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ABSTRACT
Spontaneously immunogenic hepatocellular carcinoma 
(HCC), identified by a dense immune cell infiltrate (ICI), 
responds better to immunotherapy, although no validated 
biomarker exists to identify these cases. We used machine 
learning (ML) to quantify ICI from standard H&E-stained 
tissue and evaluated its correlation with characteristics of 
the tumor microenvironment (TME) and clinical outcome 
from atezolizumab plus bevacizumab (A+B).
We therefore employed a supervised ML algorithm on 
102 pretreatment H&E slides collected from patients 
treated with A+B. We quantified tumor, stroma and 
immune cell counts/mm2 and dichotomized patients 
into ICI high and ICI low for clinicopathologic analysis. 
We correlated ICI signature with characteristics of the 
T-cell infiltrate (CD4+, FOXP3+, CD8+, PD1+) using 
multiplex immunohistochemistry in 62 resected specimens 
and evaluated gene expression profiles by bulk RNA 
sequencing in 44 samples.
All patients treated with A+B were Child-Pugh A and 
received first-line A+B treatment for Barcelona Clinic Liver 
Cancer Stage C HCC (n=77, 75.5%) on a background 
of viral (n=53, 52%) and non-viral (n=49, 48%) liver 
disease. Median ICI density was 429.9 (IQR: 194.6–666.7) 
cells/mm2. Two-thirds of patients (n=67, 65.7%) had 
ICI counts≥236/mm2, derived as the optimal prognostic 
cut-off (ICI-high). Baseline characteristics, including 
disease etiology, liver function, performance status, stage, 
prior therapy and alpha-fetoprotein (AFP) levels, were 
comparable between ICI-high versus ICI-low patients. 
Patients with ICI-high demonstrated a significantly longer 

overall survival (OS) compared with ICI-low: 20.9 (95% CI: 
13.8 to 27.9) versus 15.3 (95% CI: 6.0 to 24.6 months, 
p=0.026). Multivariable analyses demonstrated ICI-low 
status to remain as an independent prognostic parameter 
(adjusted HR (aHR): 2.02, 95% CI: 1.03 to 3.96) alongside 
AFP concentration (per 100 ng/mL: aHR 1.00, 95% CI: 
1.00 to 1.00). ICI-high tumors were characterized by STC1 
underexpression and enrichment in proinflammatory 
gene expression sets previously associated with response 
to immunotherapy. The proinflammatory environment 
identified by ICI status was not exclusively mediated 
by T-cell phenotype polarization as shown by a lack 
of correlation between ICI-high status and CD4+, 
CD4+FOXP3+, CD8+ and CD8+PD1+ T-cell density.
In conclusion, we propose a ML-based algorithm to identify 
proinflamed HCC TMEs bearing a positive correlation with 
the patient’s OS. Digital characterization of the TME should 
be validated as a tool to improve precision delivery of 
anticancer immunotherapy.

INTRODUCTION
Even though the advent of effective combina-
tion immunotherapy has improved outcomes 
in patients with advanced hepatocellular 
carcinoma (HCC), overall survival (OS) 
benefit is unevenly distributed across immu-
notherapy recipients.1 2 Additionally, high-
grade adverse events may occur in more than 
half of patients and may lead to death in up 
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to ~5%,1 2 reducing their therapeutic index. Combination 
immunotherapy is also associated with significant costs, 
and the availability of multiple systemic therapy regimens 
emphasizes the need for better patient selection.1

The development of biomarkers that can identify 
patients who derive greater benefit from treatment 
remains a major unmet need in HCC.3 A myriad of blood-
based, tissue-based, imaging-based and clinical param-
eters have been evaluated for their predictive power,4 
but none has influenced immunotherapy delivery in 
the clinic.5 The expanding use of high-throughput 
technologies in pretreatment tissue samples has led to 
an immune-based subclassification of the HCC tumor 
microenvironment (TME) that might identify treatment 
responders. However, RNA sequencing (RNA-seq) and 
extended genomic testing are costly, lack reproducibility 
and are poorly scalable to routine clinical practice.6

