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Abstract

This paper addresses a critical gap in circular economy (CE) research by introducing a novel
methodological framework that integrates Network Data Envelopment Analysis (NDEA) with
a chance-constrained programming. The proposed approach captures the interrelated dynamics
of economic production and waste treatment subsystems, while accounting for stochastic
variables and data uncertainties to provide robust CE efficiency estimates. Using data from 26
European (EU) countries from 2013 to 2020, our results reveal that achieving CE efficiency
requires a balanced focus on economic production and waste management. Although strong
economic output can support circularity, waste treatment efficiency often plays a decisive role
in determining overall CE performance. Moreover, we find that economic size does not
necessarily translate into circular efficiency, whilst large economies may face challenges with
effective waste management and resource recovery despite their economic status. Our proposed
approach offers policymakers and practitioners a robust empirical framework to guide CE
improvements, particularly in regions where environmental practices lag behind economic
achievements. Stronger incentives and regulatory measures are recommended to enhance

circular activities within the EU and foster greater circular efficiency across countries.
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1 Introduction

The world faces an increasingly complex and interconnected set of challenges spanning socio-
economic and environmental dimensions. The rapid acceleration of climate change, driven by
escalating greenhouse gases (GHG) emissions, presents an urgent threat to the environment
[1]. At the same time, global economic downturns and the depletion of resources exacerbate
this intricate landscape. In Europe, these challenges are particularly pronounced, with
household expenditures surged by 69% from €4.3 trillion to €7.3 trillion [2], yet only 11.7% of
the 6.95 billion tonnes of material used within the EU economy is recovered and reintegrated
into the economic cycle. Moreover, nearly one-quarter of the resources employed within the

EU are imported from external sources [3].

A promising solution to these challenges lies in the adoption of the CE, a paradigm aimed at
decoupling economic growth from resource consumption while fostering value creation
through innovative consumption and production patterns [4]. The European Commission has
been a strong proponent of this approach through initiatives like the Roadmap to a Resource
Efficient Europe (2011) and the EU Action Plan for the CE (2015), which are designed to
enhance resource efficiency and facilitate the transition towards a more circular model [5].
However, despite growing interest among policymakers, researchers and practitioners,
transitioning from a linear to a circular economy remains challenging for societies that are

deeply rooted in traditional production practices.

Achieving sustainability in CE initiative requires thoughtful design, with sustainability as a
core principle, coupled with ongoing rigorous evaluation and monitoring of sustainability
performance [6]. Standardised measurement tools are essential for evidence-based
management [7], and there is broad consensus among academics, industry practiotioners, and
policymakers on the need for CE-specific tools to track progress at national, regional, and
sectoral levels [8]. A thorough review of the literature [9] reveals several prevalent
methodologies for evaluating CE performance, such as Life Cycle Assessment (LCA), Material
Cost Analysis (MCA), Material Flow Cost Accounting (MFCA), Multi-Criteria Decision
Making (MCDM), and Data Envelopment Analysis (DEA). Among these, DEA has gained
particular popularity for assessing circular systems’ performance due to its ability to treat
decision-making units (DMUs) as black boxes, focusing on their inputs and outputs while
bypassing the internal complexities of processes involved [10-13]. Recent advancements have

led to the development of Network DEA (NDEA) models [14, 15], which account for multi-



stage DMU processes [16]. The NDEA model with feedback has been applied in several studies

to assess CE performances [17-21].

Despite these advancements, two key challenges persist in CE evaluation. First, the lack of a
standardised CE definition, combined with the diversity of associated practices create
inconsistencies in measurement methods. This is evidenced by over 114 distinct CE-related
definitions [22] and more than 270 distinct measurement indicators reported in previous studies
[6]. The second challenge is rooted in the limitations of data utilisation. CE systems are
complex, encompassing multifaceted supply chains that span collection, sorting,
remanufacturing, and distribution stages. Each stage can potentially introduce errors in data
collection, creating vulnerabilities that current assessment tools often fail to address. Without
accounting for these uncertainties, evaluation results risk being incomplete or misleading.
Although the broader CE assessment literature has explored the incorporation of uncertain
variables, particularly within DEA and NDEA methodologies, the treatment of uncertainty in

relation to CE drivers remains underdeveloped [23-26].

Recognising the pivotal role of CE practices in shaping both the EU's internal dynamics and
its global influence, this paper addresses the issue of uncertainty in CE measures for EU
countries using data from 2013 to 2020. First, we establish a robust framework conceptualising
the CE system as two interlinked subsystems: Economic Production Subsystem (EPS) and Waste
Treatment Subsystem (WTS). These subsystems form the backbone of material flow within the CE
model, embedding sustainability principles into economic and environmental processes. Second,
we introduce the innovative concept of circular disposability, establishing a robust and
transformative foundation for advancing CE efficiency measurement models. Third, we prove
that in a circular system, as modelled, the efficiency of the EPS is contingent on the efficiency
of the WTS; however, the converse does not hold. This asymmetry underscores the intrinsic
interdependence between the EPS and WTS. Finally, we examine the inherent data
uncertainties presented in CE metrics for EU countries. To address these challenges, we
propose an innovative chance-constrained NDEA model. This model explicitly captures the

interconnectedness between EPS and WTS while addressing data variability.

The remainder of this paper is organised as follows. Section 2 provides a brief literature review
on CE assessment. Section 0 presents the research framework, developed using the Design
Science Research Methodology (DSRM). Section 4 outlines the CE measurement framework
and analyses the data used in the analysis. Section 5 introduces the proposed NDEA model,

detailing its features. Section 6 discusses our key findings, highlighting insights from the



analysis. Finally, section 7 concludes with a comprehensive summary of the findings and the

implications of our research.

2 Literature Review

This section reviews existing literature on measuring CE performance, with a particular focus

on DEA and NDEA methodologies, as well as the CE performance in EU countries.

2.1 CE Performance Measurement

The concept of the CE has become central to industrial and environmental policies in many
countries, such as China [27], Japan [28] and the UK [29]. After the 2008 financial crisis, there
has been growing interest in 'green growth', underscoring resource productivity and efficiency
under the motto of achieving “more with less”. In response, the European Commission
introduced its vision for a 'Resource Efficient Europe', which became a key pillar of the 'Europe
2020 Strategy' [30]. CE aims to promote sustainable economic growth through material
recycling, resource security, pollution reduction, and adherence to the 9R principles: refuse,
rethink, reduce, reuse, repair, refurbish, remanufacture, repurpose, recycle and recover [31].
Despite progress, critics highlight inefficiencies in EU waste policy, with concerns about its
limited effectiveness in driving waste reduction [32, 33]. In addition, current trajectories
indicate that the EU might fall short of its ambitious target to double the circular material use

rate by 2030 [34].

A significant body of research has sought to address ambiguities in CE performance indicators.
Notably, [8] developed a taxonomy comprising 55 indicators, categorised into ten into ten
dimensions based on CE implementation levels, CE loops as in Ellen MacArther Foundation’s
butterfly diagram, and development context. In a parallel vein, [6] created an extensive
database of over 270 leading indicators, systematically classified based on sustainability
dimensions, business processes, and CE strategies. For firm-level CE measurement, [35] and
[36] provide critical insights, while [9] provides an in-depth review of the state-of-the-art

methodologies.

2.2 Employing DEA for CE Performance Measurement

DEA has emerged as a prominent method for performance measurement [40, 41], with its
applications spanning various domains, including CE performance. Since its inception, the
DEA framework has undergone significant advancements, such as the introduction of non-
discretionary environmental adjustments to account for external factors beyond the control of

decision-makers [37] [38]. The use of DEA in CE performance assessment gained its popularity



with a study evaluating a city’s CE progress [39]. This study paved the way for numerous
research initiatives exploring CE across various contexts, such as analysing the impact of CE
on carbon intensity, addressing wind turbine end-of-life issues, conducting provincial CE
assessments, assessing recycling and material use in municipal waste management, and
examining CE practices in coal-fired power plants [10, 12, 40-43]. These applications highlight
DEA’s flexibility and effectiveness in addressing the multifaceted challenges of CE. Recent
studies have further expanded DEA's applicability by integrating it with other models [9]. For
instance, DEA combined with Tobit regression model was used to assess recycling and
renewable energy across EU countries [44]. DEA and Malmquist productivity index were

applied to analyse resource use efficiency in the CE policies of OECD countries [45].

