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Background: Cancer recurrences are poorly recorded within electronic health records around the world. This hinders
research into the efficacy of cancer treatments. Currently, the retrospective identification of recurrence/progression
diagnosis dates is achieved by staff who manually review patients’ health records. This is expensive, time-
consuming, and inefficient. Machine Learning models may expedite the review of health records and facilitate the
assessment of alternative cancer therapies.
Materials and methods: This paper evaluates the use of four machine learning models (random forests, conditional
inference trees, decision trees, and logistic regression) in identifying proxy dates of epithelial ovarian cancer
recurrence/progression from chemotherapy data, in 531 patients at Leeds Teaching Hospital Trust.
Results: The random forest achieved the highest F1 score of 0.941 (95% confidence interval 0.916-0.968) when
identifying recurrence events. Both the random forest and decision tree models’ classifications closely conform to
chart-reviewed time to next treatment, serving as a surrogate for recurrence-free survival. Additionally, all models
reached an F1 score >0.940 when identifying patients whose cancer recurred/progressed.
Conclusions: Our models proficiently identify both proxy dates for recurrence/progression diagnoses and patients
whose cancer recurred/progressed. Considering the similar performance of the random forest and decision tree,
model preference should be determined by the interpretability required to assist chart review and the ease of
implementation into existing architecture.
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INTRODUCTION

The recurrence of a patient’s cancer is a clinically significant
event, enabling the measurement of various clinical end-
points, including recurrence-free survival, progression-free
survival, and time to next treatment (TTNT), which are
used to assess the efficacy of cancer therapies.1-3 These
endpoints rely on the accurate documentation of recur-
rence/progression diagnoses in health care records. How-
ever, recurrence data is inconsistently recorded in large
databases.4 Where the recurrence date is not recorded in a
structured format, it is retrospectively inferred through
manual chart review.5

The burden of chart review has encouraged the auto-
mated identification of recurrence diagnosis dates from
structured administrative and electronic health record
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(EHR) data.6 Methods used in previous studies to identify
the date of first recurrence, range from simple rules-based
methods,7-13 to machine learning (ML) models, like decision
trees,14-16 and logistic regression.17,18 Random forests,19

and conditional inference trees20 have also been used to
identify patients whose cancer recurred. While the act of
identifying patients who have had a recurrence alone does
not enable survival analysis, this alternative output can be
used for measuring population prevalence and identifying
study cohorts.

In addition to the variety of automated algorithms, a
range of performance statistics and thresholds have been
proposed to indicate a successful algorithm, yet there has
been no consensus in the literature on a single measure of
success.6 Few studies use survival analysis as an evaluation
measure,15,16 even though it is a major end use/research
goal if their models were to be implemented.1-3 Finally,
none of the studies identified in previous literature reviews
identify the date of recurrence/progression beyond the
patient’s first recurrence.6,21

Our ambition is to create an algorithm which can detect
all cancer recurrences using data routinely collected by the
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UK’s National Health Services and returned to the National
Cancer Registration and Analysis Service (NCRAS).22 In this
paper, we take the example of epithelial ovarian cancer
(EOC) (including ovary, fallopian, and primary peritoneal
cancer) and only using structured (i.e. not free text)
chemotherapy data, aim to show (with common perfor-
mance metrics and survival analysis) that it is possible to
accurately identify multiple recurrence events using rela-
tively simple, implementable, and interpretable ML models.
Finally, we discuss the implementation and interpretability
of our models with the aim that they will be implemented
alongside a chart reviewer.