Accumulating evidence suggests that solid tumors 
harboring a spontaneously immunogenic, interferon-γ 
rich, proinflamed microenvironment are more likely 
to respond to immunotherapy.7 In tumors such as non-
small cell lung cancer (NSCLC), the status of the TME 
is efficiently recapitulated by programmed death-ligand 
1 (PD-L1) expression status, which serves as a stratifica-
tion factor for the utilization of programmed cell death 
protein 1 (PD-1)-targeted monotherapy in a subset 
of patients.8 However, the HCC microenvironment is 
perhaps more complex and more geared towards immune 
suppression—reasons why perhaps PD-L1 immunohis-
tochemical testing does not predict for outcome from 
immunotherapy in HCC.9–11 However, like many other 
solid tumors, a subset of HCCs is spontaneously immune 
activated.9 11 These ‘inflamed’ subclasses of HCC are 
associated with upregulation of inflammatory response 
markers,11 expression of immune-effector cytokines and 
a more diverse T-cell repertoire12—features that may lead 
to a better response to immunotherapy.

Machine learning (ML)-based approaches applied to 
digital pathology may aid in evaluating overall characteris-
tics of the TME and might help to stratify patient outcomes 
prior to immunotherapy initiation.13 We recently demon-
strated that an ML-based approach was able to accurately 
detect and quantify immune cell infiltration on routine 
pretreatment H&E-stained slides derived from patients 
with NSCLC and found that patients with a dense infil-
trate had a better response to immunotherapy.14

Building on our experience with other immune-sensitive 
malignancies, we aimed to develop a ML-based model to 
quantify tumor, stroma and immune cell counts/mm2 in 
HCC, to derive an optimal prognostic cut-off for clini-
copathologic analysis and to correlate the immune cell 
infiltrate (ICI) signature with the phenotypic characteris-
tics of the T-cell infiltrate (CD4+, FOXP3+, CD8+, PD1+) 
using multiplex immunohistochemistry. In addition, we 
compared gene expression profiles in ICI-high/ICI-low 
tumors to further characterize the respective TMEs and 
provide an immune-biologic foundation for the proposed 
ML model.

METHODS
Study population and material
This study comprised three cohorts (figure  1A). The 
atezolizumab plus bevacizumab (A+B) cohort included 
102 patients who received atezolizumab and bevaci-
zumab as first-line systemic treatment for advanced HCC 
at eight international centers (Bologna, Graz, Klagen-
furt, Leeds, London, Milan, Seoul and Vienna). In this 
cohort, we collected preimmunotherapy H&E-stained 
liver tissue slides derived from tumor biopsies (n=67) 
or liver resection specimens (n=35). The liver resection 
group included 20 patients in whom systemic treatment 
was initiated shortly after resection, as complete tumor 
removal was not possible and/or patients had additional 
extrahepatic metastases, while in 15 patients systemic 
treatment was started after tumor recurrence during 
follow-up. The multiplex immunohistochemistry cohort 
(mIHC cohort) included 62 patients and the RNA-seq cohort 
44 patients who underwent curative resection for HCC. 
In these two cohorts, we collected tissue slides from 
formalin-fixed paraffin-embedded resection specimens. 
H&E-stained slides were digitalized at a resolution of 0.24 
or 0.49 microns/pixel. A detailed description of inclusion 
and exclusion criteria, information on data extraction, 
processing of mIHC and bulk RNA-seq can be found in 
the online supplemental file 1.

ML approach for ICI identification and quantification
The supervised ML algorithm was developed using 
QuPath (V.0.4.2) and followed the previously described 
procedure with some modifications.14 15 A schematic 
overview (online supplemental figure 1), a step-by-step 
guide demonstrating how to apply the method within 
the QuPath graphical user interface as well as a detailed 
description of model development, training and quality 
verification can be found in the online supplemental file 
1.