Note that transitioning from traditional linear supply chains to circular systems involves
integrating waste treatment systems with feedback loops, adding significant complexity. To
address these challenges, NDEA models have emerged as particularly effective tools for
evaluating CE performances [16, 46, 47]. NDEA models, especially those incorporating
feedback mechanisms, are critical in CE performance measurement. The intricate interplay
between inputs and outputs in the CE systems requires approaches that enable simultaneous
improvements of both. This is where Directional Distance Function (DDF) NDEA models
excel. First introduced in [38], the DDF approach allows for the concurrent optimisation of
inputs and outputs, thereby enhancing the overall effectiveness of NDEA methodologies.
Further exploration of DDF-NDEA models in [16] provided a comprehensive understanding
of their intricacies and reinforced their importance in addressing the inherent complexity of CE

systems.

NDEA frameworks have continued to evolve, with refinements adding new dimensions and
enhancing their analytical ability [48]. A notable development was the creation of a taxonomy
that categorises NDEA models into classes, encompassing standard game-theoretic centralised
global optimal solution, and feedback models [49]. This taxonomy provided a structured
framework to deepen understanding of the multifaceted nature of NDEA. Subsequent studies
further extended this classification by introducing additional dimensions, improving the versatility
and scope of NDEA methodologies [50-52]. For example, a game meta-frontier NDEA approach
has been introduced to evaluate technology heterogeneity and efficiency in China’s CE, utilising a
leader-follower dynamic to assess production and environmental performance [21]. An extended
Malmquist index based on cooperative game NDEA model was applied to study the dynamic

evolution of industrial CE, including marine CE systems in China [20].



2.3 CE Performance Measurement Across Different Levels

One strand of studies examines CE performance on across micro-, meso- and macro-levels. At
the micro-level, the focus is on individual products and companies. For instance, [53] evaluated
material durability and environmental footprints during the product development phase.
Similarly, [4] used a directed graph methodology to monitor CE performance in service-

oriented businesses.

At the meso-level, the emphasis shifts to sectors and industrial parks. For example, [54]
conducted an in-depth evaluation of CE implementation within a Chinese aluminium industrial
park, highlighting structural upgrades, functional enhancements, and facility development.
Similarly, [55] used DEA models to analyse the efficiency of industrial parks in China focusing
on energy savings and pollution reduction. Further studies have explored sector-specific CE

performance, such as in food [56], constructions [57], plastics [58] [59], and textiles [60].

At the macro-level, the focus broadens to regional or national evaluations. Due to the
comprehensive historical CE performance data provided by the Eurostat database, it attracts
many studies to assess CE performance in EU countries. For example, one of the first studies
[61] applied a Shannon Entropy-based evaluation algorithm to model CE processes in the EU,
creating a composite indicator through a weighted summation of individual indicators. Weights
reflected the importance of each indicator in shaping the composite measure. In another study,
[45] evaluated CE framework using essential variables outlined by the European Commission,

with rigorous comparisons ensuring the robustness of findings.

Table 1: CE performance measurement inputs and outputs

Title of the | Year Model Inputs Outputs Countries
reference
Modelling the | 2018 An Evaluation | - e Percentage of European
circular  economy Algorithm Based Recycling. Countries
processes at the EU on Shannon e GDP Per Capita.
level using an Entropy
evaluation algorithm
based on shannon
entropy [61].
Assessing 28 EU [ 2019 VRS CRS DEA | e Labor force. e GDP. European
member states' Models e Investment. e NOX emissions. Countries
environmental e Population e SOx emissions.
efficiency in density. e GHG emissions.
national waste o Waste.
generation with
DEA [62].
Technology 2019 Meta-Frontier Economic Economic Provinces of
heterogeneity  and Cooperative Production: Production: China
efficiency of China’s Game  Network | e Fixed Asset. e GDP.
circular  economic DEA Investments. e Wastewater
systems: A game ¢ Employed (Undesirable).

Population. o Solid Waste.




meta-frontier DEA e Total Water
approach [21]. Supply.
o Wastewater.

Waste Treatment:
e Solid Waste

Utilisation.
Waste Treatment: e Recycled Water.
e Treatment e Wastewater
Investment. Treatment Rate.
e Solid Waste
Disposal.
Investment.
Ranking European | 2020 Weight restriction [ ¢ MSW generated. | ¢ Recycling rate of | European
countries on the DEA e Basic human MSW. Countries
basis  of  their needs. e Circular material
environmental and e Foundations of use rate.
circular  economy wellbeing
performance: A opportunity.
DEA application in
MSW [32].
Performance 2021 Cooperative e Labor force. e GDP per capita. European
measurement for the Game  Network | e Capital. e Volume of Countries
recycling production DEA e Energy recycled solid
system using consumption. waste.
cooperative  game e Energy recovery. e Volume of
network data backfill.
envelopment e Total waste
analysis [63]. generated.
The efficiency of | 2021 VRS CRS DEA | e Waste generated e Recycling rate of | Visegrad Group
circular economies: Models per capita. MSW. Circular countries
A comparison of o Gross capital material use rate.
Visegrad Group formation.

Countries [64].
Assessment of the | 2021 VRS CRS DEA | e Generation of

Recycling rate of | European

effectiveness of the Models municipal waste municipal waste. | Countries
European Union per capita. e Circular material
countries transition e Water uses rate.
to a circular exploitation
economy: data index.
envelopment e Final energy
analysis [65]. consumption.
e Social progress

index.
A design science | 2023 DEA Super- | e Generation of e Recycling rate of | European
research efficiency  dual municipal waste municipal waste. | Countries
methodology for VRS with MPI per capita. ¢ Recycling rate of
information systems o Generation of packaging waste.
research [66]. waste excluding e Recycling

major mineral biowaste per

waste per GDP. capita Circular

material uses rate.

In terms of the methodologies, various methodologies have been employed to assess CE
efficiency, with DEA emerging as a widely used approach, as summarised in Table 1. For
instance, [32] was the first to apply DEA to measure the performance EU countries in
transitioning to a CE, evaluating both environmental and CE performance. Similarly, [67]
ranked EU countries’ recycling and material use efficiency using DEA models, noting that
relying solely on metrics like recycling, or cyclical material use rate for municipal solid waste

can lead to overestimations or underestimations of a country’s true performance. For example,



low waste generation, an often-overlooked factor, may indicate a country’s economic and social

progress.

Among different DEA models, NDEA models stand out due to their ability to decompose a CE
system into interconnected subsystems and account for linkages between them, providing a
holistic assessment. [63], for example, employed a cooperative game NDEA model to measure
performance of CE in the EU countries. It is also important to incorporate undesirable factors,
such as waste generation as an output, recycled materials as an undesirable input, are
particularly relevant for CE evaluation. In Section 5.2, we delve deeper into the challenges of
integrating undesirable factors into DEA models, the techniques for addressing these issues,
and the implications of randomness in input-output variables in the context of CE efficiency

measurement.

3 Research Framework

To establish a robust methodology for evaluating CE scores across EU countries, our research
employs the DSRM approach introduced in [68] as outlined in Table 2. The application of
DSRM in DEA models has grown significantly in recent years. For instance, [69] used DSRM
to handle dimensionality in DMUs within a DEA framework. Moreover, a DEA-ANN
technique was adopted to analyse bank branch performance using DSRM [70]. [71] combined
DSRM and DEA to optimise IT outsourcing services. [72] applied DEA-DSRM to evaluate EU
environmental efficiency, focusing on fixed costs and decision objectives. In addition, a
DSRM-based technique was created to assess bank branches in DEA models under discrete
situations [73]. More recently, [74] proposed a DEA-TOPSIS model, leveraging DSRM to

quantify refrigeration system sustainability.



Table 2: DSRM Method utilised in this research

DSRM Activity

Description

Knowledge Base

Problem
Identification &
Motivation

Highlight data uncertainties and stochastic
factors that complicate CE performance
monitoring. Show how existing CE
evaluation  models neglect random
variability, especially in EU datasets.

Literature overview on CE performance
evaluation frameworks (DEA, NDEA),
randomisation issues, and circularity
metrics.

Define
Objectives

Develop a reliable, comprehensive CE
performance score for EU nations using a
strong NDEA-based model and chance-
constrained programming to control data
uncertainties.

Previous CE metrics research indicate
stochastic data elements that affect CE
assessment accuracy (e.g., circularity
investment, waste unpredictability).

Design &
Development

Develop a CE-specific two-stage NDEA
model. Integrate stochastic variables and
model economic production and waste
treatment as linked subsystems.