MATERIALS AND METHODS

Dataset description

The chemotherapy treatment histories of an initial cohort of
1996 EOC patients who received chemotherapy at Leeds
Teaching Hospitals Trust (LTHT) were assessed for inclusion
in this study. We selected EOC because it is a cancer which
sees a majority of patients go through multiple lines of
treatment and it is chemotherapy that makes up the ma-
jority of these treatments.23 The LTHT is a regional referral
centre that supports the treatment of patients within
Yorkshire and the Humber (one of the nine regions of En-
gland) and fully supports those people geographically
closest to LTHT. Our first exclusion criteria on the initial
cohort considered the level of curation of the programme
number data type. Within the LTHT EHR, a programme
number identifies the instance of progression or recurrence
of each patient’s cancer that each chemotherapy regimen
was being used to treat and designates the line of treat-
ment/therapy. The chart reviewers, led by an oncology
consultant, curate patients’ records for whom LTHT has a
complete record of care from diagnosis. These reviewers
had access to all structured and unstructured information
within the patients’ EHRs when curating these programme
numbers. They followed a standard operating procedure
and referred any disagreement in curation to an additional
oncologist for final decision. The clinical difference between
a recurrence and a progression is a contested subject. We
refer to the Cancer Outcomes and Services Dataset’s defi-
nition of cancer recurrence, defined as ‘the return of cancer
after treatment and after a period of time during which the
cancer cannot be detected’ and is only differentiated from
the progression of their cancer due to the patient having
‘previously been informed that they are free of the disease
or that the disease is not detectable’.24 Therefore, in our
research, there is little interest in discriminating between
the two outcomes. Consequently, throughout this paper,
where a model is identifying a recurrence event, it is
referring to a proxy chemotherapy treatment event
following a recurrence or progression diagnosis aligning to
the initial labelling system used by the chart reviewers.

Following the implementation of further exclusion
criteria shown in Figure 1, the initial cohort was reduced to
a study cohort of 531 patients’ chemotherapy treatment
histories. The study cohort comprised 6619 recorded
2 https://doi.org/10.1016/j.esmorw.2024.100038
chemotherapy treatments from 2008 to 2021. These
included 127 unique drug regimens detailing the dose,
schedule and supportive medication for the categorical
anticancer drug therapies (including both maintenance and
hormone therapy, see Supplementary material Table S1,
available at https://doi.org/10.1016/j.esmorw.2024.
100038) a clinician can select from a drop-down menu
within the EHR. The timing of their treatments was
conveyed by an associated ‘days since EOC diagnosis’
attribute. Within the EHR, the date of each treatment is
recorded but this was altered to ‘days since EOC diagnosis’
to make the data suitable for research. Using the pro-
gramme numbers, it is possible to quantify the two sub-
groups within our final cohort: patients whose cancer had
not recurred/progressed (n ¼ 258, w49%), and those
whose cancer did recur/progress (n ¼ 273, w51%).

The method of recording the drug regimen within the
EHR allows for similar drug regimens to be recorded in a
variety of ways [an example being ‘CARBO 1W (C)’ and
‘CARBOPLATIN 1W (C)’ both recording the regimen for
weekly carboplatin], which impedes any ML method’s
modelling of the relation between similar/identical drugs
and recurrence events. To combat this, the 127 unique
regimens were grouped into 26 clinically relevant drug
regimen groups by an oncology consultant with 20 years of
experience. The drug regimens and assigned drug regimen
groups can be found in Supplementary Table S1, available at
https://doi.org/10.1016/j.esmorw.2024.100038.

This project was approved under the IRAS Project ID:
294683 titled ‘REAL-Cancer 01: a real world evidence alli-
ance at Leeds study to evaluate clinical characteristics,
outcomes, and healthcare costs in patients with cancer’. The
research was limited to the use of previously collected, non-
identifiable information. Opt-out patients were not included
in this study. Individual consent was not sought from the
patients. This study was carried out in accordance with the
Declaration of Helsinki.
Recurrence event detection model development

Converting the programme number of each treatment into
a binary labeldwhere a change in programme number
coinciding with a recurrence event would take a value of
onedenables our models to use supervised learning to
classify each treatment event a patient had, as either a
recurrence event or not. We can then use the associated
‘days since EOC diagnosis’ of the identified recurrence event
as a proxy for the date of recurrence diagnosis.

