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Abstract
This study investigates the properties of waves that propagate along a density interface in
partially ionised plasmas, separating two regions of different properties, including ionisation
degree. Our analysis covers frequencies that are much smaller than the collisional frequency
of particles, so we are using a single-fluid approximation, where the partial ionisation aspect
of the plasma appears through the ambipolar diffusion in the generalised Ohm’s law. The
derived dispersion relation is solved numerically. Our results show that guided waves along
a density interface undergo very little change in their propagation speed (frequency); how-
ever, their damping rate shows variation with the ionisation degree and plasma-β parameter.
We find that waves can only propagate when plasma-β > 1.2, indicating pressure-driven dy-
namics relevant to photospheric structures with moderate magnetic fields. The damping rate
increases with higher neutral particle content but decreases with higher plasma-β values. For
ionisation degrees close to fully ionised plasma, the damping is minimal but becomes more
significant as the neutral particle concentration increases. These findings provide important
insights into wave behaviour in partially ionised plasma interfaces and lay the groundwork
for future studies of wave propagation in partially ionised plasma slab waveguides.

Keywords Solar atmosphere · Waves · Guided waves · Partially ionised plasmas ·
Ambipolar diffusion

1. Introduction

Waves and oscillations propagating in the solar atmosphere received special attention due to
their capabilities to transport and deposit energy, therefore contributing to atmospheric heat-
ing (see, e.g. Erdélyi and Ballai 2007) as well due to their use in diagnostics of the magnetic
field and the dynamical and thermodynamical state of the plasma using seismological tech-
niques (Nakariakov et al. 1999; Ballai 2007; Banerjee et al. 2007; Oliver 2009; Nakariakov
et al. 2024). Very often, waves are also tracers of the magnetic field thanks to their ability
to propagate along field lines. With the advancement of observational facilities, we are now
able to observe and study waves and oscillations across almost the entire electromagnetic
spectrum.

Various atmospheric models that were synthesised using the emission and absorption of
several spectral lines predict that the electron–neutral number density ratio of the plasma in
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the lower solar atmosphere covers several orders of magnitude. Atmospheric models such as
the VAL model (Vernazza, Avrett, and Loeser 1981), the AL model (Avrett and Loeser 2008)
or the FAL model (Fontenla, Avrett, and Loeser 1993) suggest that the electron–neutral ratio
in the quiet Sun ranges between ∼ 106 to 10−5 covering distances starting at the surface of
the Sun up to lower coronal heights, proving that in these regions the solar plasma is partially
ionised, i.e. the plasma is a mixture of charged particles (electrons and positively charged
ions) and neutrals that interact through collisions. This character of the plasma persists also
in more active solar features, for example, in the case of prominences, the ratio between the
electron density and neutral hydrogen density ranges between 0.1 and 10 (Patsourakos and
Vial 2002).

The qualitative and quantitative description of a partially ionised plasma requires a more
complex framework than the fully ionised plasma, and this stems from the necessity of
describing the dynamics of each species separately as well as their coupling. Analytical
progress can be obtained assuming the extreme situations of weakly and strongly ionised
limits in which the ratio of ion and neutral number density (or its reciprocal) acts as a small
parameter and governing equations can be expanded with respect to this quantity (Alharbi
et al. 2021, 2022). The framework in which dynamics is described also depends on the fre-
quency range we are interested in. For frequencies much lower than the collisional frequency
of particles (as assumed in the present study), the plasma dynamics can be confidently de-
scribed using a single-fluid approximation, in which partially ionised effects appear through
the generalised Ohm’s law in the form of ambipolar diffusion that dissipates perpendicular
currents to the ambient magnetic field.

In partially ionized plasma, ambipolar diffusion arises when neutrals are not fully cou-
pled to the motion of charged components. Charged particles are influenced by the Lorentz
force, whereas the neutrals move randomly due to Brownian motion. However, neutral par-
ticles still interact with ions through short-range (head-on) collisions. These interactions
generate friction between the two components, providing the dissipation of magnetic and
mechanical energy, and hence leading to localized atmospheric heating (see, e.g. Forteza
et al. 2007; Shelyag, Mathioudakis, and Keenan 2012; Khomenko et al. 2018; Yalim et al.
2020; Popescu Braileanu and Keppens 2021; McMurdo et al. 2023).

Neutrals, as well as playing a significant role in the dissipation rates of magnetohydrody-
namic (MHD) waves, also contribute to stabilizing instabilities (see, e.g., Soler et al. 2012;
Díaz, Khomenko, and Collados 2014; Ballai et al. 2017; Mather, Ballai, and Erdélyi 2018;
Ruderman et al. 2018; Murtas, Hillier, and Snow 2024; Snow and Hillier 2024).