Chance-constrained programming in
DEA, CE NDEA models, and multi-
subsystem analysis.

Demonstration

Apply the NDEA model to CE data,
analysing Economic Production Subsystem
(EPS) and Waste Treatment Subsystem
(WTS) to determine overall CE efficiency.

Empirical data from the Eurostat CE
database for 27 EU countries (2013-
2020), relevant variables for CE
performance measurement, and
stochastic DEA model applications.

Evaluation

Correlate efficiency ratings to analyse how
economic output and waste treatment affect
CE performance in each nation. Explore
policy implications for enhancing circularity.

Evaluation of CE efficiency measures,
correlations, and EU sustainability
regulations'  effects on  waste
management and circularity.

Communication

Explain circularity drivers and suggest EU
CE incentives and regulations to stakeholders
in sustainability policy and economic
modelling.

Conclusions from model results, EU CE
policy suggestions, and significance to
CE performance evaluation and future
policy orientations.

4 CE Performance Framework and Data

This section outlines the key drivers of a CE system, describes the proposed framework, and

presents the data along with a randomness test to check data variability.

4.1 CE Framework

A robust CE system is grounded on the 9R principles [75-77], which advance sustainability by
reducing resource depletion and environmental impact while fostering economic growth. These
principles prioritise minimising waste and consumption, extending product lifecycles through
reuse, repair, refurbishment, remanufacturing and repurposing, and implementing effective
recycling and waste management. By adopting CE principles, businesses and societies can also
create multifaceted value. Economically, these principles can, for example, drive innovations,
open new markets, and create business opportunities. Environmentally, they reduce resource
extraction and waste generation, mitigate emissions. Socially, CE drives job creation and
encourages sustainable lifestyles. Our research focuses on assessing circularity within
production systems, with particular attention to the key drivers of reduction, removal, and

recycling.



Figure 1 conceptualises circularity as two interlinked subsystems: the Economic Production
System and the Waste Treatment System. The EPS addresses production lifecycle activities by
transforming resources into economic outputs, while the WTS emphasises waste management to
minimise environmental harm, maximise resource recovery, and support economic and social
goals. Together, these components illustrate the dynamic interplay between production and waste
management in country’s material flow, where direct materials are processed into recycled
materials (backfilling), emissions, environmental footprints, and waste; see Figure 2. The
evaluation framework integrates economic, environmental, and social dimensions, underscoring

the critical interdependence of the EPS and WTS in advancing sustainable development.

In this study, the EPS evaluates economic performance and sustainability through three key inputs:
Raw Material Consumption (RMC), Capital (Cap), and Recycled Material (RM). RMC quantifies
the total amount of material extracted (domestically and internationally) for production. Cap
reflects financial flows, acquisitions and disposals of non-produced non-financial assets, and
capital transfers. RM measures the extent to which secondary materials are reintegrated into
production processes, a key indicator of circularity progress that reduces reliance on primary
materials and minimises environmental footprints. The primary desirable output of the EPS is
Gross Domestic Product (GDP) [78, 79], accompanied by undesirable outputs arising from
production and consumption activities such as General Wastes (GW) and Emissions, which
serves as proxies for the environmental impacts of industrial and economic activities. For
instance, GW accounts for the total volume of waste produced within the country, including
major mineral wastes'. A more efficient EPS reduces waste generation through enhanced resource
utilisation and sustainable practices, while an effective WTS facilitates the recovery and

reintegration of waste into the EPS as secondary materials, thereby closing the circular loop.

! https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:Statistical_classification_of economic_activities in_the European Comm

uni ACE
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Figure 1: Conceptual Network Model of CE

Additionally, the system recognises that some waste undergoes energy recovery through
incineration, contributing to energy generation but also produces emissions. Another critical metric
is the Footprint, which captures broader environmental impacts associated with consumption
patterns, including both domestic and transboundary effects of imported goods. While rising
consumption intensities and shifting consumption patterns drive an increasing consumption
footprint, CE initiatives have the potential to reverse these trends by encouraging behavioural

changes and improving the environmental performance of products.

The WTS enhances circularity by optimising resource recovery and minimising environmental
impact, reframing waste streams as opportunities to recover materials and energy. This reduces
reliance on raw materials, mitigates environmental degradation, and supports the transition toward
a CE. To advance CE practices, significant investments (INV)? are required in key areas such as
developing CE infrastructure development, adopting innovative technologies, and implementing
advanced waste management systems. These investments are aimed at strengthening a nation’s
capacity to efficiently capture, sort, process and manage waste. By producing high-quality
secondary resources that can be reintroduced into the EPS, such efforts reduce the need for primary

raw materials extraction and promote more sustainable production processes.

2 It is important to note that intangible and financial investments are excluded from the scope of INV.
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Figure 2: EU year 2020 Material Flow Diagram?

4.2 Data
In this study, data was sourced from the CE section of the EUROSTAT database, covering the

years 2013 to 2020. This period provides the most comprehensive dataset available for all the
variables required in our analysis. Note that correlation tests revealed strong positive
correlations between generated wastes, waste disposal, and emissions from sources excluding
incineration. Therefore, we exclude waste disposal and emissions variables from the model. In
addition, as emissions from incineration constituted a negligible proportion of total emissions
and generated waste, they were also omitted from the analysis. Finally, as the focus of this
study is the circulation of materials rather than gases, and these factors contribute little to

efficiency measures or decision making, we chose not to include them in the models.

3 https://ec.europa.eu/eurostat/cache/sankey/circular_economy/sankey.html?geos=EU27&year=2020&unit=MIO _
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Table 3: Input-output description

Sub-System Type Description Notation | Definition Unit Database
Raw Material X The global demand for the | Kilo
Consumption extraction of materials | Tonnes
(RMC) induced by consumption | (kt)
of material within a
country minus RM.
Capital (Cap) X, Gross capital of a country | Million
Input minus Investments. Dollar
(m$)
Recycled r Share of material | kt
Material (RM) recovered and fed back
into the economy in
overall material use times EUROSTAT
EPS RMC. CE Section
Generated w;y Total waste generated in a | Million
Waste (GW) country including major | Tonnes
mineral wastes. (mt)
Undesirable Footprint (FP), W, Estimates ’ the | na
Index environmental impacts of
Outputs .
consumption by
combining  data  on
consumption intensity and
environmental impacts of
representative products.
Output GDP, m$ y Gross Domestic Product. | m$
Investment in z Gross  investment in | m€
Circularity tangible goods.
Input (INV)
Generated w, Total waste generated in a | mt
Waste (GW) cquntry including major EUROSTAT
WTS mineral wastes. CE Section
Output Recycled r Share of material | kt

Material (RM)

recovered and fed back
into the economy in
overall material use times
RMC

4.3 Descriptive Statistics

Using the data summarised in Table 3, we generated diagrams displaying the average

magnitudes of the input-output listed for each EU country over the period from 2013 to 2020;

see Figure 3. These diagrams provide a comparative view of each input/output, for example

RMC represented as the yearly average, offering insights into the CE performance across EU

countries. We find that Germany, France, and Italy emerged as leaders in multiple CE metrics

among EU countries, while Luxembourg exhibited a disproportionately high environmental

footprint suggesting a need to address consumption patterns and sustainability efforts despite

its achievements in other areas.
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Figure 3: Average EU countries CE performance inputs and outputs in 2013-2020

These visualisations offer a clear view of each country’s performance across inputs and outputs,

enabling the identification of both leaders and areas requiring attention. By examining these

patterns, we gain insights into how EU countries prioritise and address key aspects of the CE,

such as material efficiency, recycling, and waste management.

Furthermore, we report descriptive statistics for the seven variables included in the study in
Table 4. These statistics provide an overview of central tendencies (mean) and variability (value

inside the parentheses of the variables), offering insight into the scale and dispersion of the data

across EU countries.

