptualises circularity as two interlinked subsystems: the Economic Production 

System and the Waste Treatment System.  The EPS addresses production lifecycle activities by 

transforming resources into economic outputs, while the WTS emphasises waste management to 

minimise environmental harm, maximise resource recovery, and support economic and social 

goals. Together, these components illustrate the dynamic interplay between production and waste 

management in country’s material flow, where direct materials are processed into recycled 

materials (backfilling), emissions, environmental footprints, and waste; see Figure 2. The 

evaluation framework integrates economic, environmental, and social dimensions, underscoring 

the critical interdependence of the EPS and WTS in advancing sustainable development. 

In this study, the EPS evaluates economic performance and sustainability through three key inputs: 

Raw Material Consumption (RMC), Capital (Cap), and Recycled Material (RM). RMC quantifies 

the total amount of material extracted (domestically and internationally) for production. Cap 

reflects financial flows, acquisitions and disposals of non-produced non-financial assets, and 

capital transfers. RM measures the extent to which secondary materials are reintegrated into 

production processes, a key indicator of circularity progress that reduces reliance on primary 

materials and minimises environmental footprints. The primary desirable output of the EPS is 

Gross Domestic Product (GDP) [78, 79], accompanied by undesirable outputs arising from 

production and consumption activities such as General Wastes (GW) and Emissions, which 

serves as proxies for the environmental impacts of industrial and economic activities. For 

instance, GW accounts for the total volume of waste produced within the country, including 

major mineral wastes1. A more efficient EPS reduces waste generation through enhanced resource 

utilisation and sustainable practices, while an effective WTS facilitates the recovery and 

reintegration of waste into the EPS as secondary materials, thereby closing the circular loop.  

 

1 https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Comm

unity_(NACE) 

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
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Figure 1: Conceptual Network Model of CE 

Additionally, the system recognises that some waste undergoes energy recovery through 

incineration, contributing to energy generation but also produces emissions. Another critical metric 

is the Footprint, which captures broader environmental impacts associated with consumption 

patterns, including both domestic and transboundary effects of imported goods. While rising 

consumption intensities and shifting consumption patterns drive an increasing consumption 

footprint, CE initiatives have the potential to reverse these trends by encouraging behavioural 

changes and improving the environmental performance of products. 

The WTS enhances circularity by optimising resource recovery and minimising environmental 

impact, reframing waste streams as opportunities to recover materials and energy. This reduces 

reliance on raw materials, mitigates environmental degradation, and supports the transition toward 

a CE. To advance CE practices, significant investments (INV)2 are required in key areas such as 

developing CE infrastructure development, adopting innovative technologies, and implementing 

advanced waste management systems. These investments are aimed at strengthening a nation’s 

capacity to efficiently capture, sort, process and manage waste. By producing high-quality 

secondary resources that can be reintroduced into the EPS, such efforts reduce the need for primary 

raw materials extraction and promote more sustainable production processes. 

 

2 It is important to note that intangible and financial investments are excluded from the scope of INV. 

 

EPS WTS 
Capital, 𝑥2 

Raw Material, 𝑥1 

Recycled Material, r 

GDP, y Investment in Circularity, z 

Waste, 𝑤1 

Footprint, 𝑤2 

Emission 
Emission from 

Incineration 
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Figure 2: EU year 2020 Material Flow Diagram3  

4.2 Data 

In this study, data was sourced from the CE section of the EUROSTAT database, covering the 

years 2013 to 2020. This period provides the most comprehensive dataset available for all the 

variables required in our analysis. Note that correlation tests revealed strong positive 

correlations between generated wastes, waste disposal, and emissions from sources excluding 

incineration. Therefore, we exclude waste disposal and emissions variables from the model. In 

addition, as emissions from incineration constituted a negligible proportion of total emissions 

and generated waste, they were also omitted from the analysis. Finally,  as the focus of this 

study is the circulation of materials rather than gases, and these factors contribute little to 

efficiency measures or decision making, we chose not to include them in the models. 

 

3 https://ec.europa.eu/eurostat/cache/sankey/circular_economy/sankey.html?geos=EU27&year=2020&unit=MIO_ 

https://ec.europa.eu/eurostat/cache/sankey/circular_economy/sankey.html?geos=EU27&year=2020&unit=MIO_
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Table 3: Input-output description 

Sub-System Type Description Notation Definition Unit Database 

EPS 

Input 

Raw Material 

Consumption 

(RMC) 

𝑥1  The global demand for the 

extraction of materials 

induced by consumption 

of material within a 

country minus RM. 

Kilo 

Tonnes 

(kt) 

EUROSTAT 

CE Section 

Capital (Cap) 𝑥2 Gross capital of a country 

minus Investments. 

Million 

Dollar 

(m$) 

Recycled 

Material (RM) 

 

𝑟 Share of material 

recovered and fed back 

into the economy in 

overall material use times 

RMC. 

kt 

Undesirable 

Outputs 

Generated 

Waste (GW) 

𝑤1 Total waste generated in a 

country including major 

mineral wastes. 

 

Million 

Tonnes 

(mt) 

Footprint (FP), 

Index 

𝑤2 

 

Estimates the 

environmental impacts of 

consumption by 

combining data on 

consumption intensity and 

environmental impacts of 

representative products. 

na 

Output GDP, m$ 𝑦 Gross Domestic Product. m$ 

WTS 

Input 

Investment in 

Circularity 

(INV) 

𝑧 Gross investment in 

tangible goods. 

m€ 

EUROSTAT 

CE Section 

Generated 

Waste (GW) 

𝑤1 Total waste generated in a 

country including major 

mineral wastes. 

mt 

Output Recycled 

Material (RM) 

𝑟 Share of material 

recovered and fed back 

into the economy in 

overall material use times 

RMC 

kt 

4.3 Descriptive Statistics 

Using the data summarised in Table 3, we generated diagrams displaying the average 

magnitudes of the input-output listed for each EU country over the period from 2013 to 2020;  

see Figure 3. These diagrams provide a comparative view of each input/output, for example 

RMC represented as the yearly average, offering insights into the CE performance across EU 

countries. We find that Germany, France, and Italy emerged as leaders in multiple CE metrics 

among EU countries, while Luxembourg exhibited a disproportionately high environmental 

footprint suggesting a need to address consumption patterns and sustainability efforts despite 

its achievements in other areas.  
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Figure 3: Average EU countries CE performance inputs and outputs in 2013-2020 

These visualisations offer a clear view of each country’s performance across inputs and outputs, 

enabling the identification of both leaders and areas requiring attention. By examining these 

patterns, we gain insights into how EU countries prioritise and address key aspects of the CE, 

such as material efficiency, recycling, and waste management. 

Furthermore, we report descriptive statistics for the seven variables included in the study in 

Table 4. These statistics provide an overview of central tendencies (mean) and variability (value 

inside the parentheses of the variables), offering insight into the scale and dispersion of the data 

across EU countries.  

Our analysis shows that Germany consistently ranks highest across all variables, with France 

following closely in second place for nearly every indicator. On the other hand, Croatia, 

Cyprus, Latvia, Lithuania, Luxembourg, and Slovenia have the lowest values for all variables. 