The R software was used to develop logistic regression,
decision tree, conditional inference tree and random forest
models to identify the treatment after a recurrence or
progression diagnosis.25 The logistic regression models used
the default binomial generalised linear model function
within R.25 The decision tree, conditional inference tree and
random forest used the rpart,26 party27 and randomForest28

packages, respectively.
To classify each chemotherapy event in the patients’

health records as either a recurrence event or not, seven
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Figure 1. Study population exclusion criteria. Diagram describing the exclusion criteria used to select the study cohort from an initial cohort of EOC patients’
chemotherapy histories.
EOC, epithelial ovarian cancer; LTHT, Leeds Teaching Hospitals Trust.
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candidate features were selected as inputs for the ML
models. The first two features were the days since EOC
diagnosis, and the drug regimen group of each treatment.
The third feature was the integer gap in days between each
treatment and their respective previous treatment. This
aimed to convey that chemotherapy treatments following a
recurrence/progression typically occur after a longer inter-
val, than treatments consecutively given to treat the same
instance of cancer. This feature was also intended to help
the models distinguish a change in drug regimen due to
toxicity and a change due to the diagnosis of a recurrence
(see Supplementary material Figure S1, available at https://
doi.org/10.1016/j.esmorw.2024.100038, showing the dis-
tribution of the number of days between consecutive
treatments of different drug regimens).

The remaining four features were the drug regimen
group and the gap between treatments for both the pre-
vious and subsequent treatment of each treatment. In the
case of the first treatment, the previous gap between
treatments and the previous drug regimen group was set to
0 and Not a Number (NaN), respectively, and similarly for
the subsequent values of these variables for the last
treatment of each patient. These four features provided the
ML methods with additional context surrounding each
treatment.

The study cohort was split into a uniformly randomly
sampled 354 (66%)-patient training set and 177 (33%)-pa-
tient test set, while ensuring that every drug regimen group
was present in both.

Since this investigation classified each treatment event,
the ratio of recurrence events (w9%) to non-recurrence
Volume 4 - Issue C - 2024
events (w91%) was highly imbalanced. The area under
the receiver operating characteristic (AUROC), a common
statistic recognised in clinical and computing studies, does
not reflect the performance of classifiers on highly imbal-
anced datasets. Considering this, and the intent for our
models to be implemented alongside chart reviewers to
identify and suggest when a recurrence event is suspected,
we value both sensitivity and positive predictive value (PPV)
rather than maximising one at the expense of the other, to
reduce the false identification of recurrence events
requiring a chart reviewer’s attention. Therefore, the F1
score, the harmonic mean of sensitivity and PPV, was cho-
sen as the metric to maximise when developing candidate
ML models. In the absence of accepted performance
thresholds in the literature, we defined the following
thresholds to evaluate our models: F1 � 0.95 ¼ Excellent,
F1 � 0.9 ¼ Good, F1 � 0.85 ¼ Fair, F1 � ¼ 0.8 Moderate.

We used cross-validation to develop optimised models
for a random forest, conditional inference tree, decision
tree and logistic regression. The models were left at their
default hyperparameters for candidate variable selection
(Supplementary material Table S2, available at https://doi.
org/10.1016/j.esmorw.2024.100038). The models were
cross-validated for a total of three iterations of 10-fold
cross-validation. For each iteration of cross-validation,
each of the 127 possible candidate models made from
the possible combinations of the seven candidate features
were trained on a nine-fold subset of the original training
set and validated on the remaining fold of the original
training set. We identified and retrained the best-
performing candidate model of each type on the whole
https://doi.org/10.1016/j.esmorw.2024.100038 3
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patient training set for testing. On the test set, we
measured F1 score, overall accuracy, sensitivity, specificity,
PPV, negative predictive value (NPV) and AUROC. Addi-
tionally, we calculated the percentage of identified recur-
rence events within �60 days of a labelled event in
positively identified recurrent patients, allowing the models
comparison against papers that use a similar metric. 95%
confidence intervals (CIs) were calculated with the empirical
bootstrapping method over 1000 iterations of the test set
to show how the models cope on a varying proportioned
dataset.29,30