Our analysis shows that Germany consistently ranks highest across all variables, with France
following closely in second place for nearly every indicator. On the other hand, Croatia,
Cyprus, Latvia, Lithuania, Luxembourg, and Slovenia have the lowest values for all variables.
The coefficient of variation further highlight heterogeneity across countries: Ireland has the

highest variation of GDP and INV, Romania has the most variation of RMC and Cap, and

similarly, Portugal has the highest variation of RM and GW.
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Table 4: Descriptive statistics of the random variables by the countries in 2013-2020

Country GDP(M) RMC(M) Cap(M) RMMM) GWM™) INV FP
Austria 1.17 0.20 0.31 51.84 56.68 542044 330
(0.27) (0.05) (0.27) (0.21) (0.13) (0.04) (0.03)
Belgium 0.48 0.16 0.11 39.75 59.26 622433 5.87
(0.12) (0.05) (0.15) (0.22) (0.11) (0.19) (0.07)
Bulgaria 0.05 0.13 0.01 150.51 156.28 331.22 1.77
(0.27) (0.10) (0.29) (0.19) (0.18) (0.25) (0.09)
Croatia 0.06 0.05 0.01 3.51 491 327.22 1.34
(0.14) (0.05) (0.21) (0.19) (0.27) (0.20) (0.11)
Cyprus 0.02 0.02 0.00 1.70 2.06 69.00 0.37
(0.14) (0.13) (0.29) (0.23) (0.18) (0.38) (0.05)
Czechia 0.20 0.17 0.05 22.99 27.94 702.89 3.44
(0.21) (0.07) (0.20) (0.30) (0.22) (0.24) (0.04)
Denmark 0.32 0.13 0.07 15.85 17.64 267378 3.10
(0.11) (0.08) (0.15) (0.14) (0.18) (0.11) (0.08)
Estonia 0.02 0.03 0.01 18.52 20.65 161.33 0.45
(0.27) (0.09) (0.27) (0.13) (0.12) (0.21) (0.05)
Finland 0.25 0.25 0.06 95.56 98.12 727.78 2.19
(0.12) (0.07) (0.14) (0.24) (0.22) (0.07) (0.02)
France 2.61 0.89 0.59 307.45 328.25 19561.89  25.99
(0.10) (0.04) (0.12) (0.05) (0.06) (0.05) (0.02)
Germany 3.52 1.30 0.71 366.43 380.71 2379733 35.59
(0.12) (0.02) (0.14) (0.04) (0.05) (0.37) (0.04)
Greece 0.25 0.15 0.04 54.25 56.86 315.44 3.30
(0.21) (0.11) (0.55) (0.37) (0.31) (0.42) (0.05)
Hungary 0.14 0.12 0.03 14.70 18.34 909.56 2.65
(0.15) (0.20) (0.22) (0.20) (0.17) (0.25) (0.04)
Ireland 0.28 0.06 0.08 13.64 18.86 104022 2.69
(0.28) (0.11) (0.56) (0.35) (0.30) (0.85) (0.05)
Ttaly 2.05 0.68 0.39 129.33 161.80 10118.78  24.84
(0.09) (0.05) (0.14) (0.11) (0.08) (0.33) (0.06)
Latvia 0.03 0.03 0.01 1.53 1.95 207.44 0.84
(0.25) (0.08) (0.31) (0.27) (0.28) (0.30) (0.04)
Lithuania | 0.04 0.05 0.01 473 6.40 331.44 1.13
(0.26) (0.10) (0.29) (0.09) (0.08) (0.33) (0.03)
Luxembourg | 0.06 0.02 0.01 10.54 8.94 557.00 0.30
(0.22) (0.07) (0.19) (0.11) (0.11) (0.29) (0.07)
Netherlands | 0.84 0.14 0.17 116.07 120.04 6842.00  9.24
(0.11) (0.08) (0.14) (0.18) (0.15) (0.26) (0.07)
Poland 0.48 0.65 0.09 154.23 162.00 321400  13.50
(0.24) (0.07) (0.25) (0.11) (0.10) (0.27) (0.07)
Portugal 0.22 0.17 0.04 13.73 18.86 162522 3.90
(0.10) (0.06) (0.20) (0.44) (0.41) (0.23) (0.04)
Romania 0.18 0.44 0.05 184.98 228.02 1000.11  6.37
(0.31) (0.18) (0.37) (0.18) (0.34) (0.19) (0.05)
Slovakia 0.09 0.08 0.02 9.19 11.01 444.44 1.49
(0.18) (0.05) (0.16) (0.23) (0.18) (0.13) (0.11)
Slovenia 0.05 0.03 0.01 5.65 5.92 134.89 0.72
(0.15) (0.05) (0.24) (0.23) (0.21) (0.44) (0.05)
Spain 133 0.46 0.30 119.72 134.43 492922  22.06
(0.12) (0.07) (0.25) (0.16) (0.15) (0.18) (0.06)
Sweden 0.51 0.25 0.12 121.91 127.33 2024.11 446
(0.13) (0.07) (0.16) (0.25) (0.24) (0.14) (0.05)
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4.4 Randomness of Criteria
In this study, we employed spectral analysis using the Fourier transformation to investigate

the randomness of our dataset. The Fourier transform decomposes a time series x(t) into its
constituent frequencies, represented mathematically as: X (f) = f_:o x(t)e 2™/t dt where
X(f) denotes the Fourier coefficients at frequency f* [80]. By analysing the power spectrum,

defined as P(f) = |X(f)|?, we can identify dominant frequencies and assess the uniformity
of power distribution across these frequencies. The null hypothesis for the spectral analysis

can be stated as:

Ho: The data is random (exhibits a uniform power distribution across frequencies).

Hji: The data is not random (does not exhibit a uniform power distribution across frequencies).

Table 5: P-values of Spectral Analysis

Country GDP RMC Cap RM GW INV FP

Austria 0.9768 0.9957 0.9683 0.8856 0.9597 0.9669 0.9370
Belgium 0.9686 0.9922 0.9628 0.966 0.9668 0.9741 0.8334
Bulgaria 0.9673 0.9245 0.982 0.9007 0.9432 0.9892 0.8217
Croatia 0.9928 0.9847 0.9906 0.916 0.9691 0.976 0.7636
Cyprus 0.9914 0.9499 0.9611 0.9224 0.9632 0.9856 0.7720
Czechia 0.9879 0.9798 0.9609 0.8877 0.9496 0.9664 0.8905
Denmark 0.9798 0.9921 0.9919 0.92 0.9581 0.992 0.8633
Estonia 0.9693 0.9882 0.9816 0.9493 0.9391 0.9815 0.8370
Finland 0.9896 0.9668 0.9774 0.9689 0.943 0.9772 0.8125
France 0.9648 0.9609 0.9827 0.9415 0.9568 0.9981 0.8656
Germany 0.9922 0.9281 0.9607 0.912 0.9454 0.9977 0.9549
Greece 0.9959 0.9894 0.9863 0.9484 0.9671 0.9817 0.7791
Hungary 0.9732 0.9463 0.9634 0.9456 0.9453 0.9946 0.7739
Ireland 0.9719 0.9482 0.9642 0.9635 0.942 0.9993 0.8370
Italy 0.9873 0.9591 0.9708 0.9572 0.9565 0.9669 0.8525
Latvia 0.9764 0.9368 0.9577 0.9186 0.9506 0.9835 0.8726
Lithuania 0.9568 0.931 0.9856 0.902 0.9391 0.9916 0.8111
Luxembourg 0.9832 0.972 0.9845 0.9338 0.9394 0.9671 0.8933
Netherlands 0.9975 0.9777 0.9977 0.9511 0.9618 0.9769 0.7730
Poland 0.9573 0.9904 0.9959 0.9353 0.9507 0.9796 0.9765
Portugal 0.9819 0.9962 0.9932 0.8848 0.9488 0.9793 0.9658
Romania 0.9588 0.9645 0.9872 0.9476 0.9509 0.9706 0.9477
Slovakia 0.9839 0.9207 0.9714 0.9664 0.9584 0.9707 0.8611
Slovenia 0.9696 0.9916 0.9756 0.919 0.9468 0.9732 0.8656
Spain 0.9725 0.9209 0.9893 0.9138 0.9542 0.9911 0.8826
Sweden 0.9608 0.9565 0.9708 0.9522 0.9706 0.9907 0.9694
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A Chi-Squared test is then applied to compare the observed frequency distribution with the
expected uniform distribution. The p-value obtained from this test can determine whether the
null hypothesis is rejected or accepted. A low p-value (<1%) indicates that the data exhibits
significant periodicity or structure, suggesting it is not random. This approach is particularly
useful in cases where the sample size is limited, as it leverages the inherent properties of the
Fourier transform to reveal underlying patterns that may not be apparent through conventional

statistical methods.

Table 5 presents the p-values of the spectral analysis for each variable across the 26 EU
countries. The results show that all seven variables and across all countries, the null hypothesis

cannot be rejected, implying that the data follow a random pattern.