Khomenko et al. (2021) investigated the role of ambipolar diffusion in three-dimensional
magneto-convection simulations and observed that it significantly reduces vorticity in the
upper chromosphere. This reduction occurs as ambipolar diffusion dissipates vortical distur-
bances, converting them into thermal energy. These findings suggest a strong link between
the presence of neutrals and the effective damping of waves, which may contribute to lo-
calized heating in the partially ionized solar atmosphere. Similarly, Shelyag et al. (2016)
studied the nonlinear propagation of waves in a three-dimensional stratified solar flux tube
with ambipolar diffusion. Their results showed that up to 80% of the Poynting flux carried
by these waves can be dissipated and transformed into heat, delivering substantially more
energy to the chromosphere compared to the dissipation of stationary currents, as modelled
by Khomenko and Collados (2012). Martínez-Sykora et al. (2015) also used a 2.5D radiative
MHD model to demonstrate that ambipolar diffusion efficiently dissipates magnetic energy,
increasing chromospheric temperature.

Tangential discontinues separating two regions of different properties are natural phe-
nomena in solar and space plasmas. These discontinuities can support the propagation of
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MHD waves, similar to the waves that appear at the interface between, say, water and air.
The study by Roberts (1981) showed that an interface separating two plasma regions with
a magnetic field oriented along the interface can support the propagation of fast magnetoa-
coustic waves with a phase speed situated between the Alfvén speeds in the two regions.
In addition, the study also found that if one of the regions is field-free, slow MHD waves
will propagate along the interface, while if the field-free region is warmer than the magnetic
region, an additional fast wave can also propagate.

Our paper aims to analyse the properties of guided waves propagating along a density
interface when the discontinuity separates two partially ionised plasmas that correspond
to the environment found in the lower solar atmosphere. The results obtained earlier by
Roberts (1981) will serve us as a benchmark, and we will interpret our results in the light
of the findings of this study. Our paper is structured as follows: in Section 2, we will derive
the dispersion relation of guided waves at a single interface. The solution of this dispersion
relation will be obtained numerically and discussed in Section 3. Our results are concluded
and summarised in Section 4.

2. Dispersion Relation of Waves Propagating Along a Sharp Boundary

In general, the determination of a dispersion relation of waves propagating in an inhomo-
geneous plasma (either with inhomogeneity along the direction of propagation or in the
transversal direction) is an impossible task, and the possible solutions can be obtained
by solving numerically evolutionary differential equations. The problem becomes tractable
when the inhomogeneity is chosen to be rather specific. In our approach, we will deal with
an inhomogeneity in the transversal direction to the propagation of waves, and this will be
chosen to be represented by a sharp boundary between two, otherwise homogeneous, half-
planes. Accordingly, we will use a Cartesian coordinate system, and the boundary between
the two regions (or interface) coincides with the yz-plane, i.e. its equation is x = 0.

The propagation of waves along the interface will be studied by assuming that this sur-
face separates two regions (labelled by indices 1 and 2), which are permeated by the same
magnetic field; however, the density in the two regions is different, i.e. we are dealing with
a density jump. The equilibrium magnetic field is unidirectional and it is oriented in the
positive z-direction. A consequence of the specific equilibrium we use here is that by the
continuity of the total pressure (kinetic and magnetic), the two regions have the same equi-
librium pressure, p0. The constant density of the two regions is given as

ρ0 =
{︄

ρ1, x < 0,

ρ2, x > 0.
(1)

The plasma in the two regions will be considered to be partially ionised and the dynamics
in both regions will be described by the linearised set of MHD equations given by

∂ρ

∂t
+ ρ0∇ · v = 0, (2)

ρ0
∂v
∂t

= −∇p + 1

μ0
(∇ × b) × B0, (3)

∂b
∂t

= ∇ ×
{︃

v × B0 + ηA

B2
0

[(∇ × b) × B0] × B0

}︃
, (4)
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∂p

∂t
= −γp0∇ · v, (5)

∇ · b = 0, (6)

where the quantities labelled by an index 0 (ρ0, B0, p0) describe the equilibrium state,
v = (vx,0, vz) and b = (bx,0, bz) are the velocity and magnetic field perturbations. The
quantities p and ρ denote the perturbations for pressure and density. The constants μ0,
γ are the permittivity of free space and the adiabatic index, respectively. The equilibrium
magnetic field is assumed to be homogeneous and oriented along the z-axis.

Partial ionisation effects appear only in Equation 4 through the ambipolar diffusion
whose coefficient is ηA and it is defined as (see, e.g. Forteza et al. 2007; Díaz, Khomenko,
and Collados 2014; Ruderman et al. 2018; MacBride et al. 2022)

ηA = mpξnv
2
A

4σin(1 − ξn)

√︄
π(2 − ξn)

ρ0p0
= mp(πγ )1/2

4σin

ξn(2 − ξn)
1/2

1 − ξn

v2
A

ρ0cS

. (7)

In the above expression mp is the proton mass (for a hydrogen plasma this mass is ap-
proximately equal to the mass of the neutral particles), the index n stands for the neu-
tral particles, ξn = ρn/ρ0 ≈ nn/n is defined as the ratio of the number density of neu-
trals and the total number density (neutrals plus ions), σin ≈ 5 × 10−19 m2 is the constant
collisional cross-section for proton–neutral collisions, vA is the Alfvén speed defined as
vA = B0/

√
μ0ρ0 and cS = √

γp0/ρ0 is the adiabatic sound speed. In the above equations,
ρ0 = ρe + ρi + ρn ≈ ρi + ρn is the total density (the sum of densities of electrons (e), ions
(i), and neutrals (n)). Here, we neglected the density of electrons since their mass is much
smaller than the mass of protons or neutrals. Strictly speaking, the effect of the ambipo-
lar diffusion should have appeared in the energy equation 5, as well, through the Ohmic
dissipation of perpendicular currents, but since this term is nonlinear, it will be neglected.