Model application to time to next treatment

With the ‘days since EOC diagnosis’ of identified recurrence
events, we can estimate TTNT survival for each instance of a
patient’s cancer. We calculate TTNT as the number of days
between the first chemotherapy treatment of an instance of
cancer and the first chemotherapy treatment of the next
instance that has been identified by the models as a
recurrence event. We produced TTNT KaplaneMeier sur-
vival curves based on the recurrence events identified by
chart review and compared them to the TTNT Kaplane
Meier survival curves based on recurrence events identi-
fied by the models using the survival package in R.31 This
provides an easily comprehensible comparison for a clini-
cian to assess whether using the model-identified recur-
rence events to calculate the TTNT KaplaneMeier survival is
comparable to the TTNT survival inferred from chart review.
The probabilities of a change in the line of treatment
(recurrence event) at each timestep were also subjected to
a log-rank test to test the null hypothesis that there was no
difference between the TTNT produced using chart review-
identified recurrence events and the TTNT based on a given
model’s identified events.32

Model application to identify patients whose cancer
recurred/progressed

Several previous studies’ models were optimised to identify
patients as having had a recurrence, with fewer studies
making the further step in estimating a date for recurrence,
the step most essential for survival analysis. In contrast, our
approach is optimised to identify the dates of recurrence
events, but in doing so, we can infer that a patient’s cancer
has recurred/progressed. We inferred the identification of
patients whose cancer recurred and quantified the models’
performance on this secondary goal using F1 score, overall
accuracy, sensitivity, specificity, PPV and NPV, allowing us to
compare our model’s ability to identify patients whose
cancer has recurred/progressed with other studies. 95% CIs
were again calculated with the empirical bootstrapping
method over 1000 iterations of the test set to show how
the models cope on a varying proportioned dataset.29,30 A
flowchart showing how the model first classifies the treat-
ment events of a patient, enabling the use of their associ-
ated date or ‘days since EOC diagnosis’ for TTNT survival
analysis, before any identified recurrence events are used to
classify the patient as recurrent, can be seen in Figure 2.
4 https://doi.org/10.1016/j.esmorw.2024.100038
RESULTS

The same candidate features maximised the F1 score for all
models in all three iterations of 10-fold cross-validation: the
drug regimen group used on that treatment event, the
integer gap in days between the current and previous
treatment, and the previous treatment’s drug regimen
group. Table 1 shows the models’ F1 score, accuracy,
sensitivity, specificity, PPV, NPV, AUROC and percentage of
identified recurrence events within �60 days of a labelled
event in positively identified recurrent patients when
detecting recurrence events in the 177-patient test set.
Table 2 shows the F1 score, accuracy, sensitivity, specificity,
PPV and NPV when using the models’ identified recurrence
events to infer the identity of patients whose cancer
recurred/progressed in the test set.

The random forest model achieved the highest F1 score,
both for identifying recurrence events and for identifying
patients whose cancer recurred/progressed, satisfying our
‘Good’ and ‘Excellent’ thresholds, respectively. The logistic
regression model achieved the lowest F1 score for detecting
recurrence events, while the conditional inference tree
measured the lowest for identifying patients whose cancer
recurred/progressed (Table 1).

Figure 3 shows TTNT KaplaneMeier survival curves for
the first, second and third changes in line of treatment
(recurrence events), based on chart review and our best-
performing ML models (created with the R package
ggsurvfit33). The log-rank tests in Table 3 show that TTNTs
based on model-identified dates of recurrence events
were statistically significantly indistinguishable from the
TTNTs based on dates identified by chart review; the only
exception was the TTNT for a third recurrence event based
on the best-performing logistic regression model. Both
Figure 3 and Table 3 show that the conditional inference
tree most closely matches with the manual chart review
for the first recurrence event’s TTNT, while the random
forest most closely matches with the TTNT survival for
further recurrences, closely followed by the decision tree.
The period in which the random forest and decision tree
TTNT KaplaneMeier survival curves deviate from the 95%
CI of the manual chart review for the first recurrence
event (Figure 3A) is very soon after the start of chemo-
therapy treatment. All models’ median TTNT survival for
the first recurrence event were comparable to the chart
reviewers’ estimate of 13.6 months. Only the random
forest and decision tree-estimated median TTNT Kaplane
Meier survival were similar to that inferred by chart re-
view beyond the first line of treatment (after the first
recurrence event).
DISCUSSION