4.5 Normality Criteria
To complement our analysis, we employed the Shapiro-Wilk test to assess the normality of the

dataset [81].

Table 6: P-values of Shapiro-Wilk Test

Country GDP RMC Cap RM GW INV FP

Austria 0.0031%* 0.0032* 0.0059* 0.5267 0.7715 0.4813 0.7038
Belgium 0.0083* 0.0881 0.0123 0.2306 0.4122 0.2087 0.3935
Bulgaria 0.0433 0.2908 0.0254 0.0109 0.0052%* 0.3122 0.2351
Croatia 0.0123 0.0002%* 0.1018 0.3651 0.2407 0.5602 0.1014
Cyprus 0.0072* 0.2036 0.0583 0.4352 0.0418 0.3881 0.2113
Czechia 0.0208 0.3938 0.0476 0.4370 0.9311 0.1381 0.5098
Denmark 0.0048* 0.9382 0.0267 0.5957 0.2803 0.8762 0.8180
Estonia 0.0501 0.4654 0.0681 0.0270 0.0346 0.0921 0.2894
Finland 0.0007* 0.0251 0.0026* 0.5064 0.5562 0.2063 0.0719
France 0.0009* 0.0198 0.0051 0.6080 0.5509 0.0124 0.2669
Germany 0.0594 0.9338 0.5373 0.9223 0.6056 0.0322 0.7552
Greece 0.1212 0.0242 0.0002* 0.4952 0.7305 0.0803 0.1233
Hungary 0.0238 0.7892 0.1057 0.3979 0.1755 0.1210 0.3460
Ireland 0.0390 0.0006* 0.0020%* 0.5759 0.5710 0.0009* 0.2700
Italy 0.0021%* 0.0362 0.1253 0.1048 0.5263 0.2800 0.8748
Latvia 0.0162 0.4895 0.1369 0.7856 0.8780 0.2023 0.0462
Lithuania 0.0835 0.6346 0.1478 0.7250 0.0052%* 0.4652 0.9509
Luxembourg 0.0106 0.5071 0.0290 0.7223 0.5927 0.5813 0.9673
Netherlands 0.0083* 0.4675 0.0351 0.6095 0.7220 0.4758 0.8901
Poland 0.0321 0.2412 0.0085* 0.8374 0.4378 0.3081 0.0321
Portugal 0.0037* 0.0162 0.0942 0.0007* 0.0018* 0.4447 0.1326
Romania 0.0180 0.8438 0.0207 0.8473 0.0606 0.6037 0.7481
Slovakia 0.0040%* 0.0004* 0.0293 0.0699 0.2669 0.4836 0.2144
Slovenia 0.0149 0.0005%* 0.1756 0.1810 0.8404 0.0244 0.1629
Spain 0.0007* 0.0059%* 0.1842 0.3687 0.6267 0.4357 0.5788
Sweden 0.0033* 0.9981 0.0177 0.3711 0.2786 0.5512 0.0906

Given the limited number of time points, the Shapiro-Wilk test serves as a robust method to

evaluate whether the data follows a normal distribution [82], which can be formally expressed as:
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Ho: The data is normally distributed.

Hji: The data is not normally distributed.

Table 6 reports the p-value of the Shapiro-Wilk test. Low p-value (<0.01) are marked with an

asterisk (*) to indicate non-normality.

The results reveal that GDP consistently displays non-normality at the 1% significance level
for about half of the countries. In contrast, RMC displays non-normality in roughly one-quarter
of the countries, and CAP in about one-fifth. RM and INV indicate non-normality only in
Portugal and Ireland, respectively. Notably, FP data appears normally distributed across all
countries. Therefore, these findings highlight variability in the normality of all variables except

GDP in our study.

5 Methodology

This section introduces the NDEA model developed for evaluating the circularity of material
flows at the country level. Subsequently, we apply chance-constrained programming principles
to develop a stochastic NDEA model tailored to measure CE performance among EU countries.

Our approach provides a robust tool for assessing sustainability outcomes at a national macro-level.

5.1 Different drivers of CE

This research assesses circularity with an emphasis on three key drivers of reduction, removal,
and recycling within production systems. To achieve this, we employ a series of DEA models
that are tailored to assess CE performance. These models are designed to account for
minimisation of CAP, RMC, FP and GW as inputs and undesirable outputs, while enabling the
maximisation of undesirable inputs and desirable outputs, such as RM and GDP, within the
system. This approach aligns with the overarching objective of enhancing circularity by
maximising reduction of material input, removal of wastes and footprints efficiently, and
boosting the recycling rates of generated waste. By focusing on these drivers, our framework

effectively evaluates and enhances the system’s overall circularity performance.

5.2 Stochastic NDEA Models for Circular Economy Performance Measurement
This study requires DEA models capable of accounting for undesirable factors [14]. Among
the prominent options, the DDF [83], Slacks-Based Measure (SBM), and Range Adjusted
Measure (RAM) are noteworthy, each offering distinct strengths and limitations. The SBM,
introduced by [84], effectively handles input and output slacks but lacks the flexibility for
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direction-specific efficiency improvements which are essential in sustainability-focused
models. The RAM, developed in [85], allows for simultaneous adjustments of multiple
inefficiencies but is sensitive to outliers and struggles with the dynamic and complex
environmental interactions typical in sustainability contexts [86]. In contrast, the DDF,
introduced by [87], excels at simultaneously expanding desirable outputs and contracting
undesirable ones, aligning closely with the efficiency goals of a CE. Furthermore, DDF’s

adaptability to varying disposability conditions makes it the ideal choice for this study [88].

Building upon the DDF framework, we introduce a novel DDF-NDEA model tailored for CE
efficiency assessments, particularly in circular supply chain contexts. This model focuses on
reducing materials and capital costs while minimising waste generation. Concurrently, it seeks
to augment the utilisation of recycled materials derived from waste and to improve overall

value addition.

5.2.1 Preliminary definitions

Let x,, and y,, be input and output vector’s corresponding to DMU,,, respectively. Consider x
as input vector of a firm and y as its output vector. The production possibility set can be defined
as P(x) = {(x,y)| x can produce y}. Also, let yY undesirable output vector corresponding to

DMU,,. We employ the concept of weak disposability as below:

Weak Disposability: acknowledges that decreasing undesirable inputs or outputs might be
costly. It depicts a more grounded situation in which the mitigation of undesirable factors is
linked to technological, financial, or legal limitations. For example, cutting emissions may need
spending money on new, expensive technology or procedures. Therefore, weak disposability
can be written as P(x) = {(¥,¥"): ¥ < X0o1 Ynn; ¥V = ERo1 Yndn s X 2 Xilog Xnhns Ay =
0;n=1,..,N} where A, and N denote intensity variable and the number of DMUs
respectively. Additionally, we assume that both desirable and undesirable outputs are produced
jointly, a condition known as 'null-jointness'. This implies that it is impossible to generate
desirable outputs without simultaneously producing some undesirable outputs. In other words,
a reduction in desirable outputs would necessitate a corresponding reduction in undesirable

outputs. In addition, we introduce the definition of circular disposability as below:

Circular Disposability is a situation in which a DMU, say DMU,, seeks for solutions to
simultaneously increase desirable outputs y,and undesirable inputs xU along with decreasing

undesirable outputs yY and desirable inputs x,. We can formulate the circular disposability as

P(xor )_{(yr U) y<2n 1yn nJy n= lyn/lnlx>2n 1xn}~n'x
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ﬁzl x%’/’ln ;A, = 0;n=1,..,N}. In this definition an increase in circular inputs results in
enhanced efficiency. It is worth noting that equality in xV = ¥N_, xY2,, like y¥ = ¥N_, y,.1,.,
ensures the null-jointness property among desirable and undesirable outputs as well as

undesirable inputs.

5.2.2 Deterministic DEA DDF models
Here, we adjust the fundamental DDF model introduced in [87] to measure the inefficiency of

EPS, as formulated in Model (1):

max f
s.t.

11\1’=1 MXmn < Xmo = BGxmo m =12 (1.1)

n=1dntn =1, + BYyso (1.2) (D)
Za=1nYn = Yo + BGyo (1.3)

N=1AnWin = Wio — BGwio  1=12 (14)
AMywr Ay 20,620
where A and [ are intensity and distance to the efficiency frontier of EPS variables
respectively. One can find the definitions of x, r, y, and w in Table 3. The objective function
of Model (1) is designed to locate the optimal point on the efficient frontier with minimum x
and w and maximum 7 and y to the fullest extent possible. This objective aligns with core CE
principles by balancing economic growth with minimised environmental impact which is

further discussed in Sections 4.1 and 5.1.