We can introduce the ionisation degree of the plasma, μ, defined as (Ballai, Forgács-
Dajka, and Marcu 2019)

μ = 1

2 − ξn

.

Accordingly, μ = 0.5 corresponds to a fully ionised plasma, while μ = 1 corresponds to a
fully neutral gas. From the definition of μ, we can write that ξn = 2 − 1/μ. As a result, the
expression of the ambipolar diffusion can be written as

ηA = mp

4σin

(︃
πγ

μ

)︃1/2 2μ − 1

1 − μ

v2
A

ρ0cS

≈ 1.91 × 10−9 2μ − 1

(1 − μ)μ1/2

v2
A

ρ0cS

. (8)

Since we are interested in periodic spatio-temporal changes, we write all perturbations pro-
portional to ˆ︁f (x) exp[i(kz −ωt)], where ˆ︁f (x) is the amplitude of the perturbations, k is the
longitudinal wavenumber, and ω is the frequency of waves.

At this stage, we ought to make a differentiation between the fully and partially ionised
cases and use the fully ionised results as a benchmark.

2.1. Fully Ionised Case

To correctly interpret our results and evidence the effect of partial ionisation on the proper-
ties of guided waves, we are going to use the solutions obtained for a fully ionised plasma
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as a benchmark. When we choose μ = 0.5 in Equation 8, the plasma is fully ionised and
the dispersion relation of waves reduces to the expression derived by Roberts (1981). In this
case, the frequency of waves is a real quantity.

To make the analysis of the dispersion relation of waves along an interface easier to
study, we write the dispersion relation in dimensionless form, where the frequency of waves
is expressed in units of the Alfvén frequency in region 1; therefore, the eigenvalue of the
problem will be X = ω/kvA1. Writing the density ratio ρ1/ρ2 = d , due to the particular
choice of the equilibrium, we have that

cS2

cS1
= vA2

vA1
= √

d,
cS1

vA1
=

√︃
γβ

2
,

with β being the plasma-β value, which will be identical in both regions.
The system of equations 2 – 6 can be reduced to a single second-order ordinary differen-

tial equation for the transversal component of the velocity of the form

d2ˆ︁vx

dx2
+ m2

0ˆ︁vx = 0, (9)

where the quantity m0 defined as

m0 =
√︄

(ω2 − k2c2
S)(ω

2 − k2v2
A)

(c2
S + v2

A)(ω2 − k2c2
T )

(10)

is the magnetoacoustic parameter and plays the role of an effective wavenumber. In the
above expression

c2
T = c2

Sv
2
A

c2
S + v2

A

is the tube speed.
As a result, the variation of the normal component of the velocity can be written as

ˆ︁vx(x) =
{︃

α1e
m1x, x < 0,

α2e
−m2x, x > 0,

(11)

where the magnetoacoustic parameters in the two regions can be written in dimensionless
form as

m1 =
√︄

(γβ − 2X2)(1 − X2)

γβ − X2(γβ + 2)
, m2 =

√︄
(dγβ − 2X2)(d − X2)

d2γβ − dX2(γβ + 2)
.

In practice, the equation that describes the changes in the x-component of the velocity per-
turbation 9 can also be written in terms of the normal component of the magnetic per-
turbation given the simple relationship between these quantities (ˆ︁bx = kB0ˆ︁vx/ω) and the
expression of the magnetoacoustic parameter would be identical.

Solutions of the governing differential equation obtained in the two regions can be joined
at the x = 0 interface by imposing the continuity of the total pressure and the normal com-
ponents of the velocity, so the dimensionless form of the dispersion relation becomes

d(1 − X2)m2 + (d − X2)m1 = 0, (12)
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which is the dispersion relation derived and studied by Roberts (1981) written in dimen-
sionless form. Restricting our analysis to forward propagating waves, the above dispersion
relation will admit solutions only if the phase speed of waves lies between the two Alfvén
speeds, or –in dimensionless form– when

min
(︂

1,
√

d
)︂

< X < max
(︂

1,
√

d
)︂

. (13)

In addition, the solutions have to be evanescent in the transversal direction, which implies
that the magnetoacoustic parameters in the two regions have to satisfy the conditions that
m2

1 > 0 and m2
2 > 0, which means that the phase speed of waves has to satisfy the condition

(in dimensional form)

ω

k
∈ [0, cTj ) ∪ [min(cj , vAj ),max(cj , vAj )], j = 1,2. (14)

In our approach, the min/max that appears in the above relation translates into conditions
imposed on plasma-β . In dimensionless form, these conditions can be written as