Statistics
Statistical analyses were performed using IBM SPSS Statis-
tics V.26, GraphPad Prism V.8 (GraphPad Software, San 
Diego, California, USA) and R V.4.3.1 (R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria).

The optimal prognostic ICI cut-off was derived by the 
log-rank maximization method as previously described.16 
Univariable and multivariable Cox regression models 
were used to evaluate prognostic factors for OS and 
progression-free survival (PFS).

A detailed description of the statistical approach 
including the approach to RNA-seq data as well as the 
definition of study endpoints can be found in the online 
supplemental file 1.

RESULTS
Patients
As outlined in online supplemental figure 2, we screened 
138 patients from eight international centres who received 
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Atezolizumab/bevacizumab 
cohort (A+B cohort)

- 102 patients
- 8 international centers

- first-line systemic treatment
- CPS A liver function

- ECOG 0-1

Digital quantification of the 
immune cell infiltrate (ICI) in all 

cohorts

Evaluated endpoints
- Correlation of ICI signature

with overall (OS) and 
progression-free survival (PFS)

- Correlation of ICI signature 
with radiological response

Multiplex immunohistochemistry 
cohort (mIHC cohort)

- 62 patients
- curative resection/liver
transplantation for HCC

- Staining for CD4+, CD4+FOXP3+,
CD8+ and CD8+PD1+ cells

Evaluated endpoints:
- Correlation of the ICI signature
with manually counted immune

cells

RNA sequencing cohort 
(RNAseq-cohort)

- 44 patients
- curative resection for HCC

- bulk RNA-sequencing

Evaluated endpoints:
- Correlation of the ICI

signature with the 
transcriptomic profile

- Assessment of gene set
enrichments linked to ICI 

signature

1A

1B

1C

Figure 1  (A) Study flowchart demonstrating the different study cohorts and evaluated endpoints as well as comparison of (B) 
overall survival (OS) and (C) progression-free survival (PFS) between patients with ICI high versus ICI low in the A+B cohort. 
CPS, Child-Pugh score; ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; ICI, immune cell infiltrate 
cells/mm2.
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A+B treatment between March 2020 and December 2022, 
for inclusion into the A+B cohort. A total of 36 patients 
were excluded from the study due to baseline liver func-
tion impairment (Child-Pugh Score >7: n=10), the use of 
non-first-line therapies (n=3) and, in 10 cases, the unavail-
ability of liver tissue for analysis. Consequently, the A+B 
cohort comprised 102 patients.

Baseline characteristics of the A+B cohort
The majority of patients were men (n=86, 84.3%) with a 
median age of 68.0 (IQR: 59.7–76.4) years. Two-thirds of 
patients had underlying liver cirrhosis (n=64, 62.7%) and 
75.5% (n=77) had advanced stage HCC (Barcelona Clinic 
Liver Cancer Stage C (BCLC-C)). Median pretreatment 
ICI Score was 429.9 (194.6–666.7) cells/mm2. Further 
patient characteristics are outlined in table 1.