Note that constraints (1.1) and (1.3) are designed to maximise the reduction of conventional
inputs, RMC and CAP, while increasing the conventional output, GDP, by the level of
p respectively, Constraint (1.2) treats r as an undesirable input. Here, the objective is to
increase the proportion of recycled materials incorporated into production processes. Unlike
conventional inputs, which are typically minimised to improve efficiency, undesirable inputs
are specific resources or factors whose increase, in conjunction with outputs, is favourable in
certain efficiency analyses [89]. This increase may support performance measures in contexts
where a greater occurrence of these inputs highlights the effectiveness of interventions.
Conversely, Constraint (1.4) pertains to w;, indicating the need to minimise GW and FP. The
equality conditions in both Constraints (1.2) and (1.4) uphold the null-jointness property,
ensuring that any increase in recycled materials aligns with a corresponding decrease in waste
inputs. This interplay between undesirable factors, which is represented by grounded in the
null-jointness property, has been thoroughly examined in previous studies on CE efficiency

[87].
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In Section 4.1 and 5.1, we discuss our objective in this study to maximise material reduction,
waste and footprint removal, and recycling efforts within the CE framework. To achieve this,
we select the direction vector ggps = (— 9 9y —gw) = (=X, Yo, —W,) Which corresponds
to the economic production system where —g, represents a reduction in material usage, g,

signifies an increase in y, and —g,, denotes waste removal.

This direction vector indicates our objective to simultaneously minimise x and w, while
maximising y, thus aligning economic growth with resource efficiency. By choosing this
direction, we aim to ensure that our models support the reduction of raw material consumption
and capital, minimise waste generation, and facilitate responsible waste disposal, all while

contributing to the expansion of GDP.

Similarly, we adjust the fundamental DDF model introduced in [87] for measuring the

efficiency of WTS to formulate the following model:

max 6
Ss.t.
211\11=1 UnWin < Wio —BGwio =12 (2.1)
N=1HnZn < Z (2.2) )
Zﬁ:l UnTn 215 + 0910 (2.3)

Ui, ooy Un = 019 = 0

where p and 6 are intensity, distance to the efficient frontier of WTS variables respectively.
One can find the definition of z in Table 3. The objective function in Model (2) is crafted to
identify the optimal efficiency point on the frontier by minimising the consumption of w while

minimising maximizing the production of r to their fullest potential.

In addition, Constraints (2.1) and (2.3) are designed to maximise the reduction of waste inputs,
GW, and to enhance the recycled output, RM, respectively, at the level of 6. Furthermore, an
additional constraint. (2.2) is included to ensure that a reduction in INV is not advantageous;
as an input to the WTS, higher INV results in a lower efficiency score for a country’s WTS,

relative to countries with lower INV.

Analogously, we chose gyrs = (—gw, gr) = (—w, 1) as the direction vector corresponding to
the economic production system. By choosing this direction, we ensure that our model not only
promotes the reduction of emissions from incineration but also supports an increase in gross

value added through circularity and the use of recycled materials.
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5.2.3 Deterministic NDEA DDF models

Considering the conceptual model presented in Figure 1, we develop the following two-stage
NDEA model which not only integrates Models (1) and (2) but also imposes two constraints:
(1) addressing the paradigm of sharing the waste from EPS to WTS for recycling, (ii) closing
the CE loop which observes the feeding of the recycled material from the WTS back into the
EPS.

maxd =nf + (1 —m)6

s.t.
N X < (1= B)Xmo m=12 (3.1)
Zﬁ:l AnTy = 1+ B, (3.2)
71\1’=1 An)’n = (1 + B)yo (3'3)
N=1 Wi = (1= Bw;, i=12 (34)
S i < (1= 0wy, (3.5) ®
211\11=1 UnZn = Zo (3-6)
Zg=1 pnTn = (14 0)r, (3.7)
=1 haWin < Xh_q Wiy (3.8)
71\1’=1 Anrn = Zﬁ:l UnTh (3'9)

Ay s Ay 20504, e, iy = 0; 6,6 20
where € [0,1] denotes the priority which is assigned to EPS in a cooperative game model, §
is a convex combination of  and 8, Constraints (3.1-3.4) represent WPS transferred from
Model (1), and Constraints (3.5-3.7) denote WTS adopted from Model (2). Briefly, this convex
combination reflects that the total CE efficiency is calculated as a weighted combination of the
two subsystems: EPS and WTS. Here, m represents the relative importance assigned to EPS
efficiency, while (1 —m) denotes the relative importance given to WTS efficiency by
researchers or decision-makers. Additionally, Constraint (3.8) establishes the interconnection
between GW by the EPS and the waste handled by the WTS, ensuring material flows between
these systems. Similarly, Constraint (3.9) defines the relationship between the generated waste
treated by the WTS and the RM supplied back to the EPS, effectively creating a closed loop
within the model. This loop, supported by the maximisation constraints in Constraint (3.2),
ensures that recycled material usage is prioritised, reinforcing the model’s commitment to CE
principles. Through this configuration, the model robustly represents the circular flow of
materials, aligning with the core CE goal of sustaining material circulation and minimising

waste.

Now, we let Total CE Efficiency =1/(1+6*) , EPS Efficiency =1/(1+ "), and

WTS Efficiency = 1/(1 + 6%). In addition, one can adjust 7 to develop more case-specific
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scenarios. Here, we introduce the following theorem, which sets out the relationship between

EPS and WTS inefficiencies.
Theorem 1: In Model (3) B* < 6~.

Proof: From equations (3.2), (3.7), and (3.9), we obtain (1+ B)r, =XN_ A1, <
N unm = (14 8)7,, which follows that (1 + )1, < (1 + 8)7,. Dividing both sides by 7,
(assuming 1, > 0) yields B < 6. Therefore, it follows that: f* < 6.

Corollary 1: If a country is WTS-efficient it is EPS-efficient.

Corollary 2: A country is CE-efficient if and only if it is WTS-efficient.

5.2.4 Chance-constrained NDEA DDF models
In this section, by considering random variables X;, W, and ¥, we can formulate the following

equivalent model to Model (3) under uncertainly:

maxd =nf + (1 —m)o

s. t.
Zg=1lnfln < (1 - B)flo (4-1)
=1 AnXon < (1= B)xz (4.2)
211\11=1 Aoy = (1 + BT, (4.3)
71*\{:1 Anyn = (1 + B)yo (4'4)
Zﬁ=1 AaWin = (1 = B)Wy, (4.5)
Yh=1nWan = (1 = Bwy, (4.6) (4)
Yn=1bnWiy < (1= 60)Wy, (4.7)
n=1HnZn < Z, (4.8)
Yh=1 nfy = (1 + 0)7, (4.9)
Yn=1 UnWip < XN=q AnWiy (4.10)
Yn=1Anfn < Xoq tnTr (4.11)

Ay ooy Ay = 05 fhgy s fiy = 0; 8,0 =0

To address the issue of data randomness, we employ a chance-constrained approach. The method,
originally introduced in [90], serves as a novel conceptual and analytical framework to address
challenges in uncertain temporal planning. This involves the exploration of optimal stochastic
decision rules. Later, chance-constrained programming was employed as an alternative stochastic
approach to DEA in [91]. Over the years, this approach has seen significant advancements, with its

application expanding across various contexts [92-94].

This study utilises the chance-constrained programming methodology to present a ground-breaking

CE-NDEA model that addresses uncertainties in criteria outcomes. Toward this end, let w; =
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(17\71]- ...VT/,j) stand for INV vector. We define k, = Y.N_; up, Wi — (1 — )Wy, foro =1, ..., N

which is normally distributed. Hence, P{XN_,pu,W;, — (1 — )Wy, < 0} = P{k, < 0} =

{ko_E{ko}< _E{%o}
VV{%O} - Vvar{%o}

}. Let F be the cumulative distribution function of the standard normal

. e . . 7 _ _E{ko} -1
distribution it follows that P{ko < 0} =F { Var{ko}}. Let @™ () be the standard normal value
-1 _ e . . . . —E{ko}
such that F(®~1(a)) = @. Then the statement P{k, < 0} is realised if and only if Tt >

®~1(a) or equivalently E{k,} — ®1(a) |Var{k,} < 0. Note that E{k,} = E{EN_; p, Wy, —

(1—-0)Wy,} = Zg=1 UnWin — (1 — 8wy, and Var(iéo) = Var(Zﬁ:l UnWin — (1 —

0)W1,) = VIN_, u2(0l)? + (1 — 0)2(al)? = IN_, upot, + (1 — 6)0}”. In addition, since

ko_Efko} follows standard normal distribution from P {kO_Efko} < _E{kf} } > 1 — a we obtain
JViko} Vviko} Jvar{ko}

Xa=1tn(win — @7 H)oty) — (1 = 0)(wy, — @7 H(@)oy) < 0.