X ∈

⎧⎪⎪⎨
⎪⎪⎩

[︂
0,

√︂
γβ

γβ+2

)︂
∪

[︃√︂
γβ

2 ,1

]︃
, β < 2

γ
≈ 1.2

[︂
0,

√︂
γβ

γβ+2

)︂
∪

[︃
1,

√︂
γβ

2

]︃
, β > 1.2

(15)

in region 1, and

X ∈

⎧⎪⎪⎨
⎪⎪⎩

[︂
0,

√︂
dγβ

γβ+2

)︂
∪

[︃√︂
dγβ

2 ,
√

d

]︃
, β < 1.2

[︂
0,

√︂
dγβ

γβ+2

)︂
∪

[︃√
d,

√︂
dγβ

2

]︃
, β > 1.2

(16)

in region 2. When imposing the evanescence condition on both sides of the discontinuity,
the density ratio, d , will also be the key parameter that helps in the ordering of characteristic
speeds.

When combining the above intervals and the condition 13, it is clear that there are no so-
lutions of the dispersion relation when β < 1.2 (typical for plasma environments dominated
by magnetic forces). Mathematically, this can be easily proven. Let us expand the disper-
sion relation 12 into a series with respect to plasma-β . In this case the dispersion relation 12
reduces to(︃

1 − γβ

4

)︃[︂√
d(1 − X2)

√︁
d − X2 + (d − X2)

√︁
1 − X2

]︂
+𝒪(β2) = 0. (17)

Neglecting terms 𝒪(β2), the above expression admits as solutions the values of X = 1 and
X = √

d , which are degenerate solutions of the dispersion relation, therefore these are omit-
ted (we call a degenerate solution the solution that corresponds to ω = kvA and ω = kvAe).
This result is valid for both d < 1 and d > 1 cases.

The numerical solutions of the dispersion relation 12 are obtained using the Newton-
Raphson method, and these are represented as the variation of the dimensionless frequency
of waves in terms of the density ratio, d , for two distinct values of plasma-β . Our findings
are shown in Figure 1.
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Figure 1 The variation of the dimensionless frequency of waves X in terms of the density ratio d when
β = 15 (left panel) and β = 50 (right panel). The colored region corresponds to the location in the parametric
space where solutions are allowed.

When β > 1.2 (the plasma dynamics is driven by pressure forces), waves propagating
with phase speed close to the Alfvén speed in the parallel direction to the ambient magnetic
field are slow magnetoacoustic waves.

The regions where possible solutions are expected are shown as the overlap between
the condition 13, with boundaries shown by thick solid black lines, and the corresponding
conditions 15 – 16, shown here as regions bounded by dashed lines. Although the pairs of (d ,
X) that correspond to the two solid black lines are mathematical solutions, physically they
are not accepted, as these are degenerate solutions of the dispersion relation. The physically
accepted solutions are shown by red lines. The frequency of waves (or their phase speed)
increases with the density ratio between the two regions.

Inspired by the graphical representation of the solutions of the dispersion relation, we
can now derive an approximate analytical solution of the dispersion relation. It is clear that
as long as d < 1 the dependence of X on the density ratio, d , is such that X2 ≈ d + δ, where
δ is a small and positive quantity. Inserting this expression back into the dispersion relation
12, we obtain that

δ = d

2

(γβ − 2)(1 − d)[γβ − d(γβ + 2)]
γβ − 2d

.

Therefore, the equation that describes the forward propagating wave becomes

X ≈ √
d

{︃
1 + 1

2

(γβ − 2)(1 − d)[γβ − d(γβ + 2)]
γβ − 2d

}︃1/2

. (18)

Imposing the condition that δ remains a positive quantity means that the condition d <

γβ/(γβ + 2) has to be satisfied, so solutions in this regime are bounded by the value of the
density contrast between the two regions.

On the other hand, if d > 1, then we can write that X2 ≈ 1 + ϵ, where ϵ is, again, a small
and positive quantity. After a straightforward calculation, it is easy to obtain that

ϵ = (d − 1)(γβ − 2)(dγβ − γβ − 2)

2d(dγβ − 2)
,
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which means that the equation describing the forward propagating wave is given by

X ≈
{︃

1 + (d − 1)(γβ − 2)(dγβ − γβ − 2)

2d(dγβ − 2)

}︃1/2

. (19)

A simple analysis reveals that ϵ will be a positive quantity provided the condition d >

(γβ + 2)/γβ is satisfied. The two conditions imposed on the small parameters δ and ϵ

explain why solutions for X are not found near the value of 1 in the left panel of Figure 1.

2.2. Partially Ionised Case

Given the partially ionised character of the plasma (μ ≠ 0.5) and the presence of the am-
bipolar diffusion, the frequency of waves is determined by the real part of ω, while the
damping rate of waves is determined by the imaginary part that, for the particular ansatz
we used here, has to be a negative quantity. In what follows, we are going to drop the hat
symbol.