Prognostic importance of ML-derived assessment of the TME
To evaluate the prognostic importance of the ML-de-
rived assessment of the TME, we performed restricted 
cubic spline analysis to quantify the effect of ICI counts 
(cells/mm2) on OS. We found that patients with lower 
ICI counts had a significantly increased risk for mortality 
(online supplemental figure 3A). For clinical application, 
we next performed a maximally selected rank statistics-
based assessment of the optimal ICI cut-off for OS predic-
tion. This cut-point was derived at 235.02 and rounded 
to 236 cells/mm2 (online supplemental figure 3B). Base-
line characteristics were comparable between 35 patients 
with ICI-low (<236/mm2; median tumor infiltrating 
lymphocyte (TIL) counts: 163.1, IQR: 120.0–197.3) 
and 67 patients with ICI-high (≥236/mm2; median TIL 
counts: 600.3, IQR: 242.6–2258.3, table 1). Importantly, 
patients with ICI-high had a significantly better median 
OS as compared with ICI-low (ICI-high: 20.9, 95% CI: 
13.8 to 27.9 months versus ICI-low: 15.3, 95% CI: 6.0 to 
24.6 months; p=0.026; figure  1B), while no PFS benefit 
was observed (ICI-high: 10.9, 95% CI: 8.7 to 13.2 months 
versus ICI-low: 7.3, 95% CI: 1.4 to 13.2 months; p=0.241, 
figure 1C). Radiological response (ORR: ICI-high: n=20 
(29.9%) versus ICI-low: n=8 (22.9%); p=0.452; disease 
control rate: ICI-high: n=53 (79.1%) versus ICI-low: 
n=22 (62.9%); p=0.077) was not statistically significantly 
different (table 1).

Finally, we performed univariable and multivariable 
analyses of factors associated with OS. Interestingly, only 
AFP levels (per 100ng/mL: adjusted HR (aHR): 1.00, 
95% CI: 1.00 to 1.00; p=0.038) and ICI-high status (aHR: 
2.02, 95% CI: 1.03 to 3.96; p=0.040) were independently 
associated with OS (table 2).

Comparison of the density of manually counted immune cells 
within the ICI-high and ICI-low groups in the mIHC cohort
The mIHC cohort included 62 patients who underwent 
liver resection or transplantation for early (BCLC A: 
n=53, 85.5%) or intermediate stage (BCLC B: n=9, 
14.5%) HCC between April 2004 and February 2019. 
The majority of patients were men (79.3%) with a 

median age of 55.5 (IQR: 50.7–61.0) years. Detailed 
baseline patient characteristics are displayed in online 
supplemental table 1.

Median ICI counts in this cohort were 432.2 
(IQR: 284.2–596.3) cells/mm2, and while 49 patients 
(79.0%) were attributed to the ICI-high group, 
13 patients were allocated to the ICI-low group. As 
the ICI evaluation was performed on whole slide 
scans, the manually counted immune cell infiltrate 
(performed separately for non-tumoral, peritumoral 
and intratumoral areas) was averaged, resulting in a 
median of 366.2 (IQR: 231.5–566.4) CD4+ cells/mm2, 
33.4 (IQR: 10.9–61.5) CD4+FOXP3+ cells/mm2, 296.8 
(IQR: 210.0–462.9) CD8+ cells/mm2 and 50.6 (IQR: 
13.6–84.4) CD8+PD1+ cells/mm2.

Online supplemental figure 4 demonstrates median 
immune cell counts in patients with ICI high versus 
ICI low, and online supplemental figure 5 shows 
two representative sections from mIHC slides at two 
different magnifications. While CD4+, CD4+FOXP3+ 
and CD8+PD1+ T-cell counts were comparable 
between patients with high versus low ICI counts, we 
observed a trend towards higher CD8+ T-cell counts in 
the ICI-high group (p=0.074).