Analogously, we can rewrite the other constraints including random variables X; and 7 to

formulate the following model:

maxd =nf + (1 —m)o

S.t.
Y (i — 7N (@0 < (1 - B (a1, — @71 @)al,)  (5.1)
Y1 AnXzn < (1 = B)xy, (5.2)
Y Al — @Y (@0h) = (1 + B) (1, — P (@)a}) (5.3)
N=1Anyn = (1 + By, (5.4)
S AWin = @7 @a) = (1= AWy, — D7H@aly  (5.5)
SNy AgWan = (1= B)wso (5.6) )
SNt Wip— O @)l < (1= ) (Wi — D)oty (5.7)
SNt fnZn < 2o (5.8)
SNt — 7M@) = L+ 0)(r, — D7 ()a]) (5.9)
%y (i = A) (W1 = @7 (@oth) <0 (5.10)
S = ) — @7 (@) < 0 (5.11)

Ay s Ay 2050, e iy =2 0; 8,6 20
Remark 1: Theorem 1, Corollaries 1 and 2 are readily applicable to Model (4) and Model (5).

This study employs Model (5) as the primary tool for evaluating the CE of EU countries. To

provide a clear overview of our research process, we present a flowchart in Figure 4 to highlight
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the key steps of our studies and assist future researchers in replicating our study or adapting

our models.

Figure 4 presents a structured flowchart of the chance-constrained NDEA model-based CE
efficiency measurement procedure. Calibrating the CE efficiency assessment model uses

network DEA and chance-constrained programming.
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Figure 4: Chance-constrained NDEA CE Efficiency Measurement Flowchart

These theoretical underpinnings drive the creation of a two-stage model linking the EPS and
WTS with stochastic aspects to solve CE data uncertainties. Next, data fro the model are
sourced primarily from EUROSTAT (for CE-related measures) and the World Bank (for
macroeconomic indicators), ensuring a rigorous and comprehensive foundation. After

operationalisation, the model evaluates EU nations' CE performance, generating subsystem-
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level and overall efficiency ratings. Use K-means clustering to detect trends and categorise
nations by cyclical performance. Combining model outputs with sovereign ESG data and
benchmarking against EU Commission laws and recommendations contextualises the
conclusions. This multidimensional research identifies CE implementation strengths,
limitations, and policy needs in each nation. Policy implications and strategic insights to

support EU-wide circularity activities are the last phases.

6 Results and Analysis

This section presents the key findings from our proposed model. Following this, we delve into
the foundational aspect of NDEA, its capacity to decompose the total system efficiency into

EPS and WTS subsystems.

6.1 CE Rankings

We executed our models using AIMMS v-24.5.9.4-x64, applying parameter settings that
balance the priorities between subsystems. To be more specific, we set m = 0.5 in Model (5)
to allocate equal importance to EPS and WTS in a country’s CE framework. Additionally, & =
0.2 was selected, corresponding to ®~1(a) = —0.84 as obtained from a cumulative normal

distribution table.
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Figure 5: Total CE efficiencies of EU countries

Figure 5 and Table 7 presents the results, sorted by total efficiency scores, with equal weighting
assigned to EPS and WTS. The results provide important insights into the dynamics between
subsystem performances. We find that any country achieving WTS efficiency also attains total
CE efficiency, highlighting the pivotal importance of waste management systems in
determining overall CE performance. However, EPS efficiency alone does not guarantee CE
efficiency. For example, the Netherlands is identified as EPS-efficient but WTS-inefficient,

which results in it being CE total-inefficient.
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Table 7: CE efficiencies of EU countries

Total Economic VR Total Economic WK

Country Efficiency Production Treat.ment Country Efficiency Production Treat.ment
Efficiency Efficiency

Estonia Austria 0.8439 0.7299
Italy Netherlands 0.8290 0.7079
Poland Hungary 0.8251 0.8567 0.7958
Slovenia Slovakia 0.8121 0.8931 0.7446
Latvia 0.9585 0.9203 Luxembourg 0.8094 0.6799
France 0.9269 0.8638 Portugal 0.8018 0.6691
Czechia 0.9196 0.9196 0.9196 Lithuania 0.8004 0.9015 0.7198
Denmark 09138 | 09988 08421 | Cyprus 0.7803 0.6398
Finland 0.9111 09111 0.9111 Sweden 0.7358
Belgium 0.8853 0.9681 0.8156 Greece 0.7091
Croatia 0.8847 0.9584 0.8215 Ireland 0.7079
Germany 0.8761 Romania 0.6961
Spain 0.8551 Bulgaria 0.6898

However, the findings suggest that further improvements in WTS are necessary to fully realise
its CE potential an achieve total efficiency. This analysis underscores the necessity of balanced
performance across both subsystems to achieve optimal CE outcomes. These results are

consistent with Theorem 1 and Corollaries 1 and 2.

6.2 Pairwise Spearman’s correlation coefficients of efficiency scores

To further explore the relationships between efficiency scores, we analysed the Spearman’s
pairwise correlation coefficients among all efficiency scores. Figure 6 provides a matrix plot
illustrating these correlations.

First, we find a significant positive correlation of 0.947 (at the 0.01 level)* exists between total
efficiency and WTS efficiency. This underscores the substantial influence of waste treatment
performance on overall CE efficiency in EU countries. Furthermore, there is a noticeable
correlation between total efficiency and economic EPS efficiency with a correlation coefficient
of 0.598, also significant at 1%, indicating that effective resource utilisation and production
efficiency are important contributors to circularity. In contrast, the correlation between EPS
efficiency and WTS efficiency is low and statistically insignificant, suggesting minimal
interdependence between these two subsystems. In other words, improvements in one do not
necessarily drive improvements in the other. Therefore, while both subsystems are pivotal to

overall CE performance, it is essential to address the unique characteristics and challenges of

4 Note that confidence interval (CI) is computed at the 99% level.
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EPS and WTS subsystems. Tailored strategies and interventions are needed for each subsystem

to enhance their effectiveness within the broader CE framework.
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Figure 6: Matrix plot of Total, EPS and WTS efficiency scores

6.3 Analysis of CE efficiencies

To further analyse the underlying drivers of CE performance in EU countries, we leverage
Sovereign ESG data using the ESG score builder tool to calculate Environmental (E), Social
(S), and Governance (G) scores for all 26 EU countries. In addition, we apply k-means
clustering to classify EU countries into high-, medium- and low-ESG groups. Note that
incorporating Sovereign ESG data provides a critical perspective for evaluating how effectively
EU countries manage environmental resources, reduce waste, while fostering a sustainable and
resilient economy. By integrating sovereign ESG scores into our analysis, we assess the extent
to which nations prioritise renewable energy, responsible consumption, and circular resources
use, factors that are increasingly valued by all stakeholders. In particularly, linking sovereign
ESG scores to CE efficiency offers policymakers valuable insights into whether improvements
in environmental, social, and governance aspects are driving enhanced CE performance or if
further targeted policies are required. This connection helps to identify gaps and opportunities,

enabling a more strategic alignment of sustainability initiatives with CE goals across the EU.
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Figure 7: CE Efficiency vs ESG