The coefficient of variation further highlight heterogeneity across countries: Ireland has the 

highest variation of GDP and INV, Romania has the most variation of RMC and Cap, and 

similarly, Portugal has the highest variation of RM and GW. 
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Table 4: Descriptive statistics of the random variables by the countries in 2013-2020 

Country GDP (M) RMC (M) Cap (M) RM (M) GW (M) INV FP 

Austria 1.17 

(0.27) 

0.20 

(0.05) 

0.31 

(0.27) 

51.84 

(0.21) 

56.68 

(0.13) 

5420.44 

(0.04) 

3.30 

(0.03) 

Belgium 0.48 

(0.12) 

0.16 

(0.05) 

0.11  

(0.15) 

39.75 

(0.22) 

59.26 

(0.11) 

6224.33 

(0.19) 

5.87 

(0.07) 

Bulgaria 0.05 

(0.27) 

0.13 

(0.10) 

0.01 

(0.29) 

150.51 

(0.19) 

156.28 

(0.18) 

331.22 

(0.25) 

1.77 

(0.09) 

Croatia 0.06 

(0.14) 

0.05 

(0.05) 

0.01 

(0.21) 

3.51 

(0.19) 

4.91 

(0.27) 

327.22 

(0.20) 

1.34  

(0.11) 

Cyprus 0.02 

(0.14) 

0.02 

(0.13) 

0.00 

(0.29) 

1.70 

(0.23) 

2.06 

(0.18) 

69.00 

(0.38) 

0.37 

(0.05) 

Czechia 0.20 

(0.21) 

0.17 

(0.07) 

0.05 

(0.20) 

22.99 

(0.30) 

27.94 

(0.22) 

702.89 

(0.24) 

3.44 

(0.04) 

Denmark 0.32  

(0.11) 

0.13 

(0.08) 

0.07 

(0.15) 

15.85 

(0.14) 

17.64 

(0.18) 

2673.78 

(0.11) 

3.10 

(0.08) 

Estonia 0.02 

(0.27) 

0.03 

(0.09) 

0.01 

(0.27) 

18.52 

(0.13) 

20.65 

(0.12) 

161.33 

(0.21) 

0.45 

(0.05) 

Finland 0.25 

(0.12) 

0.25 

(0.07) 

0.06 

(0.14) 

95.56 

(0.24) 

98.12 

(0.22) 

727.78 

(0.07) 

2.19 

(0.02) 

France 2.61 

(0.10) 

0.89 

(0.04) 

0.59 

(0.12) 

307.45 

(0.05) 

328.25 

(0.06) 

19561.89 

(0.05) 

25.99 

(0.02) 

Germany 3.52 

(0.12) 

1.30 

(0.02) 

0.71 

(0.14) 

366.43 

(0.04) 

380.71 

(0.05) 

23797.33 

(0.37) 

35.59 

(0.04) 

Greece 0.25 

(0.21) 

0.15  

(0.11) 

0.04 

(0.55) 

54.25 

(0.37) 

56.86 

(0.31) 

315.44 

(0.42) 

3.30 

(0.05) 

Hungary 0.14 

(0.15) 

0.12 

(0.20) 

0.03 

(0.22) 

14.70 

(0.20) 

18.34 

(0.17) 

909.56 

(0.25) 

2.65 

(0.04) 

Ireland 0.28 

(0.28) 

0.06  

(0.11) 

0.08 

(0.56) 

13.64 

(0.35) 

18.86 

(0.30) 

1040.22 

(0.85) 

2.69 

(0.05) 

Italy 2.05 

(0.09) 

0.68 

(0.05) 

0.39 

(0.14) 

129.33 

(0.11) 

161.80 

(0.08) 

10118.78 

(0.33) 

24.84 

(0.06) 

Latvia 0.03 

(0.25) 

0.03 

(0.08) 

0.01 

(0.31) 

1.53 

(0.27) 

1.95 

(0.28) 

207.44 

(0.30) 

0.84 

(0.04) 

Lithuania 0.04 

(0.26) 

0.05 

(0.10) 

0.01 

(0.29) 

4.73 

(0.09) 

6.40 

(0.08) 

331.44 

(0.33) 

1.13 

(0.03) 

Luxembourg 0.06 

(0.22) 

0.02 

(0.07) 

0.01 

(0.19) 

10.54 

(0.11) 

8.94  

(0.11) 

557.00 

(0.29) 

0.30 

(0.07) 

Netherlands 0.84 

(0.11) 

0.14 

(0.08) 

0.17 

(0.14) 

116.07 

(0.18) 

120.04 

(0.15) 

6842.00 

(0.26) 

9.24 

(0.07) 

Poland 0.48 

(0.24) 

0.65 

(0.07) 

0.09 

(0.25) 

154.23 

(0.11) 

162.00 

(0.10) 

3214.00 

(0.27) 

13.50 

(0.07) 

Portugal 0.22 

(0.10) 

0.17 

(0.06) 

0.04 

(0.20) 

13.73 

(0.44) 

18.86 

(0.41) 

1625.22 

(0.23) 

3.90 

(0.04) 

Romania 0.18 

(0.31) 

0.44 

(0.18) 

0.05 

(0.37) 

184.98 

(0.18) 

228.02 

(0.34) 

1000.11 

(0.19) 

6.37 

(0.05) 

Slovakia 0.09 

(0.18) 

0.08 

(0.05) 

0.02 

(0.16) 

9.19 

(0.23) 

11.01 

(0.18) 

444.44 

(0.13) 

1.49  

(0.11) 

Slovenia 0.05 

(0.15) 

0.03 

(0.05) 

0.01 

(0.24) 

5.65 

(0.23) 

5.92 

(0.21) 

134.89 

(0.44) 

0.72 

(0.05) 

Spain 1.33 

(0.12) 

0.46 

(0.07) 

0.30 

(0.25) 

119.72 

(0.16) 

134.43 

(0.15) 

4929.22 

(0.18) 

22.06 

(0.06) 

Sweden 0.51 

(0.13) 

0.25 

(0.07) 

0.12 

(0.16) 

121.91 

(0.25) 

127.33 

(0.24) 

2024.11 

(0.14) 

4.46 

(0.05) 
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4.4 Randomness of Criteria 

In this study, we employed spectral analysis using the Fourier transformation to investigate 

the randomness of our dataset. The Fourier transform decomposes a time series 𝑥(𝑡) into its 

constituent frequencies, represented mathematically as: 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
+∞

−∞
 where 

𝑋(𝑓) denotes the Fourier coefficients at frequency f  [80]. By analysing the power spectrum, 

defined as 𝑃(𝑓) = |𝑋(𝑓)|2, we can identify dominant frequencies and assess the uniformity 

of power distribution across these frequencies. The null hypothesis for the spectral analysis 

can be stated as: 

H0: The data is random (exhibits a uniform power distribution across frequencies). 

H1: The data is not random (does not exhibit a uniform power distribution across frequencies). 

Table 5: P-values of Spectral Analysis 

Country GDP RMC Cap RM GW INV FP 

Austria 0.9768 0.9957 0.9683 0.8856 0.9597 0.9669 0.9370 

Belgium 0.9686 0.9922 0.9628 0.966 0.9668 0.9741 0.8334 

Bulgaria 0.9673 0.9245 0.982 0.9007 0.9432 0.9892 0.8217 

Croatia 0.9928 0.9847 0.9906 0.916 0.9691 0.976 0.7636 

Cyprus 0.9914 0.9499 0.9611 0.9224 0.9632 0.9856 0.7720 

Czechia 0.9879 0.9798 0.9609 0.8877 0.9496 0.9664 0.8905 

Denmark 0.9798 0.9921 0.9919 0.92 0.9581 0.992 0.8633 

Estonia 0.9693 0.9882 0.9816 0.9493 0.9391 0.9815 0.8370 

Finland 0.9896 0.9668 0.9774 0.9689 0.943 0.9772 0.8125 

France 0.9648 0.9609 0.9827 0.9415 0.9568 0.9981 0.8656 

Germany 0.9922 0.9281 0.9607 0.912 0.9454 0.9977 0.9549 

Greece 0.9959 0.9894 0.9863 0.9484 0.9671 0.9817 0.7791 

Hungary 0.9732 0.9463 0.9634 0.9456 0.9453 0.9946 0.7739 

Ireland 0.9719 0.9482 0.9642 0.9635 0.942 0.9993 0.8370 

Italy 0.9873 0.9591 0.9708 0.9572 0.9565 0.9669 0.8525 

Latvia 0.9764 0.9368 0.9577 0.9186 0.9506 0.9835 0.8726 

Lithuania 0.9568 0.931 0.9856 0.902 0.9391 0.9916 0.8111 

Luxembourg 0.9832 0.972 0.9845 0.9338 0.9394 0.9671 0.8933 

Netherlands 0.9975 0.9777 0.9977 0.9511 0.9618 0.9769 0.7730 

Poland 0.9573 0.9904 0.9959 0.9353 0.9507 0.9796 0.9765 

Portugal 0.9819 0.9962 0.9932 0.8848 0.9488 0.9793 0.9658 

Romania 0.9588 0.9645 0.9872 0.9476 0.9509 0.9706 0.9477 

Slovakia 0.9839 0.9207 0.9714 0.9664 0.9584 0.9707 0.8611 

Slovenia 0.9696 0.9916 0.9756 0.919 0.9468 0.9732 0.8656 

Spain 0.9725 0.9209 0.9893 0.9138 0.9542 0.9911 0.8826 

Sweden 0.9608 0.9565 0.9708 0.9522 0.9706 0.9907 0.9694 
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A Chi-Squared test is then applied to compare the observed frequency distribution with the 