The system of MHD equations 2 – 6 can be reduced to a system of coupled ordinary
differential equations of the form

ω2c2
S

ω2 − k2c2
S

d2vx

dx2
+ ω2vx + ωkB0

μρ0
bx + iωB0

μρ0

dbz

dx
= 0, (20)

(︃
ω + iηAk2 − iηA

d2

dx2

)︃
bx = −kB0vx, (21)

(︃
ω + iηAk2 − iηA

d2

dx2

)︃
bz = −iB0

dvx

dx
, (22)

dbx

dx
+ ikbz = 0. (23)

After a straightforward set of algebraic manipulations, the above system of equations can
be reduced to a differential equation that describes the variation of the x-component of the
magnetic field perturbation

A
d4bx

dx4
+ B

d2bx

dx2
+ Cbx = 0, (24)

where the coefficients of this equation are given by

A = ωc2
SηA, B = iv2

A(ω2 − k2c2
S) + ω

[︁
ω2ηA + c2

S(iω − 2k2ηA)
]︁
,

C = i(ω2 − k2c2
S)

[︁
ω(ω + ik2ηA) − k2v2

A

]︁
.

We should note here that in a fully ionised plasma, the above differential equation reduces
to a quadratic form

d2bx

dx2
+ m2

0bx = 0, (25)
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where the magnetoacoustic parameter, m0, was defined earlier by Equation 10. Although in
the original study by Roberts (1981) the governing equation similar to Equation 25 is writ-
ten for the transversal component of the velocity, vx , thanks to a simple linear relationship
between vx and bx given earlier, it can be shown that the two formulations are equivalent.

In addition to the dimensionless quantities employed earlier, we introduce the quantity
Q = ηAk/vA to denote the dimensionless dissipative coefficient. As a result, the coefficients
of the governing equation 24 can be written as

A = X
γβ

2
Q, B = k2

{︃
i

(︃
X2 − γβ

2

)︃
+ X

[︃
X2Q + γβ

2
(iX − 2Q)

]︃}︃
,

C = ik4

(︃
X2 − γβ

2

)︃
[X(X + iQ) − 1]. (26)

The quantity Q introduced above would incorporate all the information about the partially
ionised nature of the plasma and will play a crucial role in the description of the wave
damping. In terms of the dimensionless variables introduced earlier, the quantity Q in the
two plasma regions can be written as

Q1 = mp

4σin

(︃
2π

βμ

)︃1/2 2μ − 1

1 − μ

k

ρ01
,

and

Q2 = mp

4σin

d2

(︃
2πd

βμ

)︃1/2 2μ − 1

dnμ − (2μ − 1)d

[︃
2μ − (2μ − 1)

d

dn

]︃1/2
k

ρ01
,

where dn = ρn1/ρn2. The expressions of Q1 and Q2 depend on the density of the medium
and the wavenumber. We use ρ01 = 5×10−9 kg m−3 and k = 5×10−6 m−1 as representative
values in region 1. Since we expect Q2 to be a real and positive quantity, the restriction that
needs to be imposed is that dn > (2μ − 1)d/μ.

Assuming a trial solution of the form proportional to emx , the auxiliary equation reduces
to a bi-quadratic equation whose roots are simply

m1,2 =
√︃

− B

2A
± 1

2A

√︁
B2 − 4AC, (27)

and

m3,4 = −
√︃

− B

2A
± 1

2A

√︁
B2 − 4AC. (28)

A similar equation has to be solved on both sides of the interface; however, to ensure the
evanescence of solutions, we write

bx =
{︃

α1e
m1x + α2e

m2x, x < 0,

α3e
m3x + α4e

m4x, x > 0,
(29)
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where the quantities m1 and m2 are given in terms of the coefficients in Equation 26 (with
Q = Q1), while for m3 and m4 we use

A = X
dγβ

2
Q2, B = k2d

{︃
i

(︃
X2 − dγβ

2

)︃
+ X

[︃
X2Q2 + dγβ

2
(iX − 2Q2)

]︃}︃
,

C = ik4

(︃
X2 − dγβ

2

)︃
[X(X + iQ2) − d]. (30)

The constant coefficients α1 −α4 in Equation 29 can be determined upon applying bound-
ary conditions at the interface.

In a fully ionised and ideal plasma, the boundary conditions (also known as jump condi-
tions) are determined by imposing the continuity of transversal components of the Maxwell-
Reynolds stress tensor, which translates into the continuity of the transversal component of
the velocity and the total pressure. However, in a partially ionised plasma, the presence of
neutrals generates electric currents perpendicular to the ambient magnetic field (dissipated
via ambipolar resistivity), and the magnetic topology can change across the interface, and
as a result, magnetic field lines can diffuse across the interface, perturbing its stability. The
jump conditions in this case can be obtained in a similar fashion as in the study by Díaz,
Khomenko, and Collados (2014), i.e. we derive the jump conditions using the integral form
of conservation laws applied to an infinitesimally thin region surrounding the boundary. As
a result, the jump conditions that are applied at the boundary between two partially ionised
plasmas situated at x = 0 in the presence of ambipolar diffusion can be written as[︁[︁

ρ0c
2
Svx

]︁]︁ = 0,[︂[︂
p + B0bz

μ

]︂]︂
= 0,

[︂[︂
ηA

(︃
dbz

dx
− ikbx

)︃
− B0vx

]︂]︂
= 0,

[︁[︁
ηAbz

]︁]︁ = 0, (31)

where
[︁[︁

Z
]︁]︁ = limx→0+[Z(x)−Z(−x)] denotes the jump in the quantity Z across the inter-

face. Although the first two jump conditions are similar to their fully ionised counterparts,
the expressions of the normal component of velocity and total pressure will contain infor-
mation about the ambipolar diffusion, encapsulating the partially ionised character of the
plasma.