Transcriptomic features of ICI-high patients
Finally, transcriptomic profiling and weighted gene 
coexpression network analysis were performed on 
44 patients who underwent resection or transplan-
tation for HCC (figure  2A, online supplemental file 
1). The primary objective was to further characterize 
the TME as reflected by the presence and density of 
the ICI and to provide a technical validation of the 
ICI score. Therefore, transcriptomic profiles were 
compared between two extreme groups: patients 
with ICI scores above the 66th and below the 33rd 
percentile. Overall, 1507 differentially expressed 
genes were detected (figure 2B, online supplemental 
figure 9). Even though separation was not perfect, 
principal component 1 (PC1) and PC3 allowed for 
the best separation (online supplemental figure 8). 
The genes and gene sets contributing to PC1 and PC3 
are outlined in online supplemental figure 8. While 
pathways associated with inflammation (eg, those 
associated with allograft rejection, inflammatory 
response, TNFα-signaling via NFκB, interferon-γ, etc) 
were significantly overexpressed in ICI-high patients, 
pathways associated with metabolite metabolism (eg, 
fatty acid metabolism, bile acid metabolism, etc) 
were overexpressed in ICI-low patients (figure  2C, 
online supplemental figure 9A). Functional pathway 
enrichment analysis visually confirming these results 
is shown in online supplemental figure 10. Detailed 
results, including overlaps between significant gene 
sets and the expression direction of their key genes, 
are demonstrated in online supplemental figure 9B,C. 
Finally, we performed gene coexpression analysis and 
linked modules of highly coexpressed genes to patient 

Journal for Im
m

unoT
herapy of C

ancer: first published as 10.1136/jitc-2024-010975 on 5 O
ctober 2025. D

ow
nloaded from

 https://jitc.bm
j.com

 on 25 N
ovem

ber 2025 by guest.
P

rotected by copyright, including for uses related to text and data m
ining, A

I training, and sim
ilar technologies.

https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975
https://dx.doi.org/10.1136/jitc-2024-010975


5Scheiner B, et al. J Immunother Cancer 2025;13:e010975. doi:10.1136/jitc-2024-010975

Open access

metadata (online supplemental figure 11). Module 4 
had the highest correlation with ICI level, and among 
the most significant genes, STC1 and EPS8L3 were 
highly enriched in ICI-low patients. Previous reports 
have shown the potential of these genes in conferring 

resistance to immunotherapy.17 A more detailed 
description of the results of our transcriptomic anal-
yses can be found in the online supplemental file 1.

Table 1  Patient characteristics and summary of survival outcomes and radiological response for patients with ICI high (≥236 
cells/mm2) versus ICI low (<236 cells/mm2)

All patients
(n=102) ICI low (n=35) ICI high (n=67) P value

Age (years), median (IQR) 68.0 (59.7–76.4) 69.4 (60.5–76.0) 67.0 (59.6–77.3) 0.794

Sex

 � Male, n (%) 86 (84.3%) 29 (82.9%) 57 (85.1%) 0.770

Cirrhosis, n (%) 64 (62.7%) 18 (51.4%) 46 (68.7%) 0.088

Etiology of liver disease

 � HBV, n (%) 34 (33.3%) 12 (34.3%) 22 (32.8%) 0.883

 � HCV, n (%) 19 (18.6%) 9 (25.7%) 10 (14.9%) 0.184

 � Alcohol, n (%) 22 (21.6%) 4 (11.4%) 18 (26.9%) 0.072

 � NAFLD/NASH, n (%) 21 (20.6%) 6 (17.1%) 15 (22.4%) 0.534

 � Other, n (%) 9 (8.8%) 5 (14.3%) 4 (6.0%) 0.268

Child-Pugh Score

 � 5 points, n (%) 74 (72.5%) 25 (71.4%) 49 (73.1%) 0.855

 � 6 points, n (%) 28 (27.5%) 10 (28.6%) 18 (26.9%)

ECOG PS

 � 0, n (%) 50 (49.0%) 19 (54.3%) 31 (46.3%) 0.442

 � 1, n (%) 52 (51.0%) 16 (45.7%) 36 (53.7%)

BCLC stage

 � A, n (%) 5 (4.9%) 3 (8.6%) 2 (3.0%) 0.441

 � B, n (%) 20 (19.6%) 6 (17.1%) 14 (20.9%)

 � C, n (%) 77 (75.5%) 26 (74.3%) 51 (76.1%)