expected uniform distribution. The p-value obtained from this test can determine whether the 

null hypothesis is rejected or accepted. A low p-value (<1%) indicates that the data exhibits 

significant periodicity or structure, suggesting it is not random. This approach is particularly 

useful in cases where the sample size is limited, as it leverages the inherent properties of the 

Fourier transform to reveal underlying patterns that may not be apparent through conventional 

statistical methods. 

Table 5 presents the p-values of the spectral analysis for each variable across the 26 EU 

countries. The results show that all seven variables and across all countries, the null hypothesis 

cannot be rejected, implying that the data follow a random pattern. 

4.5 Normality Criteria 

To complement our analysis, we employed the Shapiro-Wilk test to assess the normality of the 

dataset [81]. 

Table 6: P-values of Shapiro-Wilk Test 

Country GDP RMC Cap RM GW INV FP 

Austria 0.0031* 0.0032* 0.0059* 0.5267 0.7715 0.4813 0.7038 

Belgium 0.0083* 0.0881 0.0123 0.2306 0.4122 0.2087 0.3935 

Bulgaria 0.0433 0.2908 0.0254 0.0109 0.0052* 0.3122 0.2351 

Croatia 0.0123 0.0002* 0.1018 0.3651 0.2407 0.5602 0.1014 

Cyprus 0.0072* 0.2036 0.0583 0.4352 0.0418 0.3881 0.2113 

Czechia 0.0208 0.3938 0.0476 0.4370 0.9311 0.1381 0.5098 

Denmark 0.0048* 0.9382 0.0267 0.5957 0.2803 0.8762 0.8180 

Estonia 0.0501 0.4654 0.0681 0.0270 0.0346 0.0921 0.2894 

Finland 0.0007* 0.0251 0.0026* 0.5064 0.5562 0.2063 0.0719 

France 0.0009* 0.0198 0.0051 0.6080 0.5509 0.0124 0.2669 

Germany 0.0594 0.9338 0.5373 0.9223 0.6056 0.0322 0.7552 

Greece 0.1212 0.0242 0.0002* 0.4952 0.7305 0.0803 0.1233 

Hungary 0.0238 0.7892 0.1057 0.3979 0.1755 0.1210 0.3460 

Ireland 0.0390 0.0006* 0.0020* 0.5759 0.5710 0.0009* 0.2700 

Italy 0.0021* 0.0362 0.1253 0.1048 0.5263 0.2800 0.8748 

Latvia 0.0162 0.4895 0.1369 0.7856 0.8780 0.2023 0.0462 

Lithuania 0.0835 0.6346 0.1478 0.7250 0.0052* 0.4652 0.9509 

Luxembourg 0.0106 0.5071 0.0290 0.7223 0.5927 0.5813 0.9673 

Netherlands 0.0083* 0.4675 0.0351 0.6095 0.7220 0.4758 0.8901 

Poland 0.0321 0.2412 0.0085* 0.8374 0.4378 0.3081 0.0321 

Portugal 0.0037* 0.0162 0.0942 0.0007* 0.0018* 0.4447 0.1326 

Romania 0.0180 0.8438 0.0207 0.8473 0.0606 0.6037 0.7481 

Slovakia 0.0040* 0.0004* 0.0293 0.0699 0.2669 0.4836 0.2144 

Slovenia 0.0149 0.0005* 0.1756 0.1810 0.8404 0.0244 0.1629 

Spain 0.0007* 0.0059* 0.1842 0.3687 0.6267 0.4357 0.5788 

Sweden 0.0033* 0.9981 0.0177 0.3711 0.2786 0.5512 0.0906 

Given the limited number of time points, the Shapiro-Wilk test serves as a robust method to 

evaluate whether the data follows a normal distribution [82], which can be formally expressed as: 
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H0: The data is normally distributed. 

H1: The data is not normally distributed. 

Table 6 reports the p-value of the Shapiro-Wilk test. Low p-value (<0.01) are marked with an 

asterisk (*) to indicate non-normality. 

The results reveal that GDP consistently displays non-normality at the 1% significance level 

for about half of the countries. In contrast, RMC displays non-normality in roughly one-quarter 

of the countries, and CAP in about one-fifth. RM and INV indicate non-normality only in 

Portugal and Ireland, respectively. Notably, FP data appears normally distributed across all 

countries. Therefore, these findings highlight variability in the normality of all variables except 

GDP in our study. 

5 Methodology 

This section introduces the NDEA model developed for evaluating the circularity of material 

flows at the country level. Subsequently, we apply chance-constrained programming principles 

to develop a stochastic NDEA model tailored to measure CE performance among EU countries. 

Our approach provides a robust tool for assessing sustainability outcomes at a national macro-level.  

5.1 Different drivers of CE 

This research assesses circularity with an emphasis on three key drivers of reduction, removal, 

and recycling within production systems. To achieve this, we employ a series of DEA models 

that are tailored to assess CE performance. These models are designed to account for 

minimisation of CAP, RMC, FP and GW as inputs and undesirable outputs, while enabling the 

maximisation of undesirable inputs and desirable outputs, such as RM and GDP, within the 

system. This approach aligns with the overarching objective of enhancing circularity by 

maximising reduction of material input, removal of wastes and footprints efficiently, and 

boosting the recycling rates of generated waste. By focusing on these drivers, our framework 

effectively evaluates and enhances the system’s overall circularity performance. 

5.2 Stochastic NDEA Models for Circular Economy Performance Measurement 

This study requires DEA models capable of accounting for undesirable factors [14]. Among 

the prominent options, the DDF [83], Slacks-Based Measure (SBM), and Range Adjusted 

Measure (RAM) are noteworthy, each offering distinct strengths and limitations. The SBM, 

introduced by [84], effectively handles input and output slacks but lacks the flexibility for 
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direction-specific efficiency improvements which are essential in sustainability-focused 

models. The RAM, developed in [85], allows for simultaneous adjustments of multiple 

inefficiencies but is sensitive to outliers and struggles with the dynamic and complex 

environmental interactions typical in sustainability contexts [86]. In contrast, the DDF, 

introduced by [87], excels at simultaneously expanding desirable outputs and contracting 

undesirable ones, aligning closely with the efficiency goals of a CE. Furthermore, DDF’s 

adaptability to varying disposability conditions makes it the ideal choice for this study [88]. 

Building upon the DDF framework, we introduce a novel DDF-NDEA model tailored for CE 

efficiency assessments, particularly in circular supply chain contexts. This model focuses on 

reducing materials and capital costs while minimising waste generation. Concurrently, it seeks 

to augment the utilisation of recycled materials derived from waste and to improve overall 

value addition. 