Due to the particular equilibrium configuration of our model, the first jump condition
reduces to the continuity of the transversal component of the velocity vector, the second
one denotes the continuity of the total pressure, while the last two jump conditions originate
from the components of the induction equation. In a fully ionised plasma (ηA = 0), the last
two relations become redundant.

The MHD equations can be reduced so that physical variables that appear in the above
boundary conditions can all be written in terms of the normal component of magnetic field
perturbation, bx . As a result, the jump conditions transform into

[︂[︂(︃
ω + iηAk2 − iηA

d2

dx2

)︃
bx

]︂]︂
= 0,

[︂[︂ ρ0

ω2 − k2c2
S

[︁
ωc2

S(ω + iηAk2) + v2
A(ω2 − k2c2

S)
]︁ dbx

dx
− iρ0ωc2

SηA

ω2 − k2c2
S

d3bx

dx3

]︂]︂
= 0,
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[︂[︂(︃
ω + iηAk2 − 2iηA

d2

dx2

)︃
bx

]︂]︂
= 0,

[︂[︂
ηA

dbx

dx

]︂]︂
= 0. (32)

Using the form of the normal component of the magnetic field given by Equation 29, the
four jump conditions can be written as a system of equations for the 4 constants that appear
in that equation.

Using the proposed form of bx on both sides of the interface, the jump conditions lead to
a system of equations for the coefficients αj of the form

ℳij α
T
j = 0, (33)

where αT
j is the transpose matrix of the unknown quantities αj and the elements of the 4 × 4

matrix ℳ are given in the Appendix. The condition of non-trivial solutions of the above
homogeneous system of equations can be written as

det(ℳij ) = 0, (34)

which constitutes the dispersion relation of the problem that will be solved numerically.

3. Numerical Solutions

With the solutions of the dispersion relation in the case of fully ionised plasma determined
earlier, we can turn our attention to the case of surface waves in partially ionised plasma. In
general, the solutions of the dispersion relation 34 are complex quantities, and finding the
solution to this equation analytically is still difficult as the equation is highly transcendental.

Let us first discuss the physical domains where surface waves are allowed to propagate.
First of all, the condition of evanescence in this case is defined differently. Although quali-
tatively the x-dependence of the normal component of the magnetic field perturbation given
by Equation 29 is similar to the one we obtained in the case of fully ionised plasma, now
the magnetoacoustic parameters are complex quantities, therefore the evanescence of waves
in the lateral direction would imply a decaying oscillatory behaviour. To achieve this, we
need to impose that the real parts of the mj parameters are positive. This restriction will be
achieved by limiting our analysis to the case when the arguments of the complex parameters
mj are in the interval −π/2 ≤ arg(mj ) ≤ π/2.

Figure 2 shows the variation of the real (left panel) and imaginary (right panel) part of the
variable X in terms of the density ratio, d , for the chosen plasma parameters for three distinct
values of the ionisation degree covering a large spectrum of values. In the way the variable
X is defined, the imaginary part describes the damping rate in Alfvén frequency units. The
two figures were obtained for the particular values of β = 50 and dn = 4. The three curves
were plotted for three different ionisation degrees, where μ = 0.5 corresponds to a fully
ionised plasma, μ = 0.75 represents a moderate ionisation, and μ = 0.95 corresponds to a
weakly ionised plasma condition, respectively.

The left panel of Figure 2 demonstrates that, across all ionisation degrees, the phase
speed of the surface waves increases monotonically with the density contrast, d . This trend
closely follows the behaviour established in the fully ionised reference case (see Figure 1),
suggesting that the presence of neutrals and ambipolar diffusion does not significantly alter
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Figure 2 The variation of the real and imaginary part of the dimensionless frequency, X, in terms of the
density ratio between the two regions for various values of the ionisation degree. These plots were obtained
considering β = 50 and dn = 4.