Previous treatments

 � Surgery, n (%) 41 (41.0%) 12 (35.3%) 29 (43.9%) 0.405

 � RFA/MWA, n (%) 10 (10.1%) 5 (14.7%) 5 (7.7%) 0.271

 � TACE, n (%) 34 (34.0%) 8 (23.5%) 26 (39.4%) 0.113

 � TARE, n (%) 3 (3.0%) 2 (5.9%) 1 (1.5%) 0.231

 � EBRT, n (%) 13 (13.4%) 4 (12.1%) 9 (14.1%) 0.790

AFP (ng/mL), median (IQR) 29.3 (4.8–642.0) 29.0 (4.0–2397.0) 29.6 (5.4–642.0) 0.619

Best overall response

 � CR/PR 28 (27.5%) 8 (22.9%) 20 (29.9%) 0.209

 � SD 47 (46.1%) 14 (40.0%) 33 (49.3%)

 � PD/NE 27 (26.5%) 13 (37.1%) 14 (20.9%)

ORR (CR+PR)* 28 (27.5%) 8 (22.9%) 20 (29.9%) 0.452

DCR (CR+PR+SD)† 75 (73.5%) 22 (62.9%) 53 (79.1%) 0.077

*Patients who were not evaluable were considered as not having an objective response.
†Patients who were not evaluable were considered as not having a controlled disease.
AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; CR, complete response; DCR, disease control rate; EBRT, external beam 
radiation therapy; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HBV, hepatitis B virus; HCV, hepatitis C virus; ICI, 
immune cell infiltrate; MWA, microwave ablation; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; N/E, not 
evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; RFA, radiofrequency ablation; SD, stable disease; 
TACE, transarterial chemoembolization; TARE, transarterial radioembolization.
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DISCUSSION
Evidence of pre-existing immunogenicity within the 
TME has emerged as a tumor-agnostic trait correlating 
with improved outcomes from immune-checkpoint 
inhibitor-based therapies.18 While certain surrogates 
of spontaneous immunogenicity such as PD-L1 status 
by IHC are consolidated stratifying biomarkers in 
other cancer types such as NSCLC,8 no easily scalable 
biomarkers exist to classify patients with HCC based 
on the contexture of their TME. ML quantitative 
methods applied to digital pathology can potentially 
derive information on the immunogenic polarisation 
of the TME. Evidence for the clinical utility of ML 
models derived from routinely available pretreatment 
H&E-stained slides has emerged quite strongly in 
NSCLC, where ML outperforms routinely employed 
predictive biomarkers of benefit to immunotherapy 
such as PD-L1 status or tumor mutational burden.14

In this preliminary study, we applied a similar meth-
odology on H&E-stained slides derived from patients 
with HCC prior to treatment with A+B and evaluated the 
capacity of our model to predict clinical outcomes.

We found that our digital pathology model was able 
to identify a group of ICI-high specimens uniquely 
characterized by a denser immune cell infiltrate prior 
to treatment, a finding that was associated with a 
more favorable OS—the ‘gold standard’ endpoint in 
cancer drug development for advanced HCC.19 Inter-
estingly, ICI-high status was not associated with any of 
the common clinicopathologic factors for HCC, was 
equally distributed across aetiology and remained as a 

significant prognostic factor in multivariable models, 
suggesting its truly independent predictive value for 
OS in our patient population. Although a higher 
proportion of responders was observed in the ICI-high 
group compared with the ICI-low group, the result 
did not attain statistical significance, and our algo-
rithm seems to rather correlate with patients who are 
less likely to exhibit inherent resistance to this treat-
ment. Whilst therapeutic benefit is generally higher 
in patients who achieve a response to immunotherapy, 
accumulating evidence suggests this is not a prereq-
uisite for long-term survivorship.20 Furthermore, in 
the specific case of A+B, the anti-VEGF component 
of the regimen may further complicate the prediction 
of response, given the anti-VEGF-driven normaliza-
tion of the tumor vasculature may lead to response 
irrespective of the baseline immune cell status of the 
patient.21

To further understand the immunobiological basis 
of the ICI-based signature identified, we interrogated 
a separate series of archival resection and transplanta-
tion specimens to identify cardinal T-cell populations 
involved in checkpoint inhibitor resistance in HCC with 
targeted multiplex-IHC6 and used RNA-seq to compare 
and contrast tissue transcriptomics across ICI-high versus 
ICI-low specimens.