5.2.1 Preliminary definitions 

Let 𝒙𝑛 and 𝒚𝑛 be input and output vector’s corresponding to DMU𝑛, respectively. Consider 𝒙 

as input vector of a firm and 𝒚 as its output vector. The production possibility set can be defined 

as 𝑃(𝒙) =  {(𝒙, 𝒚)| 𝒙 can produce 𝒚}. Also, let 𝒚𝑛
𝑈 undesirable output vector corresponding to 

DMU𝑛. We employ the concept of weak disposability as below: 

Weak Disposability: acknowledges that decreasing undesirable inputs or outputs might be 

costly. It depicts a more grounded situation in which the mitigation of undesirable factors is 

linked to technological, financial, or legal limitations. For example, cutting emissions may need 

spending money on new, expensive technology or procedures. Therefore, weak disposability 

can be written as 𝑃(𝒙) = {(𝒚, 𝒚𝑈): 𝒚 ≤ ∑ 𝒚𝑛𝜆𝑛
𝑁
𝑛=1 ; 𝒚𝑈 = ∑ 𝒚𝑛

U𝜆𝑛
𝑁
𝑛=1 ; 𝒙 ≥ ∑ 𝒙𝑛𝜆𝑛

𝑁
𝑛=1 ; 𝜆𝑛 ≥

0; 𝑛 = 1, … , 𝑁}  where 𝜆𝑛  and 𝑁  denote intensity variable and the number of DMUs 

respectively. Additionally, we assume that both desirable and undesirable outputs are produced 

jointly, a condition known as 'null-jointness'. This implies that it is impossible to generate 

desirable outputs without simultaneously producing some undesirable outputs. In other words, 

a reduction in desirable outputs would necessitate a corresponding reduction in undesirable 

outputs. In addition, we introduce the definition of circular disposability as below: 

Circular Disposability is a situation in which a DMU, say DMU𝑜 ,  seeks for solutions to 

simultaneously increase desirable outputs 𝒚𝑜and undesirable inputs 𝒙𝑜
𝑈 along with decreasing 

undesirable outputs 𝒚𝑜
𝑈 and desirable inputs 𝒙𝑜. We can formulate the circular disposability as 

𝑃(𝒙𝑜 , 𝒙𝑜
𝑈) = {(𝒚, 𝒚𝑈): 𝒚 ≤ ∑ 𝒚𝑛𝜆𝑛

𝑁
𝑛=1 ; 𝒚𝑈 = ∑ 𝒚𝑛

𝑈𝜆𝑛
𝑁
𝑛=1 ; 𝒙 ≥ ∑ 𝒙𝑛𝜆𝑛

𝑁
𝑛=1 ; 𝒙𝑈 =
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∑ 𝒙𝑛
𝑈𝜆𝑛

𝑁
𝑛=1 ; 𝜆𝑛 ≥ 0; 𝑛 = 1, … , 𝑁}. In this definition an increase in circular inputs results in 

enhanced efficiency. It is worth noting that equality in 𝒙𝑈 = ∑ 𝒙𝑛
𝑈𝜆𝑛

𝑁
𝑛=1 , like 𝑦𝑈 = ∑ 𝒚𝑛𝜆𝑛

𝑁
𝑛=1 , 

ensures the null-jointness property among desirable and undesirable outputs as well as 

undesirable inputs. 

5.2.2 Deterministic DEA DDF models 

Here, we adjust the fundamental DDF model introduced in [87] to measure the inefficiency of 

EPS, as formulated in Model (1): 

max 𝛽

s. t.
∑ 𝜆𝑛𝑥𝑚𝑛

𝑁
𝑛=1 ≤ 𝑥𝑚𝑜 − 𝛽𝑔𝑥𝑚𝑜 𝑚 = 1,2 (1.1)

∑ 𝜆𝑛𝑟𝑛
𝑁
𝑛=1 = 𝑟𝑜 + 𝛽𝑔𝑦𝑠𝑜 (1.2)

∑ 𝜆𝑛𝑦𝑛
𝑁
𝑛=1 ≥ 𝑦𝑜 + 𝛽𝑔𝑦𝑜 (1.3)

∑ 𝜆𝑛𝑤𝑖𝑛
𝑁
𝑛=1 = 𝑤𝑖𝑜 − 𝛽𝑔𝑤𝑖𝑜 𝑖 = 1,2 (1.4)

𝜆1, … , 𝜆𝑁 ≥ 0; 𝛽 ≥ 0

  (1) 

where 𝜆  and 𝛽  are intensity and distance to the efficiency frontier of EPS variables 

respectively. One can find the definitions of 𝒙, 𝑟, 𝑦, and 𝒘 in Table 3. The objective function 

of Model (1) is designed to locate the optimal point on the efficient frontier with minimum 𝒙 

and 𝑤 and maximum 𝑟 and 𝑦 to the fullest extent possible. This objective aligns with core CE 

principles by balancing economic growth with minimised environmental impact which is 

further discussed in Sections 4.1 and 5.1. 

Note that constraints (1.1) and (1.3) are designed to maximise the reduction of conventional 

inputs, RMC and CAP, while increasing the conventional output, GDP, by the level of 

𝛽  respectively, Constraint (1.2) treats 𝑟  as an undesirable input. Here, the objective is to 

increase the proportion of recycled materials incorporated into production processes. Unlike 

conventional inputs, which are typically minimised to improve efficiency, undesirable inputs 

are specific resources or factors whose increase, in conjunction with outputs, is favourable in 

certain efficiency analyses [89]. This increase may support performance measures in contexts 

where a greater occurrence of these inputs highlights the effectiveness of interventions. 

Conversely, Constraint (1.4) pertains to 𝑤𝑖, indicating the need to minimise GW and FP. The 

equality conditions in both Constraints (1.2) and (1.4) uphold the null-jointness property, 

ensuring that any increase in recycled materials aligns with a corresponding decrease in waste 

inputs. This interplay between undesirable factors, which is represented by grounded in the 

null-jointness property, has been thoroughly examined in previous studies on CE efficiency 

[87]. 
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In Section 4.1 and 5.1, we discuss our objective in this study to maximise material reduction, 

waste and footprint removal, and recycling efforts within the CE framework. To achieve this, 

we select the direction vector 𝒈𝐸𝑃𝑆 = (−𝒈𝑥, 𝑔𝑦 , −𝒈𝑤) = (−𝒙𝒐, 𝑦𝑜 , −𝒘𝑜) which corresponds 

to the economic production system where −𝒈𝑥 represents a reduction in material usage, 𝑔𝑦 

signifies an increase in 𝑦, and −𝒈𝑤 denotes waste removal. 

This direction vector indicates our objective to simultaneously minimise 𝒙  and 𝒘 , while 

maximising 𝑦 , thus aligning economic growth with resource efficiency. By choosing this 

direction, we aim to ensure that our models support the reduction of raw material consumption 

and capital, minimise waste generation, and facilitate responsible waste disposal, all while 

contributing to the expansion of GDP. 

Similarly, we adjust the fundamental DDF model introduced in [87]  for measuring the 

efficiency of WTS to formulate the following model: 

max 𝜃
s. t.
∑ 𝜇𝑛𝑤𝑖𝑛

𝑁
𝑛=1 ≤ 𝑤𝑖𝑜 − 𝛽𝑔𝑤𝑖𝑜 𝑖 = 1,2 (2.1)

∑ 𝜇𝑛𝑧𝑛
𝑁
𝑛=1 ≤ 𝑧𝑜 (2.2)

∑ 𝜇𝑛𝑟𝑛
𝑁
𝑛=1 ≥ 𝑟𝑜 + 𝜃𝑔𝑟𝑜 (2.3)

𝜇1, … , 𝜇𝑁 ≥ 0; 𝜃 ≥ 0

  (2) 

where 𝜇 and 𝜃 are intensity, distance to the efficient frontier of WTS variables respectively. 

One can find the definition of 𝑧 in Table 3. The objective function in Model (2) is crafted to 

identify the optimal efficiency point on the frontier by minimising the consumption of 𝒘 while 

minimising maximizing the production of 𝑟 to their fullest potential. 