the wave propagation speed. This result is somewhat surprising, as one might intuitively
expect the additional neutral inertia to reduce the phase speed. However, due to the high
plasma-β regime considered here, the thermal pressure dominates over magnetic tension,
and wave dynamics are primarily governed by compressive effects. In such conditions, am-
bipolar diffusion weakens the coupling between ions and neutrals, allowing ions to support
the wave motion more independently. This results in a weak dependence of Xr on the ion-
isation degree, as clearly seen in the overlapping curves. At d ≈ 3, a crossover takes place,
when for d > 3 the frequency of surface waves in a fully ionised plasma becomes larger
than the corresponding frequency in the case of partial ionisation. One possible explanation
of this phenomenon is that when d < 3 in a partially ionised plasma, the interface is less
asymmetric, so wave energy is more evenly distributed between the two regions. Ambipolar
diffusion decouples neutrals from the magnetic field, allowing ions to move more freely.
This results in a lower effective inertia for the ions, despite the total mass being higher. With
less inertia and weaker magnetic tension, the wave becomes faster, hence higher xr than in
the fully ionised case. In contrast, in a fully ionised case, ions and the magnetic field are
tightly coupled, and the surface wave carries all the plasma mass coupled to the field, lead-
ing to slightly lower phase speed (lower Xr ). When d > 3, the interface becomes highly
asymmetric, i.e. region 1 is much denser than region 2. In the fully ionised case, the wave
becomes increasingly confined to the denser region, where the Alfvén speed is lower due to
higher density. However, the restoring magnetic tension is more effective because ions and
the magnetic field are fully coupled. In the partially ionised case, as d increases, the denser
region contains more neutrals, which are decoupled from the field, contributing inertia but
not tension. Therefore, the effective restoring force saturates, but inertia keeps growing,
resulting in waves being slowed down, so Xr becomes smaller than the fully ionised values.

The right panel shows that, although damping remains weak overall (order 10−5 −10−4),
it exhibits a clear dependence on ionisation degree. The damping rate increases significantly
as the plasma becomes more neutral, with the μ = 0.95 case showing the strongest atten-
uation. This reflects the enhanced role of ambipolar diffusion in weakly ionised plasmas,
where ion–neutral decoupling leads to stronger frictional dissipation. Furthermore, damp-
ing becomes slightly more pronounced with increasing density contrast d , which means that
waves undergo a stronger confinement near the interface, where the gradients in ambipolar
diffusion are enhanced.

Figure 3 displays the variation of the real (left panel) and imaginary (right panel) parts
of the dimensionless frequency of waves propagating along the density interface in terms of
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Figure 3 The same as in Figure 2, but here we consider the variation of the real and imaginary parts of X in
terms of the density ratio, d , for various values of β , considering dn = 4 and μ = 0.85.

Figure 4 The same as in Figure 2, but here we consider the variation of the real and imaginary part of X in
terms of plasma-β for various values of the density ratio, d , considering dn = 4 and μ = 0.85.

the density ratio, for three values of plasma-β for a given value of dn = 4 and an ionisation
degree of the plasma of μ = 0.85. While the propagation speed of waves changes very
little with plasma-β (left panel), the damping rate of surface waves propagating along the
interface shows higher values for a larger density ratio. The dependence of Xr on plasma-β
is in line with the influence of thermal pressure versus magnetic tension. In high plasma-β
plasmas, pressure gradients dominate wave dynamics, allowing faster propagation. As β

decreases, magnetic effects become more pronounced, and the coupling between ions and
neutrals becomes tighter, which acts to slow down the wave.

The right-hand panel shows that damping remains weak but increases with decreasing
plasma-β . In lower-β conditions, stronger magnetic coupling leads to more effective ion–
neutral friction and hence greater energy dissipation. In contrast, high-β plasmas favour
thermal pressure dominance and allow ion–neutral decoupling, reducing the damping effi-
ciency of ambipolar diffusion. Irrespective of the value of plasma-β , the damping rate of
surface waves increases with the density ratio, d .

The variation of the real and imaginary parts of the variable X with respect to the
plasma-β parameter for a given density ratio, d , ionisation degree and dn is shown in Fig-
ure 4. First of all, the phase speed of waves shown in the left-hand side panel increases
with the density ratio (as established earlier), and the phase speed of waves increases with
the plasma-β . With the increase of plasma-β , the phase speed of waves tends to saturate,
suggesting that further increases in plasma pressure have a negligible effect on the phase
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Figure 5 The same as in Figure 2, but here we study the variation of the real and imaginary part of X in
terms of the ionisation degree of the plasma (μ) for various values of the density ratio, d , considering dn = 4
and β = 50.

speed. In the high plasma-β regime, ion–neutral decoupling becomes important, reducing
the impact of neutral drag. As a result, the wave behaves more like an acoustic surface wave,
allowing faster propagation.

The right-hand side panel of Figure 4 shows that the damping rate of waves decreases
with the value of plasma-β , meaning that waves are more weakly damped in high plasma-β
regimes. With an increase of β , the ions decouple more effectively from the neutrals, and
wave dynamics become dominated by pressure forces. As a result, fewer energy losses oc-
cur through ion–neutral friction, and the wave damping rate decreases. The damping rate
increases with the density ratio between the two regions, meaning that higher density con-
trast implies larger asymmetry in ambipolar diffusion across the interface, favouring more
energy dissipation near the denser side.

When we vary the ionisation degree of the plasma and keep the plasma-β and dn con-
stant (see Figure 5), the propagation speed (frequency) of waves propagating at a density
interface separating two regions of different ionisation degree practically does not depend
on the ionisation degree of the plasma and, as before, their speed increases with the density
ratio of the two regions. In the high plasma-β regime, kinetic pressure forces dominate, and
magnetic tension is weak. In this case, even with the amount of neutrals increasing, ambipo-
lar diffusion reduces ion–neutral coupling, allowing ions to respond more freely to wave
motion. As a result, the presence of neutrals does not significantly affect the waves’ ability
to propagate and, consequently, their phase speed.