ICI was defined as mononuclear immune cells, 
including both lymphocytes and plasma cells.14 22 
To determine which subsets are detected by the ML 
model, we examined CD8, CD4, Treg and immune-
exhausted CD8+PD-1+ T cells. Manual assessment of 

Table 2  Univariable and multivariable analyses of prognostic factors for overall survival in patients with hepatocellular 
carcinoma treated with atezolizumab and bevacizumab

Univariable Multivariable

HR (95% CI) P value aHR (95% CI) P value

Age Per year 1.01 (0.98 to 1.04) 0.613 –

Sex Male versus 
female

0.74 (0.29 to 1.92) 0.540 –

Cirrhosis Present versus 
absent

1.16 (0.59 to 2.27) 0.667 –

ECOG PS 1 versus 0 1.46 (0.73 to 2.91) 0.290 –

Portal vein thrombosis Present versus 
absent

0.68 (0.34 to 1.36) 0.279

Extrahepatic metastases Present versus 
absent

1.09 (0.56 to 2.12) 0.798 –

BCLC C versus A/B 1.00 (0.45 to 2.22) 0.992 –

Alpha-fetoprotein per 100 ng/mL 1.00 (1.00 to 1.00) 0.018 1.00 (1.00 to 1.00) 0.038

ICI ICI low (<236/
mm2) versus 
ICI high (≥236/
mm2)

2.09 (1.08 to 4.07) 0.029 2.02 (1.03 to 3.96) 0.040

Values in bold indicate results with P value <0.05.
aHR, adjusted HR; BCLC, Barcelona Clinic Liver Cancer; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ICI, immune 
cell infiltrate .
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CD8/mm² showed a trend association with ML-based 
ICI/mm² counts, highlighting how T-cell polarisation 
contributes to ICI but does not exclusively nor univo-
cally define it. Functional analysis of differentially 
regulated transcripts identified gene sets (GSEA hall-
mark and Gene Ontology) associated with epithelial 
to mesenchymal transition and inflammation, iden-
tifying candidates such as IFN-γ, IFN-α, TNF-α and 
interleukin 6 as key functional components of the ICI-
high signature. Interestingly, in coexpression analysis, 
we found that STC1 and EPS8L3 were highly enriched 
in ICI-low patients. While tumor STC1 inhibits phago-
cytosis, thereby contributing to HCC immune evasion 

and immunotherapy resistance,17 EPS8L3 was associ-
ated with cell proliferation and migration as well as a 
poor prognosis.23

Even though our study lacks a direct comparison with 
spatial transcriptomics data, the improved OS seen in ICI-
high tumors, which harbour a uniquely immunogenic 
and proinflamed milieu, is provocative in suggesting how 
artificial intelligence (AI)-based models may recapitu-
late functionally relevant polarization of the TME in the 
clinic.

Recently, Zeng et al demonstrated that an AI-based algo-
rithm was able to predict the expression of a gene signa-
ture previously associated with response to A+B treatment 