In addition, Constraints (2.1) and (2.3) are designed to maximise the reduction of waste inputs, 

GW, and to enhance the recycled output, RM, respectively, at the level of 𝜃. Furthermore, an 

additional constraint. (2.2) is included to ensure that a reduction in INV is not advantageous; 

as an input to the WTS, higher INV results in a lower efficiency score for a country’s WTS, 

relative to countries with lower INV. 

Analogously, we chose 𝒈𝑊𝑇𝑆 = (−𝒈𝑤, 𝑔𝑟) = (−𝒘, 𝑟) as the direction vector corresponding to 

the economic production system. By choosing this direction, we ensure that our model not only 

promotes the reduction of emissions from incineration but also supports an increase in gross 

value added through circularity and the use of recycled materials. 
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5.2.3 Deterministic NDEA DDF models 

Considering the conceptual model presented in Figure 1, we develop the following two-stage 

NDEA model which not only integrates Models (1) and (2) but also imposes two constraints: 

(i) addressing the paradigm of sharing the waste from EPS to WTS for recycling, (ii) closing 

the CE loop which observes the feeding of the recycled material from the WTS back into the 

EPS. 

max 𝛿 = 𝜋𝛽 + (1 − 𝜋)𝜃

s. t.
∑ 𝜆𝑛𝑥𝑚𝑛

𝑁
𝑛=1 ≤ (1 − 𝛽)𝑥𝑚𝑜 𝑚 = 1,2 (3.1)

∑ 𝜆𝑛𝑟𝑛
𝑁
𝑛=1 = (1 + 𝛽)𝑟𝑜 (3.2)

∑ 𝜆𝑛𝑦𝑛
𝑁
𝑛=1 ≥ (1 + 𝛽)𝑦𝑜 (3.3)

∑ 𝜆𝑛𝑤𝑖𝑛
𝑁
𝑛=1 = (1 − 𝛽)𝑤𝑖𝑜 𝑖 = 1,2 (3.4)

∑ 𝜇𝑛𝑤1𝑛
𝑁
𝑛=1 ≤ (1 − 𝜃)𝑤1𝑜 (3.5)

∑ 𝜇𝑛𝑧𝑛
𝑁
𝑛=1 ≤ 𝑧0 (3.6)

∑ 𝜇𝑛𝑟𝑛
𝑁
𝑛=1 = (1 + 𝜃)𝑟𝑜 (3.7)

∑ 𝜇𝑛𝑤1𝑛
𝑁
𝑛=1 ≤ ∑ 𝜆𝑛𝑤1𝑛

𝑁
𝑛=1 (3.8)

∑ 𝜆𝑛𝑟𝑛
𝑁
𝑛=1 ≤ ∑ 𝜇𝑛𝑟𝑛

𝑁
𝑛=1 (3.9)

𝜆1, … , 𝜆𝑁 ≥ 0; 𝜇1, … , 𝜇𝑁 ≥ 0; 𝛽, 𝜃 ≥ 0

  (3) 

where 𝜋 ∈ [0,1] denotes the priority which is assigned to EPS in a cooperative game model, 𝛿 

is a convex combination of 𝛽  and 𝜃 , Constraints (3.1-3.4) represent WPS transferred from 

Model (1), and Constraints (3.5-3.7) denote WTS adopted from Model (2). Briefly, this convex 

combination reflects that the total CE efficiency is calculated as a weighted combination of the 

two subsystems: EPS and WTS. Here, 𝜋 represents the relative importance assigned to EPS 

efficiency, while (1 − 𝜋)  denotes the relative importance given to WTS efficiency by 

researchers or decision-makers. Additionally, Constraint (3.8) establishes the interconnection 

between GW by the EPS and the waste handled by the WTS, ensuring material flows between 

these systems. Similarly, Constraint (3.9) defines the relationship between the generated waste 

treated by the WTS and the RM supplied back to the EPS, effectively creating a closed loop 

within the model. This loop, supported by the maximisation constraints in Constraint (3.2), 

ensures that recycled material usage is prioritised, reinforcing the model’s commitment to CE 

principles. Through this configuration, the model robustly represents the circular flow of 

materials, aligning with the core CE goal of sustaining material circulation and minimising 

waste. 

Now, we let Total CE Efficiency = 1/(1 + 𝛿∗) , EPS Efficiency = 1/(1 + 𝛽∗),  and 

WTS Efficiency = 1/(1 + 𝜃∗) . In addition, one can adjust 𝜋  to develop more case-specific 



23 

scenarios. Here, we introduce the following theorem, which sets out the relationship between 

EPS and WTS inefficiencies. 

Theorem 1: In Model (3)   𝛽∗ ≤  𝜃∗. 

Proof: From equations (3.2), (3.7), and (3.9), we obtain (1 + 𝛽)𝑟𝑜 = ∑ 𝜆𝑛𝑟𝑛
𝑁
𝑛=1 ≤

∑ 𝜇𝑛𝑟𝑛
𝑁
𝑛=1 = (1 + 𝜃)𝑟𝑜, which follows that (1 + 𝛽)𝑟𝑜 ≤ (1 + 𝜃)𝑟𝑜. Dividing both sides by 𝑟𝑜 

(assuming 𝑟𝑜 > 0) yields 𝛽 ≤ 𝜃. Therefore, it follows that: 𝛽∗ ≤  𝜃∗. 

Corollary 1: If a country is WTS-efficient it is EPS-efficient. 

Corollary 2: A country is CE-efficient if and only if it is WTS-efficient. 

5.2.4 Chance-constrained NDEA DDF models 

In this section, by considering random variables 𝑥̃1, 𝑤̃1 and 𝑟̃, we can formulate the following 

equivalent model to Model (3) under uncertainly:  

max 𝛿 = 𝜋𝛽 + (1 − 𝜋)𝜃

s. t.
∑ 𝜆𝑛𝑥̃1𝑛

𝑁
𝑛=1 ≤ (1 − 𝛽)𝑥̃1𝑜 (4.1)

∑ 𝜆𝑛𝑥2𝑛
𝑁
𝑛=1 ≤ (1 − 𝛽)𝑥2𝑜 (4.2)

∑ 𝜆𝑛𝑟̃𝑛
𝑁
𝑛=1 = (1 + 𝛽)𝑟̃𝑜 (4.3)

∑ 𝜆𝑛𝑦𝑛
𝑁
𝑛=1 ≥ (1 + 𝛽)𝑦𝑜 (4.4)

∑ 𝜆𝑛𝑤̃1𝑛
𝑁
𝑛=1 = (1 − 𝛽)𝑤̃1𝑜 (4.5)

∑ 𝜆𝑛𝑤2𝑛
𝑁
𝑛=1 = (1 − 𝛽)𝑤2𝑜 (4.6)

∑ 𝜇𝑛𝑤̃1𝑛
𝑁
𝑛=1 ≤ (1 − 𝜃)𝑤̃1𝑜 (4.7)

∑ 𝜇𝑛𝑧𝑛
𝑁
𝑛=1 ≤ 𝑧𝑜 (4.8)

∑ 𝜇𝑛𝑟̃𝑛
𝑁
𝑛=1 = (1 + 𝜃)𝑟̃𝑜 (4.9)

∑ 𝜇𝑛𝑤̃1𝑛
𝑁
𝑛=1 ≤ ∑ 𝜆𝑛𝑤̃1𝑛

𝑁
𝑛=1 (4.10)

∑ 𝜆𝑛𝑟̃𝑛
𝑁
𝑛=1 ≤ ∑ 𝜇𝑛𝑟̃𝑛

𝑁
𝑛=1 (4.11)

𝜆1, … , 𝜆𝑁 ≥ 0; 𝜇1, … , 𝜇𝑁 ≥ 0; 𝛽, 𝜃 ≥ 0

  (4) 

To address the issue of data randomness, we employ a chance-constrained approach. The method, 

originally introduced in [90], serves as a novel conceptual and analytical framework to address 

challenges in uncertain temporal planning. This involves the exploration of optimal stochastic 

decision rules. Later, chance-constrained programming was employed as an alternative stochastic 

approach to DEA in [91]. Over the years, this approach has seen significant advancements, with its 

application expanding across various contexts [92-94]. 