We evaluated the ability of four ML models to identify
chemotherapy treatment dates following an EOC recur-
rence/progression diagnosis and by extension patients
whose cancer had recurred/progressed. Here we compare
our results against relevant literature.
Volume 4 - Issue C - 2024
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Figure 2. Flow chart showing the order of classifying a patient’s treatment events using a machine learning model and the later inference of the patient’s
recurrence status. The model first classifies the treatment events of a patient enabling the use of their associated date or ‘days since EOC diagnosis’ for TTNT survival
analysis. Then the existence of a model-identified recurrence event within a patient’s record is used to classify the patient as a recurrent patient.
EOC, epithelial ovarian cancer; TTNT, time to next treatment.
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Identifying recurrence events

Unfortunately, we are limited when comparing our model’s
performance with other studies. Firstly, all previous studies
we are aware of focussed on identifying dates of the first
recurrence. Secondly, these studies reported differing
metrics while evaluating their models. Finally, there is
currently no defined threshold for what constitutes a well-
performing recurrence detection algorithm.6 Two notable
studies, Rasmussen et al.9 and Chubak et al.,14 focussed on
identifying the date of first breast cancer recurrence and
reported comparable statistics and favourable results in
comparison to the wider field.6 Rasmussen et al. verified a
rules-based algorithm,9 while Chubak et al. proposed
several decision tree models.14 Both Rasmussen et al. and
Chubak et al. reported a percentage of first recurrences
detected within 60 days of a known gold-standard date of
recurrence diagnosis in positively identified recurrent pa-
tients with 76% and 82% achieved, respectively.9,14 These
Volume 4 - Issue C - 2024
metrics are not as suitable for our data where the true date
of recurrence is not known. Instead, the closest comparable
metric we can measure is the percentage of model-
identified recurrence event dates within 60 days of the
date identified by chart review in positively identified
recurrent patients. Using that metric, the lowest score
achieved by any of our models was that achieved by the
decision tree, with 90.5% (95% CI 86.7% to 93.7%) of
model-identified dates happening within 60 days of the
chart review-identified dates of recurrence in positively
identified recurrent patients. However, these scores should
only be interpreted alongside other metrics such as the
sensitivity, as a model may identify some recurrent patients
and their recurrence dates perfectly, while missing other
patients’ recurrences entirely. For our models, intending for
them to be used alongside a chart reviewer, we opted for F1
score as our primary metric, balancing the number of false
positives needing to be reviewed while ensuring we
https://doi.org/10.1016/j.esmorw.2024.100038 5
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captured a high proportion of the recurrences. However, as
recognised by Jung et al., the main application of recurrence
detection algorithm is enabling survival analysis.15 There-
fore, we propose that the conformance of the models TTNT
survival to that of chart review informed TTNT survival
should be considered when choosing a successful model.
With than in mind, the random forest and decision tree
TTNT survival both conform to TTNT survival informed by
chart review. The decision tree’s superior TTNT survival to
the conditional inference tree is unexpected considering the
latter model’s higher F1 statistic. This is an example where
visualising the intended end use of the models may be more
informative than reviewing classic performance statistics
such as F1, sensitivity and PPV.