Figure 2  (A) Scheme of the RNA sequencing data analysis. The analysis strategy included transcriptomic profiling to identify 
genes and pathways differentially expressed between patients with ICI-high and ICI-low (left). The second part (right) used 
weighted gene coexpression network analysis to identify genes whose expression changes with ICI abundance. (B) Principal 
component analysis and differentially expressed genes between ICI-high and ICI-low. The genes with the highest significance 
and Log2 fold changes are labeled. (C) Gene set analysis (GO:BP) of differentially expressed genes between ICI-high and 
ICI-low. AKT, protein kinase B; BCLC, Barcelona Clinic Liver Cancer; DEGs, differentially expressed genes; E2F, early region 
2 binding factor; ICI, immune cell infiltrate cells/mm2; log2FC, log fold change; MTOR, mechanistic target of rapamycin; MYC, 
MYC proto-oncogene; NES, Normalized Enrichment Score; NFKB, nuclear factor kappa-light-chain enhancer of activated B 
cells; PC, principal component; PI3K, phosphatidylinositol 3-kinase; TGF BETA, transforming growth factor beta; TNFA, tumor 
necrosis factor alpha; UV RESPONSE DN, collection of genes downregulated following exposure to ultraviolet radiation.
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(ie, the AB response signature, (ABRS)) in 122 patients. 
They also observed that patients with ABRS-high tumors 
had a significantly better PFS.24 The authors further inves-
tigated their AI prediction using spatial transcriptomics 
and found a good agreement between the actual gene 
signature and the AI prediction.24

Our study represents the next step in the advance-
ment of quantitative AI-based digital pathology for 
outcome prediction in HCC. The inclusion of two 
additional cohorts to elucidate the underlying mech-
anisms, coupled with the global initiative including 
several European and Asian centres represent a signif-
icant strength of our study. Nevertheless, our study 
acknowledges several limitations. First, the inclusion 
of a single, retrospective treatment cohort warrants 
external validation in subsequent prospective studies 
before our biomarker can be considered for clinical 
application.

In addition, to fully differentiate prognostic versus 
predictive value, including a separate cohort of 
patients treated with other therapies would impor-
tantly clarify whether the improved survival of ICI-
high patients can truly and exclusively be attributed 
to treatment exposure. Further studies are required 
to assess whether our ICI-high signature is associ-
ated with survival or radiological response in patients 
treated with different regimens (eg, IO–IO combina-
tions). Ideally, such comparisons should be conducted 
on prospectively collected trial datasets to avoid treat-
ment allocation bias. Third, our preliminary model 
considers the immune infiltration status of the totality 
of the sample without differentiation across regions 
of interest (tumor and stroma). The limitation of the 
manual mIHC evaluation to specific regions of interest 
may explain the lack of correlation with our ML-de-
rived score as the ICI infiltrate may not be homoge-
nous across all regions. To overcome this issue, the use 
of deep learning models that automatically identify 
different tumor regions and categorize patients into 
inflamed versus immune-excluded and immune-desert 
phenotypes might further refine TME characterization 
and outcome prediction in HCC.25 Further studies 
using an ML-based assessment of the TME should 
ideally perform all assessments in the same cohort. 
In our study, we had to perform translational analyses 
in cohorts of patients with earlier tumor stages (eg, 
those undergoing resection) as we were unable to 
recruit a sufficient number of unstained slides in the 
A+B cohort due to material transfer limitations. Addi-
tionally, further studies to evaluate the impact of both 
tissue acquisition method (surgical resection versus 
biopsy) and the time interval between tissue collection 
and the initiation of immunotherapy on the results are 
strongly encouraged. Finally, future studies should also 
aim to delineate functional phenotypes of infiltrating 
T cells using advanced technologies such as single-
cell RNA-seq or high-plex IF as different subsets may 
differentially influence immunotherapy outcomes.26

In conclusion, we have developed a preliminary ML 
model capable of identifying immune cell-enriched 
tumors with distinctive proinflammatory characteris-
tics within the corresponding TME. Patients classified 
as ICI high in our retrospective cohort exhibited a supe-
rior OS following A+B treatment, lending detection of 
ICI-high status as a potential biomarker of improved 
outcome warranting validation with more sophisti-
cated models also considering different regions of 
interest in prospective studies. Future studies should 
also focus on the correlation with A+B response signa-
tures as well as further elucidate the role of key genes 
such as STC1 for response to immunotherapy.
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