This study utilises the chance-constrained programming methodology to present a ground-breaking 

CE-NDEA model that addresses uncertainties in criteria outcomes. Toward this end, let 𝒘̃𝑗 =
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(𝑤̃1𝑗 … 𝑤̃𝐼𝑗)  stand for INV vector. We define 𝑘̃𝑜 = ∑ 𝜇𝑛𝑤̃1𝑛
𝑁
𝑛=1 − (1 − 𝜃)𝑤̃1𝑜  for 𝑜 = 1, … , 𝑁 

which is normally distributed. Hence, 𝑃{∑ 𝜇𝑛𝑤̃1𝑛
𝑁
𝑛=1 − (1 − 𝜃)𝑤̃1𝑜 ≤ 0} = 𝑃{𝑘̃𝑜 ≤ 0} =

𝑃 {
𝑘̃𝑜−𝐸{𝑘̃𝑜}

√𝑉{𝑘̃𝑜}
≤

−𝐸{𝑘̃𝑜}

√𝑉𝑎𝑟{𝑘̃𝑜}
} . Let 𝐹  be the cumulative distribution function of the standard normal 

distribution it follows that 𝑃{𝑘̃𝑜 ≤ 0} = 𝐹 {
−𝐸{𝑘̃𝑜}

√𝑉𝑎𝑟{𝑘̃𝑜}
} . Let Φ−1(𝛼)  be the standard normal value 

such that 𝐹(Φ−1(𝛼)) = 𝛼 . Then the statement 𝑃{𝑘̃𝑜 ≤ 0}  is realised if and only if 
−𝐸{𝑘̃𝑜}

√𝑉𝑎𝑟{𝑘̃𝑜}
≥

Φ−1(𝛼) or equivalently 𝐸{𝑘̃𝑜} − Φ−1(𝛼)√𝑉𝑎𝑟{𝑘̃𝑜} ≤ 0. Note that  𝐸{𝑘̃𝑜} = 𝐸{∑ 𝜇𝑛𝑤̃1𝑛
𝑁
𝑛=1 −

(1 − 𝜃)𝑤̃1𝑜} = ∑ 𝜇𝑛𝑤1𝑛
𝑁
𝑛=1 − (1 − 𝜃)𝑤1𝑜  and 𝑉𝑎𝑟(𝑘̃𝑜) = 𝑉𝑎𝑟(∑ 𝜇𝑛𝑤̃1𝑛

𝑁
𝑛=1 − (1 −

𝜃)𝑤̃1𝑜) = √∑ 𝜇𝑛
2(𝜎1𝑛

𝑤 )2𝑁
𝑛=1 + (1 − 𝜃)2(𝜎1𝑜

𝑤 )2 ≥ ∑ 𝜇𝑛𝜎1𝑛
𝑤𝑁

𝑛=1 + (1 − 𝜃)𝜎1𝑜
𝑤 . In addition, since 

𝑘̃𝑜−𝐸{𝑘̃𝑜}

√𝑉{𝑘̃𝑜}
 follows standard normal distribution from 𝑃 {

𝑘̃𝑜−𝐸{𝑘̃𝑜}

√𝑉{𝑘̃𝑜}
≤

−𝐸{𝑘̃𝑜}

√𝑉𝑎𝑟{𝑘̃𝑜}
} ≥ 1 − 𝛼 we obtain 

∑ 𝜇𝑛(𝑤1𝑛 − Φ−1(𝛼)𝜎1𝑛
𝑤 )𝑁

𝑛=1 − (1 − 𝜃)(𝑤1𝑜 − Φ−1(𝛼)𝜎1𝑜
𝑤 ) ≤ 0. 

Analogously, we can rewrite the other constraints including random variables 𝑥̃1  and 𝑟̃  to 

formulate the following model: 

max 𝛿 = 𝜋𝛽 + (1 − 𝜋)𝜃

s. t.

∑ 𝜆𝑛(𝑥1𝑛 −  Φ−1(𝛼)𝜎1𝑛
𝑥 )

𝑁

𝑛=1
≤ (1 − 𝛽)(𝑥1𝑜 − Φ−1(𝛼)𝜎1𝑜

𝑥 ) (5.1)

 ∑ 𝜆𝑛𝑥2𝑛
𝑁
𝑛=1 ≤ (1 − 𝛽)𝑥2𝑜 (5.2)

∑ 𝜆𝑛(𝑟𝑛 −  Φ−1(𝛼)𝜎𝑛
𝑟)

𝑁

𝑛=1
= (1 + 𝛽)(𝑟𝑜 −  Φ−1(𝛼)𝜎𝑜

𝑟) (5.3)

 ∑ 𝜆𝑛𝑦𝑛
𝑁
𝑛=1 ≥ (1 + 𝛽)𝑦𝑜 (5.4)

∑ 𝜆𝑛(𝑤1𝑛 −  Φ−1(𝛼)𝜎1𝑛
𝑤 )

𝑁

𝑛=1
= (1 − 𝛽)(𝑤1𝑜 − Φ−1(𝛼)𝜎1𝑜

𝑤 (5.5)

 ∑ 𝜆𝑛𝑤2𝑛
𝑁
𝑛=1 = (1 − 𝛽)𝑤2𝑜 (5.6)

∑ 𝜇𝑛(𝑤1𝑛 −  Φ−1(𝛼)𝜎1𝑛
𝑤 )

𝑁

𝑛=1
≤ (1 − 𝜃)(𝑤1𝑜 −  Φ−1(𝛼)𝜎1𝑜

𝑤 (5.7)

 ∑ 𝜇𝑛𝑧𝑛
𝑁
𝑛=1 ≤ 𝑧0 (5.8)

∑ 𝜇𝑛(𝑟𝑛 −  Φ−1(𝛼)𝜎𝑛
𝑟)

𝑁

𝑛=1
= (1 + 𝜃)(𝑟𝑜 −  Φ−1(𝛼)𝜎𝑜

𝑟) (5.9)

∑ (𝜇𝑛 − 𝜆𝑛)(𝑤1𝑛 −  Φ−1(𝛼)𝜎1𝑛
𝑤 )

𝑁

𝑛=1
≤ 0 (5.10)

∑ (𝜆𝑛 − 𝜇𝑛)(𝑟𝑛 − Φ−1(𝛼)𝜎𝑛
𝑟)

𝑁

𝑛=1
≤ 0 (5.11)

𝜆1, … , 𝜆𝑁 ≥ 0; 𝜇1, … , 𝜇𝑁 ≥ 0; 𝛽, 𝜃 ≥ 0

  (5) 

Remark 1: Theorem 1, Corollaries 1 and 2 are readily applicable to Model (4) and Model (5). 

This study employs Model (5) as the primary tool for evaluating the CE of EU countries. To 

provide a clear overview of our research process, we present a flowchart in Figure 4 to highlight 
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the key steps of our studies and assist future researchers in replicating our study or adapting 

our models.  

Figure 4 presents a structured flowchart of the chance-constrained NDEA model-based CE 

efficiency measurement procedure. Calibrating the CE efficiency assessment model uses 

network DEA and chance-constrained programming.  

 

Figure 4: Chance-constrained NDEA CE Efficiency Measurement Flowchart 

These theoretical underpinnings drive the creation of a two-stage model linking the EPS and 

WTS with stochastic aspects to solve CE data uncertainties. Next, data fro the model are 

sourced primarily from EUROSTAT (for CE-related measures) and the World Bank (for 

macroeconomic indicators), ensuring a rigorous and comprehensive foundation. After 

operationalisation, the model evaluates EU nations' CE performance, generating subsystem-
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level and overall efficiency ratings. Use K-means clustering to detect trends and categorise 

nations by cyclical performance. Combining model outputs with sovereign ESG data and 

benchmarking against EU Commission laws and recommendations contextualises the 

conclusions. This multidimensional research identifies CE implementation strengths, 

limitations, and policy needs in each nation. Policy implications and strategic insights to 

support EU-wide circularity activities are the last phases. 