In contrast, the imaginary part of the variable X, showing the damping rate of waves
(right panel), shows a rather strong variation with the ionisation degree. Clearly, for an
ionisation degree close to the value corresponding to a fully ionised plasma, the damping rate
is very small, regardless of the density ratio, d . As the neutral fraction increases, ambipolar
diffusion becomes more significant, leading to enhanced wave damping. This effect is most
pronounced when the density contrast between regions is high, amplifying asymmetries in
ambipolar resistivity across the interface.

4. Conclusion

Our analysis has focused on the properties of waves propagating at an interface separating
two regions of partially ionised plasmas, permeated by a magnetic field that is parallel to the
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discontinuity. For simplicity, we considered that the two regions have the same equilibrium
pressure and magnetic field; therefore, the discontinuity appears as a jump in equilibrium
density, and the strength of this jump constitutes one of the key parameters that influence
the properties of waves. This equilibrium model also means that our analysis is valid for a
constant plasma-β parameter. Since we considered that the collisional frequency between
particles is much larger than the frequency of waves, the dynamics was described within a
single-fluid framework, where the partially ionised effects appear through the generalised
Ohm’s law and the imperfect coupling of neutral and charged particles (ions) generates the
ambipolar diffusion.

Using a normal mode analysis, we derived the dispersion relation of waves. The presence
of ambipolar diffusion in the governing equations renders the frequency of waves a complex
quantity, where the imaginary part describes the damping of waves. The earlier results ob-
tained by Roberts (1981) for a fully ionised plasma were used as a reference to highlight
the effect of neutrals on wave propagation and damping. First of all, a thorough analysis of
the results by Roberts (1981) revealed that the model we employed allows the propagation
of waves only when β > 2/γ ≈ 1.2, i.e. when the dynamics is driven by pressure forces, a
case that is relevant to photospheric structures with moderate strength of the magnetic field.

Similar to waves in a fully ionised case, the frequency (or phase speed) of waves in-
creases with the density contrast between the two regions. Interestingly, the wave frequency
remains nearly unchanged with varying ionisation degree, indicating that ambipolar diffu-
sion primarily affects wave damping, not propagation. The damping of waves is primarily
governed by the presence of neutrals and the value of the plasma-β parameter. In weakly
ionised plasmas, ambipolar diffusion enhances frictional losses through ion–neutral decou-
pling, leading to stronger damping. Conversely, higher β values favour pressure-driven dy-
namics and reduce magnetic coupling, making ambipolar damping less effective. While
the surface waves studied here are compressible and arise from a discontinuity in plasma
density, unlike the incompressible Alfvén waves typically discussed in uniform partially
ionised plasmas, the underlying dissipative mechanism due to ambipolar diffusion is shared.
This naturally suggests a qualitative analogy with the damping behaviour described in, e.g.,
Soler (2024), where increasing wavenumber leads to overdamped and purely damped Alfvén
waves. Although our surface wave geometry is distinct, a detailed study of the wavenumber
dependence could determine whether similar transitions occur, and such an investigation is
left for future work.

The techniques we introduced and the methodology used to determine dispersion rela-
tions will help us to transpose these ideas to the problem of wave propagation in a partially
ionised plasma slab waveguide that will be studied in the near future.

Appendix: The Elements of the Matrix 𝓜 in Equation 33

The matrix elements in the matrix equation 33 are given as

ℳ11 = X + iQ1 − iQ1

k2
m2

1, ℳ12 = X + iQ1 − iQ1

k2
m2

2,

ℳ13 = −X − iQ2 + iQ2

k2
m2

3, ℳ14 = −X − iQ2 + iQ2

k2
m2

4,

ℳ21 =
[︃

Xγβ

2X2 − γβ
(X + iQ1) + 1

]︃
m1 − iXQ1γβ

k2(2X2 − γβ)
m3

1,
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ℳ22 =
[︃

Xγβ

2X2 − γβ
(X + iQ1) + 1

]︃
m2 − iXQ1γβ

k2(2X2 − γβ)
m3

2,

ℳ23 =
[︃
− Xγβ

2X2 − γβd
(X + iQ2) − 1

]︃
m3 + iXQ2γβ

k2(2X2 − γβd)
m3

3,

ℳ24 =
[︃
− Xγβ

2X2 − γβd
(X + iQ2) − 1

]︃
m4 + iXQ2γβ

k2(2X2 − γβd)
m3

4,

ℳ31 = ℳ32 = 1, ℳ31 = ℳ32 = −1,

ℳ41 = Q1m1, ℳ42 = Q1m2, ℳ43 = −Q2m3, ℳ44 = −Q2m4.

Although these coefficients are aimed to be written in dimensionless form, we had to keep
the k-dependence in the denominators of some terms as the quantities mj are proportional
to k.
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