The 3D scatter plot in Figure 7 illustrates the relationship between ESG scores and the CE
efficiency for each EU country. The size of each oval represents the country’s CE efficiency,
while its position reflects the ESG scores. The plot reveals a key insight: a strong ESG standing
does not necessarily correspond to high CE efficiency, but weak ESG dimensions can impede
circularity. For example, Italy, despite being a large economy with low ESG scores, has
achieved perfect CE efficiency, primarily by prioritising the rate of recycled materials in
general waste. Similarly, Poland and Estonia rank among the top four EU countries in CE
efficiency, even though their ESG rankings are comparatively lower. In contrast, Croatia, with
relatively high ESG scores, displays a lower CE efficiency. However, at the lower end of the
spectrum, five countries with low ESG scores, Greece, Sweden, Ireland, Bulgaria, and
Romania, also rank poorly in CE efficiency. This trend suggests that ineffective Environmental,
Social, and Governance dimensions may hinder or decelerate CE initiatives. For these
countries, insufficient progress across ESG aspects could act as a barrier to effectively
implementing circular practices. In sum, these findings highlight a potential disconnect
between ESG performance and CE efficiency, suggesting they may operate independently in
some cases. This underscores the need for targeted strategies to address both areas to ensure a

more cohesive approach to sustainability and circularity.
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Furthermore, comparing the magnitude of economic production and waste treatment activities
(Figure 3) with CE efficiency results from Table 7 and Figure 5 provides additional insights.
The results, sorted by total efficiency scores, with equal weighting assigned to EPS and WTS,
reveal clear dynamics between subsystem performances. As Theorem 1, Corollaries 1 and 2
also indicate, countries achieving WTS efficiency also attain total CE efficiency, underscoring
the decisive role of waste management in overall performance. By contrast, EPS efficiency
alone is insufficient: the Netherlands, for example, is EPS-efficient but WTS-inefficient,
rendering it total CE-inefficient. Although the Netherlands has made notable progress in
embedding circular principles and decoupling GDP growth from emissions and material use
[95], further improvements in WTS are required to fully realise its CE potential. These findings
emphasise the need for balanced performance across both subsystems to achieve optimal CE

outcomes.

In Table 7, it becomes clear that the scale of activities does not directly translate into higher
CE efficiency. To be more specific, while large-scale activities contribute to circular outputs,
countries like Germany, France, and Spain demonstrate that substantial economic activity alone
does not ensure optimal CE performance. Similarly, countries such as Netherlands,
Luxembourg, Cyprus, Germany, Greece, and Austria, despite achieving high efficiency in
economic production metrics, fail to rank among the top for CE efficiency when other
environmental factors are considered. This finding highlights a significant challenge: /arger
economies can struggle to optimise waste treatment and management despite strong economic

production systems.

As noted in [34], more stringent waste management regulations are essential for reconciling
economic production with circularity objectives. This disparity between economic scale and
circularity efficiency underscores the need for tailored waste management incentives for high-
output nations to meet EU circularity objectives [43, 59, 63]. Strengthening waste reduction
infrastructure and regulations in larger economies will be pivotal for driving the EU’s
advancing circularity ambitions while fostering a sustainable balance between economic

growth and environmental stewardship.

In our framework, EPS and WTS are complementary yet distinct subsystems within the CE,
requiring both to function efficiently to achieve balanced CE performance. For instance,
Slovenia emerges as one of the top performers in this study, achieving full efficiency in both
EPS and WTS activities by excelling in material use productivity, waste treatment, efficient

processes, and the use of recycled materials. Denmark also demonstrates exceptional
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performance with high material flow efficiency across both EPS and WTS. However, France,
Latvia, Czechia, and Finland exemplify excellence in circularity, not through dominant

economic production performance but through outstanding waste management practices.

Our findings align with prior results, including [21], which emphasised the integration of
economic and waste systems for a comprehensive CE evaluation in China. Likewise, [67]
highlighted that optimising the efficiency of both production and waste treatment activities is
crucial to advancing circularity in Central and Eastern Europe. A multiple-criteria decision-
making model introduced in [9] revealed economic and environmental factors should be treated
equally to reach the optimal circularity. Building on these insights, our research demonstrates
the interconnected nature of EPS and WTS subsystems. However, an excessive focus on
economic output without parallel improvements in waste treatment efficiency can undermine

overall CE performance.

6.4 Theoretical Implications

This study introduces a comprehensive framework for assessing CE performance at the
national level, addressing the challenges posed by data uncertainties that can affect the accuracy
of evaluations. By employing an NDEA model with minimal decomposition, where a country's
production system is divided into two primary subsystems, EPS and WTS, we identify key
drivers of CE and enhance the precision of efficiency evaluations. We also prove that in a
circular system, EPS efficiency depends on WTS efficiency, but not vice versa, highlighting

the asymmetric yet interdependent relationship between the two subsystems.

In previous studies such as [61] and [45], CE efficiency was examined but lacked methods to
handle unpredictable data inputs. As in our study, incorporating a chance-constrained approach
accounts for stochastic variations in economic and environmental data, thereby improving the
robustness of CE assessments. DEA analyses catalogued CE indicators but stressed the need
for adaptable models to capture CE performance's dynamic nature in [8]. Our adaptable
evaluation methodology helps policymakers refine national circularity policies, especially in

balancing economic and environmental goals amid data heterogeneity.

Additionally, the proposed integrated circular chance-constrained NDEA model offers a unique
feature for scenario-based analysis tailored to specific policy needs. This approach supports
data-informed, context-sensitive decision-making, particularly valuable for policymakers

aiming to improve CE metrics in alignment with sustainable development goals. Such a
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framework not only bolsters country-level CE evaluation but also fosters a data-resilient

methodology adaptable to varying levels of data quality and policy objectives.

6.5 Policy Implications

The CE is emerging as a critical tool in addressing climate change, and its visibility in
internationally recognised indices, such as the Sustainable Development Goals (SDGs) and
sovereign ESG frameworks, needs to be strengthened. The integration of CE within these
frameworks can incentivise countries to report circularity measures more transparently, thereby

supporting more rigorous CE performance analyses.

Furthermore, large EU economies must accelerate circularity initiatives to mitigate their
significant environmental impact. Targeted national and international policies, such as those
from the EU Commission and taxation incentives, are essential to enforce CE practices in these
nations. While rising energy and carbon prices may encourage investments in CE initiatives,
dedicated incentives are needed to specifically enhance waste treatment and circularity efforts.
Additionally, stricter regulations on waste-generating industries in larger EU economies could
reinforce these efforts, helping shift production systems toward more sustainable models that

align economic success with environmental responsibility.

Finally, establishing international CE partnerships, including trade agreements, is essential.
Such collaborations enable countries to identify and leverage each other's surplus resources,
fostering efficient resource sharing that enhances CE outcomes while maximising cost-

effectiveness.

7 Conclusion

This study makes a theoretical contribution by introducing a novel methodological framework
that integrates NDEA with a chance-constrained programming to evaluate CE performance
across Europe. Our approach captures the interrelated dynamics of economic production and
waste treatment subsystems, accounting for stochastic variables and data uncertainties to
provide robust and reliable efficiency estimates. Moreover, we demonstrate that in a circular
system, as modelled, EPS efficiency depends on WTS efficiency, but not vice versa,
highlighting their asymmetric yet interdependent relationship. These findings highlight that
achieving CE efficiency requires a balanced focus on both economic production and waste
management. While strong economic output supports circularity, waste treatment efficiency

often plays a decisive role in determining overall CE performance. Moreover, the model’s
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scenario-based flexibility equips policymakers with tools to adapt CE strategies to evolving

sustainability goals.

Beyond its theoretical contributions, this study offers several practical insights for stakeholders.
First, while a strong ESG sanding does not directly correlate with high CE efficiency,
underdeveloped ESG elements can hinder progress. Second, our results reveal that the scale of
activities does not inherently translate into higher CE efficiency. Third, larger economies can
struggle to optimise waste treatment and management, even with strong economic
performance. These findings underscore that robust economic output alone is insufficient to
guarantee CE efficiency without optimised waste management practices. Therefore,
developing targeted policy interventions is essential for enhancing circularity. These results can
support EU policymakers in crafting region-specific CE strategies tailored to the unique

strengths and challenges of individual member states.

For large EU economies with substantial environmental footprints, advancing circular activities
will require targeted regulations, tax incentives, and stronger enforcement mechanisms.
Shifting in consumer behaviour, coupled with rising energy and carbon costs, may drive CE
investments, but success requires well-designed coherent incentives and focused interventions.
Additionally, international CE alliances and trade agreements also hold potential for improving

resource sharing, cost-effectiveness, and circularity.

This study also identifies key avenues for future research. As climate change and resource
depletion are global challenges, fostering international collaboration within the CE framework
is imperative. Future work could explore the development of models to identify specific
industries or international partnerships that can strengthen CE performance. Furthermore, since
CE assessments often involve multiple, often conflicting criteria, there is a need for models
that can pinpoint inefficiencies and projections at the criterion-level. Such targeted techniques

could offer actionable insights and practical solutions to improve CE efficiency across diverse

contexts.
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