6 Results and Analysis 

This section presents the key findings from our proposed model. Following this, we delve into 

the foundational aspect of NDEA, its capacity to decompose the total system efficiency into 

EPS and WTS subsystems. 

6.1 CE Rankings  

We executed our models using AIMMS v-24.5.9.4-x64, applying parameter settings that 

balance the priorities between subsystems. To be more specific, we set 𝜋 = 0.5 in Model (5) 

to allocate equal importance to EPS and WTS in a country’s CE framework. Additionally, 𝛼 =

0.2 was selected, corresponding to Φ−1(𝛼) = −0.84 as obtained from a cumulative normal 

distribution table. 
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Figure 5: Total CE efficiencies of EU countries 

Figure 5 and Table 7 presents the results, sorted by total efficiency scores, with equal weighting 

assigned to EPS and WTS. The results provide important insights into the dynamics between 

subsystem performances. We find that any country achieving WTS efficiency also attains total 

CE efficiency, highlighting the pivotal importance of waste management systems in 

determining overall CE performance. However, EPS efficiency alone does not guarantee CE 

efficiency. For example, the Netherlands is identified as EPS-efficient but WTS-inefficient, 

which results in it being CE total-inefficient. 
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Table 7: CE efficiencies of EU countries 

Country 
Total 

Efficiency 

Economic 

Production 

Waste 

Treatment 

Efficiency 

Country 
Total 

Efficiency 

Economic 

Production 

Waste 

Treatment 

Efficiency 

Estonia 1.0000 1.0000 1.0000 Austria 0.8439 1.0000 0.7299 

Italy 1.0000 1.0000 1.0000 Netherlands 0.8290 1.0000 0.7079 

Poland 1.0000 1.0000 1.0000 Hungary 0.8251 0.8567 0.7958 

Slovenia 1.0000 1.0000 1.0000 Slovakia 0.8121 0.8931 0.7446 

Latvia 0.9585 1.0000 0.9203 Luxembourg 0.8094 1.0000 0.6799 

France 0.9269 1.0000 0.8638 Portugal 0.8018 1.0000 0.6691 

Czechia 0.9196 0.9196 0.9196 Lithuania 0.8004 0.9015 0.7198 

Denmark 0.9138 0.9988 0.8421 Cyprus 0.7803 1.0000 0.6398 

Finland 0.9111 0.9111 0.9111 Sweden 0.7358 1.0000 0.5821 

Belgium 0.8853 0.9681 0.8156 Greece 0.7091 1.0000 0.5493 

Croatia 0.8847 0.9584 0.8215 Ireland 0.7079 1.0000 0.5479 

Germany 0.8761 1.0000 0.7796 Romania 0.6961 1.0000 0.5339 

Spain 0.8551 1.0000 0.7469 Bulgaria 0.6898 1.0000 0.5265 

However, the findings suggest that further improvements in WTS are necessary to fully realise 

its CE potential an achieve total efficiency. This analysis underscores the necessity of balanced 

performance across both subsystems to achieve optimal CE outcomes. These results are 

consistent with Theorem 1 and Corollaries 1 and 2. 

6.2 Pairwise Spearman’s correlation coefficients of efficiency scores 

To further explore the relationships between efficiency scores, we analysed the Spearman’s 

pairwise correlation coefficients among all efficiency scores. Figure 6 provides a matrix plot 

illustrating these correlations. 

First, we find a significant positive correlation of 0.947 (at the 0.01 level)4 exists between total 

efficiency and WTS efficiency. This underscores the substantial influence of waste treatment 

performance on overall CE efficiency in EU countries. Furthermore, there is a noticeable 

correlation between total efficiency and economic EPS efficiency with a correlation coefficient 

of 0.598, also significant at 1%, indicating that effective resource utilisation and production 

efficiency are important contributors to circularity. In contrast, the correlation between EPS 

efficiency and WTS efficiency is low and statistically insignificant, suggesting minimal 

interdependence between these two subsystems. In other words, improvements in one do not 

necessarily drive improvements in the other. Therefore, while both subsystems are pivotal to 

overall CE performance, it is essential to address the unique characteristics and challenges of 

 

4 Note that confidence interval (CI) is computed at the 99% level.  
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EPS and WTS subsystems. Tailored strategies and interventions are needed for each subsystem 

to enhance their effectiveness within the broader CE framework. 

 

Figure 6: Matrix plot of Total, EPS and WTS efficiency scores 

6.3 Analysis of CE efficiencies 

To further analyse the underlying drivers of CE performance in EU countries, we leverage 

Sovereign ESG data using the ESG score builder tool to calculate Environmental (E), Social 

(S), and Governance (G) scores for all 26 EU countries. In addition, we apply k-means 

clustering to classify EU countries into high-, medium- and low-ESG groups. Note that 

incorporating Sovereign ESG data provides a critical perspective for evaluating how effectively 

EU countries manage environmental resources, reduce waste, while fostering a sustainable and 

resilient economy. By integrating sovereign ESG scores into our analysis, we assess the extent 

to which nations prioritise renewable energy, responsible consumption, and circular resources 

use, factors that are increasingly valued by all stakeholders. In particularly, linking sovereign 

ESG scores to CE efficiency offers policymakers valuable insights into whether improvements 

in environmental, social, and governance aspects are driving enhanced CE performance or if 

further targeted policies are required. This connection helps to identify gaps and opportunities, 

enabling a more strategic alignment of sustainability initiatives with CE goals across the EU. 
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Figure 7: CE Efficiency vs ESG 

The 3D scatter plot in Figure 7 illustrates the relationship between ESG scores and the CE 

efficiency for each EU country. The size of each oval represents the country’s CE efficiency, 

while its position reflects the ESG scores. The plot reveals a key insight: a strong ESG standing 

does not necessarily correspond to high CE efficiency, but weak ESG dimensions can impede 

circularity. For example, Italy, despite being a large economy with low ESG scores, has 

achieved perfect CE efficiency, primarily by prioritising the rate of recycled materials in 

general waste. Similarly, Poland and Estonia rank among the top four EU countries in CE 

efficiency, even though their ESG rankings are comparatively lower. In contrast, Croatia, with 

relatively high ESG scores, displays a lower CE efficiency. However, at the lower end of the 

spectrum, five countries with low ESG scores, Greece, Sweden, Ireland, Bulgaria, and 

Romania, also rank poorly in CE efficiency. This trend suggests that ineffective Environmental, 

Social, and Governance dimensions may hinder or decelerate CE initiatives. For these 

countries, insufficient progress across ESG aspects could act as a barrier to effectively 

implementing circular practices. In sum, these findings highlight a potential disconnect 

between ESG performance and CE efficiency, suggesting they may operate independently in 

some cases. This underscores the need for targeted strategies to address both areas to ensure a 

more cohesive approach to sustainability and circularity. 

CE Efficiency 

Meter 

Country ESG 

Croatia High 

Luxembourg High 

Slovenia High 

Belgium Medium 

Czechia Medium 

Estonia Medium 

Germany Medium 

Latvia Medium 

Lithuania Medium 

Portugal Medium 

Austria Low 

Bulgaria Low 

Cyprus Low 

Denmark Low 

Finland Low 

France Low 

Greece Low 

Hungary Low 

Ireland Low 

Italy Low 

Netherlands Low 

Poland Low 

Romania Low 

Slovakia Low 

Spain Low 

Sweden Low 
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Furthermore, comparing the magnitude of economic production and waste treatment activities 

(Figure 3) with CE efficiency results from Table 7 and Figure 5 provides additional insights. 