The TTNTsurvival curves show a drop in performance of the
models when detecting serial (second, third, fourth and fifth
line) recurrences. Reasons for this might include a diminishing
association between the more unique drug regimens used in
later lines of therapy and recurrence/progression outcomes.
Another possible reason is the lower proportion of later-line
recurrences in the dataset, causing the models to overfit to
detecting first recurrences and overlook patterns specific to
later recurrences. Future models developed to detect specific
recurrences may combat this issue.
Identifying patients whose cancer recurred/progressed

Our primary goal was to identify proxy dates of recurrence/
progression events for review, but a derived benefit is that
the models can identify patients who have had a recur-
rence/progression of their cancer. Both Rasmussen et al.9

and Chubak et al.14 first identified patients whose cancer
recurred before proposing a proxy recurrence event date.
The rules-based algorithm proposed by Rasmussen et al.9

recorded a sensitivity of 0.973 for identifying patients
who had a recurrence of their breast cancer, whereas the
high-sensitivity decision tree from Chubak et al.14 recorded
a sensitivity of 0.96. If our results are interpreted to identify
patients whose EOC had recurred/progressed, the random
forest achieved a sensitivity of 0.988, higher than both
studies, and our decision tree achieved a sensitivity of
0.965, putting it between the two studies. Both Rasmussen
et al. and Chubak et al. used multiple modalities of treat-
ment to identify patients whose cancer recurred.9,14 Our
results show that high sensitivities can be achieved using
only structured chemotherapy data.
Limitations

Limitations to our models include the method of drug
regimen grouping, which may not be perfectly transferable
across hospitals. A more recognised method of grouping the
drug regimens, like that used in the UK’s Systemic Anti-
Cancer Therapy dataset curated by NCRAS would be
ideal.34 However, we are not aware of a published static
mapping table. Also, we did not investigate the sensitivity of
the F1 score to different starting hyperparameters as this
was not the focus of the investigation.
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Table 2. Performance of each of the final models when used to identify patients whose cancer recurred/progressed in the177-patient test set

Method F1
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Random forest 0.966 (0.947-0.988) 0.966 (0.950-0.986) 0.988 (0.976-0.998) 0.946 (0.909-0.979) 0.944 (0.905-0.980) 0.989 (0.977-0.997)
Conditional inference
tree

0.941 (0.911-0.980) 0.944 (0.914-0.969) 0.941 (0.901-0.979) 0.946 (0.909-0.979) 0.941 (0.900-0.977) 0.946 (0.908-0.979)

Decision tree 0.943 (0.914-0.970) 0.944 (0.914-0.969) 0.965 (0.929-0.991) 0.924 (0.882-0.964) 0.921 (0.878-0.961) 0.966 (0.932-0.991)
Logistic regression 0.952 (0.924-0.979) 0.955 (0.928-0.978) 0.929 (0.880-0.972) 0.978 (0.957-0.994) 0.975 (0.951-0.994) 0.938 (0.894-0.973)

A change in the line of chemotherapy treatment due to the diagnosis of a recurrence or progression (recurrence event) was used as a proxy for a recurrence or progression
diagnosis.
CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

Figure 3. KaplaneMeier TTNT survival for the first three cancer recurrences. Survival was calculated from the model-identified dates of changes in line of treatment
and compared against the TTNT survival calculated from manual chart review informed dates of changes in line of treatment, for the first- (A), second- (B), and third-
line (C) of treatment on the test set of 177 EOC patients. A change in the line of chemotherapy treatment due to the diagnosis of a recurrence or progression was used
as a proxy for a recurrence or progression diagnosis.
EOC, epithelial ovarian cancer; TTNT, time to next treatment.
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Table 3. Log-rank tests, comparing the survival probability, measured from the ML model and chart review-identified dates of change in the line of
chemotherapy treatment, due to a recurrence/progression of a patient’s epithelial ovarian cancer

Model First recurrence/
progression log-
rank test

Second
recurrence/
progression
log-rank test

Third recurrence/
progression log-
rank test

Fourth
recurrence/
progression
log-rank test

Fifth
recurrence/
progression
log-rank test

c2 P c2 P c2 P c2 P c2 P

Random forest 0.3 0.6 0 0.9 0 0.9 0.2 0.7 2.3 0.1
Conditional inference tree <0.1 >0.9 1.6 0.2 1.7 0.2 0.2 0.7 0.3 0.6
Decision tree 0.4 0.6 0.1 0.8 0.4 0.5 0.3 0.6 0.4 0.5
Logistic regression 0.1 0.7 1.4 0.2 5.7 <0.1 0.4 0.5 0.5 0.5

The c2 statistic for two curves to be considered significantly different is c2> 3.84.