The results, sorted by total efficiency scores, with equal weighting assigned to EPS and WTS, 

reveal clear dynamics between subsystem performances. As Theorem 1, Corollaries 1 and 2 

also indicate, countries achieving WTS efficiency also attain total CE efficiency, underscoring 

the decisive role of waste management in overall performance. By contrast, EPS efficiency 

alone is insufficient: the Netherlands, for example, is EPS-efficient but WTS-inefficient, 

rendering it total CE-inefficient. Although the Netherlands has made notable progress in 

embedding circular principles and decoupling GDP growth from emissions and material use 

[95], further improvements in WTS are required to fully realise its CE potential. These findings 

emphasise the need for balanced performance across both subsystems to achieve optimal CE 

outcomes. 

In Table 7, it becomes clear that the scale of activities does not directly translate into higher 

CE efficiency. To be more specific, while large-scale activities contribute to circular outputs, 

countries like Germany, France, and Spain demonstrate that substantial economic activity alone 

does not ensure optimal CE performance. Similarly, countries such as Netherlands, 

Luxembourg, Cyprus, Germany, Greece, and Austria, despite achieving high efficiency in 

economic production metrics, fail to rank among the top for CE efficiency when other 

environmental factors are considered. This finding highlights a significant challenge: larger 

economies can struggle to optimise waste treatment and management despite strong economic 

production systems. 

As noted in [34], more stringent waste management regulations are essential for reconciling 

economic production with circularity objectives. This disparity between economic scale and 

circularity efficiency underscores the need for tailored waste management incentives for high-

output nations to meet EU circularity objectives [43, 59, 63]. Strengthening waste reduction 

infrastructure and regulations in larger economies will be pivotal for driving the EU’s 

advancing circularity ambitions while fostering a sustainable balance between economic 

growth and environmental stewardship. 

In our framework, EPS and WTS are complementary yet distinct subsystems within the CE, 

requiring both to function efficiently to achieve balanced CE performance. For instance, 

Slovenia emerges as one of the top performers in this study, achieving full efficiency in both 

EPS and WTS activities by excelling in material use productivity, waste treatment, efficient 

processes, and the use of recycled materials. Denmark also demonstrates exceptional 
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performance with high material flow efficiency across both EPS and WTS. However, France, 

Latvia, Czechia, and Finland exemplify excellence in circularity, not through dominant 

economic production performance but through outstanding waste management practices. 

Our findings align with prior results, including [21], which emphasised the integration of 

economic and waste systems for a comprehensive CE evaluation in China. Likewise, [67] 

highlighted that optimising the efficiency of both production and waste treatment activities is 

crucial to advancing circularity in Central and Eastern Europe. A multiple-criteria decision-

making model introduced in [9] revealed economic and environmental factors should be treated 

equally to reach the optimal circularity. Building on these insights, our research demonstrates 

the interconnected nature of EPS and WTS subsystems. However, an excessive focus on 

economic output without parallel improvements in waste treatment efficiency can undermine 

overall CE performance. 

6.4 Theoretical Implications 

This study introduces a comprehensive framework for assessing CE performance at the 

national level, addressing the challenges posed by data uncertainties that can affect the accuracy 

of evaluations. By employing an NDEA model with minimal decomposition, where a country's 

production system is divided into two primary subsystems, EPS and WTS, we identify key 

drivers of CE and enhance the precision of efficiency evaluations. We also prove that in a 

circular system, EPS efficiency depends on WTS efficiency, but not vice versa, highlighting 

the asymmetric yet interdependent relationship between the two subsystems. 

In previous studies such as [61] and [45], CE efficiency was examined but lacked methods to 

handle unpredictable data inputs. As in our study, incorporating a chance-constrained approach 

accounts for stochastic variations in economic and environmental data, thereby improving the 

robustness of CE assessments. DEA analyses catalogued CE indicators but stressed the need 

for adaptable models to capture CE performance's dynamic nature in [8]. Our adaptable 

evaluation methodology helps policymakers refine national circularity policies, especially in 

balancing economic and environmental goals amid data heterogeneity. 

Additionally, the proposed integrated circular chance-constrained NDEA model offers a unique 

feature for scenario-based analysis tailored to specific policy needs. This approach supports 

data-informed, context-sensitive decision-making, particularly valuable for policymakers 

aiming to improve CE metrics in alignment with sustainable development goals. Such a 
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framework not only bolsters country-level CE evaluation but also fosters a data-resilient 

methodology adaptable to varying levels of data quality and policy objectives. 

6.5 Policy Implications 

The CE is emerging as a critical tool in addressing climate change, and its visibility in 

internationally recognised indices, such as the Sustainable Development Goals (SDGs) and 

sovereign ESG frameworks, needs to be strengthened. The integration of CE within these 

frameworks can incentivise countries to report circularity measures more transparently, thereby 

supporting more rigorous CE performance analyses. 

Furthermore, large EU economies must accelerate circularity initiatives to mitigate their 

significant environmental impact. Targeted national and international policies, such as those 

from the EU Commission and taxation incentives, are essential to enforce CE practices in these 

nations. While rising energy and carbon prices may encourage investments in CE initiatives, 

dedicated incentives are needed to specifically enhance waste treatment and circularity efforts. 

Additionally, stricter regulations on waste-generating industries in larger EU economies could 

reinforce these efforts, helping shift production systems toward more sustainable models that 

align economic success with environmental responsibility. 

Finally, establishing international CE partnerships, including trade agreements, is essential. 

Such collaborations enable countries to identify and leverage each other's surplus resources, 

fostering efficient resource sharing that enhances CE outcomes while maximising cost-

effectiveness. 

7 Conclusion 

This study makes a theoretical contribution by introducing a novel methodological framework 

that integrates NDEA with a chance-constrained programming to evaluate CE performance 

across Europe. Our approach captures the interrelated dynamics of economic production and 

waste treatment subsystems, accounting for stochastic variables and data uncertainties to 

provide robust and reliable efficiency estimates. Moreover, we demonstrate that in a circular 

system, as modelled, EPS efficiency depends on WTS efficiency, but not vice versa, 

highlighting their asymmetric yet interdependent relationship. These findings highlight that 

achieving CE efficiency requires a balanced focus on both economic production and waste 

management. While strong economic output supports circularity, waste treatment efficiency 

often plays a decisive role in determining overall CE performance. Moreover, the model’s 
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scenario-based flexibility equips policymakers with tools to adapt CE strategies to evolving 

sustainability goals. 

Beyond its theoretical contributions, this study offers several practical insights for stakeholders. 

First, while a strong ESG sanding does not directly correlate with high CE efficiency, 

underdeveloped ESG elements can hinder progress. Second, our results reveal that the scale of 

activities does not inherently translate into higher CE efficiency. Third, larger economies can 

struggle to optimise waste treatment and management, even with strong economic 

performance. These findings underscore that robust economic output alone is insufficient to 

guarantee CE efficiency without optimised waste management practices. Therefore, 

developing targeted policy interventions is essential for enhancing circularity. These results can 

support EU policymakers in crafting region-specific CE strategies tailored to the unique 

strengths and challenges of individual member states. 

For large EU economies with substantial environmental footprints, advancing circular activities 

will require targeted regulations, tax incentives, and stronger enforcement mechanisms. 

Shifting in consumer behaviour, coupled with rising energy and carbon costs, may drive CE 

investments, but success requires well-designed coherent incentives and focused interventions. 

Additionally, international CE alliances and trade agreements also hold potential for improving 

resource sharing, cost-effectiveness, and circularity. 

This study also identifies key avenues for future research. As climate change and resource 

depletion are global challenges, fostering international collaboration within the CE framework 

is imperative. Future work could explore the development of models to identify specific 

industries or international partnerships that can strengthen CE performance. Furthermore, since 

CE assessments often involve multiple, often conflicting criteria, there is a need for models 

that can pinpoint inefficiencies and projections at the criterion-level. Such targeted techniques 

could offer actionable insights and practical solutions to improve CE efficiency across diverse 

contexts. 
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