ESMO Real World Data and Digital Oncology A. D. Coles et al.
Additionally, as we have used real-world treatment data
for our models, they are inherently vulnerable to changes in
treatment practices over time. In practice, models would
have to be periodically retrained to manage any changes in
treatment methods.

Furthermore, ovarian cancer patients have been
measured to have a 60%-80% recurrence rate.23 However,
in our study cohort (n ¼ 531), only 51% of the patients
were identified by chart reviewers as having had a recur-
rence. We propose two reasons as to why this might be the
case. The first is that in our dataset we can only detect
recurrences that received further treatment. The second is
that we did not require a specific length of follow-up for
inclusion in our cohort, meaning that patients whose cancer
had not yet recurred may have a recurrence later. We did
not filter for a specific length of follow-up as our models’
intended use case is to detect recurrence events at any
point during a patient’s chemotherapy treatment. We also
expect that if we required a length of follow-up, we would
exclude patients with aggressive cancers that recur early in
a patient’s treatment. While adjusting the imbalance of
patients who had a recurrence with those who did not to
the expected percentage does not drastically change the
imbalance respective to the number of recurrence events to
non-recurrence events in our small dataset, in larger data-
sets this may have to be accounted for.

We used the dates of changes to the line of chemotherapy
treatment as proxy dates for recurrences/progressions, but
recurrences are usually diagnosed with a computed tomog-
raphy scan or other investigation. Our future work will aim to
identify recurrence/progression diagnosis dates more accu-
rately by allowing the models to choose candidate variables
from a broader range of modalities, including radiology re-
sults and biochemical markers, with the secondary aim of
advising their inclusion into national datasets, if they enable
more accurate recurrence detection and survival analysis.
Considerations for implementation

We envision that an implemented model aiding recurrence
curation would present recurrence event dates to a chart
reviewer for their final decision on curation. When evalu-
ating which method should be implemented to aid chart
review, we should consider the performance, ease of
implementation and interpretability of the models.
8 https://doi.org/10.1016/j.esmorw.2024.100038
The random forest achieved the highest F1 score when
identifying both recurrence events and patients whose
cancer recurred/progressed, while also producing the TTNT
survival curve that most closely matched those produced by
chart review. However, if the level of interpretation
required exceeds feature importance, the random forest
becomes difficult to interpret for an end user. The decision
tree closely followed the performance of the random forest,
when identifying patients, and produced respectable TTNT
survival curves only marginally less true to the chart review
curves than that of the random forest. The final decision
tree model is easier to interpret, as it only consists of eight
splitting rules that can be presented to a chart reviewer.
Simple tree-based models can also be quickly translated
into any query-based language, facilitating implementation
into whichever system staff use to review patients’ EHRs.

Therefore, the random forest and decision tree may be
suitable for different environments. For implementation
into existing EHR architecture to aid chart review, the de-
cision tree may be preferable, whereas for further research
into recurrence/progression where interpretation is not of
great importance, the random forest will provide more ac-
curate results.
Conclusion

In conclusion, both the random forest and decision tree can
closely match the performance of a chart reviewer when
identifying proxy dates for a recurrence/progression diag-
nosis while only using patients’ chemotherapy treatment
histories. By extension, we can estimate TTNT survival for
EOC patients.We recommend the random forest model, but
only if the need for model interpretation is low and the
user’s system is capable of implementing it. However, the
interpretability and ease of implementation of a decision
tree make it an ideal choice to aid chart reviewers in
correctly documenting the dates of recurrence/progression,
facilitating research into cancer treatments. The methods
we describe in this paper are intrinsically linked to the
chemotherapy regimens used to treat EOC. However, we
refrain from stating that similar methods are restricted to
identifying multiple recurrences/progressions in ovarian
cancers. Future work will investigate the use of additional
treatment modalities to improve the detection of cancer
recurrence.
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